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Abstract: The surge of scientific interest in the discovery of Nuclear Factor Erythroid 2 (NFE2)-
Related Factor 2 (NRF2)-activating molecules underscores the importance of NRF2 as a therapeu-
tic target especially for oxidative stress. The chemical reactivity and biological activities of sev-
eral bioactive compounds have been linked to the presence of α,β-unsaturated structural systems.
The α,β-unsaturated carbonyl, sulfonyl and sulfinyl functional groups are reportedly the major
α,β-unsaturated moieties involved in the activation of the NRF2 signaling pathway. The carbonyl,
sulfonyl and sulfinyl groups are generally electron-withdrawing groups, and the presence of the
α,β-unsaturated structure qualifies them as suitable electrophiles for Michael addition reaction with
nucleophilic thiols of cysteine residues within the proximal negative regulator of NRF2, Kelch-like
ECH-associated protein 1 (KEAP1). The physicochemical property such as good lipophilicity of these
moieties is also an advantage because it ensures solubility and membrane permeability required
for the activation of the cytosolic NRF2/KEAP1 system. This review provides an overview of the
reaction mechanism of α,β-unsaturated moiety-bearing compounds with the NRF2/KEAP1 complex,
their pharmacological properties, structural activity-relationship and their effect on antioxidant
and anti-inflammatory responses. As the first of its kind, this review article offers collective and
comprehensive information on NRF2-activators containing α,β-unsaturated moiety with the aim of
broadening their therapeutic prospects in a wide range of oxidative stress-related diseases.

Keywords: NRF2; KEAP1; α,β-unsaturated moiety; carbonyl; sulfonyl; sulfinyl; antioxidant;
anti-inflammatory; Parkinson’s disease

1. Introduction

It is well established that molecules bearing α,β-unsaturated moiety constitute an
essential class of electrophilic NRF2 modulators with therapeutic importance in a wide
range of inflammatory and oxidative stress-mediated diseases such as Parkinson’s dis-
ease, Alzheimer’s disease, obesity, diabetes, cancer, osteoporosis, liver injury, multiple
sclerosis and many others. Considering the crucial role of NRF2 in the modulation of
inflammatory and oxidative processes, there is a lot of interest in the study of natural
and synthetic substances capable of activating the NRF2/ KEAP1 pathway in order to
design new therapeutic strategies to treat oxidative stress and inflammatory diseases. The
structural peculiarity, natural abundance, facile synthetic procedures and diverse pharma-
cological activities of α,β-unsaturated moiety-bearing compounds including their ability
to activate the NRF2/KEAP1 signaling pathway have made them important motifs of
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medicinal interest worthy of in-depth research. Compounds bearing α,β-unsaturated
functionalities have been extensively studied [1–3]. Their ability to react with nucleophilic
sites endows them with a multitude of biological functions including the nuclear factor
erythroid 2 (NFE2)-related factor 2 (NRF2) signaling pathway activation [2,4–6]. Currently,
NRF2, a transcription factor belonging to the cap ‘n’ collar subfamily, has become a sub-
ject of extensive research because it represents a crucial regulator of the cellular defense
mechanisms against oxidative stress and xenobiotic.

Several α,β-unsaturated carbonyl, sulfonyl and sulfinyl compounds such as dimethyl
fumarate (NCT00810836), curcumin (NCT01052025), chalcones and many vinyl organosul-
fur compounds are notable NRF2 activators [7–10] as shown in Table 1. Table 2 summarizes
the α,β-Unsaturated moiety-bearing NRF2 activators in clinical trial or approved by FDA.
Dimethyl fumarate (DMF) has been approved by FDA for multiple sclerosis, while the
other ones are in their various stages of discovery and clinical trials [8,11,12]. Curcumin
has been evaluated in clinical trials for diseases such as impaired glucose tolerance and
insulin resistance (NCT01052025). However, it has not been approved for human use due
to poor bioavailability and adverse effects [13]. Chalcone derivatives such as licochalcone
A have been involved in clinical trials, it has been explored for human oral squamous cell
carcinoma in combination with paclitaxel (NCT03292822). Several sulfonamides have been
approved by FDA as antimicrobial agents, but vinyl sulfonamides are yet to be subjected
to clinical trials [14]. Amongst the sesquiterpene lactones, parthenolide, a Tanacetum
derived NRF2 activator, has vast therapeutic effect in inflammation and oxidative stress-
mediated diseases, especially cancer. It is in clinical trial for cancer treatment (NCT00133341)
(Table 2). Amongst anticancer drugs currently in clinical development, parthenolide is the
most promising and the first to specifically delete HDAC1 proteins without affecting other
class of 1/IIHDACs in several tissue and cancer cells [15]. Despite the antioxidant and
anti-inflammatory activity of helenalin an Arnica Montana-derived NRF2 activator, it is
not in clinical trial and its development as an anticancer agent has been retarded proba-
bly due to allergic effects and toxicity. Costunolide exhibits significant antioxidant and
anti-inflammatory effects in cancer studies [16], but no clinical trial has been conducted yet.

The α,β-unsaturated carbonyl, sulfonyl and sulfinyl-bearing compounds that acti-
vate NRF2 accomplish the activation process via the same mechanism of action which
involves electrophilic modification of NRF2 repressor KEAP1-cysteine residues [7,8]. The
α,β-unsaturated carbonyl, sulfonyl and sulfinyl moieties play a significant role in the acti-
vation of the NRF2 signaling pathway via thiol-Michael addition reaction [9,17,18]. They
are lipophilic, and this property enables their easy absorption by cells and passage through
the plasma membrane thereby facilitating the activation of the cytosolic NRF2-KEAP1
signaling pathway [19–21]. In this way, they elicit antioxidant and anti-inflammatory
molecular processes [22,23]. In addition to the pharmacokinetic and pharmacodynamic
properties, studies have been conducted to explore lipophilicity as the central component
of drug-like properties of α,β-unsaturated structure-bearing NRF2 activators/KEAP1 in-
hibitors, considering its role in the permeation of the cytosol where NRF2 activation is
accomplished [24]. Moreover, it is also reported that the pharmacodynamic and pharma-
cokinetic properties of these NRF2 activators depend on their lipophilicity [24]. Several
α,β-unsaturated moiety-containing compounds exhibit the ability to partition between
a lipophilic organic phase and a polar aqueous phase, a property known as lipophilicity
(log P/D). Lipophilicity is the most important physicochemical property that accounts for
solubility, membrane permeability, drug absorption and distribution [25]. Primarily, it is
a structural property that influences the physicochemical and biochemical properties of
α,β-unsaturated moieties. It is usually employed in the structural modification of com-
pounds to improve certain properties [26]. The lipophilicity of α,β-unsaturated moieties
gives them high permeation across membrane, improves their oral bioavailability and
influences their absorption, distribution, metabolism and elimination (ADME) properties
and potency [27,28]. Alrubaie et al. [29] reported that α,β-unsaturated carbonyls exhibit
moderate to high lipophilicity (1.14–6.53 log p values indicating hydrophobicity properties),
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and electrophilicity >3.00972 eV (calculated using the electronic chemical potential and the
chemical hardness). The lipophilicity of carbonyl-based compounds has been reported and
the NRF2 activity of α,β-unsaturated moiety-bearing compounds have been studied in few
neurodegenerative diseases [30–32]. The reactivity of α,β-unsaturated-bearing compounds
accounts for their diverse pharmacological activities including the ability to activate the
NRF2 signaling pathway and also scavenge free radicals, an additional antioxidant quality.
The pharmacological profile of these compounds will be further discussed in Section 7.
Similarly, the structure–activity relationship (SAR) analysis of α,β-unsaturated-bearing
NRF2 activators provides insight into the NRF2/KEAP1 activity of these compounds and
enables the modification of the chemical structure of the compounds for improved activity.
The combination of two α,β-unsaturated moieties in a single molecular structure will
possibly increase their capacity to activate the NRF2 signaling pathway due to synergistic
action. The NRF2-based SAR of these compounds will be further discussed in Section 8.

Although significant advances have been made in the identification of individual
NRF2 activators bearing α,β-unsaturated moiety, not much is known about the influence
of their chemical structure on NRF2 activation, reaction mechanism and pharmacology.
Moreover, there is no comprehensive information on their NRF2-mediated therapeutic
potentials. Thus, the present review provides the role of α,β-unsaturated moieties in NRF2
activation, their molecular mechanisms in the light of electrophilic modification of KEAP1
cysteine residues, pharmacological profile, NRF2 structure–activity relationship and their
therapeutic effects in oxidative stress-mediated diseases.

2. Biologic Effects of NRF2/KEAP1 Signaling Pathway

It is well established that α,β-unsaturated moiety-bearing compounds activate the
NRF2/KEAP1 signaling pathway. NRF2/KEAP1 pathway can be described as the chief
regulator of endogenous antioxidant and cytoprotective responses to oxidative stress and
inflammation. NRF2 is a transcription factor consisting of 605 amino acids and containing
seven functional domains named Neh1-Neh7. The Neh1 domain contains a cap ‘n’ collar
basic-region leucine zipper (bZIP) domain which is responsible for the binding to DNA [33]
and a nuclear localization signal (NLS) that is involved in the nuclear translocation of
Nrf2 [34]. The N-terminal regulatory domain Neh2 contains seven lysine residues and two
peptide binding motifs (ETGE and DLG) and determines the stability and ubiquitination
of Nrf2 by its negative regulator Keap1 [35,36]. The Neh3, Neh4 and Neh5 domains me-
diate the interaction of Nrf2 with other coactivators [37,38], while the Neh6 domain has a
negative regulatory role as it promotes Nrf2 ubiquitination by binding to a β-transducin
repeat-containing protein (β-TrCP) [39]. The Neh7 domain is responsible for the binding of
NRF2 to the retinoic X receptor (RXR) and inhibits the NRF2-ARE signaling pathway [40].
Under homeostatic conditions, NRF2 is constitutively ubiquitinated by Kelch-like ECH-
associated protein 1 (KEAP1), an adaptor component of the Cul3 (Cullin 3)-based ubiquitin
E3 ligase complex and undergoes degradation by the proteasome [41,42]. In pro-oxidant
and pro-inflammatory conditions, the exposure to electrophiles or oxidants alters the
structure of NRF2/KEAP1 complex, thus preventing NRF2 ubiquitination and creating
a non-functional KEAP1 complex. As NRF2 is not released by KEAP1, it saturates all
binding sites of KEAP1, allowing newly translated NRF2 to bypass KEAP1 and translocate
to the nucleus [43–45]. Within the nucleus, NRF2 heterodimerizes with members of small
musculoaponeurotic fibrosarcoma (sMAF) family of transcription factors and binds to a reg-
ulatory enhancer sequence termed Antioxidant Response Element (ARE), thus promoting
the expression of antioxidant and detoxifying genes and down-modulating the production
of pro-inflammatory mediators [46,47].

