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Abstract: The increasing penetration of distributed generation (DG) across power distribution net-
works (DNs) is forcing distribution system operators (DSOs) to improve the voltage regulation
capabilities of the system. The increase in power flows due to the installation of renewable plants in
unexpected zones of the distribution grid can affect the voltage profile, even causing interruptions
at the secondary substations (SSs) with the voltage limit violation. At the same time, widespread
cyberattacks across critical infrastructure raise new challenges in security and reliability for DSOs.
This paper analyzes the impact of false data injection related to residential and non-residential cus-
tomers on a centralized voltage regulation system, in which the DG is required to adapt the reactive
power exchange with the grid according to the voltage profile. The centralized system estimates
the distribution grid state according to the field data and provides the DG plants with a reactive
power request to avoid voltage violations. A preliminary false data analysis in the context of the
energy sector is carried out to build up a false data generator algorithm. Afterward, a configurable
false data generator is developed and exploited. The false data injection is tested in the IEEE 118-bus
system with an increasing DG penetration. The false data injection impact analysis highlights the
need to increase the security framework of DSOs to avoid facing a relevant number of electricity
interruptions.

Keywords: cybersecurity; false data; distributed generation; voltage regulation

1. Introduction

Nowadays, cybersecurity plays a major role in electric grid management. Traditionally,
electrical systems were controlled using serial devices connected to computers with propri-
etary protocols; meanwhile, today’s control systems are increasingly connected to more
extensive enterprise networks, which can expose these systems to similar vulnerabilities
that are typically found in computer systems. Therefore, cybersecurity has become a crucial
challenge for realizing safe and reliable smart grids [1–4]. The main cybersecurity threat
vectors, through which the malicious attacker can gain access to a device or a control
network, are external users accessing the network through the Internet, misconfigured fire-
walls, unsecured wireless routers and wired modems, infected laptops located elsewhere
that can access the network behind the firewall, infected USB keys and PLC logic programs,
and unsecured RS-232 serial links [5]. This paper assesses the effects of a VR regulation
mechanism when false data are measured. Therefore, the surveyed literature firstly surveys
the references about voltage regulation; secondly, other works related to the effects of false
data are collected.

The worldwide increase in cybersecurity attacks in the energy sector has been accom-
panied by the deep penetration of distribution generator (DG) systems among electrical
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grids, referring to photovoltaic (PV) and wind power plants. Increasing the exploitation of
communication networks to manage a more complex system has generated new vulnera-
bilities to malicious threats in the system [6–9]. More information must be transmitted and
processed to improve interoperability and efficiency for predicting and controlling power
generation, consumption, and storage [10]. The transition from a passive grid to an active
grid, characterized by high renewable energy source (RES) penetration, involves facing
technical challenges, such as the presence of relevant RPF [11], voltage stability [12], an
increase in the number of interruptions [13], etc.

In this context, investigations on false data injection attacks (FDIAs) on smart grids
have gained relevance. Reference [14] highlights that most of the attacks on smart grids
usually lead to false data injection; then, many detection algorithms are developed, as
in [15–18], while evaluating the effects of false data on power systems is a less investigated
topic. Moreover, FDIA detection algorithms are often tested against manually calculated
anomalous profiles that do not consider probabilistic scenarios, as in [17]. Therefore,
this study aims to investigate how randomly generated false data could impact a smart
distribution network that adopts a centralized voltage regulation (VR) framework to
mitigate the effects of distributed generation.

In the literature, many papers have investigated new voltage regulation strategies
for distribution system operators (DSOs) to lessen the DG and load variation impact on
grids [18–21]. The voltage regulation schemes can be classified into different categories
according to the communication architecture [21]: local control, in which no coordination is
deployed but only measurements at the point of common coupling are used; centralized
control, in which the measurements from the grid are gathered to calculate the optimal
setpoints that are sent to the distributed systems; distributed control, in which a global
system does not control the distributed intelligent systems, but they interact only with the
neighboring devices to reach pre-determined goals; decentralized control, which consists
of a hybrid solution between centralized and distributed control.

