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A B S T R A C T

We consider dynamic portfolio selection under ambiguity in the classical multi-period binomial market model.
Ambiguity is incorporated in the real-world probability measure through an epsilon-contamination, that gives
rise to a completely monotone capacity conveying a pessimistic investor’s ambiguous beliefs. The dynamic
portfolio selection problem is formulated as a Choquet expected utility maximization problem on the final
wealth. Then, the optimal final wealth is proved to be a function of the final stock price: this allows a dimension
reduction of the problem, switching from an exponential to a linear size with respect to the number of periods.
Finally, an explicit characterization of the optimal final wealth is given in the case of a constant relative risk
aversion utility function and the interaction between the ambiguity and the relative risk aversion parameters
is investigated.
1. Introduction

Classical financial market models (see, e.g., Černý, 2009; Munk,
2013; Pliska, 1997) deal with uncertainty by referring to a single proba-
bility measure 𝐏, that encodes the beliefs of market agents, assumed to
share the same probabilistic opinions. The probability measure 𝐏 has
a fundamental role since it is used for computing the expected util-
ity functional, that represents agents’ preferences on random payoffs.
Nevertheless, the presence of unobserved variables, partial information,
or misspecified variables often makes it no longer possible to handle
uncertainty through a single probability measure 𝐏. A typical example
is the celebrated experiment in Ellsberg (1961), where an urn with
partially specified composition is considered, that induces a class of
compatible probability measures.

Decision problems where uncertainty is summarized by a class 
of probability measures are customarily referred to as decisions under
ambiguity (see, e.g., Etner et al., 2012 and Gilboa & Marinacci, 2013).
More generally, ambiguity can be modeled either through a class of
probability measures  or through a non-additive uncertainty measure
𝜈 (see, e.g., Gilboa, 2009). The two approaches are generally not equiv-
alent, but in case 𝜈 is (at least) 2-monotone (Grabisch, 2016; Walley,
1991) the two approaches reduce to Choquet expected utility (Gilboa
& Schmeidler, 1989; Schmeidler, 1986).

Switching to a set of probabilities  in place of the single prob-
ability measure 𝐏 allows to address situations where a single market
agent is not completely convinced of the hypotheses behind 𝐏, like
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independence or association among some variables, thus he/she aims to
test their robustness. A distinguished model is the epsilon-contamination
of a reference probability measure 𝐏, which is the class 𝐏,𝜖 of all
probability measures of the type 𝐏′ = (1 − 𝜖)𝐏 + 𝜖𝐏′′, where 𝐏′′ is
any probability measure on the same space, and 𝜖 ∈ [0, 1) is a fixed
ambiguity parameter. The epsilon-contamination class, also referred
to as linear-vacuous mixture model, gives rise to the lower envelope
𝜈𝐏,𝜖 = min𝐏,𝜖 , which is a completely monotone capacity (see Sections
2.9.2 and 3.3.5 in Walley (1991) or Section 5.1 in Montes et al., 2020).
We also notice that 𝜈𝐏,𝜖 is a particular nearly-linear model, according
to Pelessoni et al. (2021). Furthermore, since the Choquet integral
with respect to 𝜈𝐏,𝜖 turns out to be the lower expectation with respect
to probability measures in 𝐏,𝜖 , this class permits to model investors’
preferences consistent with the Choquet expected utility theory. In
particular, the classical expected utility theory is recovered when 𝜖 = 0.

In recent years a growing interest has been addressed towards
ambiguity in behavioral finance and portfolio selection (see, e.g., Anan-
tanasuwong et al., 2019), with the aim of proposing more robust and
more realistic models. In this paper, we refer to the classical multi-
period binomial model (Černý, 2009; Pliska, 1997), which considers
a market formed by a non-dividend-paying stock and a risk-free bond,
whose prices evolve over a discrete set of times, with a finite horizon 𝑇 .
We formalize a dynamic portfolio selection problem under ambiguity,
referring to an epsilon-contamination of the probability measure 𝐏
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related to a multi-period binomial market model, and to a strictly
increasing and strictly concave utility function. Since the probability 𝐏
in the multi-period binomial market model is completely determined by
a parameter 𝑝, the epsilon-contaminated binomial model is parameterized
by 𝑝 and the ambiguity parameter 𝜖, and is denoted by 𝑝,𝜖 .

The completeness of the market allows to formulate the dynamic
portfolio selection in terms of the final wealth 𝑉𝑇 , reachable with a
fixed initial amount 𝑉0. Due to the no-arbitrage condition, discounted
wealth processes can be represented as martingales with respect to an
‘‘artificial’’ risk-neutral probability measure 𝐐 (see, e.g., Černý, 2009;
Pliska, 1997). On the other hand, the agent’s subjective probability
measure 𝐏 is usually dubbed as real-world probability measure in math-
ematical finance literature (see, e.g., Chapter 4 in Munk, 2013), to
distinguish it from 𝐐.

A systematically pessimistic attitude towards ambiguity is taken for
the market agent which is assumed to be risk averse and ambiguity
averse. The problem amounts to finding a final wealth maximizing the
corresponding Choquet expected utility functional. As shown in Gilboa
(2009) (see also Grabisch, 2016), an agent which is a Choquet expected
utility maximizer is actually an expected utility maximinimizer, with
respect to the epsilon-contamination class.

In the one-period case, a portfolio selection problem under ambi-
guity via maximinimization has been faced in Pflug and Pohl (2018),
Pflug and Wozabal (2007). In the quoted papers, the authors take a
ball of probability measures around a reference probability measure
𝐏 (on R𝑚) with respect to the Wasserstein distance of order 1 (see,
e.g., Villani, 2009), and constrain the feasible portfolios by avoiding
short sales and respecting some risk measurement constraints. Thus,
besides the modeling of ambiguity, their problem is rather different
from ours as we consider a discrete multi-period setting and allow for
short sales. Nevertheless, a similarity of our proposal with the quoted
one can be singled out since the class of probability measures 𝑝,𝜖 we
onsider can be viewed as a ball around 𝐏 generated by a suitable
seudo-distance (Montes et al., 2020).

A deeper similarity of our portfolio selection problem can be found
ith the problem formulated in Appendix C of Jin and Yu Zhou (2008),

hat requires to maximize a Choquet expected utility over the set of
inal wealth. The quoted problem differs from ours for working in a
ontinuous-time setting and with a non-atomic probability measure 𝐏,
hich is distorted by applying a differentiable automorphism of the
nit interval, generally resulting only in a capacity. Such approach for
ealing with ambiguity is not comparable with our setting, in general,
nd the true goal of the quoted reference is to face portfolio selection
hen agent’s preferences agree with the cumulative prospect theory
f Tversky and Kahneman (1992). This is the same setting of papers
y Bi et al. (2018), Harris and Mazibas (2022).

It turns out that introducing ambiguity via the epsilon-contamination
lass allows to achieve manageable algorithms to solve the problem.
ndeed, as highlighted in Jin and Yu Zhou (2008), maximizing the
hoquet expected utility over the final wealth is a computationally hard
roblem, that cannot be reduced to dynamic programming, in general.

Assuming uniformly distributed stock returns, some preliminary
esults concerning the problem faced in this paper appear in Antonini
t al. (2020), where a characterization relying on the resolution of an
ptimization problem of dimension 2𝑇 is provided. Therefore, results
ppearing in Antonini et al. (2020) cannot be used in practice for a
arge number of periods 𝑇 .

In this paper, we prove that our Choquet expected utility maxi-
ization problem admits a unique optimal final wealth 𝑉 ∗

𝑇 , that can
e expressed as a suitable function of the stock value at the maturity
𝑇 , i.e., 𝑉 ∗

𝑇 = 𝜑(𝑆𝑇 ). The problem reduces to a family of linearly
onstrained concave problems with 𝑇+1 unknowns, which is equivalent
o a single non-linearly constrained problem with a linear objective,
ver 𝑇 + 2 unknowns.

To the best of our knowledge, this is the first time the epsilon-
1030

ontamination model is used for dynamic portfolio selection. Moreover,
he dimension reduction we obtain essentially relies on the properties
f 𝑝,𝜖 , due to the simple structure of its extreme points and their
onnection with the Choquet integral (see Sections 3 and 4).

Focusing on a constant relative risk aversion (CRRA) utility function
ith relative risk aversion parameter 𝛾 > 0, we further provide a

haracterization of the optimal solution 𝑉 ∗
𝑇 and introduce an algorithm

hat finds the exact optimal solution by solving 𝑇 + 1 combinatorial
ptimization problems. Finally, in the CRRA case, we study the impact
f the contamination parameter 𝜖 on the optimal portfolio, showing
he presence of a threshold 𝜖∗ above which the optimal self-financing
trategy reduces to 0 for all times: this highlights that with such values
f 𝜖 the ambiguity in the model is so high to make the risk-free portfolio
he most suitable choice. In particular, we investigate the effect of
he risk aversion parameter 𝛾 on 𝜖∗ showing the existence of two
hresholds 𝛾∗1 , 𝛾

∗
2 with 𝛾∗1 ≤ 𝛾∗2 , delimiting different interactions between

mbiguity and risk aversion, that result in different optimal portfolio
hoice behaviors.

The paper is structured as follows. Section 2 contains preliminaries
n the dynamic portfolio selection problem in the classical binomial
arket model. Section 3 introduces the epsilon-contaminated binomial
arket model and formulates dynamic portfolio selection as a Choquet

xpected utility maximization problem. The same section shows that
he optimal final wealth is a function of the stock price at time 𝑇 .
ection 4 uses the latter property to equivalently reformulate the initial
roblem either in terms of a family of 𝑇+1 linearly constrained concave
roblems on 𝑇 + 1 unknowns or as a unique non-linearly constrained
roblem on 𝑇 + 2 unknowns with a linear objective. Then, an explicit
haracterization of the optimal final wealth is given in the case of

CRRA utility function with parameter 𝛾 > 0. Finally, Section 5
nalyzes the interaction between the ambiguity parameter 𝜖 and the
isk aversion parameter 𝛾, while Section 6 draws our conclusions and
uture perspectives. Proofs are collected in Appendix.

. Dynamic portfolio selection in the binomial market model

The paper refers to the classical multi-period binomial market
odel (see, e.g., Černý, 2009; Pliska, 1997). Such model considers a
erfect (competitive and frictionless) market under no-arbitrage, where
wo basic securities are traded: a non-dividend-paying stock and a
isk-free bond.

For a finite horizon 𝑇 ∈ N, we denote by 𝑆𝑡 and 𝐵𝑡 the prices of the
tock and the bond, respectively, at time 𝑡 ∈ {0,… , 𝑇 }. The stochastic
rocess {𝑆0,… , 𝑆𝑇 } and the deterministic process {𝐵0,… , 𝐵𝑇 } are such

that 𝑆0 = 𝑠 > 0, 𝐵0 = 1, and for 𝑡 = 1,… , 𝑇 , the returns are
𝑆𝑡
𝑆𝑡−1

=
{

𝑢, with probability 𝑝
𝑑, with probability 1 − 𝑝

and
𝐵𝑡
𝐵𝑡−1

= (1 + 𝑟),

here 𝑢 > 𝑑 > 0 are the ‘‘up’’ and ‘‘down’’ stock price coefficients, 𝑟 is
he risk-free interest rate over each period, satisfying 𝑢 > (1+𝑟) > 𝑑, and
𝑝 ∈ (0, 1) is the probability of an ‘‘up’’ movement for the stock price.
Thus, for 𝑡 = 1,… , 𝑇 , we have that

𝑆𝑡 = 𝑆0

𝑡
∏

𝑛=1

𝑆𝑛
𝑆𝑛−1

and 𝐵𝑡 = (1 + 𝑟)𝑡,

assuring that both price processes are strictly positive, in compliance
with the limited liability assumption for securities (see, e.g., Munk,
2013). Notice that the trajectories of {𝑆0,… , 𝑆𝑇 } can be represented
graphically on a recombining binomial tree.

