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Abstract We analyse a n-dimensional Generalized Uncer-
tainty Principle (GUP) quantization framework, character-
ized by a non-commutative nature of the configurational vari-
ables. First, we identify a set of states which are maximally
localized only along a single direction, at the expense of
being less localized in all the other ones. Subsequently, in
order to recover information about localization on the whole
configuration space, we use the only state of the theory which
exhibits maximal localization simultaneously in every direc-
tion to construct a satisfactory quasi-position representation,
by virtue of a suitable translational operator. The resultant
quantum framework is then applied to model the dynamics
of the Bianchi I cosmology. The corresponding Wheeler–
DeWitt equation is reduced to Schrödinger dynamics for the
two anisotropy degrees of freedom, using a WKB represen-
tation for the volume-like variable of the Universe, in accor-
dance with the Vilenkin scenario. The main result of our cos-
mological implementation of the constructed quantum the-
ory demonstrates how the dynamics of a wave packet peaked
at some point in the configuration space represented in the
quasi-position variables favours as the most probable con-
figuration exactly the initial one for a relatively long time,
if compared with the ordinary quantum theory. This prefer-
ence arises from the different dynamical behavior exhibited
by wave packets in the two quantum theories.

1 Introduction

As widely acknowledged, any quantum theory of gravity
lays down its foundations in the attempt to reconcile Gen-
eral Relativity with Quantum Mechanics. Despite the lack of
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a comprehensive theory and the absence of consensus regard-
ing the predominant approach, the idea that addressing this
issue demands a profound reconsideration of the fundamen-
tal structure of space-time is broadly spread and accepted.
Consequently, several models and theories based on a space-
time structure fundamentally different with respect to the one
arising in General Relativity have been constructed so far
[1]. While certain frameworks aim to construct entirely new
foundational paradigms, there exist different formulations
that can be considered effective models. These models are
capable of reproducing and making manifest some essential
aspects derived from an ultimate not-specified theory that, in
principle, accounts for the altered structure of space-time.

Generalized Uncertainty Principle (GUP) theories are
quantum non-relativistic theories based on a deformation of
the ordinary Heisenberg’s uncertainty principle (HUP) and
they do belong to this last category.

There exist several arguments, stemming from String and
Gedanken experiments [2], which suggest that a modification
of the HUP is indeed necessary at some level.

The first examples in which the subject has been compre-
hensively investigated and analysed can be found in [3,4],
where considerations are specifically grounded in the low
energy limits of string dynamics [5,6].

From these works clearly emerges that the most rigor-
ous way to proceed in this direction is to deform the usual
Heisenberg algebra between the quantum conjugate oper-
ators, hence modifying the canonical structure of ordinary
quantum mechanics. According to the specific algebra, this
operation results in two noteworthy consequences: firstly, the
possible appearance of a nonzero absolute minimal uncer-
tainty in the coordinate operators, which equips the theory
with some kind of “minimal structure”; secondly, the possible
emergence of a non-commutative “geometry”, manifesting
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itself in the non-commutativity of the operators associated to
the configurational variables.

Despite it can help to gain useful insights, when this
scheme is applied to the quantum dynamics of a particle, not
surprisingly, the corresponding observables turn out to have
negligible corrections. This is essentially due to the fact that
the scale at which the effect generated by the deformations
of the algebra becomes relevant is usually Planckian.

Nonetheless, the implementation of such generalized
approaches in the Mini-superspace [7] of cosmological mod-
els [8,9] is potentially able to offer an interesting perspective
to introduce cut-off physics effects on the Universe dynamics
during the Planck era of its evolution.

Driven by these motivations, significant interest has
emerged in the literature (see in particular [10,11] or more
recently [12–14] for general aspects as well as [15–17] for
applications and relation with different formalisms) for the
Generalized Uncertainty Principle (GUP) physics, in par-
ticular toward possible extensions of the original paradigm
proposed in [4].

Among these, a formulation that possesses a certain degree
of generality and hence significance is the one proposed in
[10,18]. More recently in [19], it has been argued that this
GUP theory, distinguished for the presence of a square root
in the position-momentum commutator, is a viable extension
of the theory, still preserving the existence of a non-zero min-
imal uncertainty for the coordinate operator. This statement
has been amended in [12], where it has been demonstrated
the necessity to deal with a compact momentum space in
order to recover the emergence of a minimal structure in this
deformed algebra.

The effort to generalize these modified algebra theo-
ries also involved constructing consistent multi-dimensional
extensions. In this context, the key consideration is that, as
previously stated, modified Heisenberg algebras in the n-
dimensional scenario can determine a non-commutativity in
the coordinate operators. While there are studies exploring
n-dimensional commutative GUP theories [20], there is an
evident absence of analysis regarding their non-commutative
counterparts.

It is evident that, in a mini-superspace formulation of the
GUP framework, the possibility for a higher-dimensional
(and, in particular for a two-dimensional) case gains in rele-
vance for the simple fact that the Universe dynamics can be
in general described by three scale factors [21]. Specifically,
referring to the Bianchi models class, these degrees of free-
dom are essentially a volume-like variable and two physical
anisotropy variables [22].

The novelty of the present study is the construction of
a quantum non-commutative GUP theory in the case of a
generic number of space coordinates, able to offer a consis-
tent dynamical scenario in which it is possible to investigate
the dynamics of the Bianchi I Universe in a WKB reduction

[23] of its quantum dynamics à la Vilenkin [24] (see also
[25–28]).

As a first and fundamental step of our analysis, we define
a family of states, within the n-dimensional GUP frame-
work, able to reach the maximal localization with respect
to one generic coordinate, while the remaining one unavoid-
ably exhibits greater uncertainties. The states we construct
from this procedure have a general structure, wherein the
minimal uncertainty can apply to any of the n coordinates.
However, this consistently results in an anisotropic effect,
leaving the other coordinates non-uniformly localized. This
inherent anisotropy is a natural manifestation of the non-
commutativity of our GUP theory. While these derived states
prove useful in determining localization along a single direc-
tion, they fall short in mapping the entire configuration
space. Consequently, to achieve a suitable generalization
of the “quasi-position” representation of the quantum parti-
cle dynamics [4,29,30], we leverage the only isotropic state
allowed within the proposed scenario with respect to the max-
imal localization properties. This state describes a particle
located at the origin of the coordinate system, having simul-
taneously the same (minimal) uncertainty in all the space
directions.

By employing a properly defined translational operator,
we can shift the expectation position value of this isotropic
state to a generic point in the configuration space, finally
obtaining a family of states which can serve as a general-
ization of the quasi-position basis. This way, we are able to
properly describe the localization properties and the evolu-
tion of a wave packet in the quasi-position space. This method
permits us to extract some phenomenological considerations
and insights from our study when applied to the behaviour
of the Bianchi I model.

We describe the Bianchi I cosmology via standard Misner
variables [31], as mentioned above. In order to deal with a
Schrödinger equation for the quantum dynamics - which is, in
principle, fixed by a Wheeler–DeWitt formulation [32,33] -
we adopt a WKB scenario à la Vilenkin, in which the isotropic
coordinate approaches a quasi-classical limit, while the two
anisotropy coordinates explore a small quantum phase-space
(for previous applications of the same type see [34–36]). Our
formulation of the two-dimensional GUP paradigm is then
implemented to describe the two anisotropy degrees of free-
dom as non-commutative coordinates and, since the quan-
tization has to refer to the momentum representation, we
adopt the construction proposed in [37]. The most relevant
characteristic of our cosmological model lies in the tendency
of dynamics to favour the initial configurations as the most
probable states of our Universe, at least for a certain time.
Specifically, the initial states are probabilistically favoured
for longer time intervals compared to what happens in the
ordinary theory. The greater significance of this fact becomes
clear when considering an isotropic state as the initial condi-
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tion. This behaviour is essentially due to the fact that the peak
of our wave packets is moving “slowly” in time, exhibiting
a certain degree of “inertia” in leaving the initial point of the
quasi-anisotropies plane in which we have placed it, i.e. the
quasi-position plane in the case of the anisotropy variables. It
is clear that this signals a departure from ordinary quantum
mechanics, highlighting how non-commutative GUP alge-
bras can introduce novel and relevant effects in the dynamics
of the early Universe and provide insights - perhaps in more
comprehensive models - on some of the open problems in
quantum cosmology.

