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Stochastic Gradient Descent‑like 
relaxation is equivalent 
to Metropolis dynamics in discrete 
optimization and inference 
problems
Maria Chiara Angelini 1,2*, Angelo Giorgio Cavaliere 3, Raffaele Marino 4 & 
Federico Ricci‑Tersenghi 1,2,5

Is Stochastic Gradient Descent (SGD) substantially different from Metropolis Monte Carlo dynamics? 
This is a fundamental question at the time of understanding the most used training algorithm in 
the field of Machine Learning, but it received no answer until now. Here we show that in discrete 
optimization and inference problems, the dynamics of an SGD-like algorithm resemble very closely 
that of Metropolis Monte Carlo with a properly chosen temperature, which depends on the mini-
batch size. This quantitative matching holds both at equilibrium and in the out-of-equilibrium 
regime, despite the two algorithms having fundamental differences (e.g. SGD does not satisfy 
detailed balance). Such equivalence allows us to use results about performances and limits of Monte 
Carlo algorithms to optimize the mini-batch size in the SGD-like algorithm and make it efficient at 
recovering the signal in hard inference problems.

Algorithms have become ubiquitous in modern life1, with numerous applications in fields ranging from finance 
and business to healthcare and transportation. They are essential tools for making sense of vast amounts of data 
and making predictions about complex systems2. Despite their prevalence, however, sometimes we do not fully 
understand how they work or the underlying mathematical principles that govern their behavior.

In this manuscript, we focus on two algorithms for solving discrete optimization and inference problems: 
(1) a Monte Carlo algorithm (MC) with the Metropolis updating rule3 and (2) a Stochastic Gradient Descent 
(SGD) like algorithm. The former has a theory beyond it, while the latter is introduced in this paper for the first 
time, as a version for discrete problems of the well-known and widely used SGD algorithm4. We aim to show 
the existence of a strong equivalence between the dynamics of the two algorithms and highlight its significance 
for both theory and practice. Our goal is to provide a comprehensive introduction to this equivalence, offering 
insights into its potential applications.

The MC algorithms are the state of the art for sampling complex functions. However, they are quite demand-
ing in terms of computing resources, and so they are often replaced by faster, but less controlled algorithms. The 
example of SGD for the minimization of the loss function is very significant: while SGD works very efficiently 
thanks to several tricks5 its performances are in general not well known6. Making a strong connection between 
the two kinds of algorithms would help a lot in building a solid theory for SGD-like algorithms.

The effectiveness of MC methods is witnessed by their success in hard discrete combinatorial problems7–12. 
The theory beyond MC algorithms is very strong thanks to the theory of Markov chains and many concepts 
borrowed from the principles of statistical mechanics (e.g. ergodicity, relaxation to equilibrium, phase transi-
tions)13. Such a strong connection makes it natural to use in MC simulations the concept of temperature even if 
one is just interested in computing the optimal configurations (the solutions to a discrete combinatorial problem 
or the minimizers of a loss function). The temperature parameter T in MC algorithms controls the degree of 
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randomness in the exploration of the energy/cost/loss function. If one wants to use the MC method for com-
puting the global minimum, one can either run the algorithm at T = 0 or change slowly the temperature from 
an initial value to T = 0 : this is the so-called Simulated Annealing algorithm14. A key property that allows for 
a solid theory of MC is the so-called detailed balance condition that ensures the algorithm admits a limiting 
distribution at large times15,16.

SGD17–19 is a popular optimization algorithm used in the development of state-of-the-art machine learning20 
and deep learning models21,22, which have shown tremendous success in numerous fields, becoming indispensable 
tools for many advanced applications23–31. It is an extension of the gradient descent algorithm32 that uses a subset 
of the training data to compute the gradient of the objective function at each iteration. The use of random subsets 
makes the algorithm stochastic, and it allows for faster convergence on very large datasets. The algorithm works 
by iteratively updating the model parameters using a mini-batch of training data at each iteration. In SGD there 
is no temperature and the parameter that controls the degree of randomness in the exploration of the energy 
landscape is given by the size of the mini-batch used6,33,34. The introduction of the mini-batch was forced by 
practical reasons, because the evaluation of the current state of neural weights on the full training set was often 
computationally too hard, and in many cases practically impossible, due to huge training sets. Quite surprisingly, 
the introduction of the mini-batch led to better optimization and generalization but this success is lacking a full 
physical interpretation. No analyses have been performed to understand if the SGD satisfies the detail balance 
condition and to identify the asymptotic sampling distribution.