The different voltage regulation schemes are deeply analyzed in the literature, but
the cybersecurity aspects are often neglected. For example, in Ref. [22], a decentralized
control system is investigated by considering the dynamic voltage regulation of a hybrid
distribution transformer. In [23], DG systems’ capabilities are exploited to keep voltages
within specified limits in the context of a combined local and centralized voltage control.
The control architecture is demonstrated on a 75-bus test system hosting 22 DG units. In
refs. [24–27], centralized voltage control schemes are adopted to maintain voltage stability
in an active distribution grid context. The voltage regulation levels are voltage source
converters (VSCs), considered reactive power sources, on-load tap changers (OLTC), and
step voltage regulators (SVRs). For example, in [24], the voltage fluctuations forecast is
used to optimize the tap position, maximizing the minimum voltage margin from the
voltage limits.

In ref. [28], the centralized voltage control is analyzed considering the data falsification
attacks’ impact. In detail, the attacks are related to the voltage measurements transmitted
from the field to the control system. The authors built up a two-step method based on
machine learning techniques to detect false data injection in the context of an active grid.
The proposed method was tested on a 240-bus real distribution system and the standard
IEEE 123-node benchmark distribution network.

In ref. [29], a volt–var control system object of a cyberattack is investigated considering
different knowledge levels of the attacker about the control system, network topology, and
monitoring system. The authors formulated a game between the malicious attacker and
the operator, from which possible countermeasures can be derived to detect and mitigate
the attack.

In ref. [10], the impact of false data injection on a centralized voltage control system is
studied in a distribution grid characterized by a high level of PV penetration. The authors
demonstrated that the falsified measurements could provoke a relevant number of voltage



Sensors 2023, 23, 2557 3 of 17

violations. The detection algorithm suggested in [10] is analyzed in a residential area with
one feeder.

The impact of cyberattacks on the remedial action schemes of large transmission
systems is investigated in [30], proposing different metrics for evaluating the effects of
malicious operations. The simulations are made on synthetic Illinois 200-bus and South
Carolina 500-bus systems by means of a zonal equivalent model.

In ref. [31], a formulation for detecting and characterizing cyberattacks is proposed in
the context of a control center of a transmission system network. The authors investigate
the impact of false data related to the parameters involved in calculating the optimal power
flow necessary for grid management.

Different from the other surveyed papers, this paper aims to evaluate the FDIA
impact by developing a false data generator that should simulate capillary penetration
of the attacks and their effects in the context of a large DN. This paper presents a voltage
regulation framework based on the microgenetic algorithm (µGA), which centrally controls
the voltage sending optimized setpoints to DG units to maintain the voltage levels within
limits; moreover, it investigates the impact of false data injection in the context of complex
distribution systems in which the voltage regulation effectively manages network voltage.
The IEEE 118-bus test system is tested in MATLAB, considering different types of false
data attacks. These attacks are generated using a false data generator developed for this
research; unlike other surveyed papers, the false data are not manually defined and more
than one typology is evaluated.

The main contributions of this paper are the µGA-based voltage regulation framework;
a false data generator—suggested to provide reasonable false datasets related to power
profiles of residential and non-residential customers; and the analysis of the impact of false
data injection in the context of a complex distribution grid reporting a relevant number of
different scenarios.

The paper is organized as follows: Section 2 describes the developed false data genera-
tor model. Section 3 reports the developed centralized voltage regulation framework to
be tested against a case study presented in Section 4. Section 5 presents the simulations’
results considering different combinations of anomalies and the percentage of manipulated
load profiles. Section 5 concludes the paper.

2. False Data Generator Model

The false data generator was realized through a series of functions in a Python envi-
ronment. Starting from a dataset, a portion of the data is altered with different typologies
of anomalies, and a false dataset is returned. The developed generator is flexible and does
not require further adaptions if different profiles are considered.

The model is based on the data frames of the Pandas module, in which each variable
in the data frame corresponds to a different electrical bus in which the values are to be
analyzed.

