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ABSTRACT

Weighing the topological domain over which data can be represented
and analysed is a key strategy in many signal processing and ma-
chine learning applications, enabling the extraction and exploitation
of meaningful data features and their (higher order) relationships.
Our goal in this paper is to present topological signal processing
tools for weighted simplicial complexes. Specifically, relying on
the weighted Hodge Laplacian theory, we propose efficient strate-
gies to jointly learn the weights of the complex and the filters for
the solenoidal, irrotational and harmonic components of the signals
defined over the complex. We numerically assess the effectiveness
of the proposed procedures.

Index Terms— Topological signal processing, weighted simpli-
cial complexes, algebraic topology, metric learning, flow estimation.

1. INTRODUCTION

In the last years, there has been a growing interest in the process-
ing of signals defined over topological spaces [1], [2], i.e. over do-
mains composed of a set of points along with a set of neighborhood
relations among them, not necessarily metric. A renowned exam-
ple are graph signals, usually processed with tools from the Graph
Signal Processing (GSP) framework [3, 4]. However, graphs encode
only pairwise relationships between data; on the contrary, many real-
world phenomena involve multi-way relationships as, e.g., in bio-
logical or social networks. Recently, the Topological Signal Pro-
cessing (TSP) framework over simplicial complexes has been pro-
posed in [5, 6], and it represents a proper generalization of the GSP
framework for the representation and analysis of signals defined over
simplicial complexes; in [7], the authors presented a tutorial on the
emerging field of signal processing over hypergraphs and simplicial
complexes. A simplicial complex is a topological space composed
by a set of elements V and a set S containing subsets of various car-
dinality of the elements of V satisfying the inclusion property; the
rich algebraic structure of simplicial complexes make them partic-
ularly suited to capture multiway relations among data. Simplicial-
based processing methods have been applied in many fields, such
as statistical ranking [8], tumor progression analysis [9], brain [10]
and biological [11] networks. For this reason, there was also a rais-
ing interest in the development of (deep) neural network architec-
tures able to handle data defined on simplicial complexes [12–14].
Recently, weighted simplicial complexes (WSC) have been inves-
tigated as powerful tools to capture the information on data by as-
signing weights to each simplex in the complex; in this work, we
focus on WSCs to develop signal processing procedures for simplex-
structured data.

This work was supported in part by H2020 EU/Taiwan Project 5G
CONNI Nr. AMD-861459-3 and in part by MIUR under the PRIN Liquid-
Edge contract.

Related Works. In [15], the authors showed that weighted sim-
plicial complexes provided with a proper choice of weights can be
used to capture higher-order relationships in network data. A non-
equilibrium model for weighted growing simplicial complexes is de-
veloped in [16], while in [17] the authors focused on the problem of
group recurrence prediction eploiting WSCs. Weighted Laplacians
for weighted simplicial complexes are introduced in [18] as a gener-
alization of the combinatorial Hodge Laplacians. In [19], weighted
persistent homology is proposed to analyse biomolecular data where
weights reflect certain physical, chemical or biological properties
into the simplicial complex generation. The works in [12, 20] pro-
posed attentional deep architectures for simplex-structured data that
can be also seen as methods implicitly working on WSCs.
Contribution. Our goal in this paper is to establish the fundamen-
tal tools for processing signals over weighted simplicial complexes.
Weighing the topological domain over which data are represented
and processed enables the extraction of meaningful data features and
data relationships encoded by the weights assigned to simplices of
different order. We will show that weighing the simplices corre-
sponds to introducing a metric on the simplicial complex; for this
reason, a weighted Hodge Laplacian is introduced by taking into ac-
count the resulting metric tensors. To enhance the advantages of
working on WSCs, we propose an edge flow estimation strategy to
jointly learn the metric tensor and the edge flow from observed noisy
data. Moreover, we propose an efficient strategy to learn the metric
from data by minimizing the observed signal total variation, i.e. the
circulation of the signals along the triangles. We believe that sev-
eral other techniques could be developed to give both theoretical and
practical contributions.