Some attempts had been made to model SGD (using the central limit theorem) as an approximated GD plus 
the introduction of Gaussian Langevin noise, with variance depending on the parameters (size of the mini-batch, 
learning rate, ...)35–40. However, some other works underlined how the noise could not always be Gaussian, the 
dynamics undergoing possibly Levy-flights41,42.

Recently, using dynamical mean-field theory43, a technique borrowed from statistical mechanics, the whole 
dynamical trajectory of SGD has been tracked analytically44–47. In particular, in ref.46, an effective temperature for 
SGD is obtained from the fluctuation-dissipation relation48 (ideas in this direction had been given also in39,49). 
This effective temperature has then been related to the parameters of the model (mini-batch size and learning 
rate). However, it is known that, for complex systems, the effective temperature could be different from the 
temperature of a thermal bath in contact with the system: the effective temperature could be affected also by the 
topology of the energy landscape and is time-scale-dependent50, while in ref.46 the effective temperature is just 
shown at large enough waiting times.

To directly identify a connection between the size of the chosen mini-batch in an SGD and the temperature 
of an equivalent thermal bath, we conduct a detailed analysis of the behavior of two algorithms in the domain of 
discrete optimization and inference: a Metropolis MC algorithm at temperature T, and an SGD-like algorithm 
on the q-coloring problem, both in its random and planted versions51–53. The q-coloring problem is a well-known 
hard problem in the field of discrete optimization. Since we are dealing with a discrete optimization problem, 
the SGD-like algorithm is seen as a Metropolis dynamics at zero temperature that uses a subset of the training 
data to inject randomness into the exploration of the energy landscape. Our goal is to establish a relationship 
between the thermal fluctuations that govern the dynamics of MC and the fluctuations resulting from the size 
of the mini-batch, which enables the SGD-like algorithm to explore the energy landscape. To accomplish this, 
we conduct both numerical and analytical analyses. We find that the dynamics of the SGD-like algorithm with 
a given mini-batch size do not satisfy the detail balance, however, it follows closely the MC dynamics at a given 
temperature.

The paper is organized as follows. In section 2 we describe the q-coloring model and the MC and SGD-like 
algorithms. In section 3 we present the numerical analysis of both algorithms. In section 4 we report our analyti-
cal computations showing that SGD-like does not satisfy detailed balance, but seems to satisfy a sort of averaged 
version of this condition. In section 5 we discuss and summarize our results.

Model and algorithms
In the following, we focus on the coloring problem, both in its random and planted versions: the random color-
ing problem is an example of an optimization problem, while the planted coloring problem is a simple example 
of a hard inference problem. In the random q-coloring problem, given a random graph of N vertices and mean 
degree c, we have to assign one among the q available colors to each vertex in a way to avoid monochromatic 
edges, i.e. adjacent vertices with the same color. In the planted version of the q-coloring problem, one first creates 
the planted solution by dividing the N nodes into q groups and assigning to all the nodes of a given group the 
same color (two groups cannot share the same color): we will call this the planted solution {s∗}53. Then a random 
graph of mean degree c compatible with the planted solution is created by adding M = cN/2 edges, which are 
randomly chosen among all those not connecting vertices of the same color. Constructing the graph in this way, 
the probability distribution of the degree of a node (that is the number of edges that are attached to a given node), 
is a Poissonian distribution with mean c. We will simply call c as the “connectivity” of the graph in the follow-
ing. Finally one asks to recover the planted solution just from the knowledge of the planted graph. This setting 
is particularly suitable because we can compare different algorithms, already knowing which should be the best 
output. For small connectivities c, there exists a large number of coloring compatible with the graph, and it is 
impossible to identify the planted one, while for very large c the planted configuration is the only configuration 
compatible with the graph and can potentially be identified in a time that grows polynomially with the size of 
the problem. The best-known algorithms for the recovery of the planted coloring solution are message-passing 
algorithms that succeed when the connectivity is higher than cl = (q− 1)253, finding the planted assignment in 
a time that is almost linear in the size of the graph. We will call si the color of the i-th node of the graph, and si 



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11638  | https://doi.org/10.1038/s41598-024-62625-8

www.nature.com/scientificreports/

can take values from 1 to q. Given a configuration s of colors for all the nodes, we can associate to it an energy, 
or a cost-function, that simply counts the number of monochromatic edges

where E is the edge set of the graph, and |E| = M . In the planted setting, we know there exists at least one con-
figuration with zero energy ( s∗ ), and thus we can compare different algorithms whose aim is to minimize the 
energy, knowing the optimal solution.