NRF2 also cooperates with the NF-κB signaling pathway to control the response
to oxidative stress and inflammation and to preserve the physiological homeostasis of
cells [48]. NF-kB is a complex of transcription factors that regulates the expression of genes
involved in the activation of innate and adaptive immunity, inflammation and oxidative
stress responses [48]. In physiological conditions, NF-kB is retained in its inactive form
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in the cytoplasm of the cells by the inhibitory proteins belonging to the IkB family. When
the cells are exposed to specific stimuli such as proinflammatory cytokines and oxidative
stress, IkB proteins are phosphorylated, and this leads to their ubiquitination and protea-
somal degradation. Consequently, NF-κB translocates into the nucleus and induces the
expression of its target genes [49]. NRF2 negatively controls the NF-κB signaling path-
way as it decreases intracellular ROS levels and counteracts oxidative stress-mediated
NF-κB activation [50]. Furthermore, NRF2 prevents IκB-α proteasomal degradation, thus
inhibiting the nuclear translocation of NF-κB [51]. In this way, NRF2 contributes to inhibit
inflammatory and oxidative processes. NRF2 controls oxidative stress also by other mecha-
nisms. In particular, evidence exist demonstrating the crucial role of NRF2 in the regulation
of mitochondrial activity [52]. Mitochondria have a pivotal role in ROS production, and
experimental data obtained in mice demonstrated that NRF2 is associated with the outer
mitochondrial membrane and protects mitochondria from oxidative insults [53]. Another
way by which NRF2 controls oxidative stress and inflammation is by modulating the ex-
pression of the enzyme Heme oxygenase (HO)-1. NRF2 activation increases cellular HO-1
levels and promotes the expression of phase II enzymes, thus inhibiting the degradation
of IκB-α [54]. Different in vitro and in vivo experiments demonstrated the fundamental
role of the NRF2-mediated expression of HO-1 in the activation of anti-inflammatory
pathways. In particular, HO-1 activation promotes the secretion of the anti-inflammatory
cytokine IL-10 in M2 macrophages and is associated with the anti-inflammatory activity in
diabetes-associated gastric pathology [55,56].

A large body of evidence indicates that α,β-unsaturated moiety-mediated activation
of the NRF2/KEAP1 signaling pathway modulates metabolic processes. It is also well
known that oxidative stress and inflammation are involved in many chronic pathological
conditions, and NRF2 is considered an interesting and promising therapeutic target. In-
deed, NRF2 regulates the expression of several antioxidant enzymes such as NAD(P)H
Quinone Dehydrogenase 1 (NQO1) and heme oxygenase-1 (HO-1), which are involved in
xenobiotic metabolism [57], in metabolism of carbohydrates [58], lipids and iron [59], and
modulates anti-inflammatory responses [48]. In vitro and transgenic model systems, as
well as clinical and epidemiological studies have implicated NRF2 activity on the activation
of endogenous antioxidant and cytoprotective mechanisms in the prevention and treatment
of oxidative stress and inflammation-mediated diseases, including neurodegenerative dis-
eases, cardiovascular disorders, autoimmune diseases, and lung, liver and kidney chronic
diseases [7–9,60,61]. A large body of data consider it a paradox that NRF2 inhibits tumor
initiation and cancer metastasis via the elimination of ROS and carcinogens but becomes
an accomplice in helping tumor cells to withstand high level of ROS and resist apoptosis
which can be referred to as the reverse side of the NRF2/KEAP1 signaling pathway. How-
ever, studies conducted on myeloid-derived suppressor cells (MDSCs) demonstrated an
antitumor activity of NRF2 linked to the significant reduction in ROS levels and tumor
metastasis determined by the inhibition of IL-6 secretion in MDSCs [62,63].

The NRF2/KEAP1 signaling pathway serves as an essential defense pathway that
protects pancreatic β-cells against physiological and pathological attacks. It attenuates
oxidative damage via the repression of apoptosis and proliferation in diabetic mice [64].
The modulation of the NRF2/KEAP1 pathway improves insulin sensitivity in diabetes
and obesity [65]. It is also a potential method of ameliorating oxidative damage that oc-
curs in allogenic islet cell transplantation [66]. In a mouse model of diabetes, it has been
demonstrated that KEAP1 knockout, by promoting NRF2 activation, improved insulin
secretion and insulin resistance and resulted in the prevention of hyperglycemia [65]. Of
interest, the improvement of insulin secretion has been associated with the inhibition of IL-1
and IL-1 receptor expression [67]. It is worth noting that α,β-unsaturated moiety-bearing
modulators of NRF2/KEAP1 play important therapeutic roles in bone diseases. Some of
the α,β-unsaturated carbonyl-based sesquiterpene, such as parthenolide control system-
atic peroxidation state, regulate bone homeostasis and attenuates osteoporosis probably
through the induction of antioxidant and repair enzymes. The NRF2/KEAP1 pathway has
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been found to mitigate bone loss, decrease fracture risk and reduce the incidence of osteo-
porosis [68]. The involvement of this pathway in artherosclerotic resistance is a therapeutic
map in coronary artery disease [69]. Taken together, the activation of the NRF2/KEAP1
signaling pathway induces the expression of antioxidant genes such as HO-1, NQO1, GPX1,
TXN, PRDX1 and suppresses NF-kB-dependent proinflammatory genes such as iNOS and
COX2. This implies that NRF2/KEAP1 pathway is an essential therapeutic target in a wide
range of diseases in which inflammation and oxidative stress have been implicated such as
Parkinson’s disease, Alzheimer’s disease, diabetes, osteoporosis, atherosclerosis, rheuma-
toid arthritis, septic shock and many others. Other therapeutic effects of α,β-unsaturated
moiety-mediated activation of the NRF2/KEAP1 signaling pathway in diseases have been
highlighted in Table 1.

3. Modulation of NRF2/KEAP1 Signaling Pathway by α,β-Unsaturated
Moiety-Bearing Compounds

Although carbonyl and sulfonyl groups are both electron-withdrawing, the sulfonyl
group tends to exhibit more of an electron-withdrawing effect than the carbonyl group. It
is therefore preferred to the carbonyl group as a leaving group in nucleophilic substitution
reactions [70]. However, there is a more efficient delocalization with carbonyl groups
than with sulfonyl groups [70]. The beta-carbon of the α,β-unsaturated carbonyl, sulfonyl
and sulfinyl groups is the most reactive electrophilic atom of these groups [23,71]. There
is electron deficiency at the beta-carbon of the α,β-unsaturated carbonyl, sulfonyl and
sulfinyl groups due to the electron-attracting and delocalizing activity of these moieties,
and this property accounts for their electrophilicity [17,72,73]. The electrophilic character is
transmitted to the beta-carbon of the double bond following the conjugation of a double
bond to a carbonyl, sulfonyl and sulfinyl group in α,β-unsaturated systems. This phe-
nomenon favors 1,4-addition reaction [74]. The resonance description of the transmission of
electrophilicity to the beta-carbon (Scheme 1) [74] confirms that the beta-carbon represents
the electrophilic atom at which nucleophilic thiols of cysteines are most likely to attack.
Thus, the beta-carbon of α,β-unsaturated carbonyl, sulfonyl, sulfinyl groups and that of
NRF2 activators containing them (4–7) are indicated in Scheme 2. The nucleophilic attack
of the α,β-unsaturated structural systems by thiols of the KEAP1 cysteine residues occurs
via the reaction mechanism represented in Scheme 3.

