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A B S T R A C T

Determining the static and dynamic response of structural cables is a mechanical problem
of theoretical and practical interest in many aspects of civil engineering. In particular, the
cable tension is a fundamental variable to be assigned in direct design problems, as well as
a fundamental unknown to be assessed in inverse identification problems. The present paper
outlines an original analytical strategy for identifying the axial tension of inclined sagged cables
in cable-stayed structures, based on static measurements. Starting from the classic formulation
of an inextensible, perfectly flexible model of catenary suspended cables, a perturbation-based
low-order polynomial approximation of the static configuration under self-weight is achieved
(direct problem). The quadratic and cubic coefficients of the configurational function are tension-
dependent quantities, whose analytical expressions can be mathematically inverted to define
consistent parametric formulas for tension identification (inverse problem). The experimental
assessment of the static cable configuration, which serves as input for the inverse problem, is
provided by the geometric data acquired by modern and noninvasive techniques of non-contact
measurement. The methodological advantage is that the laser scanner acquisition of point
cloud models can efficiently and economically provide precise and redundant three-dimensional
geometric descriptions of the cable configuration, which is suitable for a highly accurate and
statistically robust data treatment. Lastly, the identification strategy is successfully applied to
a real-scale structure, for tension identification in the stays of a cable-stayed footbridge. The
results are discussed from a qualitative and quantitative viewpoint, and finally validated through
a comparison with the outcomes of a dynamic identification procedure based on high-speed
camera acquisitions.

. Introduction

Structural cables are considered among the most elegant, efficient and versatile solutions for resisting, carrying, or transmitting
tatic and dynamic loads, with applications in a growing variety of traditional and emerging engineering fields. Over the past
ecades, cable structures have been studied by several theoretical and applied researchers, interested in investigating their rich
nd fascinating mechanical behavior, as well as in providing reliable recommendations for designers [1–5]. Specifically, the
nherent combination of high material strength, shape-dependent geometric stiffness, low self-weight, aesthetic appeal and economic
onvenience makes cable nets – but also cable-beam, cable-arch and cable-ring collaborating structures – the ideal option for covering
edium to large spans.
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Within this framework, monitoring the health conditions of cable structures is a matter of considerable importance, not only
ecause severe damages can determine collapses, but also because slight and moderate damages can significantly alter and/or early
ompromise the structural performance [6]. Moreover, because of their high flexibility and low inherent damping, structural cables
re often exposed to important nonlinear dynamic phenomena, which have been widely studied in the literature through analytical
nd computational physical–mathematical models [2,7,8].

The current state-of-the-art in the field of non-destructive methods for structural health diagnosis of cables offer several
hysical indicators of damage, which can be classified either in the family of static and dynamic (mechanical) parameters, or in
he complementary family of non-mechanical quantities [9,10]. The most common dynamic indicators can be determined using
ibration-based techniques [11], and include natural frequencies, modal shapes, damping ratios, elastic dispersion properties, among
he others. Non-mechanical indicators are determinable through multi-physical techniques, and vary from magnetic flux densities to
ptically reconstructed image patterns, from ultrasonic emission sources to ray reflection factors. Among the different mechanical
ndicators of cable damage, one of the most important variables is the axial internal force (or cable tension). Indeed, physical–

mathematical models disclose that structural damages consisting of a reduction in the cable axial stiffness determine a tension
loss and a sag increment in the static equilibrium configuration. This twofold peculiar mechanism causes a decrease in geometric
stiffness (softening geometric effect), combined with an increase of the static curvature (hardening static effect), resulting in a
systematic reduction of all linear frequencies and a modification of the symmetric modal shapes [12]. On the one hand, the marked
tension-to-damage sensitivity in direct static and dynamic problems make the cable tension a suited detector for damage existence,
location and severity (a combination of extent and intensity), according to identification procedures conceived as inverse modal
problems and successfully verified through numerical simulations and experimental tests [13]. On the other hand, extensive technical
applications tend to be slowed down by the evidence that cable tensions are also sensitive to different unavoidable mechanisms –
such as softening or hardening effects due to thermal variations, small flexural stiffnesses and non-ideal boundary conditions –,
which can either mask the damage (false negatives) or simulate non-existent damages (false positives). These considerations make
the conception, development, and validation of reliable tension identification procedures an open issue of theoretical and practical
interest and constitute the motivating background for further research studies.

From the methodological viewpoint, several techniques have been investigated in the recent decades to mechanically evaluate
the in-service values of cable tension. Generally, they can be classified in direct and indirect methods. The former provide
accurate and reliable results, but may require large energy consumption and specialized personnel to use expensive load-measuring
instrumentation. The latter are based on the measurement of tension-dependent variables (strains, accelerations) and typically
require easier and cost-effective nondestructive implementations, with lower but acceptable accuracy [14]. A second methodological
classification categorizes mechanical methods for tension identification into static and dynamic techniques. Direct static methods
rely on tension evaluation through a load cell or hydraulic jack, whereas indirect static methods require the statement of an inverse
problem. In particular, the cable tension can be identified from displacement and strain differences between two static configurations
(loaded and unloaded), by considering the length, stiffness, and mass per unit length of cable as unknowns [15]. Dynamic methods
are instead indirect approaches that are generally targeted at identifying the cable tension by solving an inverse modal problem.
Traditional dynamic techniques, typically based on the experimental knowledge of the lowest linear frequencies can provide high
accuracy in the small-amplitude range of free oscillations [16]. However, the identification reliability depends not only on the
uncertainties inherent to the measured data treatment, but also on the richness of the direct problem formulation. In this respect,
comparative studies have highlighted the important role played by the sag-extensibility and flexural stiffness of cables [17].

From the analytical viewpoint, the simplest identification methods employ the taut-string theory, which completely neglects
flexural stiffness and sag, thus returning convincing tension evaluations only for short stay cables anchored with simple supports.
For long cables supported by complicated anchorage devices, combined methods including different experimental techniques are
necessary [18]. As the real dynamic behavior of stay cables deviates from the linear relationship between the frequency and
order of the corresponding mode, caused mainly by the flexural stiffness [19], several methods to correct the assumption of
negligible flexural stiffness have been proposed [20,21]. As a major outcome, approximate modal solutions suited to propose
practical identification formulas have been obtained for cables whose lowest frequencies are measurable, whereas formulas based
on higher and antisymmetric vibration modes have been proposed for long cables, whose low-order modes are hardly excitable.
Refined models have been developed by considering other mechanical effects, such as cable sag [22], sag and inclination angle [23],
dampers attached in the proximity of the lower support [24,25], flexible supports [26]. From the computational viewpoint,
system identification methods that consider both sag-extensibility and flexural stiffness have been proposed in the framework of
finite element analyses, in combination with frequency-based sensitivity-updating algorithms [27]. More recently, similar updating
procedures have been further developed by considering also the spatial variability of dynamic tension, unknown boundary conditions
and lumped masses, with the aim of simultaneously identifying cable tension and other structural parameters [28,29].

Dynamic methods have the complementary advantage of being upgradable for real-time tension evaluation through real-time
frequency identification [30,31]. Different methodologies have been proposed for this purpose, including an approach based
on extended Kalman filters [32], an unsupervised learning algorithm (Complexity Pursuit) applied on a sliding short segment
of two-channel accelerations [33], a novel adaptive sparse time–frequency analysis method (which combines Empirical Mode
Decomposition method and Compressive Sensing theory) to accomplish the need for high resolution in the time–frequency domain
and to reduce noise effects [34].

From the technological standpoint, non-contact techniques for data acquisition are becoming increasingly attractive for cable
monitoring, because they are noninvasive and provide larger quantities of data with lower expenditure of human and instrumental
2
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Fig. 1. Catenary cable suspended between fixed supports: (a) static equilibrium configuration 𝑆 under self-weight, (b) nondimensional configuration functions,
c) support displacements.

esources. Among non-contact systems, laser vibration sensors [35,36], microwave remote sensing [37], acoustic radiation tech-
ology [38], and high-speed camera image processing [39,40] have proven to be very effective in recording cable vibrations for
requency-based tension identification. Such non-contact devices are mostly used for dynamic identification, whereas only a few
nvestigations have been conducted on their use for static identification. Among a few others, a methodology based on static
easurements has been proposed for assessing the force of short suspenders in suspension bridges [41]. Since the frequency-based
ethod did not prove to be suitable, 3D laser scanning has been adopted to evaluate the point coordinates of the main cable

ntersection with suspenders and to implement an iterative convergence strategy for the inverse modeling of a finite element model,
y considering the catenary equation for the equilibrium of the main cable under self-weight.

The key point emerging from the above discussion is that dynamic identification techniques are traditionally preferable because a
ew and easily measurable data (typically the lowest linear frequencies) suffice to provide an accurate and reliable assessment of the
able tension, according to the feasible mathematical inversion of more or less simplified direct modal problems. In contrast, static
dentification techniques are traditionally discarded, because the large amount of experimental data necessary to accurately describe
he static problem solution (typically the static equilibrium configuration) is seldom available. Furthermore, the mathematical nature
f the direct problem solution (catenary cable configuration under self weight) is rather unsuitable for analytical inversion. The
rimary objective of the present paper is to challenge this well-established scenario by (i) providing an analytical – although
symptotically approximate – and original solution for the inverse static problem relating the cable tension (unknown) to the
atenary configuration (data), by employing a tailored perturbation method, and (ii) exploiting the powerful recent developments
n the non-contact technology of laser scanning to achieve a largely accurate level of experimental knowledge for the cable
onfiguration (high accuracy of data).

The paper is organized as follows. Section 2 describes the analytical formulation of the static equilibrium for suspended inclined
ables, the perturbation solution of the direct problem, and its inverse formulation for tension identification. The case of stays in
able-stayed structures is also considered. Section 3 presents an overview of laser scanner technology and illustrates the particular
trategy proposed to process the point cloud model, targeted at obtaining an accurate description of the cable configuration. Section 4
oncerns with the application of the proposed tension identification method to a real-scale structure of interest in civil engineering.
pecifically, the cable tensions in a cable-stayed footbridge are identified. The identification results are discussed and validated
hrough direct comparison with a frequency-based dynamic method. Finally, the concluding remarks are presented.