All the processes are defined on the filtered probability space
(𝛺, , {𝑡}𝑡=0,…,𝑇 ,𝐏), where 𝛺 = {1,… , 2𝑇 },  = 2𝛺 with 2𝛺 the
power set of 𝛺, and 𝑡 is the algebra generated by random variables
{𝑆0,… , 𝑆𝑡}, for 𝑡 = 0,… , 𝑇 , with 0 = {∅, 𝛺} and 𝑇 =  . As usual 𝐄𝐏

denotes the expected value with respect to 𝐏.
Assuming that the returns 𝑆1

𝑆0
,… , 𝑆𝑇

𝑆𝑇−1
are i.i.d. random variables,

the probability 𝐏 is completely singled out by the parameter 𝑝, and the
rocess {𝑆0,… , 𝑆𝑇 } is a multiplicative binomial process since

𝐏(𝑆𝑡 = 𝑢𝑘𝑑𝑡−𝑘𝑠) = 𝑡! 𝑝𝑘(1 − 𝑝)𝑡−𝑘,

𝑘!(𝑡 − 𝑘)!
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where 𝑆𝑡 ranges in 𝑡 = {𝑢𝑘𝑑𝑡−𝑘𝑠 ∶ 𝑘 = 0,… , 𝑡}.
Let 𝑉0 ∈ R be an initial wealth. A self-financing strategy {𝜃0,… , 𝜃𝑇−1}

is an adapted process such that 𝜃𝑡 is the (random) number of shares
of stock to buy (if positive) or short-sell (if negative) at time 𝑡 up to
time 𝑡 + 1 (Černý, 2009), that determines an adapted wealth process
{𝑉0,… , 𝑉𝑇 }, where, for 𝑡 = 0,… , 𝑇 − 1,

𝑉𝑡+1 = (1 + 𝑟)𝑉𝑡 + 𝜃𝑡𝑆𝑡

(

𝑆𝑡+1
𝑆𝑡

− (1 + 𝑟)
)

. (1)

In turn, 𝑉𝑡 − 𝜃𝑡𝑆𝑡 is the amount of money invested in the bond from
time 𝑡 up to time 𝑡 + 1.

This market model is said to be complete, i.e., there is a unique
risk-neutral probability measure 𝐐 on  , equivalent to 𝐏, such that the
discounted wealth process of any self-financing strategy is a martingale
under 𝐐:

𝑉𝑡
(1 + 𝑟)𝑡

= 𝐄𝐐
𝑡

[

𝑉𝑇
(1 + 𝑟)𝑇

]

, (2)

or 𝑡 = 0,… , 𝑇 , where 𝐄𝐐
𝑡 [⋅] = 𝐄𝐐[⋅|𝑡] and 𝐄𝐐

0 ≡ 𝐄𝐐. Complete-
ess implies that every payoff 𝑉𝑇 ∈ R𝛺 depending only on the
tock price history can be replicated by a dynamic self-financing strat-
gy {𝜃0,… , 𝜃𝑇−1} and its unique no-arbitrage price at time 𝑡 = 0 is

determined by Eq. (2), since

𝑉0 =
𝐄𝐐[𝑉𝑇 ]
(1 + 𝑟)𝑇

. (3)

otice that the process {𝑆0,… , 𝑆𝑇 } is still a multiplicative binomial
rocess under 𝐐, completely characterized by the parameter

=
(1 + 𝑟) − 𝑑

𝑢 − 𝑑
∈ (0, 1). (4)

Both 𝐏 and 𝐐 can be explicitly defined by identifying every state
𝑖 ∈ 𝛺 with the path of the stock price evolution corresponding to the
𝑇 -digit binary expansion of number 𝑖−1, in which ones are interpreted
as ‘‘up’’ movements and zeros as ‘‘down’’ movements. Denoting by 𝜅(𝑖)
the number of ‘‘up’’ movements and by 𝑇 − 𝜅(𝑖) the number of ‘‘down’’
movements, it holds that (we avoid braces to simplify writing)

𝐏(𝑖) = 𝑝𝜅(𝑖)(1 − 𝑝)𝑇−𝜅(𝑖) and 𝐐(𝑖) = 𝑞𝜅(𝑖)(1 − 𝑞)𝑇−𝜅(𝑖), (5)

showing that both 𝐏 and 𝐐 are strictly positive on  ⧵ {∅}.
We point out that 𝐐 is an ‘‘artificial’’ probability measure implied

by the no-arbitrage condition, whose unique purpose is to represent a
wealth process as in Eq. (2).

In the classical binomial market model, the probability measure
𝐏 is assumed to encode the beliefs of an investor and is commonly
estimated from historical data. In this paper we suppose that our
investor has ambiguous beliefs, meaning that, rather than having a
single probability 𝐏, he/she actually considers a closed (in the product
topology) class of probabilities  , as highlighted in the introduction.

3. Modeling ambiguity through the epsilon-contamination model

We deal with the binomial market model by introducing ambiguity
to get an epsilon-contaminated binomial market model. Given the real-
world probability 𝐏 defined on  as in Section 2 (which is completely
singled out by 𝑝) and 𝜖 ∈ (0, 1), the corresponding epsilon-contamination
model (see, e.g., Huber, 1981) is the class of probability measures on 
efined as

𝑝,𝜖 = {𝐏′ = (1 − 𝜖)𝐏 + 𝜖𝐏′′ ∶ 𝐏′′ is a probability measure on },

whose lower envelope 𝜈𝑝,𝜖 = min𝑝,𝜖 is defined on  as

𝑝,𝜖(𝐴) =
{

(1 − 𝜖)𝐏(𝐴), if 𝐴 ≠ 𝛺,
1, if 𝐴 = 𝛺.

(6)

It turns out that 𝜈𝑝,𝜖 is a completely monotone capacity (see Section
.1 in Montes et al., 2020), i.e., it satisfies:
1031
(i) 𝜈𝑝,𝜖(∅) = 0 and 𝜈𝑝,𝜖(𝛺) = 1;
(ii) 𝜈𝑝,𝜖

(
⋃𝑛

𝑖=1 𝐸𝑖
)

≥
∑

∅≠𝐼⊆{1,…,𝑛}(−1)|𝐼|+1𝜈𝑝,𝜖
(
⋂

𝑖∈𝐼 𝐸𝑖
)

, for every 𝑛 ≥ 2
and for every 𝐸1,… , 𝐸𝑛 ∈  .

Notice that, the case 𝜖 = 0 corresponds to absence of ambiguity, since
𝑝,𝜖 = {𝐏} and 𝜈𝑝,𝜖 = 𝐏. Therefore, to cover also this possibility we take
𝜖 ∈ [0, 1).

For every permutation 𝜎 of 𝛺, we define a probability measure
𝐏𝜎 on  , whose value on the singletons (we avoid braces to simplify
writing) is

𝐏𝜎 (𝜎(𝑖)) = 𝜈𝑝,𝜖(𝐸𝜎
𝑖 ) − 𝜈𝑝,𝜖(𝐸𝜎

𝑖+1), (7)

where 𝐸𝜎
𝑖 = {𝜎(𝑖),… , 𝜎(2𝑇 )}, for all 𝑖 ∈ 𝛺, and 𝐸𝜎

2𝑇 +1
= ∅. In what

follows 𝛴 denotes the set of all permutations of 𝛺.
It turns out (see, e.g., Chapter 3 in Grabisch, 2016) that probabilities

𝐏𝜎 ’s are the extreme points of 𝑝,𝜖 , that is ext (𝑝,𝜖) = {𝐏𝜎 ∶ 𝜎 ∈ 𝛴}.
This holds since 𝑝,𝜖 coincides with the core induced by 𝜈𝑝,𝜖 , i.e., with
the set of probability measures on  dominating 𝜈𝑝,𝜖 .

As follows by Section 3.6.3 in Walley (1991) (see also Section 5.1
in Montes et al., 2020), only the first element of a permutation matters,
in the sense that if two permutations 𝜎, 𝜎′ ∈ 𝛴 are such that 𝜎(1) =
𝜎′(1), then 𝐏𝜎 = 𝐏𝜎′ . Therefore, we can focus on a minimal subset
𝛴′ = {𝜎1,… , 𝜎2𝑇 }, where 𝜎ℎ(1) = ℎ for all ℎ ∈ 𝛺, to recover ext (𝑝,𝜖):
a subset 𝛴′ can be obtained choosing, for every ℎ ∈ 𝛺, a permutation
𝜎ℎ having ℎ in its first position. Indeed, for every permutation 𝜎 of 𝛺
it holds that

𝐏𝜎 (𝜎(𝑖)) =
{

(1 − 𝜖)𝐏(𝜎(𝑖)) + 𝜖, if 𝑖 = 1,
(1 − 𝜖)𝐏(𝜎(𝑖)), otherwise. (8)

In what follows, we denote R++ = (0,+∞). We consider a utility
function 𝑈 ∶ R++ → R satisfying the following requirements:

(A) 𝑈 is continuously differentiable, strictly increasing, strictly con-
cave, lim𝑥→0+ 𝑈 ′(𝑥) = +∞ and 𝑈 ′(R++) = R++.

y (A) the derivative 𝑈 ′ is continuous and strictly decreasing, thus it
s invertible with inverse function (𝑈 ′)−1.

A typical example is a constant relative risk aversion (CRRA) utility
unction defined, for 𝛾 > 0, as

𝛾 (𝑥) =

{

𝑥1−𝛾

1−𝛾 , 𝛾 ≠ 1,
ln 𝑥, 𝛾 = 1,

for 𝑥 > 0. (9)

he parameter 𝛾 expresses the relative risk aversion of the utility func-
ion 𝑈𝛾 and the higher 𝛾 the more risk-averse is the investor (see,
.g., Section 5.6.1 in Munk, 2013).

For every random variable 𝑉𝑇 ∈ R𝛺
++, we can define the functional

𝐄𝐔𝑈,𝑝,𝜖[𝑉𝑇 ] = C∫ 𝑈 (𝑉𝑇 ) d𝜈𝑝,𝜖 , (10)

here the integral on the right side is a Choquet integral. In particular,
ince 𝑈 is strictly increasing, for all 𝑉𝑇 ∈ R𝛺

++, if 𝜎 is a permutation of
such that 𝑉𝑇 (𝜎(1)) ≤ … ≤ 𝑉𝑇 (𝜎(2𝑇 )) then the functional 𝐂𝐄𝐔𝑈,𝑝,𝜖 can

be expressed (see Chapter 4 in Grabisch, 2016) as follows

𝐂𝐄𝐔𝑈,𝑝,𝜖[𝑉𝑇 ] =
2𝑇
∑

𝑘=1
𝐏𝜎 (𝑘)𝑈 (𝑉𝑇 (𝑘)). (11)

Notice that the functional 𝐂𝐄𝐔𝑈,𝑝,𝜖 represents the agent’s prefer-
ences on the set of final wealth R𝛺

++. Therefore, maximizing 𝐂𝐄𝐔𝑈,𝑝,𝜖
we are choosing the final wealth that is more preferred under ambigu-
ity.