The electrophilic modification of the cysteine residues of cytosolic proteins by α,β-
unsaturated carbonyl, sulfonyl and sulfinyl groups has been found to affect transcrip-
tional regulation of the NRF2 signaling pathway [4,7,23]. The NRF2 pathway is likely the
most sensitive pathway for electrophilic thiol-modifying molecules due to the presence
of several highly reactive cysteine residues in KEAP1 [75]. Under homeostatic condi-
tions, there is a continuous degradation of NRF2 protein in the cytoplasm by a com-
plex of E3 ubiquitin ligase containing the regulatory cysteine-rich KEAP1 protein [18,76].
However, under oxidative stress, electrophilic α,β-unsaturated carbonyl, sulfonyl and
sulfinyl compounds modify Keap1 [9,71,77]. They react with some cysteine residues of
KEAP1 to form adducts that create a non-functional KEAP1 complex, thus favoring the
nuclear translocation of newly translated NRF2 and facilitating transcriptional induction
of NRF2–dependent genes [78–81]. Many cysteines of KEAP1 are modified by different
electrophiles [78,79,82–85]. KEAP1 is a cysteine-rich protein possessing 27 and 25 cysteine
residues in the human and mouse proteins, respectively. This “cysteine-code” controls
KEAP1 activity. Cysteines Cys-151, Cys-273 and Cys-288 [86,87] appear to be the most
susceptible to electrophilic reaction [85,88]. Based on the functional necessity of these
three cysteine residues in the maintenance of KEAP1 ability to inhibit NRF2 accumulation,
chemical inducers of NRF2 were categorized into four classes in relation to the cysteine on
which they act [85], namely, class I (Cys151preferring), class II (Cys288 preferring), class III
(Cys151/Cys273/Cys288 collaboration preferring) and class IV (Cys151/Cys273/Cys288
independent). Other sensitive cysteines are Cys-226, Cys-434 and Cys-613. Thus, consider-
ing the distinct patterns of adduct formation for each chemical inducers of NRF2, the set
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of optimal acceptor thiols that are functional and convert KEAP1 from the active to the
inactive state should be determined.
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The NRF2 activation mechanism of α,β-unsaturated moieties is represented in Scheme 4.
The α,β-unsaturated sulfonyl group (2) acts as a 2 donor and a Michael acceptor in addition
reactions [89]. The stability of the α,β-unsaturated sulfonyl and sulfinyl systems needs
to be understood. The equilibrium of these functionalities can be attributed to factors
such as the interaction of the α,β-double bond with the d-orbitals of sulfur in addition to
the inductive effects of the sulfonyl and sulfinyl groups. In the α,β-unsaturated sulfonyl
and sulfinyl systems, the double bond stabilizes by interacting with sulfur’s d-orbitals.
Inductive effects on the other hand, accounts for the electron withdrawing ability of the
α,β-unsaturated sulfonyl and sulfinyl groups at equilibrium in the order sulfinyl < sulfonyl.
The stability of the sulfonyl group, especially sulfones, has been linked to the strength
of its carbon-sulfur bond. The observed minimal role of resonance effects and the major
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role of inductive effects suggest that the latter is very important in the stability of these
systems. The α,β-unsaturated carbonyl systems are thermodynamically more favored than
α,β-unsaturated sulfonyl and sulfinyl systems, while the α,β-unsaturated sulfonyl group
is more stable than the α,β-unsaturated carbonyl system [90–92]. Sulfonyl functional group
confers dienophilic activity to the double bond attached to it [93]. The double bond in
α,β-unsaturated sulfonyl-containing compounds is activated by the sulfonyl group [94]. In
parallel, Choi et al. [17] reported that the α,β-unsaturated sulfonyl system is a highly active
Michael acceptor for NRF2 activation. The addition of hard nucleophiles to α,β-unsaturated
sulfonyl system poses some difficulties due to metalation and conjugate additions occurring
as competing reactions [95]. However, the addition of soft nucleophiles, especially thiols,
to the α,β-unsaturated sulfonyl group via an addition reaction is an easy and effective
process [96,97].
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The nucleophilic attack of the thiol of the KEAP1 cysteine residues on the β carbon of the carbonyl
group is followed by 1,4-addition reaction in which the thiol bonds to carbon in position 1 and
hydrogen bonds to oxygen in position 4. It undergoes tautomerization to form adducts which
facilitates the nuclear translocation of NRF2 (A). The reaction of α,β-unsaturated sulfonyl (B) and
α,β-Unsaturated sulfinyl (C) with thiols of the KEAP1 cysteine residue also enable
NRF2 translocation.
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NRF2/KEAP1 complex, thus inhibiting NRF2 ubiquitination and creating a non-functional KEAP1
complex. As NRF2 is not released by KEAP1, it saturates all binding sites of KEAP1, allowing newly
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4. α,β-Unsaturated Carbonyls

α,β-Unsaturated carbonyl (1) compounds can be described as organic compounds
with the general structure (O=CR)-C=C-R, in which carbonyl functional group is conju-
gated with an alkene [98]. For example, enones and enals exhibit vinylogues reactivity
pattern which makes them prone to attack by nucleophiles at the beta-carbon [98]. In α,β-
unsaturated carbonyl-based compound, one C-C bond separates the C=C and C=O bonds.
The α,β-unsaturated carbonyl functionality is the most reactive substructure of synthetic
and natural molecules [99,100]. The reactivity of this group explains its various pharmaco-
logical activities [100]. α,β-unsaturated carbonyls scavenge free radicals via covalent ligand
binding to target proteins. They exhibit significant antioxidant and anti-inflammatory ac-
tivities by thiol trapping [100–102]. Data have shown that α,β-unsaturated carbonyls react
with a wide range of Cys-containing amino acids, proteins and peptides [73,103]. They
exhibit different molecular actions due to localization and concentration in the different
targeting of certain Cysteine residues on specific proteins. Experiments performed utilizing
KEAP1 mutants have demonstrated that Cys-151, Cys-273 and Cys-288 are most sensi-
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tive to electrophilic reactions with the α,β-unsaturated carbonyl group and are essential
for KEAP1 to inhibit Nrf2 activity [104–106]. Although few α,β-unsaturated carbonyl
compounds such as acrolein and its derivatives are toxic, a good number of them induce
adaptive or protective responses, exhibit remarkable NRF2 activity and play important
signaling functions [107–110]. Several NRF2 activators strongly depend on the presence
of the α,β-unsaturated carbonyl moiety for efficacy. The α,β-unsaturated carbonyl func-
tionality is responsible for the reactivity of several NRF2 activators, including flavones and
flavonols, and when this structural feature is disrupted, the ability of these compounds to
activate NRF2 is completely suppressed. Moreover, the α,β-unsaturated carbonyl group is
required by polyphenols to play the role of antioxidant via NRF2 activation. Wu et al. [111]
reported that α,β-unsaturated carbonyl compounds activate NRF2 pathway, and the loss of
the α,β-unsaturated carbonyl moiety abrogates the NRF2 activation by these compounds.
Molecules containing α-β unsaturated carbonyl groups have been shown to activate NRF2
in a reporter system and normal peripheral blood mononuclear cells [112]. In line with
this, we highlighted the α,β-unsaturated carbonyl-based compounds that have the abil-
ity to significantly activate the NRF2 signaling pathway in Table 2. However, several
α.β-unsaturated-bearing electrophilic NRF2 activators may have the risk of ‘off-target’
effect as a result of their complex molecular mechanism of action which may affect their
clinical development [113].

4.1. Sesquiterpene Lactones

Sesquiterpene lactones are sesquiterpenoids with a lactone ring, commonly obtained
from Asteraceae plant family. They are lipophilic solids that serve as a rich source of
drugs because of their wide range of biological activities including antioxidant and anti-
inflammatory properties [112,114,115]. Sesquiterpene lactones (Table 1) such as partheno-
lide (8), helenalin (9), alantolactone (10) and costunolide (11) have been found to sig-
nificantly activate the NRF2/KEAP1 signaling pathway in different in vitro cell culture
systems [116–119]. Experiments performed in rat neuronal cells demonstrated that treat-
ment with sesquiterpene lactones promoted nuclear NRF2 translocation and ARE target
genes expression, and that ARE activation was dependent on the number of
α,β-unsaturated carbonyl groups present in each compound [117]. These observations
strongly suggest that the bioactivities of sesquiterpene lactones, especially their ability
to activate the NRF2 pathway, can be attributed to the presence of the α,β-unsaturated
carbonyl unit [117,120].

4.1.1. Parthenolide

Parthenolide (8) (Table 1) is an α,β-unsaturated carbonyl-containing sesquiterpene
lactone, the most abundant and active electrophilic compound obtained from feverfew
plant (Tanacetum parthenium) [121,122]. The α,β-unsaturated lactone is reported to be the
reactive part of parthenolide, not the epoxide [110]. The α,β-unsaturated carbonyl group is
responsible for the electrophilic nature of parthenolide (8), which accounts for its ability to
undergo Michael addition reaction with biochemical nucleophiles, to covalently modify
proteins, and to activate the NRF2 pathway [123,124]. Kim et al. [124] reported that the
antioxidant and anti-adipogenic effects of parthenolide are associated with NRF2 activation.
Parthenolide (8) inhibits the early stage of adipogenesis, reduces the production of intra-
cellular reactive oxygen species (ROS) and increases the expression of heme oxygenase-1
(HO-1) and NADPH dehydrogenase 1(NQO1) via the activation of the NRF2/KEAP1 sig-
naling pathway [124]. In a similar study, Kim and co-workers [125] attributed the anti-obese
effects of parthenolide (8) to its ability to activate NRF2. They reported that parthenolide
(8) suppresses adiposity-induced inflammatory responses, controls the dysregulation of
adiponectin and resistin, upregulates HO-1 and promotes nuclear translocation of NRF2 in
obesity and related diseases. In summary, parthenolide inhibits obesity and obesity-related
inflammatory responses through the activation of the NRF2/Keap1 signaling pathway.
Mao and Zhu [126] reported that parthenolide (8) increases the expression of NRF2, HO-1
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and NQO1 in hydrogen peroxide-induced osteoblasts, thereby preventing apoptosis by
the reduction in oxidative stress. Parthenolide (8) exhibits significant anti-tumor and
anti-inflammatory activities, it inhibits inflammatory mediators and the expression of
pro-inflammatory cytokines [127,128]. Additionally, the anticancer activities of partheno-
lide are linked to its NRF2 activity, in particular it increases the level of glutathione via
the activation of the NRF2-ARE signaling pathway [129,130]. The antioxidant activity of
parthenolide is dose-dependent, at low dose (<5 µM), it neutralizes hydrogen peroxide
and protects against CD3-induced apoptosis in Jurkat T cells, while at high dose (10 µM) it
induces oxidative stress [131]. Of note, in recent studies aimed at identifying new strategies
to overcome chemoresistance and to increase the effectiveness of chemotherapy in cancer,
parthenolide was found to suppress mammosphere formation and overexpression of NRF2
and its dependent genes in triple-negative breast cancer cell lines, thereby preventing
resistance to doxorubicin and mitoxantrone based on ROS modulation [132,133]. It was
also reported that parthenolide (8) activates NRF2 and it is selectively cytotoxic to chronic
lymphocytic leukemia (CLL) [111].