. Static equilibrium of the suspended cable

The static equilibrium of a suspended cable can be governed by formulating a monodimensional homogeneous continuous model.
y adopting the ideal mechanical hypotheses of infinite axial rigidity and negligible shear and flexural rigidities, the cable model

s assumed to be inextensible in the axial direction and perfectly flexible in the transversal directions. Owing to the inextensibility
onstraint and perfect transversal flexibility, the axial tension 𝑁 must be intended as a reactive internal force, required to be locally
ollinear to the equilibrium configuration. Consequently, searching the cable response under gravity loads poses a geometric shape-
inding problem, the solution of which consists in determining the unknown curvilinear configuration S that satisfies the equilibrium
3

n the vertical plane (Fig. 1).
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2.1. Problem formulation

The cable is supposed hanging between two fixed supports 𝐴 and 𝐵 , placed at different levels, under the sole effect of uniform
self-weight 𝑤 per unit length. For inclined cables characterized by the inclination angle 𝜗, the span 𝐿, indicating the horizontal
inter-support distance, differs from the chord 𝐿𝑐 = 𝐿 sec 𝜗, indicating the inter-support distance. By selecting the horizontal abscissa
𝑋 ∈ [0, 𝐿] as independent variable, the configurational functions 𝑌 (𝑋) has to be determined to locate the Cartesian position of each
able point 𝑃 in the vertical plane. The horizontal and vertical reactions 𝐻 and 𝑉 at the support 𝐴 are also unknown.

Following a classic physical–mathematical formulation, the equilibrium equations governing the static response of inextensible
cables can be derived by introducing the constraint of axial indeformability in the model of elastically deformable cables [1,5].
Specifically, the horizontal component of the axial tension 𝑁(𝑋) can be demonstrated to be constant and coincident with the reaction
𝐻 , while the static equilibrium of the infinitesimal cable element is governed by the nonlinear ordinary differential equation

d2𝑌
d𝑋2

= − 𝑤
𝐻

[

1 +
( d𝑌
d𝑋

)2]1∕2
(1)

which is also known as the catenary equation. The equation is fully characterized by the constant coefficient 𝑤∕𝐻 affecting the
right-hand term. The horizontal reaction 𝐻 plays the role of hyperstatic unknown, to be determined a posteriori by imposing a
geometric compatibility condition, according to a solution strategy resembling the force method. Particularly, the compatibility
condition requires the cable inextensibility 𝐿𝑒 = 𝐿0, where 𝐿0 is the natural length of the cable and 𝐿𝑒 is the total arc-length of
curved equilibrium configuration S. Naturally, an admissible solution can exist only if the natural length of the cable exceeds the
inter-support chord length (mathematically, if the admissibility condition 𝐿0 > 𝐿𝑐 is satisfied).

Solving analytically Eq. (1) for the boundary conditions 𝑌 (0) = 0 and 𝑌 (𝐿) = 𝐿 tan 𝜗 returns a transcendental configurational
unction 𝑌 (𝑋), depending parametrically on the mechanical and geometrical data (𝑤,𝐿, 𝜗, 𝐿0). Geometrically, the solution describes
he so-called catenary curve and also allows the analytical determination of the axial tension 𝑁(𝑋) = 𝐻

[

1 +
(

𝑌 ′(𝑋)
)2]1∕2 in the cable

Direct problem). Conversely, if some mechanical information is missing (𝐿0), the knowledge of the remaining data (𝑤,𝐿, 𝜗), together
ith the experimental measure of the equilibrium configuration described by the function 𝑌 (𝑋) can be sufficient to identify the axial

ension 𝑁 in the cable (Inverse problem or Identification problem). Since the inversion of the direct problem may be mathematically
hallenging if the exact catenary solution is considered, an approximate – although asymptotically convergent – polynomial solution
f the direct problem can be sought for, based on a suited perturbation approach.

.2. Perturbation solution of the direct problem

Perturbation methods are powerful asymptotic techniques that are widely used in a large variety of scientific research fields,
anging from direct problems concerning linear and nonlinear dynamics, stability and bifurcation [42–45] to inverse problems
ealing with modal identification, optimal spectral design, damping and damage detection [46–51]. Perturbation methods are also
lassical and well-established strategies to study different problems in cable mechanics, including static behaviors [52,53], linear
nd nonlinear dynamic phenomena [2,3,54–57], aerodynamic instabilities [58–60], active vibration control [61,62].

Due to their typical lightness (small 𝑤) and high tensioning (large 𝐻), structural cables tend to be characterized by geometric
loseness (or shallowness) between the static equilibrium configuration and the inter-support chord. Consequently, the static problem
or shallow cables can properly be reformulated by expressing the configuration function in the form 𝑌 (𝑋) = 𝑌𝑐 (𝑋) + 𝑍(𝑋) =
tan 𝜗 + 𝑍(𝑋). The known function 𝑌𝑐 (𝑋) = 𝑋 tan 𝜗 accounts for the vertical coordinate of the inter-support chord 𝐿𝑐 , while the

ew configuration variable 𝑍(𝑋) describes the small dip of the static configuration S below the chord (Fig. 1b). After the change
f variable, Eq. (1) becomes

d2𝑍
d𝑋2

= − 𝑤
𝐻

[

1 +
(

tan 𝜗 + d𝑍
d𝑋

)2 ]1∕2
(2)

while the boundary conditions for fixed supports become homogeneous, reading 𝑍(0) = 0 and 𝑍(𝐿) = 0.
Due to the smallness of the variable 𝑍(𝑋), an asymptotic technique can profitably be adopted to pursue approximate

solutions tending to the exact solution for increasing orders of a small nondimensional bookkeeping parameter. To this purpose,
nondimensional quantities

𝑥 = 𝑋
𝐿
, 𝑧 = 𝑍

𝐿
, 𝛬 =

𝐿0
𝐿

cos 𝜗, 𝛿 = 𝑤𝐿
8𝐻

, (3)

where the parameter 𝛬, also known as aspect ratio, is the ratio between the natural length and the inter-support chord. The key
arameter 𝛿 expresses instead the ratio between the approximate cable weight 𝑤𝐿 sec 𝜗 and the approximate chord-aligned reaction
𝐻 sec 𝜗. By introducing nondimensional variables and parameters, the static equilibrium Eq. (2) reads in nondimensional form

d2𝑧
d𝑥2

= −8 𝛿
[

1 +
(

tan 𝜗 + d𝑧
d𝑥

)2 ]1∕2
(4)

and the boundary conditions read 𝑧(0) = 0 and 𝑧(1) = 0. In this form, the role of hyperstatic unknown is played by the 𝐻-dependent
parameter 𝛿. The nondimensional compatibility condition reads 𝛬𝑒 = 𝛬, where 𝛬𝑒 = (𝐿𝑒∕𝐿) cos 𝜗, while the nondimensional
4

ompatibility condition reads 𝛬 > 1.
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Although unknown a priori, the parameter 𝛿 can certainly be considered small by hypothesis, as direct consequence of the
assumption of cable shallowness. Therefore, a suited mono-parameter ordering is introduced by setting

𝛿 = 𝜖𝛿1 (5)

where 𝜖 ≪ 1 is a nondimensional parameter with no physical meaning but a mere bookkeeping (scaling) role, regulating the
smallness of the 𝜖-ordered quantities. According to a standard perturbation strategy, the unknown variable 𝑧(𝑥) is postulated to
be approximable by a finite series of 𝑛 terms 𝑧𝑖(𝑥), scaled by increasing integer 𝜖-powers

𝑧[𝑛](𝑥) =
𝑛
∑

𝑖=1
𝜖𝑖 𝑧𝑖(𝑥) = 𝜖 𝑧1(𝑥) + 𝜖2𝑧2(𝑥) +...+ 𝜖𝑖𝑧𝑖(𝑥) +...+ 𝜖𝑛𝑧𝑛(𝑥) (6)

where the functions 𝑧𝑖(𝑥) work as independent unknown variables. Once all the functions 𝑧𝑖(𝑥) are determined for 𝑖 = 1,… , 𝑛, the
approximate 𝑛th solution 𝑧[𝑛] is expected to asymptotically tend to the exact solution for growing 𝑛-values (increasing approximation
orders).

Substituting the parameter ordering (5) and the variable expansion (6) in the nonlinear Eq. (4), expanding and collecting terms
of the same 𝜖-power, an ordered hierarchical system of linear perturbation equations is obtained. Leaving aside the higher orders
of the second (considering that the approximation order 𝑛 ≤ 2 is sufficient for the purposes of the present work), the system reads

𝜖1 ∶
d2𝑧1
d𝑥2

= −8 𝛿1 sec 𝜗, (7)

𝜖2 ∶
d2𝑧2
d𝑥2

= −8 𝛿1 sin 𝜗
d𝑧1
d𝑥

, (8)

while homogeneous boundary conditions 𝑧𝑖(0) = 0 and 𝑧𝑖(1) = 0 must be imposed at each order.
The system solutions can be obtained straightforwardly by attacking the linear equations in cascade, starting from the uncoupled

lowest order (7), returning the generating solution 𝑧1(𝑥). Thereafter, the second order (8) states an ordinary differential non-
homogeneous equation involving only the second derivative of the unknown variables 𝑧2(𝑥), at the left hand, and the known
derivatives of the generating solution 𝑧1(𝑥), at the right hand. The solutions are polynomial functions reading

𝜖1 ∶ 𝑧1(𝑥) = 4 𝛿1 sec 𝜗 𝑥(1 − 𝑥) (9)

𝜖2 ∶ 𝑧2(𝑥) =
16
3 𝛿

2
1 tan 𝜗 𝑥(1 − 𝑥)(1 − 2𝑥), (10)

where 𝑧1(𝑥) and 𝑧2(𝑥) can be recognized to be a quadratic 𝑥-function, affected by multiplier 𝛿1, and a cubic 𝑥-function, affected by
multiplier 𝛿21 , respectively. Furthermore, 𝑧1(𝑥) and 𝑧2(𝑥) can be recognized to be a symmetric and an antisymmetric function with
espect to the midspan (𝑥 = 1∕2).