2. WEIGHTED SIMPLICIAL COMPLEXES

In this section we introduce the algebraic representation of weighted
simplicial complexes and the fundamental tools to analyze signals
defined over these topological spaces.
Simplicial Complexes. Given a finite set V = {vi}N−1

i=0 of N ver-
tices, a k-simplex σk

i is formed by an unordered set of k+1 vertices
in V . A face of the k-simplex is a (k − 1)-simplex and every k-
simplex has exactly k+1 face. An abstract simplicial complex X is
definited as a finite collection of simplices closed under inclusion of
the faces of each simplex, i.e., if σk

i ∈ X , then all faces of σk
i also

belong to X . The order of a simplex is one less than its cardinality
and the order of a simplicial complex is the order of its highest or-
der simplex. An abstract simplicial complex can be embedded into a
metric space. If the complex is embedded into the Euclidean space,
a vertex is a 0-dimensional simplex, a line segment has dimension 1,
a triangle is a simplex of order 2 and so on. A graph is simply a sim-
plicial complex of order one. The structure of a simplicial complex
is captured by the neighborhood relations of its subsets. Specifically,
two simplices of order k, σk

i , σ
k
j ∈ X , are upper adjacent in X , if

they are both faces of a simplex of order k+1, while they are lowerIC
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adjacent in X , if they share a common face of order k − 1. We
usually focus on second order simplicial complexes, denoted with
X = {V, E , T } where V , E , T are the sets of 0, 1 and 2-simplices,
i.e. vertices, edges and triangles, respectively.
Incidence Matrices. Let us denote by nk the number of simplices of
order k in the complex. Given an orientation of all simplices (see [5]
for details), the structure of a simplicial complex X of dimension K
is captured by the set of its incidence (or boundary) matrices Bk ∈
Rnk−1×nk , k = 1, . . . ,K, with entries Bk(i, j) = 0 if σk−1

i is not
a face of σk

j , and Bk(i, j) = 1 (or −1), if σk−1
i is a face of σk

j and
its orientation is coherent (or not) with the orientation of σk

j . We
denote the set of k-simplex in X as Dk := {σk

i : σk
i ∈ X}, with

|Dk| = nk and, obviously, Dk ⊂ X .
Simplicial Signals. We are interested in processing signals defined
over a simplicial complex. A k-simplicial signal xk is usually de-
fined as a collection of mappings from the set of all k-simplices con-
tained in the complex to real numbers:

xk = [xk(σk
1 ), . . . , x

k(σk
i ), . . . , x

k(σk
nk

)]T ∈ Rnk , (1)

where xk : Dk → R. Although the definition in (1) is formally
correct, it can be reformulated using tools from algebraic topology,
that we explicitly need for defining WSCs. In particular, we need the
notions of chains, cochains and metric tensors.
Weighted Simplicial Complexes. A k-chain τk is a linear combi-
nation of k-simplices [21]:

τk =

nk∑
j=1

cjσ
k
j , cj ∈ R. (2)

The space of all the k-chains, denoted with Ck, is a real vector space
with a basis given by the collection of k-simplices, which we refer
to as basic k-chains. Being a finite dimensional vector space, the
chain space Ck can be equipped with an inner product completely
determined by its basic k-chains:

gkij := ⟨σk
i , σ

k
j ⟩Ck , (3)

where gkij ∈ R, gkij = gkji, i, j = 1, . . . , nk. In this way, given two
chains τk and γk with coefficients {cj}j and {aj}j , respectively,
we obtain:

⟨τk, γk⟩Ck =
∑
i

∑
j

ciajg
k
ij . (4)