Proposition 1. The functional 𝐂𝐄𝐔𝑈,𝑝,𝜖 is concave, that is, for all
𝑉𝑇 , 𝑉 ′

𝑇 ∈ R𝛺
++ and all 𝛼 ∈ [0, 1], it holds

𝐂𝐄𝐔 [𝛼𝑉 + (1 − 𝛼)𝑉 ′ ] ≥ 𝛼𝐂𝐄𝐔 [𝑉 ] + (1 − 𝛼)𝐂𝐄𝐔 [𝑉 ′ ].
𝑈,𝑝,𝜖 𝑇 𝑇 𝑈,𝑝,𝜖 𝑇 𝑈,𝑝,𝜖 𝑇
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By the main theorem in Schmeidler (1986), we also have that

𝐂𝐄𝐔𝑈,𝑝,𝜖[𝑉𝑇 ] = min
𝐏′∈𝑝,𝜖

𝐄𝐏′ [𝑈 (𝑉𝑇 )], (12)

herefore, 𝐂𝐄𝐔𝑈,𝑝,𝜖 is a lower expected utility (Walley, 1991) and maxi-
izing it we are actually applying a maximin criterion of choice (Trof-

aes, 2007).
Given an initial wealth 𝑉0 > 0, our aim is to select a self-financing

trategy {𝜃0,… , 𝜃𝑇−1} resulting in a final wealth 𝑉𝑇 ∈ R𝛺
++, solving

max
0 ,…,𝜃𝑇−1

𝐂𝐄𝐔𝑈,𝑝,𝜖[𝑉𝑇 ]. (13)

aking into account (3), which is due to the completeness of the
arket, the above problem can be rewritten maximizing over the final
ealth random variables 𝑉𝑇 ’s that can be reached with the fixed initial
ealth 𝑉0

maximize 𝐂𝐄𝐔𝑈,𝑝,𝜖[𝑉𝑇 ] subject to:
{

𝐄𝐐[𝑉𝑇 ] − (1 + 𝑟)𝑇 𝑉0 = 0,

𝑉𝑇 ∈ R𝛺
++.

(14)

otice that problem (13) seeks a stochastic process {𝜃0,… , 𝜃𝑇−1},
hich is a self-financing strategy, while problem (14) looks for a

andom variable 𝑉𝑇 , which is a final wealth.
By Proposition 1, the objective function in (14) is a concave function

n R𝛺
++, subject to a linear constraint, therefore every local maxi-

um is a global maximum and, further, the set of global maxima is
onvex (Boyd & Vandenberghe, 2004).

heorem 1. The following statements hold:

(i) there exists an optimal solution 𝑉 ∗
𝑇 ∈ R𝛺

++ of problem (14) and such
optimal solution is unique;

(ii) if 𝑉 ∗
𝑇 is the optimal solution of problem (14), then there exists a

function 𝜑 ∶ 𝑇 → R++, such that 𝑉 ∗
𝑇 = 𝜑(𝑆𝑇 ).

Notice that the optimal solution 𝑉 ∗
𝑇 of problem (14) corresponds

to a unique self-financing strategy {𝜃∗0 ,… , 𝜃∗𝑇−1} by (1), which is the
optimal solution of problem (13), and vice versa.

Remark 1. Theorem 1 has a deep computational impact, since it
implies that 𝑉 ∗

𝑇 can be simply regarded as a function defined on 𝑇 ,
being it constant on {𝑆𝑇 = 𝑠𝑇 }, for all 𝑠𝑇 ∈ 𝑇 . As a byproduct,
the optimal wealth process {𝑉 ∗

0 ,… , 𝑉 ∗
𝑇 } turns out to be a Markov

process under 𝐐 and can be represented on a recombining binomial
tree. Therefore, despite ambiguity, the final optimal wealth 𝑉 ∗

𝑇 can be
regarded as the payoff of a European derivative on the stock.

4. Dimension reduction of the problem

Let 𝑉 ∗
𝑇 be the optimal final wealth (solution of problem (14)), which

can be seen as a European derivative on the stock by Theorem 1,
i.e., 𝑉 ∗

𝑇 = 𝜑(𝑆𝑇 ). Taking into account (8), problem (14) can be
reformulated by referring to 𝑇 + 1 unknowns and 𝑇 + 1 permutations.
To do so, let 𝛩 = {1,… , 𝑇 + 1} and index the range 𝑇 = {𝑠𝑖𝑇 ∶ 𝑖 ∈ 𝛩}
of 𝑆𝑇 in such a way that 𝑠1𝑇 < 𝑠2𝑇 < ⋯ < 𝑠𝑇+1𝑇 . Then 𝐏, 𝐐 and 𝜈𝑝,𝜖 can be
estricted to the algebra generated by the random variable 𝑆𝑇 which is

isomorphic to 2𝛩.
From now on, we use the symbols 𝐏̂, 𝐐̂ and 𝜈𝑝,𝜖 to denote the

estrictions on the algebra generated by 𝑆𝑇 , the latter identified with
𝛩. Random variables 𝑋 ∈ R𝛺 which are constant on the atoms of the
lgebra generated by 𝑆𝑇 are seen as elements of R𝛩 writing 𝑋 to stress
his fact, while we denote by 𝛱 the set of permutations of 𝛩. For every
∈ 𝛩 it holds that

̂(𝑖) = 𝐏(𝑆𝑇 = 𝑠𝑖𝑇 ) and 𝐐̂(𝑖) = 𝐐(𝑆𝑇 = 𝑠𝑖𝑇 ), (15)

while other values on 2𝛩 are found by additivity.
Let ̂𝑝,𝜖 be the epsilon-contamination class of 𝐏̂ and 𝜈𝑝,𝜖 = min ̂𝑝,𝜖 ,

𝛩
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where the minimum is pointwise over 2 . Since 𝜈𝑝,𝜖 is a completely e
monotone capacity, we still have that the set of extreme points of ̂𝑝,𝜖
is

ext (̂𝑝,𝜖) = {𝐏̂𝜋 ∶ 𝜋 ∈ 𝛱}, (16)

and, as an immediate consequence of Eq. (8), we derive that

𝐏̂𝜋 (𝜋(𝑖)) =

{

(1 − 𝜖)𝐏̂(𝜋(𝑖)) + 𝜖, if 𝑖 = 1,
(1 − 𝜖)𝐏̂(𝜋(𝑖)), otherwise.

(17)

n turn, this allows us to conclude that also in this reduced case
xt (̂𝑝,𝜖) can be recovered by a minimal subset of permutations 𝛱 ′ =
𝜋1,… , 𝜋𝑇+1}, where 𝜋ℎ(1) = ℎ for all ℎ ∈ 𝛩.

Problem (14) is shown to be equivalent both to a family of linearly
onstrained concave problems on 𝑇 + 1 unknowns and to a single
roblem with 𝑇 +1 non-linear constraints and an extra scalar variable.

heorem 2. For 𝑉 ∗
𝑇 ∈ R𝛺

++, the following statements are equivalent:

(i) 𝑉 ∗
𝑇 solves problem (14);

(ii) 𝑉 ∗
𝑇 attains max𝜋ℎ∈𝛱 ′ 𝐄𝐏̂𝜋ℎ [𝑈 (𝑉 𝜋ℎ

𝑇 )], where 𝑉 𝜋ℎ
𝑇 is an optimal solution

of the problem

maximize

[𝑇+1
∑

𝑘=1
𝐏̂𝜋ℎ (𝑘)𝑈 (𝑉𝑇 (𝑘))

]

subject to:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑇+1
∑

𝑘=1
𝐐̂(𝑘)𝑉𝑇 (𝑘) − (1 + 𝑟)𝑇 𝑉0 = 0,

𝑉𝑇 (𝜋ℎ(1)) − 𝑉𝑇 (𝜋ℎ(𝑖)) ≤ 0, for all 𝑖 ∈ 𝛩 ⧵ {1},

𝑉𝑇 ∈ R𝛩
++.

(18)

(iii) 𝑉 ∗
𝑇 solves the problem

maximize 𝑐 subject to:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑇+1
∑

𝑘=1
𝐏̂𝜋ℎ (𝑘)𝑈 (𝑉𝑇 (𝑘)) ≥ 𝑐, for ℎ = 1,… , 𝑇 + 1,

𝑇+1
∑

𝑘=1
𝐐̂(𝑘)𝑉𝑇 (𝑘) − (1 + 𝑟)𝑇 𝑉0 = 0,

𝑉𝑇 ∈ R𝛩
++.

(19)

Problem (18) maximizes the expected utility with respect to 𝐏̂𝜋ℎ , by
ixing a permutation 𝜋ℎ of 𝛩, such that 𝜋ℎ(1) = ℎ. In particular, the
irst and the third constraints assure that all the considered 𝑉𝑇 ’s are

feasible final wealth, given the initial wealth 𝑉0, while the second
onstraint restricts to those 𝑉𝑇 ’s whose minimum value is reached at
ℎ(1) = ℎ. In turn, this guarantees that the Choquet expected utility
ith respect to 𝜈𝑝,𝜖 of such 𝑉𝑇 ’s coincides with the expected utility

omputed with respect to 𝐏̂𝜋ℎ . Thus, varying 𝜋ℎ ∈ 𝛱 ′ and taking the
aximum, we are actually maximizing the Choquet expected utility.

On the other hand, problem (19) relies on the fact that ext (̂𝑝,𝜖)
educes to {𝐏̂𝜋ℎ ∶ ℎ = 1,… , 𝑇 + 1} and the Choquet expected utility
f any 𝑉𝑇 with respect to 𝜈𝑝,𝜖 coincides with the minimum of expected
tilities with respect to the 𝐏̂𝜋ℎ ’s. Thus, the second and third constraints
ssure that all the considered 𝑉𝑇 ’s are a feasible final wealth, given
he initial wealth 𝑉0, while maximizing the lower bound in the first
onstraint we are actually maximizing the Choquet expected utility.