Therefore, the asymptotic solution can be reconstructed by substituting the perturbation solutions (9) and (10) in the series (6),
aking care about properly inverting the ordering relation (5) to completely reabsorb the parameter 𝜖. The reconstructed solution

reads

𝑧[2](𝑥) = 4 𝛿 sec 𝜗
(

1 + 4
3 𝛿 sin 𝜗

)

𝑥 − 4 𝛿 sec 𝜗 (1 + 4𝛿 sin 𝜗) 𝑥2 + 32
3 𝛿

2 tan 𝜗 𝑥3 (11)

that is a cubic function, in which the second-order antisymmetric contribution 𝑧2(𝑥) perturbs the symmetry of the first order
ontribution 𝑧1(𝑥). From the mathematical viewpoint, the reconstructed solution 𝑧[2](𝑥) is expected to approximate the exact solution
ith difference belonging to the order (𝜖3), or (𝛿3) after reabsorption. From the mechanical viewpoint, an intuitive physical

nterpretation of the smallness (𝛿3) can be given by noting that the lowest-order approximation of the cable sag (dip at midspan)
s 𝑧1(1∕2) = 𝛿 sec 𝜗. Such crucial result discloses an alternative physical interpretation of the key parameter 𝛿, which actually
xpresses the sag-to-span ratio of the parabolic cable characterized by a certain aspect ratio 𝛬, suspended between leveled supports
for inclination angle 𝜗 = 0).

The hyperstatic unknown 𝛿 remains to be determined by imposing the compatibility condition 𝛬𝑒 = 𝛬. According to differential
eometry, the nondimensional arc-length 𝛬𝑒 has the integral expression

𝛬𝑒 = cos 𝜗∫

1

0

[

1 +
(

tan 𝜗 + d𝑧
d𝑥

)2 ]1∕2
d𝑥 (12)

which can be asymptotically approximated by operating accordingly to the perturbation scheme ruled by Eqs. (5) and (6).
Specifically, the perturbation-based solution of the integral returns the second-order approximation

𝛬[2] = 1 + 8
3
𝛿2 cos2 𝜗 (13)

which is expected to approximate the exact length 𝛬𝑒 with difference of order (𝛿4), which is fully consistent with the approximation
order of the solution 𝑧[2](𝑥).

To summarize, approaching the direct problem requires (i) to assign the chord inclination 𝜗 and cable aspect ratio 𝛬, which are
the only free nondimensional parameters, and (ii) to solve the compatibility equation 𝛬[2] = 𝛬 in the hyperstatic unknown 𝛿. The
inclination angle must be chosen in the range 0 ≤ 𝜗 < 𝜋∕2. The aspect ratio must be assigned without violating the admissibility
5
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Fig. 2. Exact hyperstatic unknown 𝛿 (black dots) compared with its asymptotic approximation 𝛿[2] (blue surface): (a) fixed supports and varying mechanical
parameters in the relevant range of aspect ratios 𝛬 ∈ [100∕100, 105∕100] and inclination angles 𝜗 ∈ [0, 𝜋∕4], (b) fixed mechanical parameters (𝛬 = 102∕100,
𝜗 = 𝜋∕8) and displaceable supports in the admissible ranges 𝛥𝑥 ∈ [−16∕1000, 16∕1000] and 𝛥𝑦 ∈ [−16∕1000, 16∕1000].

condition 𝛬 > 1 and respecting the requirement of shallowness 𝛬 − 1 = (𝛿2) that follows from Eq. (13). Therefore, the hyperstatic
unknown can be determined as

𝛿[2] =
(

3
8
(𝛬 − 1)
cos2 𝜗

)1∕2
(14)

where it can be noted that the condition 𝛬 > 1 systematically suffices to ensure real-valued solutions. In this respect, it can be
remarked that the null value 𝛿[2] = 0 (no sag) is recovered for the limit case 𝛬→ 1 (natural length equal to the chord), as expected
for inextensible cables.

A parametric analysis carried out to compare the exact hyperstatic unknown 𝛿 with its asymptotic approximation 𝛿[2] is illustrated
in Fig. 2. The effective accuracy of the approximation in the relevant range of aspect ratios 𝛬 and inclination angles 𝜗 is qualitatively
certified by the closeness between the loci of 𝛿-values (numerically determinable and marked by black dots) and 𝛿[2] (analytically
evaluated and described by the blue surface). From the quantitative viewpoint, the asymptotic approximation 𝛿[2] can be recognized
to slightly overestimate the exact solution 𝛿 for large aspect ratios and high inclination angles. Nonetheless, the relative difference
(𝛿[2] − 𝛿)∕𝛿 is systematically lower than 0.03 in all the (𝛬, 𝜗)-parameter space, apart in the limit region where 𝛬 → 1 and 𝛿 → 0.

Once hyperstatic unknown 𝛿[2] is known, the reconstructed solution 𝑧[2](𝑥) is determined and can be employed in the inverse
change of coordinate necessary to assess the second-order approximation of the cable configuration function

𝑦[2](𝑥) = tan 𝜗 𝑥 + 𝛾2𝑥 + 𝛾1𝑥2 + 𝛾0𝑥3 (15)

where the first term describes the vertical coordinate of the cable chord and can be recognized to belong to (𝛿0), consistently with
the perturbation approach. The independent configurational coefficients of the other terms read

𝛾0 =
32
3 𝛿

2
[2] tan 𝜗 𝛾1 = −4 𝛿[2] sec 𝜗

(

1 + 4𝛿[2] sin 𝜗
)

(16)

whereas the last configurational coefficient 𝛾2 is dependent on the others according to the relation 𝛾2 = −(𝛾0 + 𝛾1). It is worth noting
that 𝛾0 > 0 and 𝛾1 < 0, by definition.

Finally, the nondimensional axial tension 𝜈 = 𝑁∕𝐻 is an 𝑥-dependent function that can be determined by leveraging the
nondimensional relation

𝜈(𝑥) =

[

1 +
(

d𝑦
d𝑥

)2
]1∕2

(17)

which, consistently with the other variables, can be asymptotically approximated accordingly to the same perturbation scheme.
Skipping all the technical details, its second-order approximation reads

𝜈[2](𝑥) = sec 𝜗 + 4𝛿[2] tan 𝜗(1 − 2𝑥) + 8
3 𝛿

2
[2] sec 𝜗

[

2 − 12 𝑥(1 − 𝑥) + cos2 𝜗
]

(18)

which is expected to approximate the exact length 𝛬𝑒 with difference belonging to the order (𝛿3), which is fully consistent with
the approximation order of the solution 𝑧 (𝑥).
6
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2.3. Inverse problem for tension identification

In the inversion of direct mechanical problems, the data and unknowns typically exchange their respective roles. More precisely,
certain discretion may exists in selecting the data actually available (typically a measurable subset of all the possible data), as well
s in choosing one or more preferred unknowns to be primarily identified (among all the missing information). Therefore, direct
nd inverse problems may share part of the data and/or part of the unknowns.

Focusing on the particular system under investigation and starting from the data, some geometric and mechanical information
f the direct problem are considered known also for the inverse problem. Specifically, the uniform weight per unit length 𝑤, the

span 𝐿 and the inclination angle 𝜗 of the cable are assumed known. This assumption does not contradict the spirit of the present
work, because – even if they were unknown a priori – all these quantities would be actually measurable by means of merely static
or geometric procedures. It is worth noting that the natural cable length 𝐿0 (or equivalently the aspect ratio 𝛬) is not assumed
known.

Turning to the unknowns, the direct problem returns the equilibrium configuration of the cable, as primary result described
by the configurational function 𝑌 (𝑋), and the cable tension 𝑁(𝑋), as complementary result. Differently, the inverse problem
adopts the nondimensional function 𝑦(𝑥) as known information, while the cable tension 𝑁(𝑋) remains as primary unknown to be
determined. Specifically, if shallow cables are considered, the equilibrium configuration can be described with sufficient accuracy
by the nondimensional cubic approximation 𝑦[2](𝑥), so that the configurational data reduce to the pair of independent coefficients
𝛾0 and 𝛾1. In this respect, the experimental assessment of the coefficients is a technical matter of data treatment for geometric
restitution, which is methodologically detailed in the next Section.

Once the two configurational coefficients are experimentally assessed, determining the cable tension is an overdetermined
problem, featuring two data (𝛾0 and 𝛾1) and one unknown (the tension 𝑁(𝑥), or equivalently its horizontal component 𝐻). Instead
of recurring to classical solution schemes (like, for instance, the method of least squares), it may be convenient to recall that –
according to the perturbation scheme – the quadratic coefficient 𝛾1 (being (𝛿)) is larger than the cubic coefficient 𝛾0 (being (𝛿2)).
Therefore, it can be expected that the quadratic coefficient 𝛾1 might be experimentally assessed with higher precision, and thus could
be preferred for the analytical identification of the horizontal tension. Accordingly, if the coefficient 𝛾1 is known, the second of the
Eqs. (16) states a quadratic algebraic equation in the unknown nondimensional sag-to-span ratio 𝛿. Once the algebraic equation is
solved, the last of parametric relations (3) can be inverted to identify the horizontal reaction according to the formula

�̂� = 𝑤𝐿
8𝛿

= −
1 +

√

1 − 2�̂�1 sin(2𝜗)
4�̂�1 cos 𝜗

𝑤𝐿 (19)

where the overhat indicates directly measured quantities, or quantities identified from measures. It is worth remarking that the
formula (19) returns positive tensions �̂� > 0, since �̂�1 < 0 and 0 ≤ 𝜗 < 𝜋∕2. Therefore, the cubic coefficient �̂�0 can profitably be
employed to evaluate the quality of the identification by checking the smallness of the quantity

𝑒 = 𝑤𝐿
�̂�

√

tan 𝜗
6�̂�0

− 1 (20)

which expresses the relative difference between the 𝛾0-based and 𝛾1-based identification. As a major remark, the tension identification
does not require the knowledge of the aspect ratio 𝛬 = (𝐿0∕𝐿) cos 𝜗, that is, the natural length 𝐿0 of the cable is not an information
required in the inverse problem. Although counter-intuitive, this advantageous point is mechanically justified by considering that
the aspect ratio influences only the hyperstatic unknown 𝛿 (see Eq. (14)). The hyperstatic unknown, however, influences only the
coefficients 𝛾0 and 𝛾1 (see Eq. (16)), which – in the inverse problem – are not calculated but experimentally assessed. As a minor
remark, the identification formulas (19) and (20) can be expressed in fully dimensional form by replacing �̂�1 → �̂�1𝐿 and �̂�0 → �̂�0𝐿2,
where �̂�1 and �̂�0 are the identifiable coefficients of the dimensional cubic configuration 𝑌[2](𝑋) = tan 𝜗𝑋 + 𝑘2𝑋 + 𝑘1𝑋2 + 𝑘0𝑋3.