The paper is organized as follows: in Sect. 2 we introduce
the n-dimensional non-commutative GUP Heisenberg alge-
bra and we outline a functional analysis of the framework.
In Sect. 3 we face and address the problem of the maximally
localized states and their definition in a non-commutative set-
ting. In Sect. 4, exploiting the results of the previous section,
we proceed to define and construct a suitable generalization
of the quasi-position basis and its relation with the momen-
tum representation. In Sect. 5, using Vilenkin’s scheme for
quantum cosmology, we apply the developed GUP quantum
theory to the dynamics of the Bianchi I model and explore
its behaviour, comparing it to what happens in the ordinary
quantum scenario. Finally, in Sect. 6 we give our conclusions,
summarizing our results and their relevant aspects.

Additionally, two appendices, Appendices A and B, con-
taining explicit and detailed calculations concerning relevant
parts of the article are included.

2 Non-commutative GUP framework

The associative modified Heisenberg algebra we are going to
analyze in this section is the n-dimensional generalization of
the Kempf–Mangano–Mann algebra, extensively presented
in [4]. In the one-dimensional scenario, the deformation of
the canonical commutation relation is written as:

[x̂, p̂] = i h̄(1 + βp̂2), (1)

where x̂ and p̂ are conjugate operators and β is a positive
deformation parameter, with proper dimensions.

On momentum space wave functions ψ(p) = 〈p|ψ〉, the
operators can be represented as follows:

p̂|ψ〉 → pψ(p), (2)

x̂|ψ〉 → i h̄(1 + βp2)∂pψ(p). (3)

It is straightforward to verify that this representation satisfies
(1).

As exhaustively discussed in [3,4], we can choose as
domain of definition of these operators the Schwartz spaceS,
which is a dense domain on the Hilbert space of the theory

H = L2(R, dp/(1 + βp2). The modified Lebesgue mea-
sure assures the symmetry of the conjugate operators on the
chosen domain S. Nevertheless, a careful functional analy-
sis shows that, while the p̂ operator is essentially self-adjoint
on S, the x̂ operator is not. Rather, the coordinate opera-
tor admits a one-parameter family of self-adjoint extensions.
This feature is the mathematical sign of a departure from
ordinary quantum mechanics.

On a more physical ground, all of this is translated in the
emergence of an absolute minimal uncertainty in the coordi-
nate operator different from zero.

This, in principle, should be true on the physical domain
of the theory, which can be defined as the intersection of the
domains of some fundamental operators1:

Dphys := Dx̂ ∩ Dx̂2 ∩ Dp̂ ∩ Dp̂2 ∩ D[x̂p̂]. (4)

Nevertheless, this condition can be weakened, impos-
ing that the minimization procedure holds for all the states
belonging to the domain:

Dmin := Dx̂ ∩ Dp̂. (5)

Indeed, it can be shown that this condition is enough to
define the uncertainties relations for a wave function (see
[12,38].

These states cannot be considered physical states in a
strong way, as those which belong to Dphys , but they can
be considered physical states in a more “kinematic” sense.

Throughout the paper, we will make reference to this last
definition.

The presence of this absolute minimum in the physical
quantity Δx̂ is easily interpreted as a limit in the possibility
of arbitrarily localizing objects in the configuration space
of the theory. In light of this, the physical meaning of the
coordinate representation, which is a point-wise concept, is
lost. The eigenstates of the x̂ operator do exist but they have
only a formal value as well as the basis they form.

In this scenario, in order to recover information on local-
ization in the configuration space, those states which realize
the absolute minimal uncertainty in the coordinate operator
can be used as a new basis. These states are called “maximally
localized states” and, in the case in which the x̂ operator is
the position operator, the new representation they give birth
to is known as “quasi-position representation”.

The generalisation of this algebra to the n-dimensional
case can be achieved by assuming the commutation relation
(1) for every couple of conjugate variables:

[x̂i , p̂ j ] = i h̄δi j (1 + β �̂p2
), (6)

1 Here x̂ and x̂2 refer to proper self-adjoint extensions of these opera-
tors.
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where now the momentum on the right-hand side is the total
momentum.

We require that:

[p̂i , p̂ j ] = 0. (7)

In this way, momentum representation is well-defined and we
can generalize the representations (2), (3) of the conjugate
operators:

p̂i |ψ〉 → piψ(p), (8)

x̂i |ψ〉 → i h̄(1 + β �p 2)∂pi ψ(p). (9)

By exploiting these representations it is possible to derive
explicitly the commutation relations between coordinate
operators:

[x̂i , x̂ j ] = 2i h̄β(p̂i x̂ j − p̂ j x̂i ). (10)

From (10) it is clear that in this framework the x̂ operators
do not commute between each other. This relevant feature
of the theory can be interpreted as the emergence of a “non-
commutative geometry” in the configuration space, fixed by
the non-trivial non-commutativity of the coordinate opera-
tors.

By introducing the operator:

L̂i j = 1

1 + β �̂p2 (x̂i p̂ j − x̂ j p̂i ), (11)

we can rewrite (10) as follows:

[x̂i , x̂ j ] = −2i h̄β
(

1 + β �̂p2)
L̂i j . (12)

The operator L̂i j is the generator of n-dimensional rota-
tions in this quantum theory or, in other words, is the gener-
alisation of ordinary orbital angular momentum operator, as
it is clear from its momentum representation.

Given that, it appears evident how the n-dimensional mod-
ified Heisenberg algebra we are dealing with preserves rota-
tional symmetry, while the translation invariance is lost. This
entails that the translation group is not defined in the usual
sense in this quantum framework.

The functional analysis of the operators in the n-
dimensional case, even if more involved, is basically the same
as the one-dimensional case.

The Hilbert space of the theory is the space H =
L2
(
R
n, dp/(1 + β �p 2)

)
. The operators x̂i and p̂i can be

defined on the Schwartz space S, which is dense in H. Here
the p̂i operators result to be symmetric and essentially self-
adjoint. The formal eigenstates of the total momentum oper-
ator are n-dimensional Dirac deltas and for consistency we

define their inner product as follows:

〈p|p′〉 = (1 + β �p 2)δn(p − p′). (13)

On the other hand, the coordinate operators in every direc-
tion are symmetric operators on S but they are not essen-
tially self-adjoint. Once again, each of them admits a one-
parameter family of self-adjoint extensions.
This fact suggests, by analogy with the one-dimensional case,
that a limit in localization in configuration space arises in
every direction. Nevertheless, in order to properly understand
the structure of this quantum theory, it is important to rec-
ognize the relevant role played by the non-commutativity in
the configuration space, which adds another challenge con-
cerning objects localization.

3 Maximally localized states

We can use the squeezed states method [4,11] to identify the
maximally localized states of theory and the corresponding
uncertainty in the configuration variables, for every direc-
tion. In the case of these uncertainties being different from
zero, we can state that there is a limit in localization in the
configuration space, i.e. minimal structures emerge within
this framework.