In this work, we assume orthogonality and positiveness, meaning
gkij = 0, ∀ i ̸= j, and gkii > 0 ∀ i. We refer to the set of all inner
products in (3), for i, j = 1, . . . nk, as the metric tensor of order
k. The dual space Ck of Ck is the space of all linear functional τ∗k

from Ck to R: we refer to these linear functionals as k-cochains.
Due to the canonical isomorphism, the metric tensor induces an inner
product also on the dual space; in particular, given two cochains τ∗k

and γ∗k with coefficients {cj}j and {aj}j , respectively, we have:

⟨τ∗k, γ∗k⟩Ck =
∑
i

∑
j

ciajwk
ij , (5)

where wk
ii = 1/gkii and wk

ij = 0 ∀i ̸= j. It can be proven that
the cochain space Ck is naturally isomorphic to Rnk [21], so that we
can identify a cochain τ∗,k with a vector xk = [c1, . . . , cnk ] ∈ Rnk

containing the coefficients of its corresponding chain. At this point,
it is sufficient to set xk(i) = xk(σk

i ) = ci for re-obtaining the
definition in (1); therefore, we can state that simplicial signals and
co-chains are the same object (up to an isomorphism). As a direct

consequence of the aforementioned results, we can see the metric
tensor as a diagonal matrix Gk with positive entries given by gkii
for 1 ≤ i ≤ nk. Therefore, given two signals xk

1 ,x
k
2 defined over

k-simplices, their inner product is defined as:

⟨xk
1 ,x

k
2⟩ = xk T

1 G−1
k xk

2 =

nk∑
i=1

wk
iix

k
1(i)x

k
2(i). (6)

We define a weighted simplicial complex as a simplicial complex
whose chain spaces are equipped with non-trivial metric tensors
(non-identity matrices).
Hodge decomposition. To find an algebraic representation of the
weighted simplicial complex that is able to capture its topologi-
cal and metric structures, we first need to introduce the bound-
aries and coboundaries operators. The k−boundary operator
∂k : Ck → Ck−1 is a linear operator mapping k-chains to (k − 1)-
chains, and we denote its dual with δk := ∂∗

k. The dual δk is
called the k−coboundary operator, and it maps (k − 1)-cochains to
k-cochains. It can be proven that [21]:

δk = BT
k . (7)

We can derive an expression for the adjoint (of the dual) operator δ′
k

as a function of the metric tensor, observing that it holds that:

⟨xk, δkx
k−1⟩ = ⟨δ′

kx
k,xk−1⟩ (8)

for every pairs of signals xk−1 ∈ Rnk−1 , xk ∈ Rnk . Then, com-
bining (7) and (8), we can easily write δ′

k as:

δ′
k = Gk−1BkG

−1
k . (9)

The topological structure of a (weighted or not) K-simplicial com-
plexes is fully described by the higher order Hodge Laplacian matri-
ces of order k = 1, . . . ,K, defined as:

Lk = δkδ
′
k + δ′

k+1δk+1. (10)

Specifically, using the expression of the adjoint coboundaries in (9),
we easily get:

L0 = G0B1G
−1
1 BT

1

Lk = BT
k Gk−1BkG

−1
k +GkBk+1G

−1
k+1B

T
k+1,

LK = BT
KGK−1BKG−1

K ,

(11)

k=1,. . . ,K − 1. Then, for instance, the first-order Laplacian for a
simplicial complex of order 2 can be written as:

L1 = BT
1 G0B1G

−1
1 +G1B2G

−1
2 BT

2 . (12)

Note that defining the lower and upper Laplacians as Lk,d =
BT

k Gk−1BkG
−1
k and Lk,u = GkBk+1G

−1
k+1B

T
k+1, respectively,

it holds that Lk,dLk,u = Lk,uLk,d = 0. This fact implies that
an Hodge decomposition [22–24] holds for the signals space Rnk ;
therefore, it can be decomposed as:

Rnk = im(δk)⊕ ker(Lk)⊕ im(δ′
k+1). (13)