4.1.2. Helenalin

Helenalin (9) (Table 1) is a sesquiterpene lactone obtained from Arnica montana and
Arnica chamissonis foliosa containing an α,β-unsaturated carbonyl group that accounts for
its anti-inflammatory, antioxidant, anti-cancer and NRF2 activities [134–137]. Lin et al. [138]
reported that helenalin (9) inhibits oxidative stress, enhances ethanol metabolism and there-
fore attenuates alcohol-induced hepatic fibrosis. Li et al. [137] demonstrated that helenalin
(9) isolated from Centipede minima (the family Asteraceae) exhibits significant antioxidant
activity and anti-inflammatory effects by inhibiting NF-kB activation. It ameliorates acute
hepatic injury, alleviates hepatocyte apoptosis, restores mitochondrial function and inhibits
hepatic inflammatory cytokines. Helenalin (9) also alleviates lipid peroxidation, reduces
ROS and NO production, increases antioxidant enzyme activity and HO-1 activity via
activation of the NRF2 signaling pathway [137].

4.1.3. Alantolactone

Alantolactone (10) (Table 1) is a sesquiterpene lactone commonly obtained from lnula
helenium L. It contains α,β-unsaturated carbonyl moiety. It exhibits anti-inflammatory,
antioxidant, anticancer and antibacterial activities [139–141]. According to Liu et al. [142],
alantolactone (10) increases the expression and nuclear translocation of NRF2. This implies
that the ability of alantolactone (10) to promote apoptosis and suppress migration in human
breast cancer cell line may depend on NRF2 signaling in addition to other pathways such
as p38 and NF-kB. Soe et al. [143] reported that the induction of detoxifying enzymes
by alantolactone (10) is mediated by NRF2. Alantolactone (10) enhances the activity of
glutathione and increases the induction of phase II and antioxidant enzymes such as glu-
tathione reductase, heme oxygenase-1 and γ-glutamylcysteine synthase via the NRF2-ARE
signaling pathway. It increases the nuclear translocation and activation of NRF2 in murine
hepatoma (Hepa1c1c7) cells [143]. In vitro experiments conducted on human bronchial
epithelial Beas-2B and NHBE cells demonstrated that alantolactone is able to prevent
cigarette smoke extract (CSE)-induced pro-inflammatory cytokine production, caspase-
3 activation and the increased levels of the oxidative stress markers malondialdehyde,
ROS and superoxide dismutase. The same study also demonstrated that alantolactone
promotes NRF2 nuclear aggregation and HO-1 expression, thus suggesting that this com-
pound inhibits CSE-induced inflammation, apoptosis and oxidative stress by promoting
NRF2 activation [144].

4.1.4. Costunolide

Costunolide (11) (Table 1) is a sesquiterpene lactone usually obtained from Inula
helenium and Vladimiria souliel [145]. It has been extensively studied due to its nu-
merous biological functions such as anti-inflammatory, antioxidant and neuroprotective
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activities [145,146]. Pae et al. [147] reported that costunolide (11) reduces inflammation by
the up-regulation of HO-1 expression. Furthermore, costunolide (11) has been reported to
improve the level of GSH in tissues and to ameliorate ethanol-induced gastric ulcer through
its antioxidant anti-inflammatory activities [148,149]. Peng et al. [150] demonstrated that
costunolide (11) prevents oxidative injuries and hinders apoptosis by promoting the nuclear
translocation of NRF2, and up-regulating the expression of NRF2 downstream molecules
in the neuron-like rat pheochromocytoma cell line (PC12). It upregulates antioxidant genes
and reduces cellular ROS levels thus maintaining redox balance in PC12 cells. However, the
knockdown of NRF2 reportedly abrogated the cytoprotective activity of costunolide (11),
thus suggesting that its ability to promote neuroprotection is dependent on NRF2 pathway
activation. In another study, costunolide (11) was found to induce HO-1 expression and
NRF2 nuclear accumulation, to inhibit pro-inflammatory cytokines and to activate NRF2
in RAW 264.7 macrophages [147]. Similarly, Mao et al. [146] reported that costunolide
(11) inhibits lipopolysaccharide and D-galactosamine-induced acute liver injury via NRF2
activation. It also down-regulates KEAP1 gene expression and up-regulates HO-1 and
NQO1 gene expressions. Taken together, these results indicate that costunolide (11) exerts
protective effects against acute liver injuries via its antioxidant activity by promoting the
NRF2 signaling pathway.

4.2. Curcumin

Curcumin (12) (Table 1) is a phytochemical usually obtained from rhizomes of Cur-
cuma longa that exhibits significant antioxidant and anti-inflammatory activities [151,152].
It contains an α,β-unsaturated carbonyl group that accounts for its neuroprotective effect
via NRF2 activation. It has been found to promote the nuclear expression levels and biolog-
ical effects of NRF2 through the interaction of the α,β-unsaturated carbonyl moiety with
Cys151 in KEAP1 [153,154]. According to a recent report by Park and co-workers [155],
curcumin (12) induces the expression of NRF2-dependent genes such as NQO1, GST-mu1
and HO-1 and increases the level of NRF2 protein in neuronal cells. The activation of NRF2
by curcumin (12) is reportedly accomplished via PKCα- mediated P62 phosphorylation
at Ser351 [155]. Similarly, Ashrafizadeh et al. [156] reported that curcumin activates the
NRF2 signaling pathway by inhibiting KEAP1, up-regulating the expression of NRF2 and
its dependent genes and promoting nuclear translocation of NRF2. The pre-treatment with
curcumin (12) prevents hemin-induced neuronal death by inducing NRF2 and antioxidant
response in cultures of cerebellar neurons of rats [157]. Curcumin (12) also inhibits the
upregulation of inflammatory signaling-mediated KEAP1 synthesis and reduces NRF2
degradation in HepG2 cells [158]. Furthermore, curcumin (12) hinders oxidative stress
in human nasal fibroblasts that have been exposed to urban particulate matter via the
activation of the NRF2/HO-1 signaling pathway [159]. Of note, although curcumin (12) has
been found to alleviate oxidative stress, the co-administration of curcumin and vitamin E
gives a better result [160]. Co-treatment with vitamin E and curcumin of hypo- and hyper-
thyroid rats resulted more efficient in down-regulating oxidative stress evaluated as lipid
peroxidation and glutathione levels, and in promoting activities and protein expression
of antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase
and glutathione reductase, when compared to individual treatment. In the same study, a
modeled active portion of the protein NRF2 indicated its interaction with both vitamin E
and curcumin. Furthermore, in silico experiments showed the interaction of curcumin and
vitamin E complex with KEAP1, suggesting that the more effective attenuation of oxidative
stress by the concomitant administration of these two antioxidants might be the result of
NRF2/KEAP1 pathway modulation [160].

4.3. J-Series Cyclopentenone Prostaglandin

15-Deoxy-D-prostaglandin J2 (15d- PGJ2) (13) (Table 1) is a peroxisome proliferator-
activated receptor γ ligand. It represents the J-series cyclopentenone prostaglandin and
exerts cytoprotection via NRF2-mediated induction of antioxidant enzymes due to the
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presence of α,β-unsaturated carbonyl moiety [161,162]. Song et al. [163] corroborated
the importance of the α,β-unsaturated carbonyl group in NRF2 activation by demon-
strating that 9,10-dihydro-15d-PGJ2 (H2-15d-PGJ2), an analogue of 15d-PGJ2 that lacks
α,β-unsaturated carbonyl moiety as a Michael acceptor, is not able to induce the NRF2
signaling pathway. 15d-PGJ2 (13) induces the up-regulation of multidrug resistance asso-
ciated proteins through the activation of the NRF2-ARE signaling pathway [164]. It has
been found to regulate the expression of NRF2-dependent genes and enzymes [36]. How-
ever, NADPH-dependent alkenal/one oxidoreductase reportedly attenuated the ability of
15d-PGJ2 (13) to affect NRF2-mediated induction of cytoprotective enzymes [164].

4.4. Chalcone and Its Derivatives

Chalcone and its derivatives (Table 1) exhibit significant antioxidant, anti-inflammatory
and anticancer activities [165–168]. Their ability to activate the NRF2 signaling pathway has
been attributed to the presence of an α,β-unsaturated carbonyl moiety [7]. Miranda-Sapla
and co-workers [169] reported that trans-chalcone (14) modulates inflammatory response
and enhances the total bound iron capacity via the activation of NRF2 and expression of
HO-1 and ferritin. It also down-regulates ROS and NO levels in leishmania amazonensis-
infected macrophages. Licochalcone A (15) induces nuclear translocation and activa-
tion of NRF2 through which it elevates the expression of the anti-inflammatory enzymes
and determines licorice extract-induced lowered cutaneous oxidative stress in vivo [170].
Isoliquiritigen (ISL) (16), a natural chalcone compound, attenuates oxidative stress and
inflammatory injuries via the activation of NRF2 signaling, as demonstrated in a mouse
model of severe acute pancreatitis in which ISL determined a reduction in malondialde-
hyde, interleukin-6, tumor necrosis factor-α and cleaved-caspase-3 and an increase in NRF2,
HO-1, NQO1 and superoxide dismutase (SOD) [171]. Chalcone flavokawain A (17) is a
chalcone derivative that suppresses lipopolysaccharide-induced inflammation through
activating the NRF2/ARE-mediated genes and inhibiting the ROS/NF-kB signaling in
primary splenocytes [172].

4.5. Dimethyl Fumarate

Dimethyl fumarate (DMF) (18) (Table 1) is an α,β-unsaturated carboxylic acid ester,
approved for the treatment of relapsing multiple sclerosis [8,12,173]. It exhibits significant
antioxidant, anti-inflammatory and NRF2 activities due to the presence of α,β-unsaturated
carbonyl moiety [111,174,175]. Akin et al. [175] reported that oral administration of DMF
(18) alleviates oxidative stress via activation of NRF2/KEAP1 pathway in mouse ovary.
Gopal et al. [176] reported evidence of NRF2 pathway activation in multiple sclerosis
patients that were treated with DMF in Phase 3 studies. Ahuja et al. [177] observed that
DMF (18) activates the NRF2 pathway, depletes glutathione level, decreases the viability of
cells and inhibits mitochondrial oxygen consumption in a dose-dependent manner. Based
on these observations, they recommended the development of monomethyl fumarate
(MMF) a bioactive metabolite of DMF, which does not exhibit similar adverse effects, as
a novel Parkinson’s disease drug [177]. In summary, the reactivity of α,β-unsaturated
carbonyl system with thiols of the KEAPl cysteine residues is responsible for the activation
of the NRF2 signaling pathway and accounts for the antioxidant and anti-inflammatory
activities of α,β-unsaturated carbonyl-containing compounds. DMF is a notable multi-
target compound that modulates NRF2, nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB), hydrocarboxylic acid receptor (HCAR2) pathways and regulates
glutathione and iron metabolism which is utilized for the treatment of neurodegenerative
diseases [178].