.1. The particular case of a CRRA utility function

The aim of this section is to show that when the utility function
s of CRRA type we can provide an explicit expression of the optimal
olution of problem (14), based on the dimension reduction proved in
heorem 2. In view of the dimension reduction of the problem, below
e provide a characterization of the optimal solution viewing it as an

𝛩
lement of R++.
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Let 𝜋 be a permutation of 𝛩 and 𝐼 ⊆ 𝛩 ⧵ {1}. If 𝐼 ≠ ∅, for all 𝑖 ∈ 𝐼 ,
consider the constants

𝐴𝜋,𝐼
𝑖 = 𝐏̂𝜋 (𝜋(𝑖))

∑

𝑘∈𝐼∪{1} 𝐏̂𝜋 (𝜋(𝑘))

[(

𝐐̂(𝜋(𝑖))
𝐏̂𝜋 (𝜋(𝑖))

− 𝐐̂(𝜋(1))
𝐏̂𝜋 (𝜋(1))

)(

∑

𝑘∈(𝐼∪{1})⧵{𝑖} 𝐏̂𝜋 (𝜋(𝑘))
)

+
∑

𝑘∈𝐼⧵{𝑖}

(

𝐏̂𝜋 (𝜋(𝑘))
(

𝐐̂(𝜋(1))
𝐏̂𝜋 (𝜋(1))

− 𝐐̂(𝜋(𝑘))
𝐏̂𝜋 (𝜋(𝑘))

))]

,

(20)

where summations over an empty set are intended to be 0.
The above constants are used to define the following weights:

𝜆𝜋,𝐼1 =

𝑈 ′
𝛾

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(1 + 𝑟)𝑇 𝑉0
∑𝑇+1

𝑘=1 𝐐̂(𝜋(𝑘))(𝑈 ′
𝛾 )

−1
(

1
𝐏̂𝜋 (𝜋(𝑘))

(

𝐐̂(𝜋(𝑘)) + 𝟏{1}(𝑘)
(

∑

𝑖∈𝐼 𝐴
𝜋,𝐼
𝑖

)

−
∑

𝑖∈𝐼 𝟏{𝑖}(𝑘)𝐴
𝜋,𝐼
𝑖

))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(21)

where 𝟏{𝑖} is the indicator function of the singleton {𝑖}, while, for all
𝑖 ∈ 𝐼 , set

𝜆𝜋,𝐼𝑖 = 𝐴𝜋,𝐼
𝑖 𝜆𝜋,𝐼1 , (22)

and 𝜆𝜋,𝐼𝑖 = 0, for all 𝑖 ∈ 𝛩 ⧵ (𝐼 ∪ {1}). Notice that, if 𝐼 = ∅, then the two
inner summations involving 𝐼 in the definition of 𝜆𝜋,𝐼1 are set to 0: in
this case, only 𝜆𝜋,𝐼1 will be non-null.

Theorem 3. Let 𝑈𝛾 be a CRRA utility function with 𝛾 > 0. For 𝑝 ∈ (0, 1)
and 𝑇 ≥ 1, a random variable 𝑉𝑇 ∈ R𝛩

++ can be mapped to the optimal
solution 𝑉𝑇 ∈ R𝛺

++ of problem (14) if and only if there is a permutation
𝜋 of 𝛩 and a subset 𝐼 ⊆ 𝛩 ⧵ {1} inducing the weights 𝜆𝜋,𝐼𝑖 ’s such that the
following conditions hold:

(i) 𝜆𝜋,𝐼𝑖 ≥ 0, for all 𝑖 ∈ 𝐼 ;
(ii) 𝑉𝑇 (𝜋(1)) = (𝑈 ′

𝛾 )
−1

(

1
𝐏̂𝜋 (𝜋(1))

(

𝐐̂(𝜋(1))𝜆𝜋,𝐼1 +
∑𝑇+1

𝑘=2 𝜆𝜋,𝐼𝑘

))

and

𝑉𝑇 (𝜋(𝑖)) = (𝑈 ′
𝛾 )

−1
(

1
𝐏̂𝜋 (𝜋(𝑖))

(

𝐐̂(𝜋(𝑖))𝜆𝜋,𝐼1 − 𝜆𝜋,𝐼𝑖

))

, for all 𝑖 ∈ 𝛩⧵{1};

(iii) 𝑉𝑇 (𝜋(1)) ≤ 𝑉𝑇 (𝜋(𝑖)), for all 𝑖 ∈ 𝛩 ⧵ (𝐼 ∪ {1});

and there is no other permutation 𝜋′ of 𝛩 and no other subset 𝐼 ′ ⊆
𝛩 ⧵ {1} determining the weights 𝜆𝜋′ ,𝐼 ′ ’s and the random variable 𝑉 ′

𝑇 ∈ R𝛩
++

satisfying (i)–(iii) such that 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖[𝑉
′
𝑇 ] > 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖[𝑉𝑇 ].

In case of a CRRA utility function 𝑈𝛾 , Theorem 3 allows to find the
analytic expression of the optimal solution of problem (14), reducing
it to 𝑇 + 1 combinatorial optimization problems with 𝑇 + 1 unknowns,
each corresponding to a permutation 𝜋ℎ of 𝛩 such that 𝜋ℎ(1) = ℎ, for all
ℎ ∈ 𝛩. The procedure derived by Theorem 3 is reported in Algorithm
1: for each of the permutations 𝜋1,… , 𝜋𝑇+1 of 𝛩, one needs to find a
subset 𝐼 ⊆ 𝛩⧵{1} satisfying conditions (i)–(iii). Therefore, in the worst
case we need to perform (𝑇 + 1)2𝑇 controls of conditions (i)–(iii). This
procedure, though resulting in an exact solution, is computationally
hard and is applicable for small values of 𝑇 only. Solving the equivalent
problem (19) through a non-linear global solver, though only returning
an approximate solution in general, turns out to be more efficient and
allows to deal with large values of 𝑇 .

The following example shows an application of Algorithm 1, where
we calibrate the model on the non-dividend-paying stock META and a
US T-bill maturing in one month.

Example 1. We identify 𝑡 = 0 with the date 2023-06-30 and consider
the daily closing price evolution of META stock in the first 6 months of
year 2023, whose graph is displayed in Fig. 1. Data are taken from
Yahoo! Finance and accessed in Python through the yfinance
library.
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Algorithm 1 Combinatorial solution of (14) for a CRRA utility function
⊳ input: 𝑝, 𝑢, 𝑑, 𝑟, 𝑉0, 𝑆0, 𝑇 , 𝜖, 𝛾, parameters
⊳ output: 𝑉 ∗

𝑇 , optimal solution of (14)

Compute probability distributions 𝐏̂ and 𝐐̂ on 𝛩 as in (15)
Fix permutations 𝜋1,… , 𝜋𝑇+1 of 𝛩 such that 𝜋ℎ(1) = ℎ
𝐶𝐸𝑈 𝑏𝑒𝑠𝑡 ∶= −∞
𝑉 𝑏𝑒𝑠𝑡
𝑇 ∶= 0
for ℎ = 1,… , 𝑇 + 1 do

Compute probability distribution 𝐏̂𝜋ℎ on 𝛩 as in (17)
for 𝐼 ⊆ 𝛩 ⧵ {1} do

Compute 𝐴𝜋ℎ ,𝐼
𝑖 as in (20), for all 𝑖 ∈ 𝐼

Compute 𝜆𝜋ℎ ,𝐼1 as in (21)
Compute 𝜆𝜋ℎ ,𝐼𝑖 as in (22), for all 𝑖 ∈ 𝐼
𝜆𝜋ℎ ,𝐼𝑖 = 0, for all 𝑖 ∈ 𝛩 ⧵ ({1} ∪ 𝐼)
Compute 𝑉𝑇 as in (ii) of Theorem 3
if 𝑉𝑇 ∈ R𝛩

++ and (i) and (iii) of Theorem 3 are satisfied then
𝐶𝐸𝑈𝑛𝑒𝑤 ∶= 𝐄𝐏̂𝜋ℎ [𝑈𝛾 (𝑉𝑇 )]
if 𝐶𝐸𝑈𝑛𝑒𝑤 > 𝐶𝐸𝑈 𝑏𝑒𝑠𝑡 then

𝐶𝐸𝑈 𝑏𝑒𝑠𝑡 ∶= 𝐶𝐸𝑈𝑛𝑒𝑤

𝑉 𝑏𝑒𝑠𝑡
𝑇 ∶= 𝑉𝑇

end if
end if

end for
end for
Map 𝑉 𝑏𝑒𝑠𝑡

𝑇 in 𝑉 ∗
𝑇 ∈ R𝛺

++ constant on {{𝑆𝑇 = 𝑠𝑖𝑇 }, 𝑖 ∈ 𝛩}
return 𝑉 ∗

𝑇

Fig. 1. META stock price time series (daily closing prices) from 2023-01-03 to
2023-06-30.

We refer to a trading year composed by 250 days, so, daily periods
have length 𝛥𝑡 = 1

250 years. At the date 2023-06-30, the META stock
price is 𝑆0 = 286.98 dollars and we further consider a US T-bill maturing
in 1 month, such that 𝑟 = (1.0508)𝛥𝑡 − 1 per period.

Parameters 𝑢, 𝑑, and 𝑝 can be estimated from the META stock price
time series, under the assumption that daily log-returns are i.i.d. and
normal (see, e.g., Chapters 13 and 15 in Hull, 2018). Given the avail-
able 124 price observations {𝑚0,… , 𝑚123} of META stock, we compute
the corresponding log-returns {𝓁1,… ,𝓁123}, where 𝓁𝑛 = ln 𝑚𝑛

𝑚𝑛−1
, for

𝑛 = 1,… , 123. Next, set 𝑢 = 𝑒𝜎
√

𝛥𝑡 and 𝑑 = 𝑒−𝜎
√

𝛥𝑡, where 𝜎 =
√

250𝜎𝑑𝑎𝑦
and 𝜎2𝑑𝑎𝑦 is the sample variance of {𝓁1,… ,𝓁123}. Finally, 𝑝 is estimated
as the relative frequency of positive values in the set of log-returns
{𝓁1,… ,𝓁123}. The estimation procedure results in 𝑢 = 1.0292, 𝑑 =
0.9717, and 𝑝 = 0.5528, so, by Eq. (4) we get 𝑞 = 0.4963.

Next, at date 2023-06-30 corresponding to time 𝑡 = 0, we suppose
to invest an initial wealth 𝑉 = 1000 dollars in the META stock and in
0
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Table 1
Optimal final wealth 𝑉 ∗

𝑇 as a function 𝜑(𝑆𝑇 ).

𝑆𝑇 𝑑5286.98 𝑢𝑑4286.98 𝑢2𝑑3286.98 𝑢3𝑑2286.98 𝑢4𝑑286.98 𝑢5286.98
𝑉 ∗
𝑇 877.09 877.09 928.76 1040.45 1165.57 1305.73

Fig. 2. Recombining binomial tree representations of the processes {𝑉 ∗
0 ,… , 𝑉 ∗

5 } and
{𝜃∗0 ,… , 𝜃∗4}.

Table 2
MAE(𝑉 ∗

𝑇 , 𝑉
∗
𝑇 ) as a function of 𝑇 , for 𝑇 ∈ {5, 10, 15, 20}.

𝑇 5 10 15 20
MAE(𝑉 ∗

𝑇 , 𝑉
∗
𝑇 ) 0.0108 0.1049 0.3040 137.5346

the US T-bill. We take a CRRA utility function with parameter 𝛾 = 2,
a contamination parameter 𝜖 = 0.02, and consider a trading week by
taking 𝑇 = 5 periods. The choice of both parameters 𝛾 and 𝜖 is a
crucial part and a preliminary tuning procedure should be executed.
In this example, 𝛾 = 2 singles out a quite risk averse agent, while
𝜖 = 0.02 indicates that the agent is rather convinced of the reference
𝐏, to which a 1 − 𝜖 = 0.98 weight is assigned. Section 5 carries out
a sensitivity analysis and investigates the interaction between agent’s
risk and ambiguity attitudes when performing the optimal portfolio
selection.