Finally, the variable axial tension 𝑁(𝑥) can be determined by employing the dimensional form of Eq. (17). By conveniently
adopting the second order approximation (18), the axial tension can be approximated as 𝑁[2](𝑋) = 𝐻𝜈[2](𝑋∕𝐿) in the direct problem.

onsistently, in the inverse problem it can be identified according to the formula

�̂�(𝑋)=�̂� sec 𝜗 + 𝑤𝐿 tan 𝜗
2

+
𝑤2𝐿2(2 + cos2 𝜗)

24�̂� cos 𝜗
−
𝑤 (𝑤𝐿 + 2�̂� sin 𝜗)𝑋

2�̂� cos 𝜗
+ 𝑤2𝑋2

2�̂� cos 𝜗
(21)

where a constant and a 𝑥-dependent part can be recognized. The minimal approximation formula �̂� ≃ �̂� sec 𝜗 can be extracted, by
retaining only the lowest-order term.

2.4. Tension identification in cable stayed structures

Cables are mostly employed as sustaining or stiffening elements in geometrically complex and highly hyperstatic engineering
structures, composed by several three-dimensional interconnections of different structural members (cables, beams, arches, plates).
Consequently, extending the static strategy for tension identification to cable-stayed structures can be a matter of theoretical and
applied interest.

According to the direct stiffness method and without loss of generality, the other structural members can be considered to interact
with a stay cable through static nodal loads exerted at the cable ends. Therefore, it is possible to demonstrate analytically that the
solution of the inverse problem can be expressed independently of the nodal loads, provided that the data of the inverse problem
7
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account for the nodal displacements of the cable ends. Briefly, the demonstration can be based on: (i) extending the asymptotic
solution of the direct problem in order to parametrically include the effects of generic nodal displacements at the cable ends, (ii)
proving mathematically that the analytical inversion of the extended solution provides an identification formula for the cable tension
that can be systematically reduced to the formula obtained for fixed supports, (iii) recalling the assumptions of the inverse problem,
according to with the static configuration of the cable (including nodal displacements) is completely known from experimental
measurements.

First, the direct problem can be reformulated by relaxing the assumption of fixed supports. Consequently the horizontal and
ertical displacements at the supports 𝐴 and 𝐵 can be described by the nondimensional quantities 𝑥𝐴 = 𝑋𝐴∕𝐿, 𝑦𝐴 = 𝑌𝐴∕𝐿
nd 𝑥𝐵 = 𝑋𝐵∕𝐿, 𝑦𝐵 = 𝑌𝐵∕𝐿 (Fig. 1c). The static configuration function of the inextensible cable suspended between displaceable
upports can be expressed in the form 𝑦𝑑 (𝑥) = 𝑦𝑑 (𝑥)+𝑧𝑑 (𝑥) = 𝑎1+𝑎0𝑥+𝑧𝑑 (𝑥). The known function 𝑦𝑑 (𝑥) = 𝑎1 + 𝑎0𝑥, with coefficients
0 =

(

𝑦𝐵 − 𝑦𝐴 + tan 𝜗
)

∕
(

1 − 𝑥𝐴 + 𝑥𝐵
)

and 𝑎1 =
[

𝑦𝐴(1 + 𝑥𝐵) − 𝑥𝐴(𝑦𝐵 + tan 𝜗)
]

∕
(

1 − 𝑥𝐴 + 𝑥𝐵
)

describes the vertical coordinate of the
hord between the displaced supports. By following an asymptotic strategy similar to the perturbation method described in
ection 2.2, the new configuration variable 𝑧𝑑 (𝑥) can be asymptotically approximated in polynomial series (algorithmic details
re reported in [63]). Considering terms up to the second order, the reconstructed configuration function has the cubic form

𝑦𝑑[2](𝑥) = 𝑎1 + 𝑎0𝑥 + 𝑧[2](𝑥) = 𝑎1 + 𝑎0𝑥 + 𝛽2𝑥 + 𝛽1𝑥2 + 𝛽0𝑥3 (22)

here the high-order coefficients reads

𝛽0 =
32
3 𝑎0𝛿

2
[2], 𝛽1 = −4𝛿[2](𝑐0 + 4𝑎0𝛿[2](1 + 𝑥𝐴 + 𝑥𝐵)), 𝛽2 =

4
3 𝛿[2]

(

3𝑐0(1 + 𝑥𝐴 + 𝑥𝐵) + 4𝑎0𝛿[2]𝑄𝑥
)

, (23)

where the auxiliary quantities 𝑄𝑥 = 𝑥2𝐴+4𝑥𝐴(1+𝑥𝐵)+ (1+𝑥𝐵)2 and 𝑐20 = 1+𝑎20 have been introduced. By imposing the compatibility
condition of cable inextensibility, the hyperstatic unknown 𝛿[2] can be determined analytically as an explicit function of the support
displacement differences 𝛥𝑥 = 𝑥𝐵 − 𝑥𝐴 and 𝛥𝑦 = 𝑦𝐵 − 𝑦𝐴 [63]. This dependence is illustrated in Fig. 2b.

Second, a couple of auxiliary nondimensional parameters �̃� = �̃�∕𝐿 and �̃� = arctan �̃�∕�̃� can be introduced, where �̃� = 𝐿−𝑋𝐴+𝑋𝐵
nd �̃� = 𝐿 tan 𝜗−𝑌𝐴+𝑌𝐵 . By virtue of these definitions, a proper change of coordinates 𝑥 → �̃�+𝑥𝐴, 𝑦→ �̃�+𝑦𝐴 and a few appropriate
eparameterizations tan 𝜗 → 𝑦𝐴 − 𝑦𝐵 + (1 − 𝑥𝐴 + 𝑥𝐵) tan �̃�, 𝛿 → 𝛿∕�̃�, 𝑥𝐵 → �̃� − 1 + 𝑥𝐴 allow to express the configuration function
22) in the form

�̃�[2](�̃�) = tan �̃��̃� + �̃�[2](�̃�) = tan �̃��̃� + 𝛽2�̃� + 𝛽1�̃�2 + 𝛽0�̃�3 (24)

here the independent quadratic and cubic coefficients read

𝛽0 =
32
3 𝛿

2 tan �̃�, 𝛽1 = −4 𝛿 sec �̃�
(

1 + 4𝛿 sin �̃�
)

(25)

while the linear coefficient 𝛽2 = −
(

𝛽0 + 𝛽1
)

. It is fundamental to remark that the configuration function (24) is formally analogous
to the configuration function (15) for fixed supports, except for the redefinition of the variables and parameters. Noteworthy, in the
new space of variables and parameters the coefficients do not explicitly depend on the support displacements.

Finally, by exploiting the mathematical analogies between the configuration functions (15) and (24) and recalling the relation
𝛿 = 𝛿∕�̃�, the identification formula for the horizontal tension in the cable suspended between supports undergoing generic
displacements reads

𝐻 = 𝑤𝐿
8𝛿

�̃� = −
1 +

√

1 − 2𝛽1 sin(2�̃�)
4𝛽1 cos �̃�

𝑤�̃� (26)

where, remarkably, the knowledge of the support displacements is unnecessary. Differently, the minimal necessary information
consists of the parameter set �̃�, �̃�, 𝛽1. According to the reparameterizations, they can be recognized as the cable span �̃�, the
nclination angle �̃� and the nondimensional quadratic coefficient 𝛽1. By definition, they pertain to the cubic configuration attained
y the cable under self weight and support displacements and, by hypothesis of the inverse problem, are known (measurable)
uantities.

To exemplify, the tension identification strategy is applied to the inclined stay supporting the cable-stayed beam (Fig. 3), which is
widely recognized paradigmatic system for studying the static and dynamic collaboration between beams and cables in complex

able structures [64,65]. The solution of the static problem for Euler–Bernoulli beam (with axial stiffness 𝐸𝐴, flexural stiffness 𝐸𝐼 ,
elf-weight 𝑤𝑏) and inclined catenary or cubic inextensible cable (with span 𝐿, inclination angle 𝜗, aspect ratio 𝛬 and self-weight 𝑤)

can be determined exactly [66]. Considering the cubic cable, the exact solution can synthetically be described by a minimal set of
significant unknowns, including the horizontal tension 𝐻 , the displacements 𝑈 = 𝑋𝐵 and 𝑉 = −𝑌𝐵 at the cable-beam node, and the
quadratic coefficient 𝑘1 = 𝛽1𝐿. Assigned certain mechanical parameters as data for the direct problem, the values obtained for this
nknowns are reported in Table 1. Therefore, by deterministically adopting these exact results as noise-free pseudo-experimental data
or the inverse problem (which implies calculating the (𝑈, 𝑉 )-dependent reparameterizations �̃�, �̃� and �̃�1 = 𝛽1�̃� that are actually

measured in real experimental applications), the cable tension 𝐻 can be verified to be successfully identified without errors by
employing the formula (26).
8
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Fig. 3. Cable-stayed beam: (a) reference configuration (cable with fixed supports), (b) static equilibrium configuration.

Table 1
Solutions of the direct and inverse static problem for the cable stayed beam (with assigned mechanical parameters 𝐿 = 10, 𝜗 = 𝜋∕8, 𝛬 = 1005∕1000, 𝑤 = 1∕10000,
𝐸𝐴 = 10000, 𝐸𝐼 = 1000, 𝑤𝑏 = 1∕20).

Unknown 𝐻 𝑈 𝑉 𝑘1 �̃� �̃� �̃�1
Result 0.00356772 −0.0000036 −0.06217854 −0.01602858 9.99999643 0.39799479 −0.01615834

3. Geometric reconstruction of the cable configuration

The inverse problem for tension identification considers the cable tension as primary unknown and the geometric static config-
ration as known information, as discussed in the previous Section. The geometric configuration can be determined experimentally
y non-contact measurement devices, such as cameras and scanners, and returned as a three dimensional point cloud model (Phase 1

– Point cloud acquisition). Such kind of experimental data needs to be post-processed to achieve a geometric description of the cable
configuration that is coherent with the analytical formulation of the inverse identification problem (Phase 2 – Cubic configuration from
data). Therefore, this section aims at, first, briefly reporting a general overview about three-dimensional point cloud acquisitions
with the available laser scanning technologies and, second, describing the particular post-processing data treatment proposed to
achieve the coherent geometric reconstruction of the cable configuration. For the sake of comparison, a short description of the
alternative image-based technologies of vibration measurement that will be used in the following to validate the identification
results is reported in Appendix.