In this context by “squeezed states” we are referring to
those states which saturate the uncertainty relation between
conjugate operators:

Δx̂iΔp̂ j ≥ h̄

2
|〈[x̂i , p̂ j ]〉| → Δx̂iΔp̂ j = h̄

2
|〈[x̂i , p̂ j ]〉|. (14)

Following [4,11], from (14) it is possible to obtain a first
order differential equation:

[
x̂i − ξi + i h̄δi jΛ(p̂ j − η j )

] |Ψ i
Λ〉 = 0

⇒ [
i h̄(1 + β �p 2)∂pi − ξi + i h̄δi jΛ(p j − η j )

]
Ψ i

Λ(p) = 0,

(15)

where we have set the following identities:

ξi := 〈x̂i 〉, (16)

η j := 〈p̂ j 〉, (17)

Λ := 〈[x̂i , p̂ j ]〉
2(Δp̂ j )2 . (18)

The solutions of (15) are exactly the squeezed states of
the theory if and only if they satisfy some specific conditions
which are necessary to guarantee the connection between the
differential equation (15) and relation (14) and the validity of
the previous identities. An extensive discussion can be found
in [11] and in [12].
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In the n-dimensional case we are analyzing we can write n
differential equations (15), one for every couple of conjugate
variables. Let us call Âi

Λ the operator which annihilates the
state Ψ i

Λ in (15).
The first thing to notice is that:

[Âi
Λ, Â j

Λ] = [x̂i , x̂ j ] 
= 0 if i 
= j. (19)

From this simple commutation relation we can affirm that
in this theory is not possible in general to find states that
are maximally localized in different directions at the same
time. This aspect of the theory is, as expected, the first con-
sequence of the presence of a non-commutativity in config-
uration space: we can maximally localize an object in any
direction, at the expense of de-localize it of a certain amount
in all the other ones.

If we solve (15) for the generic i-th direction we obtain
the following wave function2:

Ψ i
Λ(p) = C g

(
p{ j 
=i}

)
(1 + βpr psδ

rs)
− Λ

2β

× exp

⎧
⎪⎪⎨
⎪⎪⎩

−iξi

tan(−1)

( √
β pi√

1+βpr psδrs |r,s 
=i

)

h̄
√

β
√

1 + βpr psδrs |r,s 
=i

⎫
⎪⎪⎬
⎪⎪⎭

, (20)

where g
(
p{ j 
=i}

)
is a not-specified function of momenta dif-

ferent from pi ,C is the normalization constant and the indices
r, s run over all the momenta, including pi , except when dif-
ferently specified.

From expression (20) it is clear that the final form of the
maximally localized states and the respective uncertainty in
x̂i , will depend not only on the parameter Λ but also on the
function g

(
p{ j 
=i}

)
.

Since we need to deal whit wave functions for which all the
uncertainties relations hold and are well-defined, it is clear
that this g

(
p{ j 
=i}

)
function cannot be completely arbitrary.

In order to fulfill our requests, the state (20) have to be a
normalizable state belonging to the domain of all the p̂k and
x̂k operators (see above). Imposing these conditions entails
some integrability requirements and accordingly some con-
straints over the possible values of Λ. More specifically, the
bounds on Λ are produced by the explicit integration over
the pi variable, that we can perform in any case since the
function g

(
p{ j 
=i}

)
does not depend on pi .

The conditions the state has to meet are the following:

2 Here we solved the equation for ηi = 0 since numerical computations
show that the uncertainty in the coordinate operator is minimized by
this choice. This can be further supported by the analysis of the one-
dimensional case in [4].

– normalizability:

∫

Rn−1
dn−1 p (1 + pl pmδlm)−

1
2 −Λ|g (p{ j}

)|2 < +∞

with Λ > −1

2
(21)

– belonging to the domain of p̂i :

∫

Rn−1
dn−1 p (1 + pl pmδlm)

1
2 −Λ|g (p{ j}

)|2 < +∞

with Λ >
1

2
(22)

– belonging to the domain of p̂ j 
=i :

∫

Rn−1
dn−1 p p2

j (1 + pl pmδlm)−
1
2 −Λ|g (p{ j}

)|2 < +∞

with Λ > −1

2
(23)

– belonging to the domain of x̂i :

∫

Rn−1
dn−1 p (1 + pl pmδlm)−

1
2

[
(1 + pl pmδlm)Λ2

+(2Λ − 1)ξ2
i

]
|g (p{ j}

)|2 < +∞ (24)

with Λ >
1

2
(25)

– belonging to the domain of x̂ j 
=i
3:

∫

Rn
dn p |i h̄(1 + pr psδ

rs∂p j Ψ
i
Λ(p)|2 < +∞

with Λ >
3

2
(26)

As it should be clear, in the previous expressions the
indices j, l,m 
= i and we have recast everything in the “nat-
ural” units of the theory, that is [Λ] = β and [p] = 1/

√
β.

We pause a moment to clarify the choice of domains with
respect to which we determined the previous conditions. For
the operators p̂i and p̂ j 
=i we considered the only extension
of S in which they result to be self-adjoint (see e.g. [12]).
Concerning the position operators - which we remind are not
essentially self-adjoint - we considered the domain of the
adjoint operators. This is indeed a suitable choice since all the
self-adjoint extensions of the starting domainS are contained
in the domain of the x̂† operators. Therefore, even though we
are not particularly concerned with ensuring that the maxi-
mally localized states belong to the domain of adjoint opera-
tors, due to the aforementioned inclusion relation, imposing

3 This condition was verified numerically.
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belonging in these domains establishes a minimal condition
that these states must still satisfy. The specific belonging to
“smaller” self-adjoint domains may at most impose more
stringent conditions.

Now, in order to understand the role played by this func-
tion in determining the minimum of the uncertainty of the x̂i
operator, we can explicitly derive the expression of Δx̂iΛ for
a generic function g

(
p{ j 
=i}

)
, which results to be:

Δx̂iΛ =
⎡
⎣
∫
R
n−1 d

n−1 p |g (p{ j}
)|2(1 + pl pmδlm)

1
2 −Λ∫

R
n−1 dn−1 p |g (p{ j}

)|2(1 + pl pmδlm)− 1
2 −Λ

×
(

Λ2

2Λ − 1

)] 1
2

h̄
√

β (27)

where again the indices j, l,m 
= i and we have carried out
the integration in the pi variable.

From basic properties of the Lebesgue integral, we can
affirm that the ratio of the two integrals in (27) is always
greater than one. Indeed the first integrand is always greater
than the second one on the whole R

n−1 space, except at the
origin, where the two are equals.

On this ground we can write:

Δx̂iΛ >
Λ2

2Λ − 1
h̄
√

β (28)

Since the right-hand side of the previous expression reaches
its minimum for Λ = 1 (in β units), finally we deduce that
Δx̂iΛ > 1 (in h̄

√
β units). We notice that the obtained lower

bound is exactly the minimal uncertainty found in [4] for the
one-dimensional case.

The existence of the bound itself for Δx̂iΛ suggests that, in
principle, it should be possible to model the function g(p{ j})
in order to make the uncertainty arbitrarily close to one.

Thinking of the g-functions as weights for the integral, it is
not hard to understand that this is exactly what happens when
we select functions centered in the origin, with a gradually
narrower profile.

Indeed, by choosing this kind of functions, the main con-
tribution for the two integrals comes from the region around
the origin, where the two integrands are essentially the same.

Therefore, in a similar scenario, while the ratio of the two
integrals tends towards one, accordingly we will have:

Λmin → 1 and Δx̂i → 1. (29)

Nevertheless, all those states which tend to realize this
condition are not acceptable, since it is not possible to con-
sistently define for them the uncertainties in all the other
directions. Indeed, all the states for which Δx̂i → 1, real-
ize this condition for Λmin → 1 and hence they violate the
previous fundamental conditions that we have derived on Λ

in order to deal with a proper wave function. In particular,
it is the condition of belonging to the domain of the x̂ j 
=i

operators which is not fulfilled in the case of Λ → 1.
From a physical point of view, by analogy with ordinary

quantum mechanics, we could say that these states, while
almost maximally localized in one direction, tend to be com-
pletely delocalized in all the other ones, as it could be rea-
sonably expected due to the presence of non-commutativity.

From all these considerations it should be now clear that –
if an absolute minimum in the uncertainty of the i-th coordi-
nate operator exists – the g-function realizing this condition
must be identified without contravening the constraints we
have established.

