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Abstract— Automated Optical Inspection (AOI) is among
the most common and effective quality checks employed in
production lines. This paper details the design of a Deep
Learning solution that was developed for addressing a specific
quality control in a Printed Circuit Board Assembly (PCBA)
manufacturing process. The developed Deep Neural Network
exploits transfer learning and a synthetic data generation
process to be trained even if the quantity of the data samples
available is low. The overall AOI system was designed to
be deployed on low-cost hardware with limited computing
capabilities to ease its deployment in industrial settings.

Index Terms— Automated Optical Inspection; AOI; Quality
Control; Industrial Assembly Lines; Deep Learning; Neural
Networks

I. INTRODUCTION

Automated Optical Inspection (AOI) is an automatic
process that consists in a no-contact, visual-based, quality
inspection of the output of product lines. AOI has become
a fundamental part of manufacturing, seeing applications in
several industries such as aerospace, [1], machining [2], [3],
recycling [4], food [5] and printing [6].

The most common use case for AOI is related to quality
assurance in the electronics industry [7]–[9], for which
specialized machines have been developed and are broadly
integrated into production lines. The typical quality con-
trol delegated to AOI is related to checking the soldering
quality on a circuit board and its components. In fact, it is
not uncommon in Printed Circuit Board Assembly (PCBA)
manufacturing to have misplaced/absent elements and their
positioning, along with their alignment, plays a fundamental
role in quality controls.

Despite the numerous advantages that integrated machines
offer, their pricing and the complexity of their tuning may
represent a barrier for their application in low-volume prod-
uct lines, where specialized/custom circuits are produced.

In this direction, the present work presents a Deep Neural
Network (DNN) solution for AOI, specifically tailored to
an industrial case study under consideration at the company
Token Financial Technologies. related to its PCBA quality
controls. The main contributions of this work are:

• The design of a DNN for AOI on a PCBA case study
involving the correct placement of a specific microchip
on a real production line.
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• The design of a data generation procedure with which
it is possible to train a DNN tailored for a specific
quality-assurance control, minimizing the amount of
real data to be collected and enabling the application
of the proposed framework on low-volume production
lines.

• The proposed DNN-based AOI solution was designed
in order to provide a low-cost solution that can be
applied to compensate for the looser quality checks that
are commonly employed for production lines with low
returns.

The rest of the paper is organized as follows: Section
II discusses some related works. Section III presents the
specific task under consideration, while Section IV presents
the proposed Deep Learning system for AOI. In particular,
Section IV-A details the dataset creation process; IV-B de-
velops the custom loss function used for the DNN training;
section IV-C discusses the DNN architecture. Finally, Section
V reports the results of our tests and Section VI draws the
conclusions and discusses some future works.

II. RELATED WORKS

The interest and first developments in AOI solutions date
back to the 90s [10], but the technology behind them has
constantly evolved over the years thanks to the numerous
advancements in computer vision [7], [11], inevitably leading
to solutions that rely on Deep Learning (DL) [12], [13].

This study focuses on an AOI application designed for
PCBA manufacturing. In this application, and in general in
the electronics domain, the main advantages offered by AOI
systems are [10], [14]:

• The possibility of optimizing the product design by
removing for-testing elements, as AOI is a contact-free
non-destructive process.

• The reduction of human checks of several orders of
magnitude, as operators will be asked to check only a
small portion of the PCBA components/solderings.

• A significant increase in the inspection, and conse-
quently in the quality check, consistency and accuracy.

• A significant improvement in the quality control pro-
cedure, leading to more efficient product lines with
increased throughput.

• The reduction of defective units that leave the pro-
duction line, that lowers waste, costs and in general
pollution.

One of the main drawbacks of data-driven solutions, such
as DNNs, is the fact that to increase their performance



Fig. 1: PCBA example.

it is required to conduct extensive, and expensive, data
collection campaigns that may also face difficulties related
to the Intellectual Property (IP) of the circuit/product under
analysis.

To address this issue, both Transfer Learning (TL) [15]–
[18] and synthetic data generation [4], [19], [20] processes
have been studied. TL [21] is a popular DL technique that
aims at solving a specialized task for which only a small
dataset is available by exploiting the knowledge acquired
by solving a generic, yet similar, task (e.g., image clas-
sification on a large dataset such as ImageNet [22]). This
“knowledge transfer” is implemented by deploying a neural
network trained to solve the generic task and then fine-tune
a few of its layers by re-training their parameters on the
available dataset. TL has shown significant performance in
many computer vision tasks [23]–[25], but its requirement
regarding the availability of both a large dataset related to
a task similar to the one under consideration and a smaller,
yet still representative, dataset for the fine-tuning process
may limit its application in heavily specialized applications
such as PCBA AOI.