3.1. Laser scanning point cloud acquisition

Point cloud models are discrete sets of data points describing the geometry of an object or volume. Three-dimensional models
can be generated by using technologies that exploit images from camera or data from different non-contact scanner categories [67].
Both these tools allow a non-contact acquisition of the geometry data, but scanning technology is less time-consuming, is rather
independent of light conditions and also does not require additional data processing to extract coordinate information from
images [68]. Among other available technologies, the scanning process based on optical reflections of laser signals is encountering
increasing success for structural health monitoring applications. The three-dimensional geometric reconstruction of structures is
obtained by sending exploring laser beams consisting of electromagnetic signals propagating in the optical wavelength range,
namely photonic waves or photons. The wave signals can be reflected by the target surface of the scanned object. Some of reflected
signals come back to the photosensitive sensor of the scanner. The inter-distance between the device and reflecting points of the
object surface can be evaluated and, depending on the distance evaluation method, laser scanners can be classified into different
categories [67]. Specifically, triangulation scanners trigonometrically determine the triangle formed by the camera, the transmitter
that sends the laser beam, and the spot of the laser beam (intersection of the beam with the object). Time-of-flight systems, also called
pulse measurement systems, measure the time taken by the laser beam (propagating with known velocity) to be reflected back to the
photosensitive sensor. Differently, phase-shift systems, which emit continuous laser beams, measure the phase shift between the sent
nd the received signals. Finally, structured light scanners are based on the projection of a pattern; by using a camera, the analysis
f pattern deformations caused by the object shape allows to reconstruct the three-dimensional position of several points at once.

.2. Cubic configuration from point cloud

The geometric curved profile assumed by a suspended cable hanging on a vertical plane under self-weight is supposed to be
escribed by the dataset  (cloud model) of 𝑛𝐶 laser-scanned points. The generic 𝑖th point 𝑃𝑖 ∈  is pointed by the position vector

𝐗𝑖 = (𝑋𝑖, 𝑌𝑖, 𝑍𝑖), within an Cartesian reference system of orthogonal coordinates in a three-dimensional space (with 𝑖 = 1,… , 𝑛𝐶 ).
9

The origin point is located at the laser source. The vertical mid-plane of the point cloud (Fig. 4) is fully defined by its intersection
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Fig. 4. Identification of the vertical mid-plane of the cable: (a) vertical plane on which the suspended cable hangs; (b) vertical mid-plane orientation and
roto-translation of the reference system.

with the Cartesian horizontal plane 𝛱(𝑋, 𝑌 ), described by a straight line equation 𝑌 = 𝑎𝑋 + 𝑏. On a statistical base, an accurate
identification of the coefficients 𝑎 and 𝑏 is given by their mean values

�̂� = 1
𝑚𝑅

∑

𝑅

𝑎𝑖𝑗 , �̂� = 1
𝑚𝑅

∑

𝑅

𝑏𝑖𝑗 , (27)

where 𝑅 is a generic set of 𝑚𝑅 pairs (𝑃𝑖, 𝑃𝑗 ) of non coincident points (𝑖 ≠ 𝑗), and the coefficients 𝑎𝑖𝑗 and 𝑏𝑖𝑗 are identified according
to the geometric formulas

𝑎𝑖𝑗 =
𝑌𝑖 − 𝑌𝑗
𝑋𝑖 −𝑋𝑗

, 𝑏𝑖𝑗 =
𝑋𝑖𝑌𝑗 −𝑋𝑗𝑌𝑖
𝑋𝑖 −𝑋𝑗

(28)

and the set dimension 𝑚𝑅 = 𝑛𝐶 (𝑛𝐶 − 1) if all the cloud points are employed. Otherwise, 𝑚𝑅 = 𝑛2𝑅 if a point cloud model reduction
is performed, that is, if a suited subset of 2𝑛𝑅 < 𝑛𝐶 points is selected to reduce the computational effort. To this end, a proper
selection criterion could be to consider 𝑛𝑅 points 𝑃𝑖 close to the lower cable support (𝑖 = 1,… , 𝑛𝑅) and 𝑛𝑅 points 𝑃𝑗 close to the
upper support (𝑗 = 1,… , 𝑛𝑅). Actually, this selection criterion (Criterion SC1) tends to maximize the denominators in Eqs. (28) and
preserves the identification of coefficients 𝑎𝑖𝑗 and 𝑏𝑖𝑗 against the excessive dispersion of results, caused by the high sensitivity to
small denominators. As a minor remark, formulas (27) could be further simplified by taking advantage of their natural properties
of symmetry (𝑎𝑖𝑗 = 𝑎𝑗𝑖 and 𝑏𝑖𝑗 = 𝑏𝑗𝑖).

A suited change of coordinates is required to make the reference system coherent with the assumptions of the direct problem.
The 𝑖th point 𝑃𝑖 ∈  is pointed by the position vector 𝐗′

𝑖 = (𝑋′
𝑖 , 𝑌

′
𝑖 , 𝑍

′
𝑖 ) in the new reference system, which is generated by a

roto-translational. First, the origin point is translated in the upper support of the cable, whose position is assumed known. Second, a
rotation lets the vertical Cartesian plane 𝛱(𝑋′, 𝑍′) of the rotated new reference system coincide with the mid-plane of the point cloud
(Fig. 4b). Consequently, the out-of-plane coordinate is considered sufficiently small to be negligible (𝑌 ′

𝑖 ≃ 0) for all the cloud points
in the following. Within this geometric framework, the identification of the cubic configuration of the cable from the point cloud
is a two-dimensional problem in the plane 𝛱(𝑋′, 𝑍′). The problem can be formulated in nondimensional variables and parameters

𝜉 = 𝑋′

𝐿
, 𝜓 = −𝑍

′

𝐿
, 𝜗 = arctan

(𝐵
𝐿

)

, (29)

where 𝐿 and 𝐵 are here the measured horizontal and vertical distances between the cable supports, which can be assumed known,
according to the statement of the inverse problem.

With the aim of formally exploiting the analogy with the perturbation-based solution of the direct problem, the cable
configuration described by the laser-scanned points can be assumed to be accurately interpolated by the cubic function 𝜓(𝜉) =
𝜅3+𝜅2𝜉+𝜅1𝜉2+𝜅0𝜉3. It may be worth highlighting that (i) in the direct problem the cubic nature of the configuration function 𝑦[2](𝑥)
is an analytical result, following from the second-order asymptotic approximation of the catenary function, whereas (ii) in the inverse
problem, the cubic nature of the configuration function 𝜓(𝜉) is a postulate, somehow inspired by the direct problem solution, but
essentially based on the fine interpolation accuracy granted by high-order polynomials.

Since two coefficients (𝜅3 and 𝜅2) are determinable by imposing the boundary conditions 𝜓(0) = 0 and 𝜓(1) = tan 𝜗 (applicable
by assuming known the support positions), the cubic function reads

𝜓(𝜉) = tan 𝜗 𝜉 − (𝜅1 + 𝜅0)𝜉 + 𝜅1𝜉2 + 𝜅0𝜉3, (30)

where the undetermined coefficients 𝜅0 and 𝜅1 have to be assessed on the base on experimental measures, since they play the role
of known data in the inverse problem of tension identification.
10
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The two coefficients 𝜅0 and 𝜅1 can be univocally identified from the knowledge of any pair of two cloud points with
ondimensional position vectors 𝐱𝑖 = (𝜉𝑖, 𝜓𝑖) and 𝐱𝑗 = (𝜉𝑗 , 𝜓𝑗 ), according to the expressions

𝜅0𝑖𝑗 =
𝜉𝑖𝜓𝑗 (1 − 𝜉𝑖) − 𝜉𝑗𝜓𝑖(1 − 𝜉𝑗 ) + 𝛥(𝜉𝑖, 𝜉𝑗 )

𝜉𝑖 𝜉𝑗 (1 − 𝜉𝑖)(1 − 𝜉𝑗 )(𝜉𝑖 − 𝜉𝑗 )
, 𝜅1𝑖𝑗 =

𝜉𝑗𝜓𝑖(1 − 𝜉2𝑗 ) − 𝜉𝑖𝜓𝑗 (1 − 𝜉
2
𝑖 ) − 𝛴(𝜉𝑖, 𝜉𝑗 )

𝜉𝑖 𝜉𝑗 (1 − 𝜉𝑖)(1 − 𝜉𝑗 )(𝜉𝑖 − 𝜉𝑗 )
, (31)

here the auxiliary quantities

𝛥(𝜉𝑖, 𝜉𝑗 ) = 𝜉𝑖 𝜉𝑗 (𝜉𝑖 − 𝜉𝑗 ) tan 𝜗, 𝛴(𝜉𝑖, 𝜉𝑗 ) = 𝜉𝑖 𝜉𝑗 (𝜉𝑖 + 𝜉𝑗 )(𝜉𝑖 − 𝜉𝑗 ) tan 𝜗, (32)

have been introduced. Therefore, by denoting 𝑆 a generic set of 𝑚𝑆 pairs (𝑃𝑖, 𝑃𝑗 ) of non coincident points (𝑖 ≠ 𝑗), a statistically
accurate identification of the coefficients 𝜅0 and 𝜅1 is given by their mean values

�̂�0 =
1
𝑚𝑆

∑

𝑆

𝜅0𝑖𝑗 , �̂�1 =
1
𝑚𝑆

∑

𝑆

𝜅1𝑖𝑗 (33)

where the set dimension 𝑚𝑆 = 𝑛𝐶 (𝑛𝐶 − 1), if all the cloud points are employed, or 𝑚𝑆 = 𝑛2𝑆 if a suited subset of 2𝑛𝑆 < 𝑛𝐶 points is
selected to reduce the computational effort.