This could be done by means of a constrained variational
principle (see [11,12]). Nevertheless, we will not carry out
this task further, here. We simply observe, for example, that a
constant g-function, while not guaranteed to be the one lead-
ing to the minimum configuration, satisfies all the require-
ments and, as it will be clearer from what follows, it plays
somehow a special role.

The point is that, through this procedure, we could be able
to obtain states maximally localized only along one direc-
tion, containing only information about that specific direc-
tion. This information is carried by the ξi parameter, which
is the expectation value of the i-th coordinate operator for
the considered wave function.

These states alone cannot help us to map the whole con-
figuration space and hence to recover in a satisfactory way
information on position.

To pursue this task we start from the following consider-
ation: even if it is true that in general the Âi

Λ operators do
not commute each other, there is a particular case that repre-
sents an exception. Indeed, if the ξi parameters are zero the
Âi

Λ operators do commute and this means that they have a
common eigenstates basis.

From the wave function in (20) it appears evident that this
family of states is represented by:

ΦΛ(p) = N (1 + βps prδ
sr )

− Λ
2β . (30)

This object is a rotational invariant state in momentum
space and its expectation value of position in configuration
space is zero.

We can easily compute the normalization constant N
using hyperspheric coordinates:

ΦΛ(p) =

√√√√√
(

β

π

)n/2 Γ
[
1 + Λ

β

]

Γ
[
1 − n

2 + Λ
β

] (1 + βpr psδ
rs)

− Λ
2β .

(31)
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With the same technique, we can also obtain the uncer-
tainties in the coordinate operators, which are the same in
every direction:

(Δx̂i )2
Λ = −h̄2

∫

Rn
dn p Φ∗

Λ(p)∂pi
[(

1 + βpr psδ
rs) ∂pi ΦΛ(p)

]

= h̄2
(

β

π

)n/2 Γ
[
1 + Λ

β

]

Γ
[
1 − n

2 + Λ
β

]
∫

dΩn−1

∫

R+
dr rn−2

×
∫

R

dpi
(
1 + βr2 + p2

i

)− Λ
β

−1

× (1 + βr2 − p2
i (−β + Λ))Λ

= Λ2

(2Λ − n)
h̄2β, Λ >

n

2
, n ∈ N, (32)

where r = ∑
j 
=i p

2
j , Ωn−1 is the (n − 1)-dimensional solid

angle and, in the result, we are using again the natural units
suggested by theory, i.e. [xi ] = h̄

√
β and [Λ] = β.

In order to reach the absolute minimum value of the quan-
tity (Δx̂i )2

Λ for the wave function (31), we need to minimize
(32) with respect to Λ. This operation leads to the following
result:

Λmin = n ⇒ Δx̂min
i = √

n h̄
√

β. (33)

In the end we can write the desired expression for the wave
function (31):

Φml(p) =
√(

β

π

)n/2
Γ [1 + n]

Γ
[
1 + n

2

] (1 + β pr psδ
rs)−

n
2 . (34)

We stress the fact that, even if the second line integral
in (32) is defined only for n > 1, the final result is valid
∀n ∈ N. This is confirmed by expressions (33) and (34),
which, for n = 1, are exactly the maximally localized state
(with ξ = 0) and the relative uncertainty found in [4] for the
one-dimensional case.

The state (34) appears then to be a special state for the
theory, since it is the only state - at least according to the
squeezed state method - which can be maximally localized
by the same amount, simultaneously in every direction.

4 Quasi-position basis

As stated in the previous section, maximally localized states
along one direction are not enough to recover information
on position in configuration space. This holds also for the
special state (34), which cannot be used as a basis to con-
struct a new representation, since there is no parameter that
can promoted to a variable. Nevertheless, the obtained wave
function preserves its privileged role as a function able to

minimize by the same amount at the same time the uncer-
tainties in the coordinate operators. Hence, to reintroduce
the parameter ξi and construct a new basis to map the con-
figuration space, following the path suggested in [4] for the
quasi-position representation (for a discussion of this rep-
resentation see [29,30]), we propose to “translate” in every
direction the state (34), so that we can obtain a new state for
which holds the following:

〈Φml
T |x̂k |Φml

T 〉
〈Φml

T |Φml
T 〉 = ξk, ∀k. (35)

The latter expression has to be taken as a definition for
what we mean in this scenario for a translation, since, strictly
speaking, the translation group in the usual sense is not
defined in this kind of theories.

The new wave function which allows us to achieve the
validity of the expression (35) is suggested from the form of
the state (20):

Φml
T (p) =

√(
β

π

)n/2
Γ [1 + n]

Γ
[
1 + n

2

] (1 + β pr psδ
rs)−

n
2

×
n∏

k=1

exp

⎧⎪⎪⎨
⎪⎪⎩

−iξk

arctan

( √
β pk√

1+βpr psδrs|r,s 
=k

)

h̄
√

β
√

1 + βpr psδrs |r,s 
=k

⎫⎪⎪⎬
⎪⎪⎭

.

(36)

The normalization constant is unchanged since we have only
added complex exponential factors to the state (34) and it
is not difficult to show that the conditions (35) are satisfied.
The uncertainties in the coordinate operators can be found
after performing several n-dimensional integrals by means
of hyperspheric coordinates and the obtained expression is
the same for any direction. The details of this calculation can
be found in the appendix A. In the end we can write:

(Δx̂i )2 = 1

2

⎧⎨
⎩2n + 2 + 4n

(n − 1)(4n2 − 1)

∑
k 
=i

ξ2
k

+ n!
Γ [3/2 + n]

√
π

(
α(n)+θ(n)π2

)∑
k 
=i

ξ2
k

⎫
⎬
⎭ h̄2β,

(37)

where α(n) and θ(n) are respectively a real negative function
and a real positive function depending on the dimension n,
for which there is no closed form. A table of their values can
be found in the appendix A.

The most relevant fact to notice is that the uncertainties in
the coordinate operators are now dependent on the ξi parame-
ters, i.e. the expectation values on the configuration variables
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xi . Therefore, by using states (36) as a basis, the possibility
of localizing an object in the configuration space and the
limit to this procedure will depend on where we want to
localize. This means that with respect to the localizing prop-
erties, the configuration space of the theory appears to be
somehow “inhomogeneous”. In particular, from (37), it is
clear that, once we have fixed an origin in our configuration
space, away from this point the localization process becomes
increasingly worse. Accordingly, we can strictly talk about
localized objects only around the fixed origin.

Now that we have constructed our basis we can define a
map from momentum space to quasi-position space:

ψ̃(ξ) :=
∫

Rn

dn p

(1 + βpr psδrs)
〈Φml

T |p〉〈p|ψ〉

= intRn
dn p

(1 + βpr psδrs)
Φml

T (p)ψ(p). (38)

This map can be properly inverted, obtaining a transforma-
tion from quasi-position space to momentum space:

ψ(p) := (1 + βpr psδrs)
n
2 +1

√
2π

n |Jn [V (p)]|
∫

Rn
dnξ ψ(ξ)

(39)

×
n∏

k=1

exp −iξk

arctan

( √
β pk√

1+βpr psδrs |r,s 
=k

)

h̄
√

β
√

1 + βpr psδrs |r,s 
=k
, (40)

where V (p) is a vector field properly defined and J is the
associated Jacobian matrix.

How we have constructed the inverse transform guarantees
the unitarity of the transform itself.

The details of the derivation of the inverse transform and
all the necessary definitions can be found in the appendix B.

5 Non-commutative GUP quantization of Bianchi I
model

In this section, we are going to discuss the quantization
procedure of a cosmological model, namely the Bianchi I
model, within the framework we have developed so far. As
it is widely known, one-particle quantization schemes are
well-suited for the cosmological context. This is true since
space-times considered in cosmology are usually homoge-
neous space-times, therefore the gravitational field we are
dealing with has a finite number of degrees of freedom. In this
scenario, a GUP quantization procedure is potentially able to
provide the theory with some new relevant features, such as
the emergence of minimal structures and different localiza-
tion properties due to the presence of non-commutativity in

configuration space, which can modify in a meaningful way
the dynamics of the Universe and its behavior.