The simplest algorithm is probably the one that tries to minimize directly the cost function defined in Eq. (1): 
a sort of gradient-descent (GD) algorithm, but for discrete variables. It works as follows: We start with a random 
initial configuration in which we assign randomly to each node one among the q possible colors. Then at each 
step, we choose a node uniform at random (u.a.r.) and we propose a new color for it chosen u.a.r. among the 
remaining q− 1 colors. We accept the new color only if the energy in Eq. (1) decreases or stays constant. The 
attentive reader could say that the MC algorithm at zero temperature is not exactly a discretized version of GD 
but is much more similar to the so-called Coordinate Gradient Descent54. However coordinate descent algorithms 
are demonstrated to have competitive or under some hypotesis even better performances than full-gradient 
descent algorithms55 and thus, for simplicity of notation, we will just name our algorithm as GD-like. The GD-
like algorithm finds a solution to the planted coloring problem only for connectivities larger than cGD(N) and 
the threshold seems to scale logarithmically with N: cGD(N) ≃ A log(N) , with A = O(1) , as shown in the Supple-
mentary material. The threshold for the GD-like algorithm thus diverges in the large N limit. GD-like algorithm 
is thus highly inefficient (remind that the currently best algorithms find solutions as soon as c > cl = (q− 1)2
53,56, and the threshold does not scale with N). As shown in different contexts, stochasticity could help to find 
better solutions to the problem. In the following, we present two ways to introduce stochasticity: the first one 
through the use of a finite “temperature” and the second one through the use of a “mini-batch”.

In a statistical mechanics approach, we introduce a temperature T ≡ 1/β and a Gibbs-Boltzmann-like prob-
ability measure on the configurations

In the T = 0 limit, PGB(s) becomes the uniform distribution over the configurations with zero energy if they exist. 
They always exist in the planted coloring problem, while they disappear for c > cCOL/UNCOL in the random coloring 
problem. cCOL/UNCOL = 13.669(2) when q = 552. The distribution PGB(s) with T > 0 relaxes the hard constraints 
into soft ones: configurations with monochromatic edges are admitted, but with a probability that is more sup-
pressed the lower the temperature. We can then construct a standard Metropolis MC algorithm at temperature 
T. We start from a random configuration of colors and a single MC Sweep corresponds to the attempt to update 
the colors of N variables following the Metropolis rule: a node i is picked u.a.r. between the N nodes, we propose 
to change its color si into s′i , choosing it u.a.r. between the remaining q− 1 colors. We accept the proposed move 
with probability 1 if the number of monochromatic edges does not increase, or with probability e−β�E if the 
number of monochromatic edges increases by �E after the update. When T = 0 one only accepts moves that do 
not increase the number of monochromatic edges and the MC algorithm reduces to the GD-like algorithm. The 
performances of MC algorithms in inference problems like the planted coloring one have been derived in Ref. 56. 
Using T > 0 allows us to obtain much better performances than working at T = 0 . At a fixed connectivity c, for 
temperatures small enough T < Tglassy(c) , the MC is trapped by spurious glassy states, almost orthogonal to the 
planted one. Tglassy is often called the dynamical transition temperature, indicated as Td in the statistical mechan-
ics’ language of disordered systems. On the opposite, for too high temperatures T > TPM(c) , the MC is attracted 
by a paramagnetic state that implies a flat probability measure over the configurations, without any information 
at all about the planted state. For intermediate temperatures Tglassy(c) < T < TPM(c) , the paramagnetic state is 
locally unstable, the glassy states are still not formed, and thus the MC is attracted by the planted state: this is the 
only temperature range where recovery is possible. We know how to compute the values of Tglassy(c) and TPM(c) 
in the thermodynamic limit56. For q = 5-coloring, when c < 18 we have Tglassy(c) > TPM(c) , and recovery is not 
possible by the MC algorithm. Thus cMC = 18 is the recovery threshold for MC algorithms in this case.