Then, exploiting (9) and (13), a higher order signal xk ∈ Rnk can
be decomposed in the sum of three orthogonal components

xk = BT
k x

k−1 +GkBk+1G
−1
k+1x

k+1 + xk
h (14)

where, for k = 1, x1
irr = BT

1 x
0, x1

sol = G1B2G
−1
2 x2 and, x1

h ∈
ker(L1) are the irrotational, solenoidal and harmonic flows, respec-
tively [5]. In the sequel, we will focus, w.l.o.g., on edge flow signals
and complexes of order 2 composed of N nodes, E edges and T
triangles. Therefore, we will drop the subscripts and denote x1 with
x, L1 with L, L1,d with Ld, and x1

h with xh.
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3. JOINT LEARNING OF EDGE FLOWS AND WEIGHTS

Let us suppose to observe an edge flow signal affected by AWG
noise, defined as x̃ = x + n, where x denotes the clean flow,
whereas n

i.i.d.∼ N (0, σ2) denotes the noisy flow. In this section,
we formulate a denoising problem as a constrained problem, rooted
in the Hodge decomposition, and we propose an efficient strategy for
jointly learning the weights (metric tensor) G2 associated with the
2-order simplices (triangles) and the flow x. In this first study, we
consider the weighing of the nodes G0 and of the edges G1 as given.
Based on the decomposition in (14), we can model the observed flow
as:

x = BT
1 x

0 +G1B2G
−1
2 x2 + xh,

x̃ = x+ n. (15)

We formulate the denoising problem as follows:

Q) (x̂0, x̂2, x̂h, Ĝ2) =

argmin
x0,x2,xh,G2

∥BT
1 x

0 +G1B2G
−1
2 x2 + xh − x̃∥2

s.t. a)Lxh = 0,

b) [G−1
2 ]ii > 0, [G−1

2 ]ij = 0, ∀ i ̸= j (16)

where the constraint a) forces x̂h to belong to the kernel of the Lapla-
cian (the harmonic subspace), while the constraints b) impose the
diagonal structure to Ĝ2 with positive entries. Problem Q is not
jointly convex, but it is block multi-convex, i.e. convex with respect
to each of the optimization variables while holding all others fixed.
For this reason, we propose an efficient iterative alternating mini-
mization algorithm to find local optimal solutions. Denoting with t
the iteration index, we initialize our iterative algorithm with a ran-
dom feasible point (x̂0[t], x̂2[t], x̂h[t], Ĝ2[t]) at time t = 0. Then,
defining the point ẑ[t] := (x̂0[t], x̂2[t], x̂h[t]), the proposed alter-
nating optimization method consists in solving at each iteration t the
two following convex problems:

Q1) ẑ[t] = argmin
z=(x0,x2,xh)

∥BT
1 x

0 +G1B2Ĝ
−1
2 [t− 1]x2 + xh − x̃∥2

s.t. L[t− 1]xh = 0, (17)

where L[t− 1] = Ld +G1B2Ĝ
−1
2 [t− 1]BT

2 , and

Q2) Ĝ2[t] =argmin
G2

∥BT
1 x̂

0[t] +G1B2G
−1
2 x̂2[t] + x̂h[t]− x̃∥2

s.t. (Ld +G1B2G
−1
2 BT

2 )x̂h[t] = 0,

[G−1
2 ]ii > 0, [G−1

2 ]ij = 0, ∀i ̸= j. (18)

Problems Q1 and Q2 are convex, and can be efficiently solved with
any numerical solver. Furthermore, using similar derivations as in
[5], we can easily prove that problem Q1 admits the following closed
form solution:

x̂0[t] = (B1G
−1
1 BT

1 )
†B1G

−1
1 x̃, ∀ t (19)

x̂2[t] = (Ĝ−1
2 [t− 1]BT

2 G1B2Ĝ
−1
2 [t− 1])†Ĝ2[t− 1]−1BT

2 x̃,
(20)

x̂h[t] = x̃−BT
1 x̂

0[t]−G1B2G
−1
2 [t− 1]x̂2[t], (21)

where (·)† is the Moore-Penrose pseudoinverse. Problem Q can be
also regularized (with convex penalties), leading to the same pro-
cedure but with the additional regularization terms in the objective