Once it has been identified which users are experiencing data falsification, anomalies
are created by acting on a fraction of points in the dataset relating to an electrical user
(which may be a generation plant or load) and modifying their values according to random
parameters from preset lists.

The false data generator requires various parameters before creating the anomaly:

• The type of anomaly: spot, drift, or mixed.
• The percentage of users subject to the cyberattack, Nfalse%.
• The fraction of anomalies present per node, Nfalse%.
• Anomaly scale parameter, σ(NK).
• The fraction of anomalies parameter, ϕ(NK).
• Mean drift parameter, µ(NK).
• Drift spread parameter, γ(NK).

The process of creating the anomaly is shown in Figure 1.
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Figure 1. False data generator algorithm.

For spot-type anomalies, first, the algorithm evaluates the minimum and maximum
values of the input array related to a specific node NK, from which the amplitude values
can be obtained as:

∆arr(NK) = Arrmax(NK)−Arrmin(NK) (1)

Based on the ϕ(NK) parameters obtained by randomly extracting from the list, ϕlist,
containing the permitted values for the anomaly fraction, a portion of the timestamps is
modified, extracted randomly by an amount equal to:

Ntimestamps(NK) = ϕ(NK)× t (2)

These data are randomly increased or decreased according to the following formula:

x(NK)
False
t = x(NK)

Real
t ± σ(NK)× arr(NK) (3)

Drift-type anomalies vary the magnitude by raising or lowering the arrays’ mean
value from a specific time. First, a drift time, τdrift, is set, chosen randomly within the
analysis period ∆t, at which the value of the quantity undergoes a shift, then the values of
µ(NK) and γ(NK) are defined, both obtained by randomly extracting from the lists γlist and
µlist, and the first represents the percentage of mean drift, while the second represents the
percentage change in the spread of the data.
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In this type of anomaly, for the values before τdrift, the magnitude remains the same,
while for the values after τdrift, the new value can be evaluated as:

x(NK)
False
t = x(NK)

Real
t +

∑Nafter
τdrift x(NK)

Real
t

(Nafter − τdrift)
× µ(NK)

100
×

(
1 +

γ(NK)

100

)
, (4)

where Nafter represents the number of timestamps after the drift time.
In the case of a mixed typology anomaly, 50% of the nodes involved have a spot

data falsification, while the remaining 50% have a drift-type falsification. In Figure 2, two
typologies of anomalies are shown.
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3. Centralized Voltage Regulation Framework

The centralized voltage regulation system model is based on the possibility of remotely
changing the operating points of DG plants to sustain the grid’s voltage profile. Due to
the increasing penetration of DG, it is expected that operators could adopt such a voltage
regulation framework to avoid many interruptions caused by exceeding the voltage limits.
In detail, in the future, the reactive power exchange could be adjusted by the operator
without affecting the active power production, according to the limits fixed by the capability
diagram of the renewable-based generators, as it is detailed in [32]. In the context of
demand-side management, it is expected that some flexibility for network services could
be exploited in an automatic way.

With respect to regulation support from DGs, similar mechanisms are in progress
in some existing networks, or they are defined in standards; for instance, the Italian grid
codes define a set of DG that can be automatically disconnected by the operators in order
to ensure the system security [33]. According to the German grid code for connection to the
LV grid, new PVs with less than 30 kW capacity that cannot be controlled remotely have
to limit their output to 70% of rated power; the remote control of active power output at
the request of the system operator is required for all DER rated above 100 kW connected
to the grid [34]. According to the Chinese energy storage connection code GB36547-2018,
the system operator can send setpoints and should work for suitable voltage management.
The current version of IEEE Std 1547 [34] specifies a requirement for all conformant DER to
respond to (local and/or remote) control signals limiting the active power; furthermore,
there is no DER size threshold for this requirement.

In this paper, it was assumed that the regulation framework could act on a medium
voltage network; generators are connected to the SSs of the MV network under analysis.

The regulation framework is implemented in the Octave environment using the
MATPOWER package, which calculates load flows according to the network topology
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and active power (P) and reactive power (Q) values assigned to each node. Indeed, an
SS is modeled as a P and Q node in the load flow analysis, considering the local power
consumption and production contributions.