To compensate for these limitations and enable the study
of complex specialized tasks, several studies proposed syn-
thetic data generation approaches as done by the authors
in the non-linear spectroscopy domain [26] and by Yue et
al. for autonomous driving [27]. In order to generate syn-
thetic data suitable to improve/enable the training of DNNs
capable of generalizing also on real data, it is necessary
to have extensive knowledge on the considered tasks and
use it to develop a suitable data generation model. Such a
model shall produce data samples that resemble closely real
data, while also incorporating a large spectrum of typical
noises/defects/characteristics that may be present in the real
task setting.

The present work proposes a DNN-based system that
relies on both TL and data generation to cope with the
defects that more commonly affect the PCBA designed at
Token Financial Technologies. The proposed solution has
been designed to be easily tunable, as it can be adapted
to similar displacement issues in PCBA manufacturing lines
for arbitrary components. The architecture of the DNN was
chosen to be not computationally demanding, so that once

Fig. 2: Scheme for the DNN-based AOI system.

trained it may be deployed on low-cost/edge computing
hardware without requiring connectivity to a cloud server.

III. TASK DESCRIPTION

It is common for low-volume and low-throughput
PCBA orders to be produced on multiple production lines
originally dedicated to higher-value orders during their
idling/maintenance times, as this allows the manufacturer to
fulfill lower-value orders without reserving any machinery or
stations. This setup allows for a significant production cost
reduction, but, at the same time, it causes quality checks
to be significantly more complex. In fact, AOI machines,
and in general most quality controls, should be entirely
reconfigured to the new production, partially neglecting the
advantages of employing non-reserved production lines. It
is hence common for a manufacturer to deploy fewer and
simpler quality control measures for orders of this kind,
leading to higher defect rates.

This study proposes a low-cost and easily deployable
solution that may be implemented to compensate for the
unavailability of advanced AOI systems. In particular, the
case study under analysis was identified starting from an
analysis of the most common defect reported in a real PCBA
line, that is related to the misplacement of the microchip
reported in Figure 1 which depicts a defective PCBA where
some capacitors were not properly soldered. The objective
of the AOI system under development is then to detect any
misalignment in the positioning of this specific component,
as its defects are the most impactful on the overall PCBA
production. We mention that the design process behind this
study may be seamlessly adapted to arbitrary components, so
that multiple checks may be deployed in parallel to reduce
further the shipping of defective units.

IV. DEEP LEARNING-BASED AOI SYSTEM

This section will detail the DNN-based AOI system de-
sign. As in most AOI machines, the system under considera-
tion envisages the placement of the PCBA under analysis in a
controlled area (e.g., an enclosed space), where the PCBA is
placed and lighted in a consistent way. An image acquisition



system then takes a photo of the area of interest that is then
processed by the proposed DNN-based system. The result of
the analysis can then be forwarded to operators or automated
systems for the disposal of defective units. A simplified block
architecture of the setup is reported in Figure 2.

A. Synthetic Data Generation

As already mentioned, the major shortcoming when de-
veloping an ad hoc solution based on deep learning is the
collection of a suitably large amount of high-quality data.
The data collected, in fact, has to be representative of the
specific problem under consideration, meaning that it may
be required to design ad hoc data gathering campaigns and
testings.

For the considered problem, we should provide the learn-
ing system with a large variety of examples of both defective
and properly assembled PCBA, focusing specifically on
the microchip under analysis. By designing a station with
controlled illumination and PCBA alignment, as envisaged in
Figure 2, we may limit the impact of environmental factors
on our data so that our system may focus directly on the
microchip positioning.

In order to limit the quantity of PCBA that would need to
be manually examined, photographed and labeled, we resort
to generating synthetic data that encodes the information
sought by our DNN. In particular, starting from a few
photographs of properly assembled microchips, it is trivial
to create thousands of realistic images by slightly shifting
and/or rotating the considered chip after some basic image
masking. Some examples of fake defective PCBA generated
with python are shown in Figure 3. Despite the fact that
these images can be easily identified as edited, as it will
be discussed they can still be used to train a DNN with an
objective specialized for the AOI task.