Some mathematical similarities and differences between the identification of the cable mid-plane, based on Eqs. (28), and the
identification of the cable configuration, based on Eqs. (31), can be pointed out. Although based on the same logic, the suited
selection criteria for the sets 𝑅 and 𝑆 may differ from each other. Indeed, a proper selection criterion for 𝑆 could be to consider
two clusters of points. Cluster 1 includes the 𝑛𝑆 points 𝑃𝑖 that are closest to the cable abscissa 𝜉1 = (5 −

√

5)∕10 (roughly, points
ranging between the upper third and fourth of the cable configuration) Cluster 2 includes the 𝑛𝑆 points 𝑃𝑗 that are closest to the
able abscissa 𝜉2 = (5+

√

5)∕10 (roughly, points ranging between the lower third and fourth of the cable configuration). This selection
criterion (Criterion SC2) tends to maximize denominators in Eq. (31), with the aim of avoiding excessive dispersion in the statistical
dentification of coefficients 𝜅0𝑖𝑗 and 𝜅1𝑖𝑗 . On the other hand, similarly to formula (28) for the identification of the cable mid-plane,
ormulas in (31) for the identification of the cable configuration could be further simplified by taking advantage of their properties
f symmetry (𝜅0𝑖𝑗 = 𝜅0𝑗𝑖 and 𝜅1𝑖𝑗 = 𝜅1𝑗𝑖).

Once identified, the coefficients �̂�0 and �̂�1 suffice to completely assess the configuration of the suspended cable. Finally, the
formal analogy between the analytical cubic solution (15) and the geometric cubic interpolation (30) can be invoked to, first, relate
the coefficients �̂�0 = �̂�0 and �̂�1 = �̂�1 and, second, to identify the cable tensions �̂� and �̂�(𝑥), according to the formulas (19) and (21),
espectively. From an application perspective, it may be worth remarking that the quadratic coefficient 𝜅1 physically describes the

larger (constant) contribution to the static curvature of the cable configuration, according to the perturbation scheme. Therefore,
an accurate geometric reconstitution of the cable configuration, sufficient to identify even low 𝜅1-values, is necessary to apply
the tension identification procedure to real engineering structures, which are often characterized by highly-tensioned (low sagged)
cables. Following the analytical formulation carried out in Section 2.4 for cable-stays, in cable-stayed structures the formal analogy
can be established between the experimental cubic function 𝜓(𝜉) and the extended solution �̃�[2](�̃�) defined in (24) to, first, relate the
oefficients 𝛽0 = �̂�0 and 𝛽1 = �̂�1 and, second, to identify the cable tensions �̂� according to the formula (26), where the parameters �̃�
nd �̃� indicate the cable span and inclination angle assessed experimentally (that is, including the effects of support displacements).

. Real-scale application

A pedestrian cable-stayed bridge crossing the Sangone river (namely the Footbridge Albano Zuin in Beinasco, a small city of the
urin province in Italy, see Fig. 5) has been selected as testbed to verify the effectiveness and accuracy of the proposed tension

dentification approach in real-scale applications. In order to favor reproducibility, this Section illustrates the bridge structure and
escribes the technical characteristics of the instrumentation for non-contact geometric reconstruction and vibration measurement.
herefore, the identification results are presented and discussed. The result validation is finally provided by comparison with the

ndependent findings of a dynamic (frequency-based) output-only identification method, employing both accelerometer records and
mage-based vibration signals.

.1. Bridge description

The cable-stayed footbridge is a steel truss structure, built in 2004. The bridge is characterized by an access ramp and a deck,
oth supported by steel columns. The ramp and deck are also sustained by a fan system of stay cables anchored at the top of a steel
ubular pylon, slightly inclined and 45 m tall, hinged at the base. The steel truss-type beam of the deck is sustained, on the South
ide, by an access concrete staircase that is located at the center of the access ramp (see Fig. 5a). The deck is 80 m long, 3 m wide
nd 1.65 m tall, with a 50 m free span featured by slight curvature (in the horizontal plane) and inclination (in the vertical plane).
he deck structure is composed of three main tubular members and smaller cross-members. The fan system of pretensioned steel
ables is composed by ten spiral strands (with circular 28 mm diameter cross-section) sustaining the access ramp, seven locked coil
trands (42 mm diameter) sustaining the deck (see anchorage points of the seven cables supporting the deck in Fig. 5b), and nine
ocked coil stabilization strands (40 and 42 mm diameters) connecting the pylon to the ground. All the cables are anchored to the
amp and the deck through fork-type lugs with an adjustable threaded rod. In the context of a retrofitting intervention, other data
ave been made available, including the nominal design values of the cable tensions in the original structural design.
11
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Fig. 5. Footbridge Albano Zuin in Beinasco (Italy): (a) aerial view of the cable-stayed pedestrian bridge, (b) plan view of the bridge, anchorage points of the
seven cables supporting the deck and position of the high-speed camera.

Fig. 6. Point cloud model of the Albano Zuin bridge: (a) lateral view of the complete color point cloud model; (b) aerial view of the model region including
the seven stay cables supporting the deck.

The three-dimensional geometric configuration of the whole bridge structure has been acquired through the terrestrial laser
scanner Cam2 Laser Scanner Focus Faro 𝑥 130 (130 m unambiguity interval, 0.6 m–130 m Range Focus3D X 130 HDR,
122000/244000/ 488000/976000 points/s measurement speed, ±2 mm distance error), by carrying out 26 scanning stations for
a total of 7 h of acquisition. The merging of the different scans has been performed in the post-processing stage by recognizing
homologous points, at least three, based on the recording of GPS positions. The laser scanned data, in combination with the high
resolution pictures captured by the integrated camera have allowed to obtain the three-dimensional photorealistic (RGB colored)
point cloud model depicted in Fig. 6a. The geometric part of the point cloud model is made up of over 120 million points. The
model region including the seven stay cables supporting the deck is illustrated in Fig. 6b.

Dynamic measurements of the stay cables vibrating out-of-plane under impulsive excitation have been acquired by both
accelerometers and a high-speed camera. The accelerometer-based instrumentation network included 6 uniaxial piezoelectric
wired accelerometers, PCB 393B31 with ICP technology (10.0 V/g sensitivity, 0.5 g peak measurement range, 200 Hz sampling
frequency). The camera-based system consisted of the high-speed camera IO Industries Flare 12M125xCL (monochrome, F-mount,
4096 × 3072 resolution, 5.5 × 5.5 μm pixel size, 100–200 fps sampling frequency) and the digital recorder CORE2CLPLUS IO DVR,
Core 2, supporting camera link connection up to 4 base inputs and up to 2 full inputs with four 240 GB video storage module
(VIDIOMOD240). The camera has been installed on the concrete cantilever of the stairs (in the central area of the ramp) and it
has been able to record the out-of-plane vibrations of cables SP15 and SP16 (see Fig. 5b). The dynamic tests have been performed
individually for each cable. The displacement time histories have been obtained by using a local approach of the Digital Image
Correlation technique (see the Appendix for details).

4.2. Cable tension identification

The tension identification strategy outlined in the previous Sections has been applied to the seven cables supporting the footbridge
deck, labeled from SP10 (the longest and least inclined cable) to SP16 (the shortest and most inclined cable) and identified by their
anchorage points in Fig. 5b. Other known data (chord length 𝐿𝑐 and inclination angle 𝜗) of the cables are reported in Table 2. The
longest cable SP10 has been selected as case study to discuss some technical issues recurring for all the seven cables.

First, the position data of the point cloud model have been processed to identify the vertical mid-plane of each cable, through
the evaluation of the mean coefficients �̂� and �̂� from Eq. (27). The (𝑎𝑖𝑗 , 𝑏𝑖𝑗 )-values have been obtained according to formulas (28) for
𝑚𝑅 pairs of points (𝑃𝑖, 𝑃𝑗 ) of the subset 𝑅 (with 𝑚𝑅 = 𝑛2𝑅 and 𝑛𝑅 = 100), defined according to selection criterion SC1. Fig. 7a shows
all the (𝑎𝑖𝑗 , 𝑏𝑖𝑗 )-values obtained for cable SP10. From the qualitative viewpoint, it may be remarkable that all the positions of the
(𝑎 , 𝑏 )-values associated to the same point at position 𝐗 (for 𝑗 = 1,… , 𝑛 ) are almost perfectly aligned along a certain direction
12
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Table 2
Cable data and results of the static identification strategy from the point cloud model (𝑛𝑅 = 𝑛𝑆 = 100).

Cable 𝐿𝑐 [m] 𝜗 �̂�1 �̂�0 𝛿 𝑒 �̂� [kN] 𝜎2𝐻 [kN2] �̂� [kN] 𝜎2𝑁 [kN2]

SP10 52.66 0.5722 −3.30E−02 4.50E−04 8.14E−03 1.18E−04 79.71 3.16E−01 94.82 4.48E−01
SP11 49.56 0.6481 −5.21E−02 8.44E−03 1.27E−02 7.62E−03 46.57 8.05E−02 58.41 1.27E−01
SP12 46.38 0.7309 −1.18E−01 1.51E−04 2.80E−02 −5.05E−03 20.10 2.45E−02 27.00 4.41E−02
SP13 44.45 0.8261 −1.74E−01 2.76E−03 4.03E−02 −5.74E−03 12.53 9.15E−03 18.49 1.99E−02
SP14 42.07 0.9414 −6.28E−02 3.14E−03 1.53E−02 1.89E−03 31.23 1.84E−02 53.05 5.32E−02
SP15 40.93 1.0358 −2.47E−01 1.76E−02 5.62E−02 3.13E−03 8.39 3.18E−03 16.46 1.22E−02
SP16 39.03 1.1118 −1.01E−01 5.78E−04 2.42E−02 −2.20E−03 18.15 5.33E−03 40.96 2.71E−02

Fig. 7. Configuration of cable SP10 reconstructed from the point cloud model (𝑛𝑅 = 𝑛𝑆 = 100): (a) coefficients 𝑎𝑖𝑗 , 𝑏𝑖𝑗 from the dataset 𝑅 of point pairs (𝑃𝑖 , 𝑃𝑗 )
selected according to the selection criterion SC1; (b) point cloud model of cable SP10 (red dots) with point clusters 1 and 2 (blue crosses) selected according
to the selection criterion SC2; (c) coefficients 𝜅0𝑖𝑗 , 𝜅1𝑖𝑗 from the dataset 𝑆 of point pairs (𝑃𝑖 , 𝑃𝑗 ) selected according to the selection criterion SC2; (d) overlap
of the reconstructed cable configuration (blue cubic curve) with the point cloud model (red dots).

of the (𝑎, 𝑏)-plane. This behavior can be mathematically justified by the closeness of all the selected points at positions 𝐗𝑗 . Indeed,
following the selection criterion SC1, all the positions 𝐗𝑗 refer to a cluster of close points in the proximity of the upper support.
Therefore, the variation of the coefficients 𝑎𝑖𝑗 (𝑋𝑗 , 𝑌𝑗 ) and 𝑏𝑖𝑗 (𝑋𝑗 , 𝑌𝑗 ) associated to the same position 𝐗𝑖 but different positions 𝐗𝑗
can be estimated through the differentials

d𝑎𝑖𝑗 =
𝜕𝑎𝑖𝑗 (𝑋𝑗 , 𝑌𝑗 )