In order to apply rigorously the machinery we have devel-
oped to our cosmological model, we need to work in a quan-
tum formulation where the probabilistic interpretation of the
wave function of the system is well-posed and meaningful
and where the dynamics is dictated by a true Schrödinger
equation.

This is a delicate issue in quantum cosmology, which can
be addressed in different ways. In this paper we will adopt the
Vilenkin approach [24]. In Vilenkin’s idea, in order to achieve
the above configuration, we need to separate the system, by
means of its degrees of freedom, in a semi-classical part and
a full quantum part. As we will see, it is the presence of a
part of the system treated semi-classically that allows us to
obtain the desired dynamics for the quantum part.

The conditions that must be satisfied in order to have a con-
sistent and well-defined procedure are extensively discussed
in [24].

Here we stress the fact that we need to assume that the
quantum subsystem has a negligible effect on the semi-
classical part. In this sense we can talk about a “small” quan-
tum part of the system.

Now, we are going to re-derive explicitly every step for
the particular chosen case, working in momentum represen-
tation. As it should be clear from the previous sections, this
is the natural choice within a GUP theory.

The configurational variables and the respective conju-
gate momenta we are adopting are the so-called Misner vari-
ables (α, γ+, γ−) and (pα, p+, p−) [31]. These variables are
able to diagonalize the kinetic part of the Hamiltonian of our
system - and this is true for several Bianchi models - and
it can be shown that they have a clear physical meaning.
Indeed, the variable α is related to the isotropic volume of
the Universe, while the variables γ+ and γ− are known as
anisotropies, since they “measure” the deviation from the
completely isotropic Universe.

The Hamiltonian constraint describing a Bianchi I uni-
verse is the following:

H = N (t)e−3α
(
−p2

α + p2+ + p2−
)

≈ 0, (41)

where N (t) is the lapse function, coming out from the 3 + 1
reduction procedure of the metric [39], where we have set
the speed of light in vacuum c and the Einstein constant k
equal to one.

For a consistency matter, as it will be clear later, we need to
consider additionally a positive cosmological constant term
in our Universe, hence rewriting the Hamiltonian constraint
as:

H = N (t)e−3α
(
−p2

α + p2+ + p2− + Λe6α
)

≈ 0. (42)
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By inspecting (42) it is evident how the cosmological con-
stant part acts as a potential for the system.

The constraint (42) has to be promoted to be a quantum
operator:

Ĥ =
(
−p̂2

α + Λe6α̂ + p̂2+ + p̂2−
)

|Ψ 〉 = 0, (43)

where we can identify two parts:

– the semi-classical part Ĥ0 = −p̂2
α + Λe6α̂ , which con-

cerns essentially the volume of the Universe;
– the full quantum part Ĥq = p̂2++p̂2−, which is completely

described by the anisotropies.

By considering a parameter λ ∝ h̄, we can express the
“smallness condition” of the quantum subsystem with respect
to the semi-classic part in a more precise way:

Ĥq/Ĥ0 = o(λ). (44)

By following the reasoning line of [24], we can write the
ansatz for the solution of (43) in momentum space:

Ψ (pα, p±) = A(pα)ei S(pα)/h̄χ(pα, p±)

:= Ψ0(pα)χ(pα, p±). (45)

We can distinguish the Ψ0 term, which is a WKB expansion
of the semi-classical part with respect to the h̄ parameter
and the χ term containing information about the quantum
behavior of the system.

We will now set two different equations for the two differ-
ent terms of the wave function of the Universe and we will
solve them in order to obtain a complete description of the
system, according to the method we are using.

The wave function Ψ0 will satisfy the equation:

〈p|Ĥ0|Ψ0〉 =
(
−p2

α + Λei6h̄∂pα

)
A(pα)ei S(pα)/h̄ = 0.

(46)

In the spirit of the WKB expansion, being h̄ the expansion
parameter, we can solve (46) at different orders [23]. Specif-
ically, we will solve (46) at the zeroth and first order in h̄,
obtaining in this way respectively a Hamilton-Jacobi equa-
tion, which will allow us to determine S(pα) and a continuity
equation from which will be possible to derive A(pα).

We will refer to the formal series expansion of the pseudo-
differential operator in (46) to identify the different orders in
h̄:

ei6h̄∂pα =
∞∑
n=0

(
i6h̄∂pα

)n
n! . (47)

By letting (47) acting on Ψ0, at the zeroth order in h̄, the
equation (46) will read as:

(
−p2

α + Λ

∞∑
n

1

n! (6 ∂pα S(pα))n

)
A(pα)ei S(pα)/h̄ = 0

− p2
α + Λe6∂pα S(pα) = 0, (48)

from which it is straightforward to obtain:

S(pα) = 1

6
pα

(
ln(

p2
α

Λ
) − 2

)
+ c1. (49)

The function that we have just determined, by working at
the zeroth order in h̄, is the classical action of the system only
concerning the variables (α, pα).

On the other hand, at the first order in h̄, considering the
validity of (48), we can write the following differential equa-
tion for A(pα):

(6S′)2A′e6S′ + 6AS′′(e6S′ − 6S′ − 1) = 0, (50)

where the prime symbol refers to the differentiation with
respect to pα . The solution of (50) is:

A(pα) = c2 e

− Λ−p2
α

p2
α ln

(
p2
α

Λ

)

. (51)

Now that we have completely described the semi-classical
part of the wave function of the Universe, we can turn our
attention to the quantum part. The quantum piece of the wave
function χ depends not only on the quantum variables p± but
also on the semi-classical one pα . This means that, in order
to obtain a correct description of the dynamics, we need to
consider both the action of Ĥq and Ĥ0 on χ . Working at the
first order in h̄ – which is the first order containing quantum
information – and keeping in mind the validity of the Eqs.
(48) and (50) for the semi-classical part, we arrive at the
following equation for the quantum subsystem:

6i h̄Λe6S′(pα) ∂χ(pα, p±)

∂pα

= −Hqχ(pα, p±).0 (52)

To obtain, in the end, a real Schrödinger equation from
(52), we need to exploit a series of relations which holds
for the classical action S(pα) and the classical quantities
related to this object. First of all, from the Hamilton–Jacobi
construction, we know that ∂pα S = α and we can rewrite
(52) as:

6i h̄Λe6α ∂χ(pα, p±)

∂pα

= −Hqχ(pα, p±). (53)
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Secondly, we need to consider the classical Hamiltonian
described by the variables (α, pα):

Hcl = N (t)e−3α
(
p2
α + Λe6α

)
≈ 0. (54)

By taking into account the respective Hamilton equations we
can arrive at the following expression:

6Λe6α = − ṗα

N (t)
e3α (55)

where the dot refers to the differentiation with respect to the
coordinate time.

Finally, putting together (53)–(55), we are able to write
(52) as:

i h̄ ṗα

∂χ(pα, p±)

∂pα

= N (t)e−3αHqχ(pα, p±) ⇒

i h̄
∂χ(pα, p±)

∂t
= N (t)e−3αHqχ(pα, p±), (56)

which is the Schrödinger equation for the quantum dynamics
we were looking for.

We notice that in (56) the lapse function N (t) is present:
this is a reflection of the fact that our theory is invariant
under time-diffeomorphism, as it should be. Indeed, we can
choose different times to follow the evolution of the system
and consequently we will deal with different Hamiltonians.