The main steps of the regulation framework are presented in Figure 3. Firstly, load
flows are calculated for the analyzed timestamp; then, the voltage regulation is activated if
the following inequalities are not fulfilled for each node of the network:

0.95 ≤ Vi ≤ 1.05, ∀i ∈ [1, NSS] (5)

where Vi is the voltage at the SS characterized by the index i.
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According to Figure 3, if inequality (5) is not fulfilled, the regulation is activated. The
implemented regulation exploits the reactive production or absorption of renewable-based
generators. The reactive power exchanges have to fulfill the typical capability diagram
of the PV generator, as in [35]. In detail, the maximum Q that a DG system can provide
(Qmax) to the grid should be calculated according to the following equation, considering an
operating point characterized by an active power production greater or equal to 10% of the
apparent power Sn:

Qmax = Pn · 0.484 (overexcited mode) (6)
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where Pn is the nominal power of the DG system.
The minimum Q absorbed by the DG system (Qmin) is calculated with the following

equation:
Qmin = −Pn · 0.484 (under excited mode) (7)

When the active power production is under 10% of the Pn, the reactive power cannot
be exchanged with the grid. These limits are also shown in Figure 4.
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The voltage regulation model acquires the active and reactive profiles of load and
generation by each SS and performs the load flow, considering the topology of the grid
and the interconnection with the HV system as the reference bus. Then, according to
inequality (5), the total number of violations is calculated. In case of violation occurrence,
the model tries to reduce the number of violations using the reactive power support by DG.

As reported in Figure 3, the optimization technique used for this nonlinear problem is
based on a microgenetic algorithm, implemented by the authors in the open-source Octave
environment and coupled with MATPOWER. The µGA was developed by the authors to
solve other research issues, as in [35]. The usage of µGA enables addressing the solution of
nonlinear problems with adequate performance, even during real-time operation.

The algorithm initializes a random sample of individuals with the values in p.u. of re-
active power for each SS to be optimized. The evolution via survival of the fittest is adopted,
and the selection scheme used is tournament selection with a shuffling technique for choos-
ing random pairs for mating. The routine includes binary coding for individuals, jump
mutation, creep mutation, and the option for a single-point crossover; a restart mechanism
with elitism is also implemented. The population size is fixed to five individuals.

Each individual has a number of genes equal to the NSS + 1; NSS describes the reactive
power exchanges of the generators, while the last gene corresponds to the tap changer of
the transformer of the PS.

The objective function to be minimized by the µGA is defined as the number of
violations. Two stopping criteria are implemented: the algorithm is stopped as soon
as the number of voltage violations is nihil or the maximum number of generations is
reached. Therefore, in each iteration, the µGA performs the load flow of the DN to evaluate
the number of remaining violations after implementing the combination of setpoints in
terms of reactive power exchanged by DG systems. It is worth highlighting that the
performances (i.e., a reduced number of generations and the related execution times) are
dramatically improved by exploiting the solution of the previous iteration for the current
calculation. Leveraging this recursive behavior, µGA suggests a minimum amount of
changes; moreover, generations start only if the solution of the previous timestamp causes
a violation during the new timestamp. The entire procedure is repeated for each timestamp
according to the case study.

In order to evaluate the voltage deviations, the following indices are calculated after
the execution of the VR:
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• TV1.05 is the number of timestamps during which the maximum network voltage is
higher than 1.05.

• TV1.1 is the number of timestamps during which the maximum network voltage is
higher than 1.1.

• TV1.15 is the number of timestamps during which the maximum network voltage is
higher than 1.15.