Applying Algorithm 1 we obtain that the optimal final wealth is
𝑉 ∗
𝑇 , whose values are reported in Table 1, seen as a function 𝜑(𝑆𝑇 ),

according to Theorem 3.
Using the martingale property with respect to 𝐐 of the wealth

process {𝑉 ∗
0 ,… , 𝑉 ∗

5 }, that is 𝑉 ∗
𝑡 =

𝐄𝐐
𝑡 [𝑉 ∗

5 ]
(1+𝑟)5−𝑡 , for 𝑡 = 0,… , 4, we can

recover the optimal self-financing strategy {𝜃∗0 ,… , 𝜃∗4} through Eq. (1).
In agreement with Theorem 1, the optimal wealth process {𝑉 ∗

0 ,… , 𝑉 ∗
5 }

can be represented on a recombining binomial tree and the same holds
for the optimal self-financing strategy {𝜃∗0 ,… , 𝜃∗4}, as shown in Fig. 2.

We point out that, though Algorithm 1 provides an exact solution,
its execution time grows exponentially with 𝑇 . On the other hand,
by statement (iii) of Theorem 2, a much faster approach is to solve
the non-linear problem (19) by relying on a global non-linear solver,
like bonmin (Bonmin, 2023). The resulting optimal final wealth 𝑉 ∗

𝑇
obtained with the bonmin solver will be an approximation of the true
optimal 𝑉 ∗

𝑇 . Table 2 shows the mean absolute error MAE(𝑉 ∗
𝑇 , 𝑉

∗
𝑇 ), for

𝑇 ∈ {5, 10, 15, 20}, highlighting an increasing trend with respect to 𝑇 .
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Fig. 3. Normalized optimal value of 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖 , seen as a function of 𝜖 ∈ [0, 1).

5. The impact of the ambiguity parameter on the optimal portfolio

The aim of this section is to investigate the impact of 𝜖 on the
composition of the optimal portfolio. Here, we restrict to a CRRA utility
function 𝑈𝛾 : the aim is to analyze the interaction between parameters
𝜖 and 𝛾 to highlight the mutual influence between ambiguity and risk
aversion in the context of dynamic portfolio selection.

We first prove that, whenever 𝑝 = 𝑞 = (1+𝑟)−𝑑
𝑢−𝑑 , then the optimization

problem (14) becomes trivial and the result is independent of 𝜖 and 𝛾.

Proposition 2. If 𝑝 = 𝑞 = (1+𝑟)−𝑑
𝑢−𝑑 , then the optimal solution of (14) is

𝑉 ∗
𝑇 = (1 + 𝑟)𝑇 𝑉0 and the optimal value is 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖[𝑉

∗
𝑇 ] = 𝑈𝛾 ((1 + 𝑟)𝑇 𝑉0).

Remark 2. In the limit case 𝑝 = 𝑞 = (1+𝑟)−𝑑
𝑢−𝑑 , the optimal portfolio

does not depend on 𝜖 nor on 𝛾 and always reduces to a strategy in
which 𝜃∗𝑡 = 0, for 𝑡 = 0,… , 𝑇 − 1, i.e., we have only risk-free bond
investments in all the periods. From a financial point of view, this
means that, if the real-world probability 𝑝 coincides with the risk-
neutral probability 𝑞, the agent always chooses a completely risk-free
investment, independently of his/her ambiguity and risk attitudes.

Now, we consider the case in which 𝑝 ≠ 𝑞 = (1+𝑟)−𝑑
𝑢−𝑑 . For fixed

𝑉0, 𝑢, 𝑑, 𝑟, and 𝑝, the optimal value of 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖 seen as a function
of 𝜖 is non-increasing with maximum value at 𝜖 = 0 and minimum
value 𝑈𝛾 ((1 + 𝑟)𝑇 𝑉0), which is the optimal value we get when the
optimal solution is 𝑉 ∗

𝑇 = (1 + 𝑟)𝑇 𝑉0. Since the range of 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖
depends on 𝑇 , we normalize it so as to range in [0, 1]. For every 𝑇 , the
normalized value 1 corresponds to the optimal value we get for 𝜖 = 0,
that is without ambiguity, while the normalized value 0 corresponds to
𝑈𝛾 ((1 + 𝑟)𝑇 𝑉0).

Fig. 3 shows the normalized optimal value of 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖 , seen as a
function of 𝜖 ∈ [0, 1), for fixed 𝑝 = 1

2 , 𝑉0 = 10, 𝑢 = 2, 𝑑 = 1
𝑢 , 𝑟 = 0.05

and a CRRA utility function with 𝛾 = 2.
Fig. 3 highlights the existence of a value 𝜖∗ = 𝜖∗(𝛾, 𝑇 , 𝑝, 𝑢, 𝑑, 𝑟, 𝑉0)

above which the optimal self-financing strategy reduces to 0 for all
times. In a sense, we may think at 𝜖∗ as a threshold above which the
ambiguity incorporated in the real-world probability 𝐏 through the
epsilon-contamination is so high to make the risk-free portfolio the
most suitable choice. A numerical approximation of 𝜖∗ can be achieved
by applying a suitable bisection algorithm. The following toy example
has the purpose of showing that 𝜖∗ is a true threshold after which
the 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖 functional is stuck on its minimum value, and is not an
asymptotic value.

Example 2. Take 𝑇 = 1, 𝑝 = 1
2 , 𝑉0 = 10, 𝑢 = 2, 𝑑 = 1

𝑢 , 𝑟 = 0.05
and a CRRA utility function with 𝛾 = 2. This implies that 𝑞 = 11 . The
30
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Fig. 4. Threshold 𝜖∗ seen as a function of 𝑝 and 𝑇 , for fixed 𝑉0 = 10, 𝛾 = 1, and 𝑟 = 0.05.
normalized optimal value of 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖 seen as function of 𝜖 ∈ [0, 1) is
the blue line in Fig. 3. By applying a bisection algorithm we derive that
𝜖∗ ∈ [0.27, 0.28], so, for every 0.28 ≤ 𝜖 < 1 the optimal solution turns
out to be the constant 𝑉 𝜖

1 = (1 + 𝑟)𝑉0 = 10.5.
To see this, let 𝜖 = 0.28 = 7

25 and consider the reduced index
set 𝛩 = {1, 2} related to Algorithm 1, for which there are only two
permutations: 𝜋1 = ⟨1, 2⟩ and 𝜋2 = ⟨2, 1⟩ with 𝐏̂𝜋1 ≡

(

9
25 ,

16
25

)

and

𝐏̂𝜋2 ≡
(

16
25 ,

9
25

)

over 𝛩.
For 𝜋1 the only subset of 𝛩 ⧵ {1} satisfying (i)–(iii) is 𝐼 = {2} with:

𝑉 𝜋1
1 (1) = 10.5, 𝑉 𝜋1

1 (2) = 10.5, 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖[𝑉
𝜋1
1 ] = − 1

10.5 .
For 𝜋2 the only subset of 𝛩 ⧵ {1} satisfying (i)–(iii) is 𝐼 = {2} with:

𝑉 𝜋2
1 (1) = 10.5, 𝑉 𝜋2

1 (2) = 10.5, 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖[𝑉
𝜋2
1 ] = − 1

10.5 .
Therefore, taking 𝜖 = 0.28 the optimal reduced solution is the

constant 𝑉 0.28
1 = 10.5, and the corresponding optimal solution in

R𝛺
++ is still the constant 𝑉 0.28

1 = 10.5. Now, referring to the proof of
Proposition 2, it is immediate to conclude that the optimal solution is
𝑉 𝜖
1 = 10.5, for all 0.28 ≤ 𝜖 < 1.

Fig. 4 shows the interpolated 𝜖∗ surface seen as a function of 𝑝
and 𝑇 , where 𝑝 ranges in [0.05, 0.95] with a 0.05 step and 𝑇 ranges in
{1,… , 10}. The surface is computed for fixed 𝛾 = 1, 𝑉0 = 10, 𝑟 = 0.05,
and varying 𝑢 in {1.1, 1.5, 1.9}, where 𝑑 = 1

𝑢 . In all the graphs, the steep
valley in blue is obtained for choices of 𝑝 close to 𝑞 = (1+𝑟)−𝑑

𝑢−𝑑 . Indeed,
in the particular case 𝑝 = 𝑞 = (1+𝑟)−𝑑

𝑢−𝑑 we get 𝜖∗ = 0 constantly, in
agreement with Proposition 2.

The graphs in Fig. 4 show that, for a fixed 𝑝, 𝜖∗ is non-decreasing
with respect to 𝑇 , in particular, for values of 𝑝 not close to 𝑞 = (1+𝑟)−𝑑

𝑢−𝑑 ,
then 𝜖∗ tends to get close to 1 fast, yet for a time horizon 𝑇 ≥ 5.

From a financial point of view, this behavior can be interpreted by
saying that a risk averse and ambiguity averse investor has a threshold
𝜖∗ after which he/she switches to a completely risk-free portfolio. Such
a threshold becomes higher and higher with the time horizon 𝑇 . In a
sense, if we have more time to adjust our portfolio, then ambiguity
aversion becomes less compelling in the portfolio composition.

On the other hand, if we have a probability 𝑝 close to 𝑞, then the
initial value of 𝜖∗ is lower and its growth is much slower. In this case,
having a real-world probability 𝑝 close to the risk-neutral probability
𝑞 makes the agent very sensitive to ambiguity: low deviations from 𝐏
(i.e., a value of 𝜖 greater than 𝜖∗) makes the agent favor the completely
risk-free alternative. At the same time, agent’s sensitivity to ambiguity
in this case requires a much larger time horizon to mitigate the effect
of his/her ambiguity aversion.

We consider the evolution of 𝜖∗ seen as a function of the time
horizon 𝑇 in the case 𝑝 is close to 𝑞. Taking 𝑉0 = 10, 𝑟 = 0.05, 𝑢 = 2 and
𝑑 = 1

2 , we have that 𝑞 = 11
30 . Fig. 5 depicts the evolution of 𝜖∗ for 𝑝 = 𝑞±𝛿

with 𝛿 ∈ {0.01, 0.02, 0.03} and 𝑇 ranging in {5,… , 50} with a 5 step.
Results are obtained by solving (19) through the bonmin solver and
then applying a bisection algorithm to estimate 𝜖∗. The graph shows
that, for 𝛾 = 2, for increasing 𝛿 we have an increasing initial value
1035
Fig. 5. Threshold 𝜖∗ seen as a function of 𝑇 , for fixed 𝑉0 = 10, 𝛾 = 2, 𝑟 = 0.05 and
𝑝 = 𝑞 ± 𝛿 with 𝛿 ∈ {0.01, 0.02, 0.03}.

at 𝑇 = 5 and an higher growth with a resulting higher final value at
𝑇 = 50.