Algorithm 1 : EDGE FLOW ESTIMATION
Inputs:

x̃ ∈ RE : Noisy edge flow signal.
B1 ∈ RN×E : Nodes to edges incidence matrix
B2 ∈ RE×T : Edges to triangles incidence matrix
G1 ∈ RE×E : Edges weights (metric tensor)
x̂0[0], x̂2[0], x̂h[0], Ĝ2[0]: Feasible initializations
Nt: iteration number (can be replaced by stopping criterion)

Outputs:
x̂0, x̂1, x̂h, Ĝ2: Learned signals and weights (metric tensor)

1: function EDGE FLOW ESTIMATION (Inputs)
2: for t ∈ [1, Nt] do
3: x̂0[t], x̂2[t], x̂h[t]: Compute (19), (20), and (21)
4: Ĝ2[t]: Numerically solve Q2

return :
5: x̂0 = x̂0[Nt]
6: x̂2 = x̂2[Nt]
7: x̂h = x̂h[Nt]

8: Ĝ2 = Ĝ2[Nt]
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Fig. 1. Correlation coefficient vs the noise standard deviation.

functions. The proposed procedure is listed in Algorithm 1.
To numerically test the effectiveness of the proposed edge flow

estimation strategy, we consider a random simplicial complex with
N = 40 nodes, E = 137 edges, T = 96 triangles, and with the
metric tensors G1 and G2 being random positive diagonal matrices.
We generate random noisy edge signals x̃ according to the model in
(15) with x0,x2,xh being random sparse vectors. Then, we apply
the proposed alternating minimization scheme to estimate x from x̃.
For this experiment, we also regularize Problem Q with a l1 penalty
on the signal components. In Figure 1, we show the correlation coef-
ficient ρ = |x̂T x|

∥x̂∥∥x∥ (to neglect the effect of multiplicative constants)
versus the noise standard deviation σ, comparing our method against
the estimation only of the signals components assuming a flat metric
(unitary weights) G2 = I; the results are averaged over 20 signals
and noise realizations. As the reader can notice, the joint learning
of the metric tensor and the signals components show a significant
performance gain. We plan to extend this work by designing more
complex procedures involving the learning also of the weights G0

and G1, as well as testing on real data.
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4. LEARNING THE METRIC TENSOR FROM DATA

In this section we propose an efficient strategy to learn the metric
tensor G2 from a set of observed edge signals. Assuming that the
edge flows are smooth over the solenoidal subspace, so that their cir-
culation along the triangles is minimum, we formulate the learning
of the metric tensor as a total variation minimization problem. We
start from the observation of M snapshots of edge signals x(m),
m = 1, . . . ,M . The squared norm of the circulation of each signal
along the triangles of the complex can be written as

TVsol(x(m)) = xsol(m)TB2G
−1
2 BT

2 xsol(m) (22)

where in the right term we exploited the orthogonality among the
irrotational, harmonic and solenoidal subspaces. Note that since the
metric tensor is a diagonal matrix, equation (22) can be expressed in
the form:

TVsol(x(m)) =
T∑

i=1

w2(i)xsol(m)Tbib
T
i xsol(m) (23)

where w2(i) is the i-th positive diagonal entry of the metric tensor
G−1

2 , T is the number of (filled) triangles of the complex and bi is
the i-th column of B2. Then, our goal is to find the optimal weights’
vector w2 = [w2(1), . . . , w2(T )]