4. Case Study

The impact of false data on voltage regulation is tested in a case study, namely, a
118-node distribution network, as described in [36]. Its topology is reported in Figure 5;
the figure first highlights the radial structure with four main feeders and a PS, identified
by a red square marker; each node corresponds to a SS with some connected customers.
This case study was identified as an interesting test system due to the presence of long
feeders. This a typical configuration in which voltage issues could arise in the case of large
reverse power flows. This case study is not accompanied by current limits on the branches;
therefore, when higher flowing currents are considered (i.e., assuming a certain penetration
of DG), it was assumed that these are within the line limits and protection thresholds.
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After the definition of the topology, power profiles were defined. Concerning the
passive loads, a yearly load profile was considered according to [37]. This is a profile in
p.u.; therefore, it was scaled up according to the loads assigned to the buses in the original
network in [36]. Moreover, a coefficient that randomly varies from 0.85 to 1.15 was applied.
Applying these profiles, it was assumed that the loads absorb 290 MWh yearly while the
average peak load of nodes is 0.19 MW.

In addition to the existing passive loads, PV generators were added to all nodes. Con-
cerning the power profiles of these generators, an open-access dataset was exploited [38].
The plant sizes are crucial parameters for defining the impact of distributed generators
on voltage profiles so that a regulation would be frequently enforced. In this respect, a
massive deployment of PV plants that can supply about 40 % of the energy consumption
(i.e., the rest of the energy is provided by the transmission grid using the PS) was evaluated,
assigning a size from three to four times the peak power of the load profile of each node.
The installed generators produce 444 MWh yearly, supplying 120 MWh to the loads, and
324 MWh would be the resulting reverse power flow at the PS. Although the simulated
conditions are dramatic, they represent those areas with low load concentration but high
potential for RES installation (e.g., good exposure, a lack of authorization constraints, free
lands, and massive penetration of agrophotovoltaic plants) in combination with a weak
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network that could suffer voltage arising. Indeed, their network operators are already
reporting a continuous reverse flow at their PSs.

After defining the reference profiles and the sizes to be considered, production and
consumption profiles were sampled every minute. For clarity, the analysis focuses only
on one day during which the reverse power flow was maximum, and maximum voltage
deviations were detected. Therefore, the global consumption and production under analysis
are provided in Figure 6.
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Results were gathered by simulating the VR carried out every minute based on the
power profiles of the previously mentioned SSs. Indeed, the effect on voltage profiles
was first calculated when the received data were correct; secondly, various sets of false
data were applied to evaluate their negative effect on the regulation efficiency and the
network itself.

According to the previous section, the VR framework receives as input P and Q of
the nodes and the active power injected by the generators; these profiles are falsified to
test the effects of FDIA. Moreover, voltage regulation can leverage the transformer ratio at
the PS (i.e., varying the secondary voltage at the PS) and the reactive power exchanged by
PV generators. Assuming that the secondary voltage at the PS is equal to 1 p.u., voltage
regulation is active as soon as the voltage is higher than 1.05 p.u. or lower than 0.95 p.u.
Figure 7 reports the trends of maximum and minimum voltage if regulation is applied.
When regulation is not active, voltages are assumed to be equal to those calculated for the
basis scenario (i.e., regulation is not enforced and secondary voltage at the PS is 1 p.u.). It
is worth highlighting that the maximum voltage is always lower than 1.1 p.u. because of
regulation enforcement; indeed, the operators typically enforce this limit to detect some
network violations. The beneficial effects of the VR framework can also be found by
analyzing TV1.05, which corresponds to 67.8%, while when VR effects are calculated, this
value decreases to 7.4%.

The attack scenarios simulated in this paper are characterized by distributed manip-
ulation of consumption and production data at the SSs. In detail, the P and Q profiles of
the production power plant and the overall power demand at SSs are manipulated. The
results were calculated considering the two types of threats previously described (i.e., drift
and spot anomalies) and their mixed combination. Moreover, an increasing amount of
manipulated measurements was considered for the simulation; notably, it was simulated
that 25, 50, or 75% of the nodes are affected by the anomalies.
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5. Results

This section presents the simulation results considering the case study and load profiles
previously presented, assuming that an increasing number of profiles are manipulated.
In this section, an evaluation of the impact of false data is carried out considering two
main sets of simulations: the first set regards some attacks that manipulate up to 25% of
the measurements, while the second set regards those attacks that massively manipulate
the measurements; namely, 50 and 75% of the data are falsified. The results are presented
by calculating mean values, the standard deviation of the voltages (SD), and the defined
indices TV1.05, TV1.05, and TV1.05.