An additional advantage of synthetic data generation is
that the data can be automatically labeled. As it will be
detailed in the following subsection, we reduced the AOI
task to identifying the position of the edges of the microchip
of Figure 1. Being the synthetic images produced by rotating
and/or moving the chip, the required information on its
edges can be trivially provided to the DNN for its training,
significantly reducing the labour and costs dedicated to the
data preparation process.

In our testing, starting from 10 different 256×256 PCBA
images we generated 2000 synthetic ones for our training
dataset.

B. Proposed Custom Loss function and Performance Metric

When developing any learning system, the choice of an
appropriate loss function is among the most critical aspects,
as the loss function defines the training objective and shall
model the main aspects of interest to solve the task consid-
ered.

Being the main defect observed in the PCBAs under study
related to the correct positioning of a specific chip, we
decided to design the AOI system so that it may precisely
locate its four edges. Supposing that correctly estimates

Fig. 3: Synthetic images generated from the original photo
reported in Figure 1.

the positions of the edges, it is then possible to determine
whether the alignment and placement of the chip are within
some appropriate thresholds.

A first solution could be to implement a DNN that, given
an image of a PCBA under analysis, estimates the position,
in terms of x and y pixel coordinates, of the edges of the
considered chip. In this setting, the output of the DNN would
take the form of 4 (x, y) pairs, corresponding to the points
that are visualized in Figure 5, and the main objective of
the DNN would simply be to minimize the squared error
between the predicted edge positions and their actual value.

Considering that it was observed that the typical PCBA
defects are related to the positioning/alignment of the chip
rather than deformations of its shape, we decided to exploit
this information to improve the DNN training. For this rea-
son, we added to the training process an additional objective
that captures the shape of the 4-points prediction, so that the
DNN is encouraged to identify the edges with coordinates
that form a rectangle.

Considering the reference nomenclature reported in Figure
4, with c⃗i = [cxi , c

y
i ]

T , e⃗i = [exi , e
y
i ]

T ∀i ∈ {1, 2, 3, 4} we
can define P̃ :

P̃ = |cos(α1)|+ |cos(α2)|+ |cos(α3)|+ |cos(α4)|. (1)

It is immediate to see that P̃ is minimized when the e⃗s
are perpendicular.

Recalling the properties of the scalar product between two
column vectors, < a⃗1, a⃗2 >= a⃗1

T a⃗2, we can write

P̃ =
| < e⃗1, e⃗2 > |
||e⃗1|| · ||e⃗2||

+
| < e⃗2, e⃗3 > |
||e⃗2|| · ||e⃗3||

+

+
| < e⃗3, e⃗4 > |
||e⃗3|| · ||e⃗4||

+
| < e⃗4, e⃗1 > |
||e⃗4|| · ||e⃗1||

.

(2)



Fig. 4: Reference system for the custom loss function eval-
uation.

The inclusion of (2) as an additive term to the loss function
makes so the DNN is encouraged to predict rectangles, in line
with our objectives.

In order to assure that (2) is a proper term in a loss
function, and that it is suitable for real-world deployment,
we have to make sure that it can be evaluated with GPU-
acceleration compliant operations. To do so, we introduce
the matrices C ∈ R2×4,E ∈ R2×4:

C = [c⃗1, c⃗2, c⃗3, c⃗4],

E = [e⃗1, e⃗2, e⃗3, e⃗4].
(3)

One has that
e⃗1 = c⃗3 − c⃗1

e⃗2 = c⃗4 − c⃗3

e⃗3 = c⃗2 − c⃗4

e⃗4 = c⃗2 − c⃗1

, (4)

meaning that

E = C ·


−1 0 0 −1
0 0 1 1
1 1 0 0
0 −1 −1 0

 . (5)

Equation (5) states that, starting from the DNN predictions
c⃗1, c⃗2, c⃗3, c⃗4], the vectors e⃗1, e⃗2, e⃗3, e⃗4 can be obtained with a
simple (and fixed) matrix multiplication. Once the matrix E
is available, evaluating (2) consists in straightforward vector
products, transposes and basic arithmetic operations, mean-
ing that it can be trivially broadcasted (i.e., vectorized over
the entire training dataset) by standard DNN frameworks,
such as TensorFlow and Keras. The overall training loss
considered for our AOI system is the the sum between the
mean squared error (MSE) on the edge coordinates and P̃ .