In our case, we want the Hamiltonian of the quantum sub-
system of the Universe to be the one of a free particle. This
implies to set N (t) to a precise form, specifically:

N (t) = e3α(t). (57)

Consequently, we are able to define our physical time τ ,
which is essentially a WKB time, from the relation:

dτ = e3α(t)dt. (58)

In the end:

i h̄
∂χ(pα, p±)

∂τ
=
(
p2+ + p2−

)
χ(pα, p±) (59)

The general solution of (59) is given by a superposition
of free particle time-dependent wave functions. In the non-
commutative GUP quantization scheme – which is the one
we are adopting for the description of the quantum degrees
of freedom of our Bianchi I Universe – these wave functions
can be obtained by the map (38), transforming into quasi-
position representation – or in this case, quasi-anisotropies –
two dimensional Dirac deltas, defined as in (13). This allows

us to write the general solution of (59) as:

χ̃(γ̃+, γ̃−) =
∫

R2

dp+dp−(
1 + β (p2+ + p2−)

)2

× exp

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
i γ̃+

arctan

( √
β p+√

1+βp2−

)

h̄
√

β

√
1 + βp2−

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

× exp

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
i γ̃−

arctan

( √
β p−√

1+βp2+

)

h̄
√

β

√
1 + βp2+

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

× exp

{
−i(p2+ + p2−)

(τ − τ0)

h̄

}
φ0(p+, p−). (60)

To explore explicitly the behavior of the system we need
to choose a precise profile φ0(p+, p−), which represents also
the wave function of the system in momentum space at some
initial time τ0.

As a first thing, we choose a Gaussian profile with a zero
position expectation value in the non-commutative variables
(γ+, γ−), at the initial time τ0 = 0:

φ0(p+, p−) = exp −
[

(p+ − ν+)2

2σ 2+
+ (p− − ν−)2

2σ 2−

]
, (61)

where ν±, σ± are real parameters related respectively to the
momentum expectation value and uncertainty of the state
itself.

It is important to keep in mind that, in a non-commutative
space, we cannot really talk about points, therefore when we
refer to a point in the (γ̃+, γ̃−)-space we are actually talking
about a region around that point in the not-accessible space
(γ+, γ−), in the spirit of the quasi-position representation we
have constructed. In particular, from our results in Sect. 4, in
this theory the origin is the point in which the localization
properties are maximized, hence the extension of this region
of uncertainty is the minimal one we can reach. From a phys-
ical point of view, this means that the origin in the config-
uration space (γ̃+, γ̃−) represents the best realization of an
isotropic Universe.

Once these parameters are properly fixed, numerical inte-
gration of (60) with the profile (61) allows us to follow the
evolution of the quantum Universe at different times τ . Two
different choices for the set of the involved parameters has
been done, in order to distinguish between two general cases,
as shown in Figs. 1 and 3. In the first scenario, in the profile
(61), we have fixed ν± > σ±, while in the second we have
set ν± < σ±.
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Fig. 1 Non-commutative case I: dynamics evolution in the time τ (h̄β

units, whit [c] = [κ] = 1) of the Bianchi I wave packet probability density.
The values set for the parameters of the Gaussian profile are ν± = 3.5,
σ± = 3, in units of 1/

√
β. It is possible to appreciate the flow of proba-

bility mostly along the direction identified by the classical vector of the
initial expectation values of momenta and the consequent trajectory of
the peak

Fig. 2 Ordinary case I: dynamics evolution in the time τ (h̄β units,
whit [c] = [κ] = 1) of the Bianchi I wave packet probability density.
The values of the parameters of the Gaussian profile are fixed in order
to match the initial conditions of the corresponding non-commutative
wave packet. By comparison with the non-commutative scenario it is

possible to observe the different dynamical behavior of the wave pack-
ets, concerning both the spreading geometry and the motion’s velocity
of the peaks. Be aware of the different range of the quasi-anisotropy
variables represented in this figure and in Fig. 1

Fig. 3 Non-commutative case II: dynamics evolution in the time τ

(h̄β units, whit [c] = [κ] = 1) of the Bianchi I wave packet probability
density. The values set for the parameters of the Gaussian profile are
ν+ = 3.5, ν− = 2.5, σ+ = 5.5, σ− = 4.5, in units of 1/

√
β. It is

possible to appreciate the almost symmetric spread of the wave packet
with respect to the origin, in the direction identified by the diagonals of
the plane, while it is harder to observe a trajectory of the peak

Fig. 4 Ordinary case II: dynamics evolution in the time τ (h̄β units,
whit [c] = [κ] = 1), of the Bianchi I wave packet probability density.
The values of the parameters of the Gaussian profile are fixed in order
to match the initial conditions of the corresponding non-commutative
wave packet. By comparison with the non-commutative case it is pos-

sible to notice the different dynamical behavior of the wave packets,
regarding both the spreading geometry and the motion’s velocity of the
peaks. Be aware of the different range of the quasi-anisotropy variables
represented in this figure and in Fig. 3
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By visual inspection, we can infer features of our non-
commutative quantum model and appreciate the difference
between the two general cases. In both scenarios, while time
elapses, the system is spreading, signaling that the probabil-
ity of finding the particle Universe in another region of the
configuration space (γ̃+, γ̃−) away from the origin increases
in time. Nevertheless, the geometry of the two spreading pro-
cesses is quite different. While in the first case the probability
density of the wave packet is flowing mostly along a precise
direction, which is the one roughly identified by the classical
vector of the initial expectation values of momenta, in the
second case the wave packet is spreading almost symmetri-
cally with respect to the origin, in the direction identified by
the diagonals of the plane.

The peak of the wave packets will move somehow accord-
ingly: in the scenario depicted in Fig. 1, it follows the flow of
probability density and it is possible to appreciate its trajec-
tory; in the scenario presented in Fig. 3, due to the different
spreading progress, the peak’s movement is much slower and,
consequently, it is harder to observe a trajectory.

Finally we note the different initial localization proper-
ties of the two wave packets in the quasi-anisotropies space,
namely in the second example the wave packet appears to be
more localized with respect to the first one.

This behavior of the Universe wave packet in this non-
commutative setting is remarkably different with respect to
the behavior of a properly defined wave packet describing the
same Universe, namely Bianchi I, in the ordinary quantum
theory.

As it is clear from Figs. 2 and 4 and the visual comparison
with the respective non-commutative counterparts, the ordi-
nary Bianchi I wave packet does not display any different
spreading geometries in the two illustrations and it moves
from the initial point towards regions with higher absolute
values of the anisotropies, with a greater velocity with respect
to the non-commutative cases.

Due to this tendency, the initial configuration loses
“rapidly” and in a definitive way the status of favored one, dif-
ferently from what happens in the non-commutative frame-
work, where this point remains the one in which we can find
the particle Universe with a higher probability for a longer
time if compared to the ordinary quantum dynamics.
To make sense of this qualitative statement, considering as
initial configuration the isotropic one, we can compare how
the relative probability density at the origin of the wave pack-
ets in Figs. 1 and 2 changes over time.
The situation for the wave packets of the second scenario is
identical.

In Fig. 5, it can be appreciated how the point (0, 0), denot-
ing the isotropic state in both theories, experiences a faster
relative decline in probability within the ordinary theory
compared to the non-commutative one. This suggests that
in the non-commutative theory, the isotropic configuration

Fig. 5 Plot of the relative probability density p(τ ) =
|Ψ (0, 0, τ )|2/|Ψ (0, 0, 0)|2 at the origin concerning the non-
commutative wave packet of Fig. 1 and the ordinary wave packet
of Fig. 2, where Ψ stands for the generic wave function. It can be
noticed how the relative probability in the non-commutative case
prevails over the relative probability of the ordinary theory at any
displayed time τ

maintains a greater probabilistic advantage with respect to
the ordinary theory.

The same scenario is verified also if we initially peak our
wave packet in an anisotropic configuration: the particular
point chosen for the initial condition will be the favored one
for a relatively long time, again if compared to what happens
to the ordinary wave packet.

Here it is important to stress that in our theory it only
makes sense to explore “small” regions around the origin.
This is true for two orders of reasons:

– the Vilenkin approximation we have used constrains us
to remain in a “small” quantum phase space (see above);

– in our non-commutative theory we can talk about local-
ization only in proximity of the origin.

These insights emphasize how the non-commutative GUP
quantum theory modifies some aspects of the dynamics of the
Bianchi I Universe, establishing new different relationships
between the initial probability densities and their evolution,
concerning both isotropic and anisotropic configurations of
the Universe.