Notice that, for fixed values of 𝑢 and 𝑑, the interest rate 𝑟 determines
the value of 𝑞 as in Eq. (4): in turn, 𝑟 has a direct effect on 𝜖∗, since
the closeness of 𝑝 to 𝑞 affects 𝜖∗. For 𝑉0 = 10, 𝛾 = 1, 𝑢 = 2, 𝑑 = 1

𝑢 , and
𝑇 = 5, Fig. 6 shows the interpolated surface of 𝜖∗ seen as a function
of 𝑝 and 𝑟 together with its contour lines, where 𝑝 ranges in [0.05, 0.95]
with a 0.05 step and 𝑟 ranges in [0, 0.2] with a 0.02 step. The graph
highlights that 𝜖∗ is 0 on the line 𝑝 = 𝑞 = (1+𝑟)−𝑑

𝑢−𝑑 , in agreement with
Proposition 2.

We finally investigate the impact of the risk aversion parameter 𝛾
on the ambiguity threshold 𝜖∗. For that we plot 𝜖∗ as a function of
𝛾 ranging in [0.25, 4] with a 0.25 step, for fixed 𝑉0 = 100, 𝑟 = 0.05,
𝑢 = 2, 𝑑 = 0.5, and 𝑝 = 0.8. Fig. 7 shows that, for values of 𝛾 lower
than a threshold 𝛾∗1 = 𝛾∗1 (𝜖, 𝑇 , 𝑝, 𝑢, 𝑑, 𝑟, 𝑉0), the ambiguity threshold 𝜖∗ is
positive and constant, while, for higher 𝛾, there is a rapid transition of
𝜖∗ towards 0. The same figure shows that the higher the time horizon 𝑇 ,
the higher is the threshold 𝜖∗ for the same value of 𝛾. It is also possible
to notice that for 𝛾 higher than a threshold 𝛾∗2 = 𝛾∗2 (𝜖, 𝑇 , 𝑝, 𝑢, 𝑑, 𝑟, 𝑉0) the
ambiguity threshold 𝜖∗ collapses to 0. This facts suggest the following
interpretation:

• when 𝛾 is lower than 𝛾∗1 , the ambiguity threshold 𝜖∗ to switch to a
completely risk-free investment is not influenced by risk aversion:
only ambiguity aversion plays a role;

• when 𝛾 ranges between 𝛾∗1 and 𝛾∗2 , there is an interaction between
risk aversion and ambiguity aversion that materializes with an
𝜖∗ decreasing with respect to 𝛾: increasing 𝛾 we switch to a
completely risk-free investment for lower values of 𝜖;
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Fig. 6. Threshold 𝜖∗ seen as a function of 𝑝 and 𝑟, for fixed 𝑉0 = 10, 𝛾 = 1, 𝑢 = 2, 𝑑 = 1
𝑢
, and 𝑇 = 5.
Fig. 7. Threshold 𝜖∗ seen as a function of 𝛾, for fixed 𝑉0 = 100, 𝑟 = 0.05, 𝑢 = 2, 𝑑 = 0.5,
and 𝑝 = 0.8.

• when 𝛾 is higher than 𝛾∗2 , the ambiguity threshold 𝜖∗ to switch to
a completely risk-free investment turns to 0: in this case the risk-
aversion of the investor is so high to make any level of ambiguity
not tolerable.

6. Conclusions and future works

This paper introduces the epsilon-contaminated binomial model and
investigates dynamic portfolio selection in this market. Under usual
regularity conditions on the utility function and referring to the lower
envelope of the epsilon-contamination class, the problem is formulated
as a Choquet expected utility maximization on the final wealth. With
this choice the investor is assumed to be both risk averse and ambiguity
averse.

The particular structure of the epsilon-contamination class allows
us to prove that the optimal final wealth is a function of the stock
final price. In turn, this last fact permits a reduction of the problem
dimension as the optimal value process can be represented on a re-
combining binomial tree. Under a CRRA utility function, a complete
characterization of the optimal solution is provided and this is used to
analyze the interaction between ambiguity aversion and risk aversion.

The sensitivity analysis highlights an effect of ambiguity on optimal
dynamic portfolio selection. The initial investment conditions of an
agent in our market model are expressed by the level of relative
risk aversion 𝛾, the time horizon 𝑇 , the stock evolution parameters
𝑝, 𝑢, 𝑑, the risk-neutral interest rate 𝑟, and the initial wealth 𝑉 . Such
1036

0

investment conditions single out an ambiguity threshold 𝜖∗, which
expresses the maximum tolerance to ambiguity for the agent. Such a
threshold is shown to be sensitive to 𝛾 and we actually find out a region
comprised between two values 𝛾∗1 , 𝛾

∗
2 with 𝛾∗1 ≤ 𝛾∗2 , where there is a

great interaction between ambiguity aversion and risk aversion, since
we switch from a fixed ambiguity sensitivity to complete ambiguity
intolerance. Such analysis sheds new light on the interplay between the
two distinguished attitudes of ambiguity aversion and risk aversion. In
particular, as long as 𝑝 ≠ 𝑞, 𝛾 ≤ 2, and 𝑇 ≥ 5, the ambiguity parameter
𝜖 can assume even values close to 1, without switching to a completely
risk-free optimal portfolio. So, the agent is more tolerant concerning
ambiguity when he/she is not very risk-averse and has enough time to
carry out his/her investment.

As is well-known (see, e.g., Chapter 6 in Černý, 2009), under a
suitable choice of parameters, the multi-period binomial market model
converges in distribution to the Black–Scholes market model, that
is based on the geometric Brownian motion. Therefore, our epsilon-
contaminated binomial market model provides a discrete-time ap-
proximation of an epsilon-contaminated Black–Scholes market model.
Hence, the analysis of the impact of 𝜖 in the dynamic portfolio selection
can be envisaged also in the continuous-time setting, and it will be the
aim of future research.
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Appendix. Proofs

Proof of Proposition 1. The proof goes along the line of the proof
of Proposition 1 in Antonini et al. (2020) by replacing a CRRA utility
function 𝑈𝛾 , where 𝛾 > 0 and 𝛾 ≠ 1, with a general utility 𝑈 satisfying
(A). □

Proof of Theorem 1. Statement (i). By (11) the computation of
𝐂𝐄𝐔𝑈,𝑝,𝜖[𝑉𝑇 ] depends on a permutation 𝜎 such that the values of 𝑉𝑇
are increasingly ordered, therefore problem (14) can be decomposed
in a family of optimization problems, each indexed by a permutation
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𝜎 ∈ 𝛴

maximize
[

∑2𝑇
𝑘=1 𝐏

𝜎 (𝑘)𝑈 (𝑉𝑇 (𝑘))
]

subject to:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

2𝑇
∑

𝑘=1
𝐐(𝑘)𝑉𝑇 (𝑘) − (1 + 𝑟)𝑇 𝑉0 = 0,

𝑉𝑇 (𝜎(𝑖 − 1)) − 𝑉𝑇 (𝜎(𝑖)) ≤ 0, for all 𝑖 ∈ 𝛺 ⧵ {1},

𝑉𝑇 ∈ R𝛺
++.

(A.1)

We first show that every problem (A.1) has an optimal solution and
uch optimal solution is unique. The subset 𝜎 of R𝛺 satisfying the

equality and inequality constraints in (A.1) is closed, and 𝜎 ∩ R𝛺
++ ≠

∅, since 𝑉𝑇 = (1 + 𝑟)𝑇 𝑉0 ∈ 𝜎 ∩ R𝛺
++. Proceeding as in the proof

of Theorem 2.12 in Pascucci and Runggaldier (2009), we have that
problem (A.1) has an optimal solution 𝑉 𝜎

𝑇 , and such optimal solution
is unique since the objective function in (A.1) is strictly concave (Boyd
& Vandenberghe, 2004), as 𝑈 is strictly concave. In turn, problem (14)
has an optimal solution 𝑉 ∗

𝑇 obtained by selecting 𝑉 𝜎
𝑇 for a permutation

𝜎 where the objective function is maximum. Suppose there are two
permutations 𝜎, 𝜎′ attaining the maximum and such that 𝑉 𝜎

𝑇 ≠ 𝑉 𝜎′
𝑇 .

Since the set of optimal solutions of (14) is convex, this implies that,
for all 𝛼 ∈ [0, 1], 𝑉 𝛼

𝑇 = 𝛼𝑉 𝜎
𝑇 +(1−𝛼)𝑉 𝜎′

𝑇 is an optimal solution of (14). So,
since the number of permutations of 𝛺 is finite, we can find an 𝛼∗ such
that 𝑉 𝛼∗

𝑇 solves (A.1) for a permutation 𝜎′′ but 𝑉 𝛼∗
𝑇 ≠ 𝑉 𝜎′′

𝑇 , reaching
a contradiction. This implies that problem (14) has a unique optimal
solution.

Statement (ii). Let 𝑉 ∗
𝑇 be the optimal solution of problem (14),

which exists and is unique by statement (i). To show the existence of
𝜑 it is sufficient to show that 𝑉 ∗

𝑇 is constant on the elements of the
partition {{𝑆𝑇 = 𝑠𝑇 } ∶ 𝑠𝑇 ∈ 𝑇 }.

Suppose without loss of generality that there exists 𝑠𝑇 = 𝑢ℎ𝑑𝑇−ℎ𝑠 ∈
𝑇 such that for distinct 𝑖, 𝑗 ∈ {𝑆𝑇 = 𝑠𝑇 } we have that 𝑉 ∗

𝑇 (𝑖) < 𝑉 ∗
𝑇 (𝑗).

Notice that it cannot be ℎ = 0 nor ℎ = 𝑇 , since in those cases
{𝑆𝑇 = 𝑠𝑇 } reduces to a singleton. Let 𝜎 be a permutation of 𝛺 such
that 𝑉 ∗

𝑇 (𝜎(1)) ≤ … ≤ 𝑉 ∗
𝑇 (𝜎(2

𝑇 )), therefore, we have that 𝐂𝐄𝐔𝑈,𝑝,𝜖[𝑉 ∗
𝑇 ] =

∑2𝑇
𝑘=1 𝐏

𝜎 (𝑘)𝑈 (𝑉 ∗
𝑇 (𝑘)).

Define a new random variable 𝑉 ∗∗
𝑇 ∈ R𝛺

++ by setting

𝑉 ∗∗
𝑇 (𝑘) =

⎧

⎪

⎨

⎪

⎩

𝑉 ∗
𝑇 (𝑘), for 𝑘 ∉ {𝑖, 𝑗},

𝑉 ∗
𝑇 (𝑖)
2 +

𝑉 ∗
𝑇 (𝑗)
2 for 𝑘 ∈ {𝑖, 𝑗}.

By Eq. (5), since 𝜅(𝑖) = 𝜅(𝑗) = ℎ, we have that 𝐏(𝑖) = 𝐏(𝑗) = 𝑝ℎ(1− 𝑝)𝑇−ℎ

and 𝐐(𝑖) = 𝐐(𝑗) = 𝑞ℎ(1 − 𝑞)𝑇−ℎ, thus it holds that

𝑉0(1 + 𝑟)𝑇 =
∑

𝑘∉{𝑖,𝑗}
𝐐(𝑘)𝑉 ∗

𝑇 (𝑘) + 𝑞ℎ(1 − 𝑞)𝑇−ℎ
[

𝑉 ∗
𝑇 (𝑖) + 𝑉 ∗

𝑇 (𝑗)
]

=
∑

𝑘∉{𝑖,𝑗}
𝐐(𝑘)𝑉 ∗

𝑇 (𝑘) + 𝑞ℎ(1 − 𝑞)𝑇−ℎ2
[𝑉 ∗

𝑇 (𝑖)
2

+
𝑉 ∗
𝑇 (𝑗)
2

]

=
2𝑇
∑

𝑘=1
𝐐(𝑘)𝑉 ∗∗

𝑇 (𝑘),

that is 𝑉 ∗∗
𝑇 is a feasible solution of (14).