5.1. FDIA Affecting 25% of the Measurements

The first set of simulations regards the effects of manipulating 25% of the measure-
ments applying a mixed anomaly; 10 simulations randomly assigned the set of profiles
to be manipulated. The overall results are shown in Table 1, which reports the average
values collected from the 10 simulations; furthermore, these are compared with the values
calculated when the voltage regulation framework does not exploit manipulated data.
Considering the statistical parameters, it can be highlighted that the manipulated data
cause notable effects on voltage regulation; on average, 6% of the timestamps report voltage
violations on the network (i.e., voltage overcomes 1.1 p.u. in at least one node). It is worth
highlighting that false data are processed during all the timestamps; therefore, the VR
framework can still solve voltage issues. Indeed, considering that the lack of VR leads to
TV1.05 higher than 1.05, equal to 67.8%, on average, 30% of the voltage violations are still
solved by the regulation procedure.

Table 1. Main results comparing average effects of 10 simulations with 25% of manipulated measure-
ments and true data processed by VR framework.

Max Min Mean SD TV1.05 TV1.1

True Data 1.056 0.941 0.982 0.0233 7.4% 0.0%
Attack on 25% Nodes 1.127 0.945 0.991 0.0261 31.5% 6.0%

The average voltage of the nodes is reported in Figure 8. The figure shows the individ-
ual effects of the 10 simulated anomalies and the profile calculated without manipulation,
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which is taken as a reference. Figure 8 highlights that the longest feeders (i.e., those with
the highest numbers of nodes) have the highest voltages and the highest differences among
results (i.e., the maximum difference is about 0.03 p.u.). Moreover, some nodes have a
voltage lower than the reference; this behavior is due to the lack of disruptive anomalies on
the feeder that do not jeopardize the VR framework.
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A specific timestamp is also reported in Figure 9 as an example that shows the voltages
calculated during the timestamp associated with the maximum voltage in the case of real
data. In this case, a violation on voltage higher than 1.1 p.u can be seen.
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ments are manipulated.

In addition, Figure 10 shows the maximum network voltage during the simulated time
period, considering the false data that cause maximum and minimum violations, identified
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as Min and Max Attack, respectively. This figure highlights that a specific combination of
false data does not cause voltage violations, while the most disruptive falsification leads to
violations.
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Figure 10. Maximum network voltage during the timestamps considering maximum and minimum
violations, assuming that 25% of measurements are manipulated.

5.2. Massive Spread of FDIA

An additional set of simulations regards the effects of an increasing amount of falsified
measurements. Notably, it simulated the effects of spot and drift anomalies when applied
to 50 or 75% of measurements. The main results of these simulations are collected in Table 2,
which shows the notable impact on the voltages caused by incorrectly processed data; in
particular, calculated violations overcome even 1.15 p.u.

Table 2. Main results considering a combination of anomalies and percentage of falsified measure-
ments.

True Data Attack on 50% of
Measurements

Attack on 75% of
Measurements

Manipulation Type N/A Spot Drift Spot Drift

Max 1.056 1.164 1.181 1.252 1.215
Min 0.941 0.923 0.941 0.886 0.891
SD 0.023 0.029 0.028 0.040 0.039