𝜕𝑋𝑗
d𝑋𝑗 +

𝜕𝑎𝑖𝑗 (𝑋𝑗 , 𝑌𝑗 )
𝜕𝑌𝑗

d𝑌𝑗 , d𝑏𝑖𝑗 =
𝜕𝑏𝑖𝑗 (𝑋𝑗 , 𝑌𝑗 )

𝜕𝑋𝑗
d𝑋𝑗 +

𝜕𝑎𝑖𝑗 (𝑋𝑗 , 𝑌𝑗 )
𝜕𝑌𝑗

d𝑌𝑗 , (34)

so that, after partial differentiation of the functions defined in Eq. (28), it can be concluded that the ratio d𝑏𝑖𝑗∕ d𝑎𝑖𝑗 = −𝑋𝑖 is
systematically a constant for each fixed position 𝐗𝑖. This discussion gives qualitative explanation, but also quantitative evaluation
(being arctan(−𝑋𝑖) the direction angle of the aligned results for the position 𝐗𝑖) for the particular result pattern in the (𝑎, 𝑏)-plane.
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Fig. 8. Cable tension identification of the seven cables supporting the deck from the point cloud model (𝑛𝑅 = 𝑛𝑆 = 100): (a) comparison of static and dynamic
identification results �̂� and �̂�𝑑 with design values �̂�𝑠; (b) difference 𝛥�̂� between static and dynamic tension identification results.

Subsequently, the position data of the point cloud model in the vertical mid-plane have been further processed to identify the
quadratic and cubic coefficients �̂�0 and �̂�1 defining the cubic configurational function of each cable, according to Eqs. (33). The
(𝜅0𝑖𝑗 , 𝜅1𝑖𝑗 )-values have been obtained according to formulas in (31) for 𝑚𝑆 pairs of points (𝑃𝑖, 𝑃𝑗 ) of the subset 𝑆 (with 𝑚𝑆 = 𝑛2𝑆 and
𝑆 = 100), defined according to selection criterion SC2. To exemplify, the 2𝑛𝑆 points belonging to the clusters 1 and 2 selected

for cable SP10 are marked by blue crosses in Fig. 7b. The corresponding (𝜅0𝑖𝑗 , 𝜅1𝑖𝑗 )-values in the (𝜅0, 𝜅1)-plane are illustrated in
ig. 7c. Similarly to the (𝑎𝑖𝑗 , 𝑏𝑖𝑗 )-identification, all the positions of the (𝜅0𝑖𝑗 , 𝜅1𝑖𝑗 )-values associated to the same point at position 𝐗𝑖
for 𝑗 = 1,… , 𝑛𝑅) are almost perfectly aligned along a certain direction of the (𝜅0, 𝜅1)-plane. Again, a qualitative physical explanation
s related to the closeness of all the positions 𝐗𝑗 . The explanation can be supported by a quantitative mathematical argument based
n evaluating the differentials d𝜅0𝑖𝑗 (𝑋𝑗 , 𝑌𝑗 ) and d𝜅1𝑖𝑗 (𝑋𝑗 , 𝑌𝑗 ). Specifically, it can be proved that the ratio d𝜅1𝑖𝑗∕ d𝜅0𝑖𝑗 is systematically

equal to the constant −(𝜉𝑖 + 1) for each fixed position 𝐗𝑖. Fig. 7d illustrates the cubic curve (blue line) univocally defined by the
identified coefficients 𝜅0 and 𝜅1. The high fitting accuracy can be appreciated from the comparison with the point cloud model (red
dots).

Finally, the horizontal reaction �̂� and the axial tension �̂� are respectively identified by using Eqs. (19) and (21), where only
the lowest order term has been considered. The complete outputs of the identification procedure for all the seven stays, including
both intermediate results (configurational coefficients �̂�0 and �̂�1) and final results (sag-to-span ratio 𝛿, horizontal reaction �̂� and
axial tension �̂�) are summarized in Table 2. Considering than the identified quantities 𝛿, �̂� , �̂� can be regarded as mean values
over the criterion-dependent subset 𝑆 of 𝑚𝑆 point pairs in the cloud model, the corresponding variances 𝜎2𝐻 and 𝜎2𝑁 have been
determined to give an account of the result dispersion. Furthermore, the effects of different reductions of the point cloud model
(different 𝑚𝑆 -values) are discussed in one of the next subsections.

Focusing first on the quadratic configurational coefficient �̂�1, very low-amplitude mean values ranging from �̂�1 = −0.0330
(longest cable SP10) to �̂�1 = −0.247 (short cable SP15) have been identified, with minimal dispersion of the identification results
(considering that the corresponding variances, here not reported for the sake of synthesis, are two or three orders of magnitude
lower than the mean). This finding confirms that the geometric precision and resolution of the point cloud model are sufficient for
the tension identification in all the low-sagged cables of the footbridge. As regards cubic coefficient 𝜅0, ranging between 0.0002
(long cable SP12) and 0.0176 (short cable SP15), the identified values are at least one or two orders of magnitude lower than those
of coefficient 𝜅1. This experimental evidence supports a posteriori the ordering of the parameters postulated a priori to develop the
perturbation-based solution of the direct problem.

Focusing on the horizontal reaction �̂� and axial tension �̂� , a high variability of mean values, ranging from �̂� = 94.82 kN
(longest cable SP10) to �̂� = 16.46 kN (short cable SP15), has been found. The general quality of the tension identification is
evidenced by the minimal dispersion of the results, described by variances ranging from 𝜎2𝑁 = 0.448 kN2 (longest cable SP10)
to 𝜎2𝑁 = 0.0122 kN2 (short cable SP15), and is also confirmed by the very low values attained by the independent quantity 𝑒
(maximum absolute value |𝑒| = 0.008), expressing the relative difference between the �̂�-identifications based on the cubic and
quadratic configuration coefficients. From the physical viewpoint, the identified scenario clearly shows that the two longest cables
are characterized by the highest axial tensions, also corresponding to the largest static curvatures and midspan sags. Fig. 8 shows
the statically identified tensions �̂� (blue bars) compared with the nominal design values �̂�𝑠 (yellow bars) for all the cables. The
comparison highlights a certain tension loss in the majority of the cables (Fig. 8a). The largest losses, probably attributable to
long-term phenomena of stress relaxation, can be recognized in the two longest, highly tensioned cables. Shorter cables exhibit
lower tension losses, or even moderate tension increments, probably caused by time-dependent redistributions of internal forces in
the highly hyperstatic structural system.
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Fig. 9. Identification of out-of-plane frequencies based on peak-picking method for cable SP15: (a) PSD of accelerometer signal (acceleration); (b) PSD of camera
ignal (displacement).

Table 3
Frequency-based cable tension identification.
Cable 𝑓1 [Hz] 𝑓2 [Hz] 𝑓3 [Hz] 𝑓4 [Hz] 𝑓5 [Hz] �̂�𝑑 [kN] 𝛥�̂� [%]

SP10 – – 2.76 3.69 – 94.89 −0.08
SP11 – – – 3.08 3.83 58.78 −0.39
SP12 – – – – 2.73 26.02 1.04
SP13 – – – 1.98 – 19.54 −1.11
SP14 – – – 3.05 – 41.68 11.99
SP15 0.50 1.00 1.57 2.14 2.79 17.83 −1.45
SP16 0.84 1.69 2.58 3.44 – 44.31 −3.54

4.3. Validation of results

An independent identification of cable tension has been performed by using a reliable dynamic method based on the analytical
nversion of the frequency-to-tension relationship. According to the classic cable model [1], which assumes parabolic static profile,
inear elastic behavior and negligible longitudinal inertia, the linear frequencies and modes characterizing the undamped out-of-
lane motion in the small amplitude oscillation range are sag-independent. Moreover, the circular (square) frequency 𝜔2

𝑘 depend on
the constant axial tension 𝑁 and the uniformly distributed mass density 𝑚 according to the (string-like) relation

𝜔2
𝑘 = 4𝜋2𝑓 2

𝑘 = 𝑘2𝜋2

𝐿2
𝑐

𝑁
𝑚

(35)

where 𝑘 ∈ N is the mode number. The relation can be easily inverted to assess the cable tension 𝑁 if a frequency 𝑓𝑘 is experimentally
identified and the other quantities are known.

The dynamic identification of the lowest cable frequencies has been based on the so-called peak-picking method, which consists
in selecting the frequency 𝑓𝑘 corresponding to the 𝑘th peak in the Power Spectral Density (PSD) function associated to displacement
or acceleration time histories. In the absence of sufficient ambient excitation, the free out-of-plane motion of the cables has
been activated by hammer impacts, and subsequently recorded by the high-speed camera (displacements) and the accelerometers
(accelerations). Particular care has been taken to discard time windows of high amplitude oscillations, in order to avoid possible
frequency variations due to nonlinearities. The modal damping values, estimated by the method of logarithmic decrement, have
turned out to be sufficiently small to permit long acquisition records and not to alter the free oscillation frequencies. As expected, the
displacement signals captured by the high-speed camera have provided higher and easier distinguishable peaks in the Power Spectral
Density functions, especially in the low-frequency range. To exemplify, the PSD functions of selected acceleration and displacement
time histories of the cable SP15 are illustrated in Fig. 9. Compared with the acceleration PSD function, the displacement PSD function
allows to easily recognize the equispaced distribution of high frequency peaks typical of the linear (𝑓𝑘, 𝑘)-relations.