6 Conclusions

In our analysis, we faced a subtle and challenging prob-
lem, concerning the construction of a consistent quantum
theory for a n-dimensional non-commutative GUP formula-
tion of the Heisenberg algebra. Our main concern specifically
regarded the possibility of recovering a way to describe the
localization properties of the theory. After a brief extension
of the necessary functional analysis of the fundamental oper-
ators, as a first result, we were able to identify those states that
minimize the uncertainty in the coordinate operator along a
specific direction. The price to pay in order to achieve this
maximal localization in one of the space coordinates is to
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delocalize the state itself of a certain amount in all other
directions. This means that, in general, it is not possible to
achieve at the same time a maximal localization with respect
to all the n variables. This fact is a natural manifestation of the
non-commutative nature of the algebra we are considering.

Since these states alone cannot be used to describe the
position on the whole configuration space, we defined a pro-
cedure to construct a consistent generalization of the quasi-
position representation introduced in [4]. We successfully
identified the only state of the theory that exhibits isotropic
properties of localization, that is that state which admits
simultaneously the same maximal localization in all the n
variables. This state is centered around the origin of the sys-
tem of coordinates and it is a spherically symmetric state in
momentum space. The translation – properly defined with
respect to the expectation position value – of this state in all
directions of a certain arbitrary amount, allowed us to gener-
ate a family of states suitable to be used as a quasi-position
basis.

Once reached the task of setting up a consistent quan-
tum theory for the non-commutative n-dimensional GUP, we
provided a two-dimensional implementation of our quantum
scenario to the evolution of the Bianchi I cosmological model
in the WKB approximation of a quasi-classical volume, while
dealing with pure quantum anisotropy degrees of freedom.

More precisely, by adopting the standard Misner vari-
ables, we identified the so-called isotropic variable α as the
one approaching a quasi-classical limit and the two vari-
ables γ± with the ones belonging to a small quantum subsys-
tem. In cosmology, the two anisotropy degrees of freedom
play the role of the two physical degrees of the gravitational
field, while α is often called an “embedding” variable and,
here, it restores, via its classical limit, the dependence of
the anisotropy variables on the label time t . Accordingly,
in a scenario à la Vilenkin, we were able to arrive at a real
two-dimensional Schrödinger equation in momentum space
for the description of the dynamics of the quantum part of
the Universe, now dictated by our GUP-modified Heisenberg
algebra.

By analyzing wave packets describing our Bianchi I Uni-
verse, we were able to show how differently these wave func-
tions behave with respect to the ordinary quantum case.

We showed how these wave packets exhibit more com-
plex spreading properties, with a “geometry” depending on
their initialization in momentum space, and we observed how
their overall motion in the quasi-anisotropies plane – iden-
tified with the motion of the peak – is slower in time when
compared to the ordinary quantum theory.

This particular tendency makes the initial configurations
more “stable”, in the sense that, from a probabilistic point of

view, they are the favored ones for a time which is longer if
compared with the same situation in the ordinary theory.

This holds for any initial configuration in the permitted
region restricted by the Vilenkin approximation (see [40])
and the localization properties of the GUP framework and
clearly also for an isotropic one, that is a configuration in
which the wave packet describing our Universe is peaked and
sufficiently localized around the origin of the plane (γ̃+, γ̃−).
The observed behavior suggests the idea that non-trivial
Heisenberg algebras, thought in the Mini-superspace as the
way for accounting of cut-off physics, can potentially provide
new physical insights on some open questions of quantum
cosmology, such as the classicalization of the Universe [41],
the emergence of an isotropic Universe from more general
configuration, which appear to be very natural in the proxim-
ity of the initial singularity [42,43] or the possibility to gener-
ate Big Bounce scenarios, as in the case of Polymer Quantum
Mechanics [9] and Loop Quantum Cosmology [44–46].

More complex Bianchi models with richer structures will
be for sure the best candidates to test the validity of these
ideas and hence the effectiveness of this non-commutative
GUP quantization framework.
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Appendix A: Computation of the coordinate operator
uncertainty in the i-th direction

The computation of the uncertainty in the i-th coordinate
for the state (36) essentially relies on the computation of the
integral quantity:
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〈Φml
T |x̂2

i |Φml
T 〉

= −
∫

Rn
dn p

(
Φml

T (p)
)∗ [

2pi∂ piΦ
ml
T (p)

+(1 + pr psδ
rs)∂2

pi Φ
ml
T (p)

] h̄2β

βn/2 , (62)

where i, j run over all the n indices. Notice that we have fac-
tored out the dimensional quantities in order to work, inside
the integral, with adimensional objects.

Every resulting integrals can be solved by using hyper-
spherical coordinates.

The first integral, i.e. the one involving the first partial
derivative, once made explicit, has only one contributing
term:
∫

Rn−1
dn−1 p

∫

R

dpi 2pi (1 + pr psδ
rs)−n

( −npi + iξi
1 + pr psδrs

)

=
∫

dΩn−1

∫

R+
dr rn−2(1 + r2)1/2−n√π

Γ
[
n − 1

2

]

Γ [n]

= 21−nπ
n+1

2

Γ
[ n+1

2

] , (63)

where r := ∑
l 
=i p

2
l and Ωn−1 is the solid angle in (n − 1)

dimensions.
The second integral, i.e. the one involving the second par-

tial derivative, can be decomposed in different contributing
terms.

The first term is given by:

∫

Rn
dn p

[−n(2 + n)p2
i (1 + pr psδ

rs)−1−n]

=
∫

Rn−1
dn−1 p

∫

R

dpi
[−n(2 + n)p2

i (1 + pr psδ
rs)−1−n]

=
∫

dΩn−1

∫

R+
dr rn−2

×
(

−n(2 + n)
√

π(1 + r2)
1
2 −nΓ

[
n − 1

2

]

2Γ [n + 1]

)

= −2−n(2 + n)π
1+n

2

Γ
[ n+1

2

] , with r :=
∑
l 
=i

p2
l (64)

The second term is:

∫

Rn
dn p(1 + pr psδ

rs)−n

=
∫

dΩn

∫

R+
dr rn−1n(1 + r2)−n

= 21−nnπ 1+n
2

Γ
[ n+1

2

] , with r :=
∑
l 
=i

p2
l (65)

Finally, the third and last term, which is the most complex
one, is the following:

∫

Rn
dn p(1 + pr psδ

rs)1−n

⎧
⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

n∑
k=1
k 
=i

(
pi pkξk(

1 + pr psδrs |r,s 
=k
)
)

− ξi

⎤
⎥⎥⎦

× 1

(1 + pr psδrs)
+ pi

⎡
⎢⎢⎣

n∑
k=1
k 
=i

ξk tan(−1)

(
pk√

1+pr psδrs |r,s 
=k

)

(1 + pr psδrs |r,s 
=k)3/2

⎤
⎥⎥⎦

⎫
⎪⎪⎬
⎪⎪⎭

2

.

(66)

We can further identify three pieces in this last integral, one
for every term of the square.

The sum of the first two integrals, that is the square of the
first term and the mixed term, gives the following results:

n∑
k=1
k 
=i

[
− πn/2ξ2

k Γ
[
1 + n

2

]

nΓ [n] − 4n3Γ [n] + nπn/2ξ2
k Γ [ n2 ]

(4n3 − 4n2 − n + 1)Γ [n]

]

× 2−nπ
n+1

2 ξ2
i

Γ [ n+1
2 ] . (67)

The technique to solve these integrals is once again the
same as the previous used above: first we integrate in those
p-variables which do not enter the integral in a rotational
invariant way, then, once the integral is reduced to only a
n-dimensional spherical symmetric term we employ hyper-
spherical coordinates to compute it.

The resolution of the last integral, that is the one containing
the square of the arctangent term, is more involved.