TV1.05 7.4% 48.4% 64.4% 63.7% 65.1%
TV1.1 0.0% 15.0% 29.6% 31.4% 31.0%
TV1.15 0.0% 0.6% 2.3% 11.7% 13.3%

Similarly to the previous simulations, the average voltages of the nodes are reported in
Figure 11, while Figure 12 shows the voltages during the most critical timestamps identified
during the regular operation. Considering Figure 12, it can be noted that the spot anomaly
does not cause any voltage issues on the network if applied to half of the measurements;
the drift anomaly has a higher impact on the network, causing overvoltages. Moreover,
considering the average effects on the network presented in Figure 10, it can be shown that
drift anomalies can have a higher impact on the distribution networks jeopardizing the VR
framework. It is worth noting that the profile associated with a lower number of falsified
profiles produced a higher voltage profile on average, even if violations are more frequent
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in the case of a higher number of falsified profiles. Indeed, a more comprehensive set of
falsified measurements leads to higher standard deviation values; namely, overvoltages
are more frequent and more intense. Moreover, by taking advantage of the evaluation of a
wide set of values, it was found that the distribution of false profiles that introduce low
measurement variations is more dangerous than concentrated threats that introduce the
highest differences from the actual measurement.
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Figure 12. The voltage of the nodes during the maximum violation, assuming that 50 and 75% of
measurements are manipulated.

Finally, Figures 13 and 14 report the maximum network voltages calculated for all the
timestamps. These figures show that the effects of drift anomalies are more disruptive than
the spot anomalies.
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6. Conclusions

This paper evaluated the effects of a false data injection attack on a voltage regulation
framework. A GA-based VR framework was developed and implemented on a test network
to assess these effects, for which a broad penetration of PV plants was simulated to test
the beneficial effects of the regulatory framework. Data manipulation was provided by
developing a false data generator based on spot and drift anomalies and their combination.

The main results were gathered by simulating an increasing amount of falsified data
and applying the random falsification introduced by the false data generator, assuming
that the detection system was unable to detect it or that a detection system was not
used. According to the simulation results, it can be stated that an increasing amount
of falsified data led to undesired overvoltages that are caused by wrong signals sent to PV
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generators, which can modify their exchanged reactive power. When a reduced amount of
manipulated data was considered, it can be noted that some manipulation combinations
did not lead to overvoltages: the attack reduced system efficiency and operator awareness
without jeopardizing the service. In particular, the VR framework showed promising
performances since some voltages arising were avoided, even when wrong measurements
were processed. It was found that the distribution of false profiles that introduce low
measurement variations was more dangerous than concentrated threats that introduce the
highest differences from the actual measurement. Moreover, during the simulations, it was
found that drift anomalies could be more disruptive than spot anomalies. Therefore, the
new smart distribution networks should be resilient by design against false data injection
attacks, considering their dramatic effects on system reliability.

In future works, the authors would like to compare the results when different voltage
regulation mechanisms are implemented, assessing their resilience in combination with a
false data detection algorithm.
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Abbreviations

γ(NK)
Drift spread parameter, used for drift anomaly. It represents the percentage
change in the spread of the data for the node NK.

γlist List of all possible values for the spread drift parameter.
∆arr(NK) Maximum variation in values for the array relative to the NK node
∆t Analysis time-period.

ϕ(NK)
Fraction of anomalies parameters for the node NK, used for the spot anomaly.
It represents the number of node values subject to the spot anomaly.

ϕlist List of all possible values for the anomaly fraction parameter.

µ(NK)
Mean drift parameter used for drift anomalies. It represents the percentage of
mean drift for the node NK after the drift anomaly starts.

µlist List of all possible values for the anomaly mean drift parameter.

σ(NK)
Anomaly scale parameter for the node NK, used for the spot anomaly. This
factor will scale the range of the normal data to inject anomalies.

σlist List of all possible values for the anomaly scale parameter.
τdrift Used for drift anomalies, it represents the time at which drift starts.
ATYPE (NK) Typology of anomaly attack at the node NK.
Arrmin(NK) Minimum value of the array referring to node NK data.
Arrmax(NK) Maximum value of the array referring to node NK data.
Nafter Number of timestamps after the drift time for the drift anomaly.
NA spot Number of nodes subject to spot anomalies.
NA drift Number of lines subject to drift anomalies.
Nfalse% Percentage of lines subject to data falsification.
Nfalse_i Indexes of nodes subject to data falsification.
Ntimestamp(NK) Number of timestamps modified by the spot anomalies.
Vi Voltage of the i-th node.
x(NK)

Real
t Real value of the array related to the node NK in the timestamp t.

x(NK)
False
t False value of the array related to the node NK in the timestamp t.
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