T minimizing the total variation
of the observed solenoidal signals. Therefore, denoting with Xs =
[xsol(1), . . . ,xsol(M)] the E×M matrix with columns the observed
signals, the metric learning problem can be formulated as

min
w2∈RT

T∑
i=1

w2
2(i)tr(X

T
s bib

T
i Xs) (P)

s.t. a)
T∑

i=1

w2(i) = 1,

b) w2(i) > 0, ∀ i

(24)

where we consider a quadratic objective function instead of the lin-
ear one leading in our problem to a trivial solution. The constraint
a) forces the sum of the positive weights to be a constant value
while the constraints in b) ensure positive variables w2(i). To sim-
plify our notation, let us introduce the positive coefficients ai =
tr(X1T

s bib
T
i xsol). The optimization problem P admits a closed

form solution as stated in the following theorem.

Theorem 1 Given any set of positive coefficients {ai}Ti=1, the con-
vex optimization problem P admits the closed form solution:

w2(i) =
λ⋆

2ai
(25)

with λ⋆ = 1/(
∑T

i=1 1/(2ai)).

Proof. First let us observe that the objective function in problem P
is a convex function being a linear combination with positive coef-
ficients of quadratic variables. Then, problem P is a convex opti-
mization problem since the linear constraint a) and the constraints in
b) define a feasible convex set. Therefore, any optimal solution w⋆

2

satisfies the KKT conditions of P that are necessary and sufficient
conditions for optimality (note that Slater’s constraint qualification is
satisfied). Then, denoting with L(w, λ,µ) the Lagrangian function

5 10 15 20 25

M

0.01

0.02

0.03

0.04

0.05

0.06

M
S
E

Fig. 2. MSE versus the number of observed signals M .

of P , the KKT conditions are

(i)
∂L

∂w2(i)
= 2w2(i)ai − λ− µi = 0, ∀ i

(ii) µiw2(i) = 0, µi ≥ 0, w2(i) > 0, ∀ i

(iii) λ(
∑

i w2(i)− 1) = 0, λ ∈ R,
∑T

i=1 w2(i) = 1.
(26)

Since w2(i) > 0, from (ii) we get µi = 0, so that condition (i)
becomes w2(i) =

λ
2ai

. Replacing these variables in the linear con-
straint, one gets λ⋆ = 1/(

∑
i 1/(2ai)) so that the optimal solutions

are w2(i) =
λ⋆

2ai
.

To numerically test the effectiveness of the proposed metric learning
strategy we solve problem P to find the metric tensor from the obser-
vation of signals over the edges of the simplicial complex. Specifi-
cally, we generated 100 random geometric graphs composed of N =
40 vertices by filling all the possible 2-simplices in the graph. For
each graph we generated a metric tensor with diagonal random en-
tries between [0, 1] such that w belongs to the feasible set of P .
In Figure 2, we report the mean squared metric estimation error
∥ w2 − ŵ2 ∥F versus the number M of observed edge signals.
The results are averaged over 100 simplicial complex realizations
and, for each complex, by generating 100 random matrix Xs of ban-
dlimited signals. We can observe that as the number M of signals
increases a more accurate estimation ŵ2 of the true metric is pro-
vided.

5. COMMENTS AND CONCLUSIONS

We presented topological signal processing tools for elaborating sig-
nals defined over weighted simplicial complexes. Specifically, rely-
ing on the weighted Hodge Laplacian theory, we proposed efficient
strategies to jointly learn the weights of the complex and the filters
for the solenoidal, irrotational and harmonic components of the sig-
nals defined over the complex. We numerically assessed the effec-
tiveness of the proposed procedures. This is a preliminary work with
two main goals: the first one is casting the algebraic topology no-
tions of abstract simplicial complexes with non trivial metric tensors
in a signal processing framework; the second one is proposing sig-
nal processing tools able to handle simplex-structured data defined
on weighted simplicial complexes. We plan to extend the proposed
framework both from a theoretical and an applied points of view.
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