If 𝜎(1) ≠ 𝑖, then 𝐏𝜎 (𝑖) = 𝐏𝜎 (𝑗) = (1 − 𝜖)𝑝ℎ(1 − 𝑝)𝑇−ℎ, so

𝐂𝐄𝐔𝑈,𝑝,𝜖[𝑉 ∗
𝑇 ] =

=
∑

𝑘∉{𝑖,𝑗}
𝐏𝜎 (𝑘)𝑈 (𝑉 ∗

𝑇 (𝑘)) + (1 − 𝜖)𝑝ℎ(1 − 𝑝)𝑇−ℎ
[

𝑈 (𝑉 ∗
𝑇 (𝑖)) + 𝑈 (𝑉 ∗

𝑇 (𝑗))
]

=
∑

𝑘∉{𝑖,𝑗}
𝐏𝜎 (𝑘)𝑈 (𝑉 ∗

𝑇 (𝑘)) + (1 − 𝜖)𝑝ℎ(1 − 𝑝)𝑇−ℎ2
[𝑈 (𝑉 ∗

𝑇 (𝑖))
2

+
𝑈 (𝑉 ∗

𝑇 (𝑗))
2

]

≤
∑

𝑘∉{𝑖,𝑗}
𝐏𝜎 (𝑘)𝑈 (𝑉 ∗

𝑇 (𝑘)) + (1 − 𝜖)𝑝ℎ(1 − 𝑝)𝑇−ℎ2
[

𝑈
(𝑉 ∗

𝑇 (𝑖)
2

+
𝑉 ∗
𝑇 (𝑗)
2

)]

= 𝐂𝐄𝐔𝑈,𝑝,𝜖[𝑉 ∗∗
𝑇 ],

where the last equality follows by Eq. (8) and the fact that 𝜎(1) ∉ {𝑖, 𝑗}.
his implies that 𝑉 ∗∗ is a feasible solution different from 𝑉 ∗ with a
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value of 𝐂𝐄𝐔𝑈,𝑝,𝜖 which is greater than or equal to that of 𝑉 ∗
𝑇 , but since

he optimal solution is unique we get a contradiction.
If 𝜎(1) = 𝑖, we have that 𝐏𝜎 (𝑖) = (1−𝜖)𝑝ℎ(1−𝑝)𝑇−ℎ+𝜖 and 𝐏𝜎 (𝑗) =

1 − 𝜖)𝑝ℎ(1 − 𝑝)𝑇−ℎ. Let 𝑙 be the element of 𝛺 such that 𝑉 ∗∗
𝑇 (𝑙) takes its

inimum value. Notice that 𝑉 ∗
𝑇 (𝑖) ≤ 𝑉 ∗∗

𝑇 (𝑙) ≤
𝑉 ∗
𝑇 (𝑖)
2 +

𝑉 ∗
𝑇 (𝑗)
2 . Hence, we

have that 𝑈 (𝑉 ∗
𝑇 (1)) ≤ 𝑈 (𝑉 ∗∗

𝑇 (𝑙)) from which we get that

𝐂𝐄𝐔𝑈,𝑝,𝜖[𝑉 ∗
𝑇 ] =

∑

𝑘∉{𝑖,𝑗}
𝐏𝜎 (𝑘)𝑈 (𝑉 ∗

𝑇 (𝑘))

+ [(1 − 𝜖)𝑝ℎ(1 − 𝑝)𝑇−ℎ + 𝜖]𝑈 (𝑉 ∗
𝑇 (𝑖))

+ (1 − 𝜖)𝑝ℎ(1 − 𝑝)𝑇−ℎ𝑈 (𝑉 ∗
𝑇 (𝑗))

=
∑

𝑘∉{𝑖,𝑗}
𝐏𝜎 (𝑘)𝑈 (𝑉 ∗

𝑇 (𝑘)) + 𝜖𝑈 (𝑉 ∗
𝑇 (𝑖))

+ (1 − 𝜖)𝑝ℎ(1 − 𝑝)𝑇−ℎ
[

𝑈 (𝑉 ∗
𝑇 (𝑖)) + 𝑈 (𝑉 ∗

𝑇 (𝑗))
]

=
∑

𝑘∉{𝑖,𝑗}
𝐏𝜎 (𝑘)𝑈 (𝑉 ∗

𝑇 (𝑘)) + 𝜖𝑈 (𝑉 ∗
𝑇 (𝑖))

+ (1 − 𝜖)𝑝ℎ(1 − 𝑝)𝑇−ℎ2
[𝑈 (𝑉 ∗

𝑇 (𝑖))
2

+
𝑈 (𝑉 ∗

𝑇 (𝑗))
2

]

≤
∑

𝑘∉{𝑖,𝑗}
𝐏𝜎(𝑘)𝑈 (𝑉 ∗

𝑇 (𝑘)) + 𝜖𝑈 (𝑉 ∗
𝑇 (𝑖))

+ (1 − 𝜖)𝑝ℎ(1 − 𝑝)𝑇−ℎ2
[

𝑈
(𝑉 ∗

𝑇 (𝑖)
2

+
𝑉 ∗
𝑇 (𝑗)
2

)]

≤
∑

𝑘∉{𝑖,𝑗}
𝐏𝜎(𝑘)𝑈 (𝑉 ∗

𝑇 (𝑘)) + 𝜖𝑈 (𝑉 ∗∗
𝑇 (𝑙))

+ (1 − 𝜖)𝑝ℎ(1 − 𝑝)𝑇−ℎ2
[

𝑈
(𝑉 ∗

𝑇 (𝑖)
2

+
𝑉 ∗
𝑇 (𝑗)
2

)]

= 𝐂𝐄𝐔𝑈,𝑝,𝜖[𝑉 ∗∗
𝑇 ].

Thus, also in this case we get that 𝑉 ∗∗
𝑇 is a feasible solution different

from 𝑉 ∗
𝑇 with a value of 𝐂𝐄𝐔𝑈,𝑝,𝜖 which is greater than or equal

to that of 𝑉 ∗
𝑇 , but since the optimal solution is unique we get a

contradiction. □

Proof of Theorem 2. (i) ⟺ (ii). By Theorem 1 and the fact that
ext (̂𝑝,𝜖) is determined by 𝛱 ′ = {𝜋1,… , 𝜋𝑇+1}, for all 𝑉𝑇 ∈ R𝛺

++
onstant on the atoms of the algebra generated by 𝑆𝑇 , it holds that

𝐄𝐔𝑈,𝑝,𝜖[𝑉𝑇 ] = min
ℎ=1,…,𝑇+1

𝐄𝐏̂𝜋ℎ [𝑈 (𝑉𝑇 )],

here the expectations in the minimum are computed over 𝛩. Analo-
ously to the proof of Theorem 1, for every permutation 𝜋ℎ, problem
18) has a unique optimal solution 𝑉 𝜋ℎ

𝑇 . Then, the optimal solution
∗
𝑇 for (14) can be found by selecting a 𝑉 𝜋ℎ

𝑇 for a permutation 𝜋ℎ
possibly not unique) where the objective function is maximum and
hen mapping it to a function 𝑉 ∗

𝑇 in R𝛺
++ which is constant on the atoms

f the algebra generated by 𝑆𝑇 . This shows that problem (14) can be
olved by solving 𝑇 + 1 problems (18). Thus, we easily get that (i) is
quivalent to (ii).

(i) ⟺ (iii). In the light of previous equivalence, varying 𝑉𝑇 ∈ R𝛩
++

nd maximizing 𝑐 such that 𝐄𝐏̂𝜋ℎ [𝑈 (𝑉𝑇 )] ≥ 𝑐, for ℎ = 1,… , 𝑇 + 1, we
et a solution that maximizes 𝐂𝐄𝐔𝑈,𝑝,𝜖 as well, and this allows to get
quivalence between (i) and (iii). □

roof of Theorem 3. The proof is an adaptation of the proof of
heorem 1 in Antonini et al. (2020) based on the dimension reduction
roved in Theorem 2. Let 𝜋 be a permutation of 𝛩. We first show that
𝑇̂ ∈ R𝛩

++ is the optimal solution of the corresponding problem (18) if
and only if there is a subset 𝐼 ⊆ 𝛩⧵{1} inducing weights 𝜆𝜋,𝐼𝑖 ’s satisfying
(i)–(iii).

Since reordering the elements of 𝛩 according to a permutation 𝜋
does not change the objective and the equality constraint in (18), below
we assume that elements of 𝑉𝑇 are ordered by 𝜋. Therefore, denote by

𝑓 (𝑉𝑇 ) =
𝑇+1
∑

𝐏̂𝜋 (𝜋(𝑘))𝑈𝛾 (𝑉𝑇 (𝜋(𝑘))),

𝑘=1
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𝑔(𝑉𝑇 ) =
𝑇+1
∑

𝑘=1
𝐐̂(𝜋(𝑘))𝑉𝑇 (𝜋(𝑘)) − (1 + 𝑟)𝑇 𝑉0 = 0,

the objective function and the equality constraint in (18), which are,
respectively, (strictly) concave and linear. We also have that all inequal-
ity constraints in (18) are linear, therefore, the Karush–Kuhn–Tucker
(KKT) conditions are necessary and sufficient in this case (Boyd &
Vandenberghe, 2004). Define the Lagrangian function

𝐿(𝑉𝑇 , 𝜆1,… , 𝜆𝑇+1) = 𝑓 (𝑉𝑇 ) − 𝜆1𝑔(𝑉𝑇 ) −
𝑇+1
∑

𝑘=2
𝜆𝑘(𝑉𝑇 (𝜋(1)) − 𝑉𝑇 (𝜋(𝑘))),

for which it holds

𝜕𝐿
𝜕𝑉𝑇 (𝜋(1))

= 𝐏̂𝜋 (𝜋(1))𝑈 ′
𝛾 (𝑉𝑇 (𝜋(1))) − 𝜆1𝐐̂(𝜋(1)) −

𝑇+1
∑

𝑘=2
𝜆𝑘,

𝜕𝐿
𝜕𝑉𝑇 (𝜋(𝑖))

= 𝐏̂𝜋 (𝜋(𝑖))𝑈 ′
𝛾 (𝑉𝑇 (𝜋(𝑖))) − 𝜆1𝐐̂(𝜋(𝑖)) + 𝜆𝑖, for all 𝑖 ∈ 𝛩 ⧵ {1}.