5. α,β-Unsaturated Sulfonyls

The sulfonyl group is an electron-withdrawing moiety found in several organosulfur
compounds such as sulfones, sulfonamides and sulfonates [70,179]. The strong electron-
withdrawing effect of the sulfonyl group accounts for the tendency of α,β-unsaturated
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sulfonyls to add to nucleophiles in order to form Michael-type adducts. This prop-
erty also makes α,β-unsaturated sulfonyls to act as powerful dienophiles [180]. Several
sulfonyl-containing compounds exhibit significant antioxidant and anti-inflammatory
activities [181–184]. α,β-unsaturated sulfonyls are notable building blocks in the synthesis
of organic compounds [185]. They exhibit notable biomedical significance [186]. They
inhibit several enzymatic processes making them essential moieties in drug design and
medicinal chemistry [89]. The first α,β-unsaturated sulfonyls were reported as potent
inhibitors of cysteine proteases in 1995 [187]. They are inhibitors of cruzain, HIV-1 inte-
grase, Staphylococcus aureus sortase, among others [188–190]. α,β-unsaturated sulfonyls
reversibly inhibit diverse enzymes via conjugate addition reaction with the thiols of cys-
teine residue [187,190,191]. They are effective for intracellular inhibition of dipeptidyl
peptidase1 [192,193]. α,β-unsaturated sulfonyls are reportedly activators of the NRF2
signaling pathway [2,9,23,32] as shown in Table 1.

5.1. Vinyl Sulfones

Vinyl sulfones (Table 1) have been reported as modulators of NRF2 activity due to
the presence of the α,β-unsaturated sulfonyl system that accounts for their effectiveness
as Michael acceptors [2,9,17]. Carlstrom et al. [2] reported that vinyl sulfone (19) activates
the NRF2 signaling pathway with limited off-target effects on hypoxia-inducible factor 1
and NF-kB in PTRAF-transfected HEK293 cells. Lee and co-workers [23] also reported that
compound 19 activates NRF2 signaling and induces the up-regulation of the expression of
NRF2-dependent antioxidant enzymes in microglia. It inhibits the expression of proinflam-
matory enzymes and proinflammatory cytokines production in activated microglia. Woo
et al. [32] reported that compound 19 in dopaminergic (DAergic) neuronal cells activates
NRF2 and up-regulates the expression of NRF2-regulated antioxidant enzymes at mRNA
and protein levels. It exerts neuroprotection and attenuates Parkinson’s disease (PD)-related
deficits in PD mouse models [25]. Choi and co-workers [9,17] corroborated that compound
19 activates NRF2 and induces the expression of NRF2-regulated antioxidant mediators in
PD mice. Although extensive researches have proven that compound 19 exhibits the highest
NRF2 activity amongst its vinyl sulfone analogues, however, its poor drug-like properties
remain a concern. In view of this, Choi et al. [17] designed a vinyl sulfone derivative (20)
with improved NRF2 activation potency and drug-likeness. Compound 20 significantly
induces NRF2 activation, up-regulation of NRF2-dependent genes, improves the movement
ability in acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD mice and reduces
microglial activation and loss of DAergic neurons [17]. Vinyl sulfone derivative (21) is
reportedly more potent than chalcone and vinyl sulfoxide analogues in activating the NRF2
signaling pathway and up-regulating the expression of HO-1 gene [32]. Vinyl sulfone
compounds 22 and 23 induce the relief of H2O2-induced lesions, neutralize ROS, activate
antioxidant response and promote neuroprotection via the activation of NRF2 pathway in
PC12 cells. However, the neuroprotective activity of compound 22 is higher than that of
compound 23 [194]. The electrophilicity and steric hindrance of α,β-unsaturated sulfones
have been tuned to generate several potent NRF2 activators [194].

5.2. Vinyl Sulfonamides

Sulfonamides exhibit antioxidant and anti-inflammatory activities [195–201]. The
presence of the α,β-unsaturated sulfonyl system in vinyl sulfonamides (Table 1) enable
them to act as Michael acceptors and activate the NRF2 signaling pathway [17]. Choi and
co-workers [17] synthesized several vinyl sulfonamides by substituting the sulfone moiety
of compound 19 with sulfonamide moiety to improve NRF2 activation ability. The analysis
of antioxidant enzymes and inflammatory cytokines expression in BV-2 microglial cells and
SH-SY5Y human neuroblastoma cells, and of in vivo therapeutic effects on Parkinsonism
in a mouse model of Parkinson’s disease showed that compounds 24, 25, 26, 27, 28 exhibit
NRF2 activity and compound 26 is the most potent NRF2 activator. However, compound
26 is not as potent as the vinyl sulfonate analogues [17].
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5.3. Vinyl Sulfonates

Sulfonates exhibit antioxidant and anti-inflammatory activities [202,203]. Vinyl sul-
fonate (Table 1) are highly activated Michael acceptors due to the α,β-unsaturated sulfonyl
moiety they contain [17]. Vinyl sulfonate compounds 29, 30 and 31 have been reported
as potent activators of the NRF2 signaling pathway [17]. They exert therapeutic effects
against Parkinson’s disease via their antioxidant, anti-inflammatory and neuroprotective
activities [17]. Compound 29 exhibits about seven times NRF2 activity higher than its
vinyl sulfone analogue (19). Compound 29 increases NRF2-related protein levels attenuates
inflammation and decreases the production of NO in BV-2 cells. It also up-regulates the ex-
pression of NRF2-regulated antioxidant enzymes and inhibits motor deficits in Parkinson’s
disease [17].

6. α,β-Unsaturated Sulfinyls

The sulfinyl group is available in several organosulfur compounds. It is a strong
electron-withdrawing moiety and exhibits high configurational stability and several bio-
logical functions such as antioxidant, anti-inflammatory and NRF2 up-regulation activi-
ties [204–207]. Recently, sulfinyl group has been utilized in controlling the enantioselec-
tivity of 1,4-additions involving carbon nucleophiles to α,β-unsaturated sulfoxides [208].
Similarly, α,β-unsaturated sulfinyl group is a very essential partner in Michael addition
reaction involving thiols of the KEAP1 cysteine residues in NRF2 activation [209,210].
α,β-unsaturated sulfinyl compounds activate the NRF2 signaling pathway as shown
in Table 1.

Vinyl Sulfoxide

Sulfoxides exhibit antioxidant and anti-inflammatory activities [209,211]. The ability
of vinyl sulfoxide (Table 1) to activate NRF2 and to induce HO-1 has been linked to the
presence of an α,β-unsaturated sulfinyl system [32]. Woo and co-workers [32] synthe-
sized vinyl sulfoxide (32) based on chalcone structure. In an attempt to determine the
NRF2-activating potency of compound 32. Woo et al. [32] assessed its ability to induce the
expression of a NRF2-dependent genes in BV2 cells. Compound 32 was found to exhibit
significant HO-1 inducing activity and confirmed to be a potent as its vinyl sulfone and
chalcone analogues [32]. Shim et al. [3] designed and synthesized vinyl sulfoxide deriva-
tives (33 and 34) using sulforaphane and gallic acid as structural templates and tested their
HO-1 inducing ability as the measure of NRF2 activation in BV2 microglial cells. However,
compounds 33 and 34 exhibit moderate HO-1 inducing activity and no inhibitory effect on
NO production [3], thus suggesting that a more efficient electrophile is needed to get more
effective NRF2 activator.
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Table 1. α,β-Unsaturated moiety-bearing compounds as NRF2 activators/KEAP1 inhibitors.

S/N Compound Disease
Studied Model NRF2 Activating

Conc/Activity

Mechanism
of

Action
Biological Activity Reference

8

Sesquiterpene lactones
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Parthenolide 

Obesity  3T3-L1 Cell 1–8 µM 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[125] 

Osteoporosis Human 5–20 µM 

NRF2 activa-
tion, 

Antioxidant, 
Anti-apopto-

sis 

[126] 

Breast cancer 
Human breast 
cancer cell line 
MDA-MB 231 

2.0 µM 

NRF2 regula-
tion, 

chemo-
resistance 

[133] 

Chronic lym-
phocytic leu-

kemia 

Human pe-
ripheral blood 
mononuclear 
cells (PBMCs) 

1.46 µM 

NRF2 activa-
tion, 

Antioxidant, 
cytotoxicity 

[111] 

9 

 

 
 

Helenalin 

Acute hepatic 
injury 

Male C57BL/6 
Mice 

0.75–3.00 
mg/kg 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[137] 

10 

 
 

Alantolactone 

Breast cancer 
MCF-7 human 
breast cancer 

cells 
10–30 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, anti-

cancer 
[142] 

Cancer  
Heps1c1c7 

cells 1–10 µM 

NRF2 activa-
tion, 

Antioxidant, 
anticancer 

[143] 

Chronic ob-
structive pul-
monary dis-
ease (COPD) 

Cigarette 
smoke-in-

duced human 
bronchial epi-

thelial cells 

1–10 µM 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[144] 

11 

 
 

Costunolide 

Acute liver 
injury Mice  

20–40 
mg/kg 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[146] 

Oxidative 
damage 

PC12 Cells 5 µM 

NRF2 activa-
tion, 

Antioxidant, 
neuroprotec-

tion 

[150] 

Tumor  RAW264.7 
Macrophages 

0.1–1.0 µM NRF2 activa-
tion, 
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Parkinson’s 
disease 