The frequencies identified for all the cables are listed in Table 3, together with the axial tensions �̂�𝑑 identified according to the
dynamic method by using the lowest mode. The dynamically identified tensions �̂�𝑑 (red bars) are also compared with the statically
identified tensions �̂� (blue bars) in Fig. 8a. The comparison highlights an excellent agreement between the results, which can be
quantitatively evaluated by the nondimensional quantity

𝛥�̂� =
�̂� − �̂�𝑑 (36)
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Fig. 10. Contact point between cables SP14 and SP16: (a,b) detail pictures; (c) point cloud region.

which turns out to be less than 0.5% for the longest cables (SP10, SP11), and less than 1.5% for other shorter cables (SP12, SP13,
SP15). The 𝛥�̂�-values determined for each cable are reported in Table 3 and also plotted in Fig. 8b. From the mathematical
viewpoint, it is worth remarking that the static results do not show any marked tendency of underestimation or overestimation
compared to the dynamic results. This evidence indicates that the static procedure is not affected by undesired systematic bias.
Lower agreement is found for cable SP16 (𝛥�̂� ≃ −3.5%) and – especially – cable SP14 (𝛥�̂� ≃ 12%). A tentative explanation for
this disagreement can be traced to constructional issues, since the upper ends of cable SP14 and SP16 are so close enough to
touch each other during small-amplitude motions (as illustrated by pictures and point cloud data in Fig. 10). On the one hand, the
contact is suspected of creating a non quantifiable dynamic interaction between the two cables (due to the presence of a non-smooth
unilateral inter-cable constraint) and, consequently, disturbing the dynamic tension identification, based on the hypothesis of free
undamped oscillations. On the other hand, the contact point may have determined local losses of geometric accuracy in the point
cloud description of the two cables. Since the employment of the selection criteria SC1 and SC2 has allowed to exclude the inter-cable
contact region from the data, the tension values resulting from the static identification procedure are expected to be more reliable.

4.4. Effects of point cloud model reduction

The proposed strategy for tension identification basically relies on the statistical treatment of the point dataset  realizing the
cloud model. Naturally, high-dimensional models – like those acquired by modern high-resolution laser scanners – may slow down
the numerical procedures of data processing or still require considerable computational resources. Therefore, model reductions
targeted at selecting particular data subsets according to proper selection criteria (SC1 and SC2) can be conveniently adopted to
reduce the computational burden without compromising the result accuracy. According to these considerations, some parametric
analyses have been carried to assess how the model dimension influences the tension identification. The number 𝑛𝑅 = 𝑛𝑆 = 𝑛 has
been considered as synthetic parameter describing the point cloud dimension. Indeed, larger 𝑛-value (up to 𝑛max = 3200) allows to
increase the dimension of the sets 𝑅 and 𝑆 used to identify the mid-plane and the configurational coefficients of the cable.

The first point of interest concerns the effect of different point cloud reductions on the 𝑛-dependent geometric size of the clusters
1 and 2 used to identify the configurational coefficients according to the selection criterion SC2. This sizes can be estimated by
defining the quantities

𝜉1 =
1
𝑛

𝑛
∑

𝑖=1
(𝜉𝑖 − 𝜉1), 𝜉2 =

1
𝑛

𝑛
∑

𝑗=1
(𝜉𝑗 − 𝜉2), (37)

expressing the mean horizontal distance 𝜉1 of the 𝑛 points 𝑃𝑖 ∈ 1 from the abscissa 𝜉1 and the mean horizontal distance 𝜉2 of the
𝑛 points 𝑃𝑗 ∈ 2 from the abscissa 𝜉2. The results are reported in Fig. 11a,b for the investigation range 50 ≤ 𝑛 ≤ 𝑛max. The major
remark is that the mean distances 𝜉1 and 𝜉2 remain systematically low (specifically 𝜉1 < 0.002 and 𝜉2 < 0.001 for the worst case
related to cable SP12) up to large 𝑛-values (namely up to 𝑛 ≃ 1600). A rapid increment of the mean distances occurs only for larger
𝑛-values (e.g. 𝑛max = 3200). This finding confirms that the selection criterion SC2 can be applied with mathematical consistency
(closeness of the clusters 1 and 2 to the points 𝜉1 and 𝜉2) without loss of statistical accuracy in the identification (poor dataset
due to excessive model reduction). Furthermore, the evaluation of the mean horizontal distances shows that the density of the point
cloud is lower for cable SP12 (the size of the clusters 1 and 2 is higher compared to other cables). Consequently, the quality of
point cloud data may not be the same for all cables because it depends on the position of the scanned elements with respect to the
laser scanner.

The second point of interest relates to the effect of different point cloud reductions on the static identification of axial tensions. To
this aim, the identified axial tension can be considered as 𝑛-dependent variable �̂�(𝑛) and the nondimensional identification difference

𝛥�̂�𝑛 =
�̂�(𝑛) − �̂�(𝑛max) . (38)
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Fig. 11. Effects of the point cloud model reduction on the static identification results: (a) size 𝜉1 versus dimension 𝑛 of the point cluster 1; (a) size 𝜉2 versus
dimension 𝑛 of the point cluster 2; (c) tension identification difference 𝛥�̂�𝑛 versus the 𝑛-dependent point cloud reduction.

can be introduced to evaluate how more or less reduced point cloud model influences the identification. The results are reported
in Fig. 11c for the investigation range 50 ≤ 𝑛 ≤ 𝑛max. The major remark is that the identification difference shows small variations
(specifically |𝛥�̂�𝑛| < 2%) for all the cables and over almost the entire investigation range (namely for 𝑛 > 50). This finding confirms
that the selection criterion SC2 applied with 𝑛 = 100 in the previous sections would be minimally affected by considering larger
datasets given by less reduced point cloud models.

5. Conclusions

A novel strategy for identifying the axial tension in inclined, sagged and perfectly flexible cables has been proposed, which
virtuously combines physical–mathematical models with contactless digital technologies. The primary idea, conceived within the
framework of theoretical structural mechanics, is that analytical – although asymptotically approximate – solutions of the differential
problem governing the static cable equilibrium can contribute decisively to the recognition of highly sensitive tension-dependent
configurational quantities. The complementary idea, developed in the rapidly-evolving field of new digital technologies, is that
modern techniques of laser scanning can provide three-dimensional descriptions of the cable configuration with unprecedented
levels of geometric accuracy and resolution.

First, a mono-parametric perturbation method has been formulated to achieve a suitable analytical (polynomial) solution that
parametrically approximates the static equilibrium configuration assumed by a suspended perfectly flexible cable under self-weight
(direct problem). From a methodological viewpoint, the peculiarity of the perturbation method is that only unknown quantities require
to be ordered in power series of a small bookkeeping parameter. As a major finding, the polynomial coefficients of the configurational
function have been analytically related to cable tension. The inversion of the coefficient-to-tension relations provides parametric
formulas for tension identification (inverse problem). Although the development of the perturbation scheme has been limited to lower
orders, its extension to higher orders is expected to improve the analytical approximation to the desired accuracy. The identification
strategy has also been demonstrated to be directly applicable to cable stays used as stiffening or supporting members in cable-stayed
structures, by virtue of minor reparameterizations of the inverse problem data.

Second, a numerical algorithm has been outlined for the statistical reconstruction of the configurational coefficients from the
experimental point cloud model acquired by a laser scanner (configuration reconstruction). The algorithm differs slightly from standard
interpolation schemes because of the physically-informed constraints, which affect the boundary conditions and selection criteria
for reduced datasets.

Finally, the identification strategy has been applied on a real-scale structure of engineering interest. Specifically, the axial
tensions in the stays of a cable-stayed footbridge have been identified. Qualitative and quantitative issues have been discussed
to physically justify and mathematically interpret the systematic patterns characterizing the intermediate and final results in the
identified parameter space. The mean identification outputs have been found to be associated with low dispersion throughout the
algorithmic procedure, whereas the final results have been verified to be minimally affected by dimensional reductions in the input
dataset based on mathematical criteria. Therefore, the strategy has been successfully validated by the excellent agreement of the
results with an independent output-only dynamic approach, implementing a frequency-based tension identification.

Considering the advantages and disadvantages, the proposed static strategy of tension identification is limited by the impossibility
of monitoring time-varying cable forces owing to dynamic phenomena. Nonetheless, in addition to being theoretically consistent
and technologically feasible, the static strategy has the competitive advantage of not requiring any artificial or environmental source
of excitation. Thus, it is not subject to the limitations imposed by dynamic identification methods, such as knowledge of excitation
17

(input–output methods) or assumptions about its statistical properties (output-only methods).
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ppendix

.1. Image-based vibration measurements

Dynamic image analysis is a non-contact digital measurement technique, which has been proved to be convenient and
fficient for vibration recording and structural identification. The technical convenience and efficiency can be attributed to the
urrent availability of high resolution and high-speed cameras and the development of increasingly performing visual tracking
lgorithms [69,70]. Different visual tracking techniques can be applied to extract displacements from the matching of different image
bjects [71]. Template matching techniques perform the sliding of a selected Region of Interest (ROI) across series of images; to find
he best matching, their similarity is evaluated through the minimization of the sum of squared differences or the maximization of
he cross-correlation. Feature tracking algorithms find the similarity of small region of the image characterized by distinct features
intensities, gradients, textures) which remain unchanged during the registration by evaluating Euclidean or Hamming distances.
ith geometry matching methods, the tracking is performed on geometry objects, such as edge, square, circle.
One of the most used techniques in the field of structural dynamics, and referred to in this work, is the Digital Image Correlation

DIC), which is based on a template matching approach. According to this technique, the motion is determined by considering two
mage frames with gray scale intensity 𝐼(𝐱, 𝑡) and 𝐼(𝐱, 𝑡+ 𝛥𝑡) of each pixel 𝐱 shot at times 𝑡 and 𝑡+ 𝛥𝑡. Let 𝐮(𝐱) be the displacement,

between the two image frames, of a pixel at location x with intensity 𝐼(𝐱, 𝑡), the equation

𝐼(𝐱, 𝑡) = 𝐼(𝐱 + 𝐮(𝐱), 𝑡 + 𝛥𝑡) (A.1)

corresponds to the local gray level conservation. This is a scalar equation with 𝑛 unknowns (𝑛 = 2 in 2D case, 𝑛 = 3 in 3D case)
which cannot be solved at pixel level. Therefore, the registration is performed on a set of pixels referred to as Zone Of Interest (ZOI),
or on the Region Of Interest (ROI) itself [72]. A norm between the signal difference is chosen

𝜂2𝑐 (𝐮) =
∑

𝛺

[

𝐼(𝐱, 𝑡) − 𝐼(𝐱 + 𝐮(𝐱), 𝑡 + 𝛥𝑡)
]2 (A.2)

where 𝛺 is the considered domain (ZOI or ROI) where the registration is performed. The displacements are obtained through the
minimization of 𝜂2𝑐 with respect to u. If Eq. (A.2) is written on ZOI, by assuming that u is a rigid body translation, the minimization
of such norm corresponds to maximize the correlation between the two image frames.
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