Other than the loss function, it is a common practice to
define additional quantities, known as metrics, to evaluate

Fig. 5: Example of synthetic PCBA image with edge labels
hghlghted. Blue circles represent the DNN edge location
predicition, whereas red circles highlight their real location.
Note that red circles are almost entirely covered by the the
blue ones, as this figure reports the result of an evaluation
done by the trained DNN)

the training quality and the DNN performance. The main
difference between losses and metrics is that metrics are
not actively minimized during the DNN training, so they
may capture additional aspects of interest for the task at
hand and they may be used to assess whether the considered
DNN correctly solves the given task and further evaluate the
quality of its predictions. In our setting, we employed as
a metric the Mean Absolute Error (MAE) on the rectangle
center prediction, as the centering precision is an important
sub-task for the AOI problem.

C. Proposed Neural Network Architecture

The DNN proposed in this study employs TL to initialize
the weights of most of its layers. As customary in most
TL applications, the first layers of the proposed DNN are
directly taken from a pre-trained DNN and are then “frozen”
(i.e., kept constant) during the training. For our design,
we employed for this purpose the MobileNetV2 [28] pre-
trained on the ImageNet dataset. The reason for the choice
of MobileNetV2 is that its design makes it particularly suit-
able for complex applications on low-computing hardware,
as it employs both the so-called inverted residual blocks
(to support the presence of several layers) and separable
convolutions (to reduce the number of trainable weights and
computations).

The last fully connected, or dense, layers from the Mo-
bileNetV2 are replaced by an additional separable convolu-
tional layer (with 8 filters 5×5 filters), and a dense layer with
512 neurons. A final dense layer with 8 neurons computes
the output of the DNN, that is a 8 × 1 vector containing
the edges x and y coordinates. All neurons employed ReLU
activation functions and the dense layer had a dropout of 0.1
to reduce overfitting.



Fig. 6: Architecture of the proposed Deep Neural Network. The first layers, grouped in the yellow box, are taken from the
MobileNetV2 network that was trained on the ImageNet dataset. The remaining layers were trained on the PCBA dataset
synthesized in this work, hence following a transfer learning approach.

Fig. 7: Training and validation curves for the custom loss
over the training epochs.

The resulting architecture is shown in Figure 6.

V. TESTING AND RESULTS

For the training of the DNN we used 85% of the 2000
images generated from the 10 PCBA photos as our training
set, keeping the rest for the DNN validation as its test dataset.
In addition, we further augment the test dataset with 300
more images generated from two unused PCBA photos to
better test the generalization capabilities of the DNN. We
ran the training for 1000 epochs, using Adam [29] as the
training optimizer with a mini-batch size of 32 images.

Figure 7 reports the training performance in terms of loss
evaluations during the process. It can be seen that after about
600 epochs the training stabilizes, with the performance on
the training and test set becoming very similar. A similar
behaviour is observed in Figure 8, where, despite minor
fluctuations, it can be seen how the trained DNN correctly
identifies the center of the chip even on images that were
not provided in its training dataset, further proving its
generalization capabilities.

Fig. 8: Training and validation curves for the chosen metric
(MAE on rectangle center) over the training epochs.

The entirety of the training was conducted on a standard
desktop machine equipped with a 4GB GPU and the result-
ing trained DNN is suitable for deployment on low-power
hardware. The code was developed in Python using the latest
stable versions of Keras and Tensorflow.

VI. CONCLUSIONS AND FUTURE WORKS

The present paper presented the design process of a Deep
Neural Network (DNN) for an Automatic Optical Inspection
(AOI) process in Printed Circuit Board Assembly (PCBA)
manufacturing. The developed system is tailored for a real
industrial use case and represents a preliminary validation
study for the development of a low-cost solution that may
be deployed for ad hoc quality checks in assembly lines.

The case study considered involved the identification of
defective boards by the automated visual inspection of the
correct positioning of a critical microchip, as it represents the
most common point of failure in the final product assembly.

The solution proposed can be easily adapted to other
specific mounting/placement controls and does not require



extensive data collection campaigns, as it exploits the results
of both transfer learning and synthetic data generation. The
DNN of choice for being the basis of the transfer learning
process is the well-known MobileNetV2 [28], as its design
is tailored for devices with low computing power, making it
an ideal choice for being deployed on industrial hardware.

Future works envisage the realization of a physical pro-
totype able to capture PCBA images automatically, so that
it may employ the trained DNN to detect defects in a real
production line. The extension of the quality checks to other
components and types of defects is also under development.
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