Mice  0.05–80 µM 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[177] 

19 

Vinyl Sulfones 
 

 
 

(E)-1-chloro-2-(2-((2-methoxy-
phenyl)sulfonyl)vinyl)benzene 

Multiple scle-
rosis 

HEK293 10 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
 

[2] 

Parkinson’s 
disease 

PD animal 
model 

1–20 µM 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[23] 

Parkinson’s 
disease 

PD animal 
model 1–10 µM 

NRF2 activa-
tion, 

Antioxidant, 
Neuroprotec-

tion  

[32] 

20 

 
 

 
 

(E)-4-(3-(4-((2-(3-fluoropyridin-2-
yl)vinyl)sulfonyl)phenoxy)pro-
pyl)morpholine hydrochloride 

Parkinson’s 
disease PD mice  0.3–10 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Neuroprotec-

tion 

[9] 

21 

 
 
 
 
 

Parkinson’s 
disease PD mice 20 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Neuroprotec-

tion 

[32] 

Dimethyl fumarate

Oxidative stress Mouse ovary 20 mg/kg

electrophilic
modification of KEAP1

cysteine residues

NRF2 activation,
Antioxidant, [175]

Multiple sclerosis Multiple sclerosis
patient 0–400

NRF2 activation,
Antioxidant, [173]

Parkinson’s disease Mice 0.05–80 µM
NRF2 activation,

Antioxidant,
Anti-inflammatory

[177]
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Chalcone flavokawain A 

of KEAP1 cys-
teine residues 

Antioxidant, 
Anti-inflam-

matory 

18 

DMF 
 

 
 

Dimethyl fumarate 

Oxidative 
stress 

Mouse ovary 20 mg/kg 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
 

[175] 

Multiple scle-
rosis 

Multiple scle-
rosis patient 0–400  

NRF2 activa-
tion, 

Antioxidant, 
 

[173] 

Parkinson’s 
disease 

Mice  0.05–80 µM 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[177] 

19 

Vinyl Sulfones 
 

 
 

(E)-1-chloro-2-(2-((2-methoxy-
phenyl)sulfonyl)vinyl)benzene 

Multiple scle-
rosis 

HEK293 10 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
 

[2] 

Parkinson’s 
disease 

PD animal 
model 

1–20 µM 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[23] 

Parkinson’s 
disease 

PD animal 
model 1–10 µM 

NRF2 activa-
tion, 

Antioxidant, 
Neuroprotec-

tion  

[32] 

20 

 
 

 
 

(E)-4-(3-(4-((2-(3-fluoropyridin-2-
yl)vinyl)sulfonyl)phenoxy)pro-
pyl)morpholine hydrochloride 

Parkinson’s 
disease PD mice  0.3–10 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Neuroprotec-

tion 

[9] 

21 

 
 
 
 
 

Parkinson’s 
disease PD mice 20 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Neuroprotec-

tion 

[32] 

(E)-1-chloro-2-(2-((2-
methoxyphenyl)sulfonyl)vinyl)benzene

Multiple sclerosis HEK293 10 µM

electrophilic
modification of KEAP1

cysteine residues

NRF2 activation,
Antioxidant, [2]

Parkinson’s disease PD animal model 1–20 µM
NRF2 activation,

Antioxidant,
Anti-inflammatory

[23]

Parkinson’s disease PD animal model 1–10 µM
NRF2 activation,

Antioxidant,
Neuroprotection

[32]

20
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Chalcone flavokawain A 

of KEAP1 cys-
teine residues 

Antioxidant, 
Anti-inflam-

matory 

18 

DMF 
 

 
 

Dimethyl fumarate 

Oxidative 
stress 

Mouse ovary 20 mg/kg 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
 

[175] 

Multiple scle-
rosis 

Multiple scle-
rosis patient 0–400  

NRF2 activa-
tion, 

Antioxidant, 
 

[173] 

Parkinson’s 
disease 

Mice  0.05–80 µM 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[177] 

19 

Vinyl Sulfones 
 

 
 

(E)-1-chloro-2-(2-((2-methoxy-
phenyl)sulfonyl)vinyl)benzene 

Multiple scle-
rosis 

HEK293 10 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
 

[2] 

Parkinson’s 
disease 

PD animal 
model 

1–20 µM 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[23] 

Parkinson’s 
disease 

PD animal 
model 1–10 µM 

NRF2 activa-
tion, 

Antioxidant, 
Neuroprotec-

tion  

[32] 

20 

 
 

 
 

(E)-4-(3-(4-((2-(3-fluoropyridin-2-
yl)vinyl)sulfonyl)phenoxy)pro-
pyl)morpholine hydrochloride 

Parkinson’s 
disease PD mice  0.3–10 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Neuroprotec-

tion 

[9] 

21 

 
 
 
 
 

Parkinson’s 
disease PD mice 20 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Neuroprotec-

tion 

[32] 

(E)-4-(3-(4-((2-(3-fluoropyridin-2-
yl)vinyl)sulfonyl)phenoxy)propyl)morpholine

hydrochloride

Parkinson’s disease PD mice 0.3–10 µM
electrophilic

modification of KEAP1
cysteine residues

NRF2 activation,
Antioxidant,

Neuroprotection
[9]

21
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(E)-1-(2-((4-methoxyphenyl)sul-
fonyl)vinyl)2-(trifluorome-

thyl)benzene 

22 

 
 

 
 

(E)-1-chloro-2-(2-((2-chloro-
phenyl)sulfonyl)vinyl)benzene 

Oxidative 
stress 

PC12 Cells 2.5–1.0 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Neuroprotec-

tion 

[194] 

23 

 
 
 

 
 

(E)-1-bromo-2-(2-((2-chloro-
phenyl)sulfonyl)vinyl)benzene 

Oxidative 
stress 

PC12 Cells 0.5–1.0 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Neuroprotec-

tion 

[194] 

24 

Vinyl Sulfonamides 
 

 
 

(E)-N,2-diphenylethenesulfona-
mide 

Parkinson’s 
disease 

PD mouse >10 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[17] 

25 

 
 

 
 
 

(E)-2-(2-chlorophenyl)-N-phe-
nylethesulfonamide 

Parkinson’s 
disease PD mouse >10 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[17] 

(E)-1-(2-((4-methoxyphenyl)sulfonyl)vinyl)2-
(trifluoromethyl)benzene

Parkinson’s disease PD mice 20 µM
electrophilic

modification of KEAP1
cysteine residues

NRF2 activation,
Antioxidant,

Neuroprotection
[32]
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(E)-1-bromo-2-(2-((2-chloro-
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teine residues 

NRF2 activa-
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24 

Vinyl Sulfonamides 
 

 
 

(E)-N,2-diphenylethenesulfona-
mide 

Parkinson’s 
disease 

PD mouse >10 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[17] 

25 

 
 

 
 
 

(E)-2-(2-chlorophenyl)-N-phe-
nylethesulfonamide 

Parkinson’s 
disease PD mouse >10 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[17] 

(E)-1-chloro-2-(2-((2-
chlorophenyl)sulfonyl)vinyl)benzene

Oxidative stress PC12 Cells 2.5–1.0 µM
electrophilic

modification of KEAP1
cysteine residues

NRF2 activation,
Antioxidant,

Neuroprotection
[194]
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Oxidative 
stress 

PC12 Cells 2.5–1.0 µM 

electrophilic 
modification 

of KEAP1 cys-
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stress 
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NRF2 activa-
tion, 

Antioxidant, 
Neuroprotec-
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[194] 

24 

Vinyl Sulfonamides 
 

 
 

(E)-N,2-diphenylethenesulfona-
mide 

Parkinson’s 
disease 

PD mouse >10 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[17] 

25 

 
 

 
 
 

(E)-2-(2-chlorophenyl)-N-phe-
nylethesulfonamide 

Parkinson’s 
disease PD mouse >10 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[17] 

(E)-1-bromo-2-(2-((2-
chlorophenyl)sulfonyl)vinyl)benzene

Oxidative stress PC12 Cells 0.5–1.0 µM
electrophilic

modification of KEAP1
cysteine residues

NRF2 activation,
Antioxidant,

Neuroprotection
[194]
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Antioxidant, 
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matory 

[17] 
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(E)-2-(2-chlorophenyl)-N-phe-
nylethesulfonamide 

Parkinson’s 
disease PD mouse >10 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[17] 

(E)-N,2-diphenylethenesulfonamide

Parkinson’s disease PD mouse >10 µM
electrophilic

modification of KEAP1
cysteine residues

NRF2 activation,
Antioxidant,

Anti-inflammatory
[17]

25
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(E)-1-chloro-2-(2-((2-chloro-
phenyl)sulfonyl)vinyl)benzene 

Oxidative 
stress 
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modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
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tion 

[194] 

23 

 
 
 

 
 

(E)-1-bromo-2-(2-((2-chloro-
phenyl)sulfonyl)vinyl)benzene 

Oxidative 
stress 

PC12 Cells 0.5–1.0 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Neuroprotec-

tion 

[194] 

24 

Vinyl Sulfonamides 
 

 
 

(E)-N,2-diphenylethenesulfona-
mide 

Parkinson’s 
disease 

PD mouse >10 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[17] 

25 

 
 

 
 
 

(E)-2-(2-chlorophenyl)-N-phe-
nylethesulfonamide 

Parkinson’s 
disease PD mouse >10 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[17] 

(E)-2-(2-chlorophenyl)-N-
phenylethesulfonamide

Parkinson’s disease PD mouse >10 µM
electrophilic

modification of KEAP1
cysteine residues

NRF2 activation,
Antioxidant,

Anti-inflammatory
[17]

26
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26 

 
 
 

 
 

(E)-2-(2-chlorophenyl)-N-(2-
methoxyphenyl)ethenesulfona-

mide 

Parkinson’s 
disease PD mouse 6.35 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[17] 

27 

 
 
 

 
 

(E)-2-(2-chlorophenyl)-N-(3-
methoxyphenyl)ethane 

sulfonamide 

Parkinson’s 
disease 

PD mouse >10 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[17] 