The integral we need to solve is:

n∑
k=1
k 
=i

∫

Rn
dn p(1 + p2

k + pl pmδlm)(−n+1) p2
i ξ

2
k

×
[

tan(−1)

(
pk√

1 + pl pmδlm

)]2
1(

1 + p2
k + pl pmδlm

)3 ,

(68)

where we remember that l,m 
= k.
Considering just a generic term of the sum, we make a

change of variable, namely q := arctan[ pk√
1+p2

i +r2
], where

we have set r := pl pmδlm |l,m 
=k,i . The integral (68) then
become:

ξ2
s

∫

Rn−2
dn−2 p

∫

R

dpi p
2
i (1 + p2

i + r2)−
3
2 −n

×
∫ π/2

−π/2
dq

q2

cos4−2n(q)
(69)

The q-integral can be solved for every n > 1 but it does not
admit a closed form.
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Table 1 Table with the values of the real functions α(n) and θ(n) for
some n, where n ∈ N is the number of dimensions in which we are
working

n α(n) θ(n)

2 0 1
12

3 − 1
4

1
24

4 − 15
64

1
32

5 − 245
1152

5
192

By induction we can show that the general result can be
written as:

∫ π/2

−π/2
dq

q2

cos[4 − 2n](q)
= α(n)π + θ(n)π3, (70)

where α(n) is a real negative function and θ(n) is a real
positive function, both defined for n > 1. A table with the
value of the integral for some values of n > 1 can be find
above (Table 1).

Considering this, by performing the integration in pk and
then using again hyperspherical coordinates for the last inte-
gration, in the end we obtain:

(
α(n)π + θ(n)π3

)
π

n−1
2

Γ
[
1 + n

2

]

2Γ
[ 3

2 + n
]
∑
s 
=k

ξ2
s (71)

where we have re-introduced the initial sum over all s 
= k.
Finally – summing all the contributes properly re-scaled

with the norm of the state shown in (36) and considering the
dimensional quantities factored out at the beginning - after
some algebra involving properties of the Euler Gamma func-
tion, we are able to obtain the expression (37), concerning the
uncertainty of the coordinate operator in a generic direction
k, for the state (36):

(Δx̂i )2 = 1

2

⎧⎨
⎩2n + 2 + 4n

(n − 1)(4n2 − 1)

∑
k 
=i

ξ2
k

+ n!
Γ [3/2 + n]

√
π

(
α(n) + θ(n)π2

)∑
k 
=i

ξ2
k

⎫⎬
⎭ h̄2β. (72)

Appendix B: Inverse transform

In Sect. 4 we have defined the integral transform (38),
which maps wave functions from momentum space to quasi-
position space:

ψ(ξ) :=
∫

Rn

dn p

(1 + βpr psδrs)

n∏
k=1

eiξk g(pk ,p{l 
=k})

× (1 + βpr psδ
i j )−n/2ψ(p), (73)

where we have defined:

g
(
pk, p{l 
=k}

) :=
tan(−1)

( √
β pk

1+β
∑

l p
2
l

)

√
1 + β

∑
l p

2
l

, ∀k (74)

and i, j run over all the n indices.
To construct the inverse of this transform we can rewrite

the previous relation as:

∫

Rn
dnξ

n∏
k=1

e
−iξk g

(
p′
k ,p

′{l 
=k}
)
ψ(ξ)

=
∫

Rn

n∏
k=1

e
−iξk g

(
p′
k ,p

′{l 
=k}
) (∫

Rn

dn p

(1 + βpr psδrs)

×
n∏

k=1

eiξk g(pk ,p{l 
=k})(1 + βpi p jδ
i j )−n/2ψ(p)

)
dnξ.

(75)

By exchanging the order of integration and performing the
ξ -integral, we can write for the right-hand side of (75):

(
√

2π)n
∫

Rn
dn p (1 + βpr psδ

rs)−
n
2 −1ψ(p) (76)

×
n∏

k=1

δ
(
g
(
pk, p{l 
=k}

)− g
(
p′
k, p

′{l 
=k}
))

. (77)

The presence of the deltas inside the integral define a spe-
cific region of Rn on which the integral itself has to be eval-
uated. This region is given by the intersection of n (n − 1)-
dimensional hypersurfaces in a n-dimensional space, hence
corresponds to a point or a set of points.

To explicitly perform the integration we need to use the
so-called coarea formula [47].

Let us consider the integral over an open set A of Rn of
an integrable function f (x).

Introducing the vector function u(x):

u : A ⊆ R
n → R

k, k ≤ n, (78)

the coarea formula states that:

∫

A
f (x)dnx :=

∫

Rk

(∫

u−1(t)

f (x)

|Jk[u(x)]|dHn−k(x)

)
dkt

(79)

where |Jk[u(x)]| is the determinant of the Jacobin matrix of
u(x), which can be defined also in the rectangular case, and
the measure in the second integral is the Hausdorff measure
in (n − k) dimensions.
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We want to apply this formula to our integral (76).
Rigorously speaking, due to the Dirac deltas, our function

is not an integrable one over Rn . Nevertheless we can define
the delta as the limit of a suitable integrable function in order
to deal with a proper overall integrable function in every steps
and, in the end, consider the limit itself to reintroduce the
deltas. In this way we consider our integral containing delta
distributions well-defined with respect to the possibility of
applying the theorem.

In order to proceed, first, we define two vector fields,
namely:

G : Rn → R
n G(p) := (

g
(
p1, p{l 
=1}

)
, . . . , g

(
pn, p{l 
=n}

))
(80)

and

V : Rn → R
n V (p) :=

(
g
(
p1, p{l 
=1}

)− g
(
p′

1, p
′{l 
=1}

)
, . . . ,

× g
(
pn, p{l 
=n}

)− g
(
p′
n, p

′{l 
=n}
))

,

(81)

where we can consider the prime quantities as fixed.
Therefore, we can rewrite the integral (76) as:

(
√

2π)n
∫

Rn
dn p(1 + βpr psδ

rs)−
n
2 −1ψ(p)

n∏
k=1

δ (Vk(p)) .

(82)

where Vk(p) are the components of the vector field V (p).
By applying the coarea formula (79), the previous integral

becomes:

∫

Rn

(∫

V (p)=t
dH0(p)

(1+βpr psδrs)−
n
2 −1ψ(p)

|Jn [V (p)]| ×
n∏

k=1

δ (Vk(p))

)
dnt

=
∫

Rn

n∏
k=1

δ(tk)

(∫

V (p)=t
dH0(p)

(1 + βpi p j δ
i j )− n

2 −1ψ(p)

|Jn [V (p)]|

)
dnt.

(83)

We notice that the Jacobian is well-defined and it does not
have any singular points in any dimension, as can be verified
by a direct calculation.

The integral inside the parenthesis can be considered as a
function F(t) to be evaluated in t = 0 because of the presence
of the deltas:

∫

V (p)=0
dH0(p)

(1 + βpr psδrs)−
n
2 −1ψ(p)

|Jn [V (p)]|

=
∫

G(p)=G(p′)
dH0(p)

(1 + βpr psδrs)−
n
2 −1ψ(p)

|Jn [V (p)]| (84)

The zero-dimensional Hausdorff measure is a discrete
measure which prescribes the evaluation of the integral on

the points of the domain. Since G(p) = G(p′) if and only
if p = p′, the integral (84) in the end is just the value of the
integrand in p = p′.

Therefore, coming back to the relation (75), we can write:

∫

Rn
dnξ

n∏
k=1

e
−iξk g

(
p′
k ,p

′{l 
=k}
)
ψ(ξ)

= (1 + βp′
r p

′
sδ

rs)− n
2 −1ψ(p′)

|Jn [V (p)]||p=p′
(85)

and from this we can obtain the final expression of the inverse
transform, which maps wave function from quasi-position
space to momentum space:

ψ(p) = (1 + βpr psδ
rs)

n
2 +1|Jn [V (p)]|

×
∫

Rn
dnξ

n∏
k=1

e−iξk g(pk ,p{l 
=k})ψ(ξ) (86)

where we have dropped the prime.
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