Imposing the KKT conditions, we look for 𝑉𝑇 ∈ R𝛩
++, 𝜆1 ∈ R, and

𝜆2,… , 𝜆𝑇+1 ≥ 0 such that 𝜕𝐿
𝜕𝑉𝑇 (𝜋(𝑘))

= 0, for all 𝑘 ∈ 𝛩, 𝑔(𝑉𝑇 ) = 0,

𝑇̂ (𝜋(1)) ≤ 𝑉𝑇 (𝜋(𝑖)) and 𝜆𝑖(𝑉𝑇 (𝜋(1)) − 𝑉𝑇 (𝜋(𝑖))) = 0, for all 𝑖 ∈ 𝛩 ⧵ {1}.
By 𝜕𝐿

𝜕𝑉𝑇 (𝜋(𝑘))
= 0, for all 𝑘 ∈ 𝛩, we derive

𝑉𝑇 (𝜋(1)) = (𝑈 ′
𝛾 )

−1

(

1
𝐏̂𝜋 (𝜋(1))

(

𝜆1𝐐̂(𝜋(1)) +
𝑇+1
∑

𝑘=2
𝜆𝑘

))

,

𝑉𝑇 (𝜋(𝑖)) = (𝑈 ′
𝛾 )

−1

(

1
𝐏̂𝜋 (𝜋(𝑖))

(

𝜆1𝐐̂(𝜋(𝑖)) − 𝜆𝑖
)

)

, for all 𝑖 ∈ 𝛩 ⧵ {1}.

Moreover, by the complementary slackness conditions 𝜆𝑖(𝑉𝑇 (𝜋(1)) −
𝑉𝑇 (𝜋(𝑖))) = 0, for all 𝑖 ∈ 𝛩 ⧵ {1}, there must exist 𝐼 ⊆ 𝛩 ⧵ {1} such that
𝜆𝑖 = 0, for all 𝑖 ∈ 𝛩⧵(𝐼∪{1}), while, for all 𝑖 ∈ 𝐼 , 𝑉𝑇 (𝜋(1))−𝑉𝑇 (𝜋(𝑖)) = 0.

The case 𝐼 = ∅ is trivial, thus suppose 𝐼 ≠ ∅. For every 𝑖 ∈ 𝐼 ,
equation 𝑉𝑇 (𝜋(1)) − 𝑉𝑇 (𝜋(𝑖)) = 0 holds if and only if
(

𝐐̂(𝜋(1))

𝐏̂𝜋 (𝜋(1))
−

𝐐̂(𝜋(𝑖))

𝐏̂𝜋 (𝜋(𝑖))

)

𝜆1 +

(

1
𝐏̂𝜋 (𝜋(1))

+ 1
𝐏̂𝜋 (𝜋(𝑖))

)

𝜆𝑖

+ 1
𝐏̂𝜋 (𝜋(1))

∑

𝑘∈𝐼⧵{𝑖}
𝜆𝑘 = 0.

Choose an enumeration of 𝐼 ∪ {1} = {𝑖1, 𝑖2,… , 𝑖𝑛} with 𝑖1 = 1. Then
the above equations give rise to the homogeneous linear system 𝐀𝐱 = 𝟎,

hose unknown is the column vector 𝐱 = [𝜆1 𝜆𝑖2 ⋯ 𝜆𝑖𝑛 ]
𝑇 ∈ R𝑛 and

hose coefficient matrix is 𝐀 =
[

𝐪|𝐁
]

∈ R(𝑛−1)×𝑛 with

𝐪 =
[(

𝐐̂(𝜋(1))
𝐏̂𝜋 (𝜋(1))

− 𝐐̂(𝜋(𝑖2))
𝐏̂𝜋 (𝜋(𝑖2))

) (

𝐐̂(𝜋(1))
𝐏̂𝜋 (𝜋(1))

− 𝐐̂(𝜋(𝑖3))
𝐏̂𝜋 (𝜋(𝑖3))

)

⋯
(

𝐐̂(𝜋(1))
𝐏̂𝜋 (𝜋(1))

− 𝐐̂(𝜋(𝑖𝑛))
𝐏̂𝜋 (𝜋(𝑖𝑛))

)]𝑇
,

𝐁 = 𝐂 + 𝐃,

where 𝐂,𝐃 ∈ R(𝑛−1)×(𝑛−1), 𝐂 is a constant matrix with all entries equal
to 1

𝐏̂𝜋 (𝜋(1))
and 𝐃 is the diagonal matrix whose diagonal contains the

elements 1
𝐏̂𝜋 (𝜋(𝑖2))

,… , 1
𝐏̂𝜋 (𝜋(𝑖𝑛))

. Subtracting the first row of 𝐁 from all
ther rows and applying the Laplace expansion to the resulting matrix
long the first row we get that

et 𝐁 = det(𝐂 + 𝐃) =
𝑛
∑

𝑗=1
𝐏̂𝜋 (𝜋(𝑖𝑗 ))

/ 𝑛
∏

𝑗=1
𝐏̂𝜋 (𝜋(𝑖𝑗 )),

and since det 𝐁 ≠ 0, we have that rank 𝐁 = 𝑛 − 1 and the system admits
non-trivial solutions, depending on one real parameter that we identify
with 𝜆1. Now, apply Cramer’s rule to the reduced system 𝐁𝐲 = −𝜆1𝐪
with unknown the column vector 𝐲 =

[

𝜆𝑖2 ⋯ 𝜆𝑖𝑛
]𝑇

∈ R𝑛−1.
For 𝑗 = 2,… , 𝑛, denote by 𝐁𝑗−1 the matrix obtained by substituting

the (𝑗 − 1)-th column of 𝐁 with the vector −𝜆1𝐪. Applying the Laplace
expansion along the (𝑗 − 1)-th column of 𝐁𝑗−1 and noticing that all
minors can be transformed (by swapping rows and keeping track of
1038

sign changes) in the sum of a constant matrix and a diagonal matrix
(possibly with a zero on the diagonal), we have

det 𝐁𝑗−1 =
⎡

⎢

⎢

⎣

(

𝐐̂(𝜋(𝑖𝑗 ))

𝐏̂𝜋 (𝜋(𝑖𝑗 ))
−

𝐐̂(𝜋(1))

𝐏̂𝜋 (𝜋(1))

) ∑

𝑘∈(𝐼∪{1})⧵{𝑖𝑗} 𝐏̂
𝜋 (𝜋(𝑘))

∏

𝑘∈(𝐼∪{1})⧵{𝑖𝑗} 𝐏̂
𝜋 (𝜋(𝑘))

+
∑

𝑘∈𝐼⧵{𝑖𝑗}

⎛

⎜

⎜

⎝

(

𝐐̂(𝜋(1))

𝐏̂𝜋 (𝜋(1))
−

𝐐̂(𝜋(𝑘))

𝐏̂𝜋 (𝜋(𝑘))

)

1
∏

𝑠∈(𝐼∪{1})⧵{𝑖𝑗 ,𝑘} 𝐏̂
𝜋 (𝜋(𝑠))

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

𝜆1

therefore, 𝜆𝑖𝑗 =
det 𝐁𝑗−1
det 𝐁 = 𝐴𝜋,𝐼

𝑖𝑗
𝜆1.

Substituting in 𝑔(𝑉𝑇 ) = 0 the expressions of 𝑉𝑇 (𝜋(𝑘)), for all 𝑘 ∈ 𝛩,
nd 𝜆𝑖, for all 𝑖 ∈ 𝛩 ⧵ {1}, we get for 𝜆1 the expression of 𝜆𝜋,𝐼1 , thus
𝑖 coincides with 𝜆𝜋,𝐼𝑖 . Hence, 𝑉𝑇 ∈ R𝛩

++ is the optimal solution for the
roblem (18) if and only if there exists 𝐼 ⊆ 𝛩 ⧵ {1} inducing weights
𝜋,𝐼
𝑖 ’s satisfying (i)–(iii).

For every ℎ ∈ 𝛩, let 𝜋ℎ be a permutation of 𝛩 such that 𝜋ℎ(1) = ℎ
nd denote by 𝑉 𝜋ℎ

𝑇 the optimal solution of problem (18) for 𝜋ℎ. By
he definition of the Choquet integral (Grabisch, 2016), problem (18)
s equivalent to maximizing 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖 over optimal solutions of the
amily of problems (18), indexed by all permutations of 𝛩. In turn,
ince, for every permutations 𝜋, 𝜋′ of 𝛩 such that 𝜋(1) = 𝜋′(1), it

holds 𝐏̂𝜋 = 𝐏̂𝜋′ , such maximization can be reduced to maximizing
𝐂𝐄𝐔𝑈,𝑝,𝜖 over optimal solutions of the family of problems (18), indexed
by permutations 𝜋1,… , 𝜋𝑇+1 of 𝛩. This finally proves the theorem. □

Proof of Proposition 2. For fixed 𝑈𝛾 , 𝑝, 𝑢, 𝑑, 𝑟 and 𝑇 , we show that
the optimal value of 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖 is non-increasing with respect to 𝜖, seen
as a function of 𝜖 ∈ [0, 1). Therefore, let 0 ≤ 𝜖 < 𝜖′ < 1 and let 𝑉 𝜖

𝑇 , 𝑉
𝜖′
𝑇

be the optimal solutions of (14) obtained for 𝜖, 𝜖′, respectively. Since
𝜖,𝑝 ⊂ 𝜖′ ,𝑝, by (12) we have that 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖[𝑉

𝜖
𝑇 ] ≥ 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖′ [𝑉

𝜖
𝑇 ] and

𝐄𝐔𝑈𝛾 ,𝑝,𝜖[𝑉
𝜖′
𝑇 ] ≥ 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖′ [𝑉

𝜖′
𝑇 ]. Moreover, since 𝑉 𝜖

𝑇 attains the maxi-
um of 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖 , then we have that 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖[𝑉

𝜖
𝑇 ] ≥ 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖[𝑉

𝜖′
𝑇 ],

o we obtain that 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖[𝑉
𝜖
𝑇 ] ≥ 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖′ [𝑉

𝜖′
𝑇 ]. In turn, this implies

hat the maximum optimal value of 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖 is reached at 𝜖 = 0, i.e., in
bsence of ambiguity.

In the case 𝜖 = 0, if 𝑝 = 𝑞, by Theorem 3 we obtain that the optimal
olution is 𝑉 0

𝑇 = (1 + 𝑟)𝑇 𝑉0, for which we have 𝐂𝐄𝐔𝑈𝛾 ,𝑝,0[𝑉
0
𝑇 ] = 𝑈𝛾 ((1 +

)𝑇 𝑉0). Now, since the optimal value of 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖 is non-increasing with
espect to 𝜖, for every 𝜖 ∈ (0, 1) we get that 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖[𝑉

𝜖
𝑇 ] ≤ 𝑈𝛾 ((1 +

)𝑇 𝑉0). Moreover, since 𝑉𝑇 = (1 + 𝑟)𝑇 𝑉0 ∈ R𝛺
++ and 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖[𝑉𝑇 ] =

𝛾 ((1+ 𝑟)𝑇 𝑉0) we get that the optimal solution must be 𝑉 𝜖
𝑇 = (1+ 𝑟)𝑇 𝑉0,

or all 𝜖 ∈ (0, 1). Finally, this implies that the optimal value of 𝐂𝐄𝐔𝑈𝛾 ,𝑝,𝜖
s constantly equal to 𝑈𝛾 ((1 + 𝑟)𝑇 𝑉0) for all 𝜖 ∈ [0, 1). □
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