28 

 
 
 

 
 

(E)-2-(2-chlorophenyl)-N-(4-
methoxyphenyl)ethane 

sulfonamide 

Parkinson’s 
disease PD mouse >10 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[17] 

29 

Vinyl Sulfonates 
 
 

 
 

(E)-2-methoxyphenyl 2-(2-chloro-
phenyl)ethenesulfonate 

Parkinson’s 
disease PD mouse 0.076 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[17] 

30 

 
 
 
 
 

Parkinson’s 
disease 

PD animal 
model 

0.237 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[17] 

(E)-2-(2-chlorophenyl)-N-(2-
methoxyphenyl)ethenesulfonamide

Parkinson’s disease PD mouse 6.35 µM
electrophilic

modification of KEAP1
cysteine residues

NRF2 activation,
Antioxidant,

Anti-inflammatory
[17]
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(E)-2-(2-chlorophenyl)-N-(2-
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disease PD mouse 6.35 µM 
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of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 
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NRF2 activa-
tion, 

Antioxidant, 
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[17] 

30 

 
 
 
 
 

Parkinson’s 
disease 

PD animal 
model 

0.237 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[17] 

(E)-2-(2-chlorophenyl)-N-(3-
methoxyphenyl)ethane

sulfonamide

Parkinson’s disease PD mouse >10 µM
electrophilic

modification of KEAP1
cysteine residues

NRF2 activation,
Antioxidant,

Anti-inflammatory
[17]
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tion, 
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matory 

[17] 

(E)-2-(2-chlorophenyl)-N-(4-
methoxyphenyl)ethane

sulfonamide

Parkinson’s disease PD mouse >10 µM
electrophilic

modification of KEAP1
cysteine residues

NRF2 activation,
Antioxidant,

Anti-inflammatory
[17]
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teine residues 

NRF2 activa-
tion, 
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[17] 
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Parkinson’s 
disease 

PD animal 
model 

0.237 µM 

electrophilic 
modification 

of KEAP1 cys-
teine residues 

NRF2 activa-
tion, 

Antioxidant, 
Anti-inflam-

matory 

[17] 

(E)-2-methoxyphenyl
2-(2-chlorophenyl)ethenesulfonate

Parkinson’s disease PD mouse 0.076 µM
electrophilic

modification of KEAP1
cysteine residues

NRF2 activation,
Antioxidant,

Anti-inflammatory
[17]
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Anti-inflammatory
[17]
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Table 2. α,β-unsaturated moiety-bearing NRF2 activators in clinical trial or approved by FDA.

Entry Compound Clinical Trial/FDA
Approval Targeted Disease Reference

8 Parthenolide Clinical trial Cancer NCT00133341

12 Curcumin Clinical trial Impaired glucose tolerance and insulin
resistance/ type 2 diabetes NCT01052025

15 Licochalcone A Clinical trial Human oral squamous cell carcinoma NCT03292822

18 Dimethyl fumarate FDA approved Multiple sclerosis NCT00810836

7. Pharmacological Profile of α,β-Unsaturated Structure-Bearing NRF2 Activators

The α,β-unsaturated moiety-bearing compounds activate the NRF2/KEAP1 signaling
pathway significantly. Generally, these compounds have moderate to good lipophilic-
ity, oral bioavailability, pharmacokinetic, pharmacodynamics and toxicological profile.
α,β-unsaturated moiety-bearing molecules such as parthenolide, helenalin, alantolactone,
prostaglandins, vinyl sulfonamides and sulfoxides permeate the blood–brain barrier in a
dose-dependent manner and therefore serve as potential therapeutic agents for CNS-related
diseases. Micro- and nano-formulation of α,β-unsaturated carbonyls such as prostaglandins
and curcumin improve their pharmacological profile. α,β-unsaturated-structure bearing
sesquiterpene lactones obtained from feverfew plant have lipophilic character which gen-
erally affects their potency [212,213]. For instance, parthenolide (8) exhibits a significant
lipophilicity which may explain its good blood–brain barrier permeability and cytosol pene-
tration for KEAP1-NRF2 signaling pathway activation [214]. Therefore, it has low solubility
in water with reduced bioavailability, which has limited its potential clinical application
as an anticancer drug molecule [114]. However, the pharmacokinetics, pharmacodynam-
ics and bioavailability of parthenolide (8) have been improved in its derivatives such as
dimethylaminoparthenolide (DMAPT) and others which exhibit improved oral bioavail-
ability and ADME properties but display similar mechanism of action to parthenolide
(8) [215,216]. Helenalin (9) is a lipophilic compound which penetrates cell membranes and
exhibits high cytotoxicity. It has low oral bioavailability in vivo and considerable lipophilic-
ity which can be modified [136,217]. Helenalin is toxic but it is considered generally safe
when applied topically to humans. The oral LD50 of helenalin (9) has been obtained as
85–150 mg/kg [218,219]. Oral administration of helenalin (9) exhibits higher toxic effect
than parenteral administration [220,221]. In addition, the specificity, pharmacokinetics
and metabolism of helenalin (9) should be further investigated in the light of NRF2 activa-
tion. Alantolactone (10) is lipophilic and permeates the blood–brain barrier, making it a
NRF2 activator that can be explored for CNS-related diseases in which oxidative stress and
inflammation have been implicated [222,223]. The pharmacokinetics and metabolism of
alantolactone (10) has been widely reported [224–226]. It has been observed that after oral
and intravenous administration, alantolactone (10) displays low toxicity, absorption and
rapid elimination. The metabolism of alantolactone involves its conjugation with thiols in
which the α,β-unsaturated carbonyl moiety is preferred as the structural metabolic site.
This feature enhances its activation of the NRF2 signaling pathway. It exhibits low oral
bioavailability due to its low aqueous solubility [224–226]. Costunolide (11) is lipophilic
with low polarity, water solubility and good storability [227,228]. The pharmacokinetic
assessment of costunolide (11) was reported by Zhang and co-workers [229]. It takes 10.46h
for costunolide to reach the maximum plasma concentration (Tmax) of 1.29µg/mL and
its elimination half-life (t1/2) is 5.54 h. The pharmacokinetics’ area under the curve (AUC)
of costunolide (11) is 308.83 ngh/mL which represents the area under the graph of blood
plasma concentration against time after the oral administration of a dose. It describes the
actual body exposure to costunolide (11) after dosage [229]. Costunolide (11) has a higher
bioavailability and lower clearance and volume of distribution than several sesquiterpene
lactones including dehydrocostus lactone [230].
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Curcumin (12) is highly lipophilic, with low water solubility (11ng/mL), poor absorp-
tion, bioavailability and rapid metabolism. These features have limited its effectiveness and
usefulness as drug molecule [231]. The maximum curcumin level in patients is 1.8–11 nM
even when high doses of curcumin (12) is administered per day [232]. It has a short half-life
(t1/2) of <45 min and <30 min for oral and intravenous administration. However, the
problem of poor absorption and low bioavailability of this α,β-unsaturated carbonyl-based
flavonoid polyphenol has been solved by the discovery of micro- and nano-formulated
curcumin with >100-fold enhanced absorption and high bioavailability [233]. This requires
evaluation of the NRF2 activity of these formulated curcumins.

Prostaglandins exhibit high lipophilicity and permeate cells through prostaglandin
transporters. They exert their pharmacological effect via binding to prostaglandin recep-
tors [234]. They are administered topically, orally, intravenously and by inhalation [235–237].
Their toxicity is therapy-dependent; however, they are tolerated when it is limited [238].
15-Deoxy-∆12,14-prostaglandin J2 (15d-PGJ2) (13) when administered at high doses, stim-
ulate anti-inflammatory and anti-proliferative dual actions [239]. 15d-PGJ2 (13) exhibits
biphasic pharmacodynamics, and this imposes some difficulties when it is used in free
form [240]. Again, using it at low dose or in an uncontrolled manner induces a reverse
response that could worsen a disease condition [239]. Cell proliferation and apoptosis are
induced by 15d-PGJ2 (13) at low and high doses respectively [240]. Due to its lipophilic
nature, 15d-PGJ2 (13) finds it difficult to penetrate the aqueous cytosol at low dose; there-
fore, a high dose of this compound is required for an effective activation of the cytosolic
KEAP1-NRF2 signaling pathway [239]. In an attempt to improve the solubility, phar-
macokinetics and tissue targeting of 15d-PGJ2 (13), its nano-formulations such as poly
(D,L-lactide-coglycolide) (PLGA) nanocapsules, albumin conjugates and liposomes have
been developed [241–243].

Chalcones are lipophilic in nature and the linker fragment, an α,β-unsaturated car-
bonyl system is the main pharmacophore required for NRF2 activation [24,244]. The
pharmacokinetic evaluation of chalcones shows that several chalcone analogues have
low bioavailability, distribution, rapid metabolism and elimination [245]. The LD50 of
trans-chalcone (14) in mouse was found to be 56 mg/kg when administered intravenously
and >500 mg/kg when it was administered orally and intraperitoneally, this affects its
toxicity [246–248]. Licochalcone A (15) exhibits poor absorption and bioavailability (3.3%).
It displays plasma concentration level in the range of 0.53–530 ng/mL in rat and AUC of
2479.9 and 243.3 ngh/mL for intravenous and oral administration [249]. Isoliquiritigenin
(16) shows absorption percentage of 10.36%, AUC of 0.67 µgh/mL, poor solubility, low
bioavailability and rapid elimination at 35 mg/kg oral administration in mice [250]. Chal-
cone flavokawain A (17) exhibited AUC of 18.0 mgh/mL, Cmax value of 0.7mg/L, Tmax
value of 0.942 h and half-life of 2.021 h in mice after oral administration [251].

The pharmacological profile of DMF (18) as α,β-unsaturated carbonyl-bearing NRF2
activator has been evaluated, and the USA Food and Drug Administration (FDA) has
approved it for the treatment of multiple sclerosis [12]. However, its side effect of 30%
decrease in the lymphocyte count after administration remains a challenge [12,252].

Vinyl sulfones have low solubility in water [253]. Methyl vinyl sulfones have LD50 of
570 mg/kg and 32 uL/kg based on oral and skin administration respectively in rats and
rabbits [254]. Vinyl sulfone analogues reportedly displayed desirable pharmacokinetic and
safety profile in animals such as dogs, primates and rodents [255,256]. Compound 19 shows
poor metabolic stability, solubility and cytochrome P (CYP) inhibition. It displays poor
safety as it blocks >50% of CYP activity after treatment with 10 µM dose. It is metabolically
unstable as only 20% of it remains after incubation for 30 min with the microsomes of hu-
man liver [9]. Compound 20 displayed excellent plasma stability in humans and rats: 98.2
and 90.2% of it remained after incubation for 30 min. It permeates the blood–brain barrier
and exhibits favorable CNS drug permeability of 15.6 × 10−6 [9]. Pharmacokinetically,
compound 20 shows rapid absorption, maximum concentration time of 0.4 h after dosage
and oral bioavailability of 45.3% in rats [9]. Compounds 21, 22 and 23 can permeate the
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neuronal cells and activate NRF2 but their pharmacological profiles need to be further eval-
uated [25]. Sulfonamides are lipophilic and their vinyl analogues permeate the cytosol to
activate the KEAP1-NRF2 signaling [17,257]. The pharmacokinetic and pharmacodynamics
properties of sulfonamides have been widely reported [258,259]. However, these properties
need to be determined for vinyl sulfonamides (24–28). Sulfonates, sulfoxides and their
vinyl analogues (29–34) are lipophilic and permeate cytosol but the pharmacokinetic and
pharmacodynamic properties of their vinyl analogues are yet to be reported [17,32,260].

8. Structure–Activity Relationship of α,β-Unsaturated Structure-Bearing
NRF2 Activators

The bioactivities of NRF2-activating sesquiterpene lactones are mainly dependent on
their α-methylene-γ-butyrolactone (αMγB) structural composition [261,262]. The αMγB
contains the α,β-unsaturated carbonyl system, which reacts with cysteine for NRF2 acti-
vation [262,263]. In parthenolide (8), the structural replacement of the ethylene group of
α,β-unsaturated carbonyl of the αMγB with dimethylamino group that results in the for-
mation of DMAPT (35) (Scheme 5) improves the pharmacological profile and induces NRF2
nuclear localization [215,261]. The replacement of the ethylene group with 2-methyl-6-(1-
methyl-piperidin-4-yl) pyrimidin-4-ol in compound 36 (Scheme 5) reportedly determined a
better biological activity, ADME property and safety profile when compared to partheno-
lide (8) and DMAPT (35) [264] (Scheme 5). However, an improved NRF2 activity has not
been reported about compound 36. In helenalin (9), the presence of OH group decreases its
lipophilicity but the modification of the α-methyl-γ-lactone containing the α,β-unsaturated
carbonyl moiety alters the lipophilicity and improves the pharmacological properties of
helenalin (9) [136,217]. The substitution of H with acetyl group in OH group of helenalin
derivative (37) (Scheme 5) increases the toxicity of helenalin (9) [265]. The incorporation
of amine into the αMγB structure of alantolactone (10) and costunolide (11) enhances
their aqueous solubility and selective binding as Michael acceptors which may affect their
activation of the NRF2 signaling pathway [262,266].
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The α,β-unsaturated carbonyl structural system of chalcones elicits its NRF2-activating
effect [7]. The incorporation of CF3 into ring B of chalcone (14) improves its NRF2 activation,
and the ortho CF3-substituted derivative has been found to be non-cytotoxic and to exhibit
the highest activity. Conversely, the ortho substitution with −NO2 increases toxicity and
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decreases NRF2 activation [267]. The incorporation of 3,4-dihydroxyl group into ring A of
compound 14, improves the neuroprotective activity of chalcone via free radical scavenging
and NRF2 activation, in contrast to what is observed with the introduction of the same
3,4-dihydroxyl group into ring B [268].

The α,β-unsaturated dicarbonyl structural system of DMF (18) is the central chain es-
sentially responsible for HO-1 induction and NRF2 activation [269]. The addition of phenyl
rings directly to the carboxylic groups of DMF (38) results in comparable or better HO-1
inducing activity than DMF (18). The addition of 2-COOH, 4-I and 4-Cl to the two phenyl
rings (38a–e) improves the potency of these DMF derivatives (38a–c) as HO-1 inducers.
The substitution of the ester group with an amide residue (38d,e) significantly enhances
their HO-1 induction and directly improves their NRF2 activation [269] (Scheme 5).

The α,β-unsaturated sulfonyl structural system determines the NRF2-activating effect
of vinyl sulfones, sulfonamides and sulfonates (19–31) [9,17]. The incorporation of Cl−
group to the ortho position of ring B (39) (Scheme 5) improves the NRF2 activation of
compound 19 while substitution with o-pyridine and F− decreases the NRF2 activation.
The methoxy group at position 2,3 and 4 of ring A was found to increase the NRF2
activation of compound 19 with 4-OMe substitution being the highest [9]. OMe− and
Cl− at position 2 of ring A and B respectively in vinyl sulfonamides (24–28) resulted in
improved NRF2 activation [17]. Similarly, the addition of OMe− and Cl− at position 2 of
ring A and B respectively in vinyl sulfonates (29–31) elicits the highest NRF2 activation [17].
The introduction of OMe−, F− and OH− groups to α,β-unsaturated sulfinyl-bearing
sulfoxides (33–34) improves the HO-1 induction and subsequently the NRF2 activation [3]
(Scheme 5). Taken together, for sesquiterpenes lactones, the presence of −NMe3 in the
αMγB moiety increases the NRF2 activity of parthenolide while the presence of –NH2
enhances the NRF2 activity of alantolactone and costunolide. Generally, the presence of
CF3 in the ring B of chalcones improve their ability to activate the NRF2 signaling pathway.
Another approach to increase the NRF2 activity of α,β-unsaturated bearing compounds
is to incorporate another α,β-unsaturated moiety which entails the presence of double
Michael acceptors that will form conjugates with thiol groups of the KEAP1 cysteine
residues. This type of structural modification gives such compounds advantage over their
monofunctional analogs in terms of NRF2 activity as in compounds such as curcumin and
triterpenoids. Based on the SAR studies, structural modification of α,β-unsaturated moiety-
bearing compounds enhances their NRF2 activity, limits the off-target effects common to
several electrophilic NRF2 activator and improves their ability to permeate the blood–brain
barrier, a therapeutic tool in neurological diseases.

9. α,β-Unsaturated-Based NRF2 Activator in Parkinson’s Disease

Taken together, the performance of these α,β-unsaturated moiety-bearing NRF2 induc-
ers in Parkinson’s disease is worthy of attention. Parkinson’s disease can be described as a
neurodegenerative disease characterized by loss of balance, rigidity, postural instability,
slow movements and tremors. It is well established that pathophysiologically, this disease
sets in due to gradual loss of cells in the dopamine-producing area of the brain known as
substantia nigra which occasions deficiency of dopamine that results in weakened muscle
activities, loss of balance and movement disorder. A large body of evidence indicates
that oxidative stress has been implicated in Parkinson’s disease and NRF2 being a key
regulator of endogenous antioxidant has been found a worthy therapeutic target in the
disease. Interestingly, the evidence discussed thus far shows that α,β-unsaturated moiety-
bearing compounds are the most studied NRF2 activators in Parkinson’s disease due to
their therapeutic potentials. About 60% of the α,β-unsaturated-based NRF2 activators
reported were targeted against Parkinson’s disease (Table 1). It shows that compounds
such as DMF, vinyl sulfones, vinyl sulfonamides, vinyl sulfonates and vinyl sulfoxides are
drug candidates for Parkinson’s disease. The available data indicate that the preference for
compounds containing α,β-unsaturated moiety in Parkinson’s disease treatment is related
to their ability to attenuate ROS-mediated dopamine neuronal damage via NRF2 activation.
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10. Conclusions

This update on the NRF2 activity of α,β-unsaturated moiety-bearing compounds
shows that these compounds are essential for the control of pathological mechanisms of
diseases in which oxidative stress has been implicated. Several pharmacological activators
of the NRF2 signaling pathway are electrophilic molecules, most of which are compounds
bearing at least an α,β-unsaturated structure. α,β-unsaturated moieties are abundant
in natural and synthetic compounds. α,β-unsaturated moiety of carbonyl, sulfonyl and
sulfinyl groups are the most reported, probably due to their relatively strong electron-
withdrawing effects. In comparison to the α,β-unsaturated carbonyl group, limited work
has been published on the role of α,β-unsaturated sulfonyl and sulfinyl moieties in NRF2
activations, probably due to their scarcity in nature and limitations in synthesis. Moreso,
α,β-unsaturated carbonyl-based compounds are the most effective NRF2 activator due to
their high reactivity, ease of covalent ligand binding to target proteins, thiol trapping and
ability to react with a wide range of cys-bearing amino acids, peptides and proteins. The
mechanism of action of these α,β-unsaturated systems may vary slightly, but ultimately
leads to the same disruption of the KEAP1-NRF2 complex, electrophilic modification of
KEAP1 cysteine residues and activation of the NRF2 signaling pathway. The reactivity of
α,β-unsaturated systems in Michael addition reactions is influenced by substitution pattern
because the nature and position of substituents in compounds containing these moieties
affect their chemical reactivity with thiols and hence their biological activities. The current
review provides useful information for researchers to evaluate more α,β-unsaturated-based
compounds for NRF2 activity in order to identify lead compounds for the development of
potent and novel NRF2 activators in the treatment of diseases caused by oxidative stress.
However, future research should be directed towards improving their pharmacological
properties via structural modification and harnessing them for specific diseases such as
Parkinson’s disease. Some of the compounds that have performed well as NRF2 activators
should be subjected to clinical trials.
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