The second way to introduce stochasticity in the GD-like algorithm is the use of a sort of “mini-batch” and 
thus we call the resulting algorithm the Stochastic-GD-like (SGD-like) algorithm. This algorithm works as follows: 
We start with a random initial configuration. Then at each step, we choose a node i u.a.r. and we propose a new 
color for it u.a.r. among the remaining q− 1 colors. Then we extract a fraction B ·M of edges u.a.r. among the M 
total ones. We accept the new color for node i only if the energy, computed as in Eq. (1) but restricting the sum 
only over the “mini-batch” of B ·M chosen edges, does not increase. The B ·M edges over which the energy is 
evaluated are extracted u.a.r. at each move. One could also introduce a persistency parameter that models the 
time that a given edge remains in the extracted mini-batch, following Ref.44, but we have numerically seen that 
the performances of the algorithm deteriorate. A single SGD-like Sweep corresponds to the attempt to update the 
color of N variables. B is a parameter in the range (0, 1]: if B = 1 the SGD-like algorithm reduces to the GD-like 
algorithm, that is the MC algorithm with T = 0 . The introduction of a finite number of observations (edges in 
this case) to compute the energy cost is reminiscent of the practice, widely used in the learning process of neural 
networks, of computing the gradient of the loss function only on a mini-batch of data. However, the SGD-like 
algorithm is introduced here for the first time to perform optimization and inference tasks. It is in principle 
quite different from the MC algorithm: we show in the subsequent sections that the SGD-like algorithm does not 
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satisfy detailed balance, while the MC algorithm does. However, in the next section we will show that, despite 
the differences, the two algorithms share common behaviors.

Numerical results
In this section, we analyze the performances of the SGD-like algorithm in solving the planted q = 5-coloring 
problem and compare it to the MC algorithm. We consider graphs with average connectivity c = 19 , but the 
behavior is qualitatively the same for each value of c > cMC = 18 . For c < 18 the two algorithms cannot recover 
the planted solution but try to optimize the cost function reaching random configurations uncorrelated with the 
planted ones: we show in the Supplementary Material that also in this region the two algorithms behave simi-
larly. For c = 19 , the MC algorithm finds a paramagnetic solution for T > TPM ≃ 0.491 , gets trapped in spurious 
glassy states for T < Tglassy ≃ 0.454 and finds a low energy state highly correlated with the planted solution for 
0.454 < T < 0.49156. In Fig. 1 we show that the SGD-like algorithm has a qualitatively similar behavior changing 
the fraction B of considered edges: for B too small ( B = 0.86 ) or too large ( B = 0.95 ), the SGD-like algorithm gets 
stuck in some high energy configurations, while it manages to find a low energy state only for an intermediate B 
value ( B = 0.9 ). This is also confirmed by the data in the inset, showing the overlap Q between the configuration 
s reached by the SGD-like algorithm and the planted solution s∗ defined as

where Sq is the group of permutations of q elements. The overlap takes value Q = 0 for a random guess, while 
Q = 1 if there is a perfect recovery of the planted solution. The inset of Fig. 1 shows that the overlap is high only 
for the intermediate value B = 0.9.

Having shown that the qualitative behaviors of SGD-like and MC algorithms are the same, in the following 
we make a quantitative comparison in the three regions.

Comparison between MC and SGD‑like algorithms in the recovery region
Let us start from the recovery region at intermediate values of B (or T). In Fig. 1 we have shown the behavior 
for just one realization of the planted graph: for B = 0.9 the energy first relaxes towards a plateau of high energy 
and then abruptly jumps towards a low-energy configuration strongly correlated with the planted one. We call 
nucleation time tnucl the time corresponding to the sudden decrease of the energy: operatively, we can define it as 
the time at which the overlap reaches values Q > 0.8 ( tnucl ≃ 8 · 103 in Fig. 1). For graphs of finite sizes, there are 
sample-to-sample fluctuations in tnucl . Thus, to perform a quantitative comparison between MC and SGD-like 
algorithms, we consider the average over many different samples.

At the time of comparing MC and SGD-like algorithms, we need a criterion to match the temperature T and 
the mini-batch size B. We use the value of the energy at the plateau, declaring a matching pair (T, B) when the 
MC and SGD-like algorithms relax to a plateau with the same energy. Once we found a matching pair (T, B), 
we noticed that both the relaxation towards the plateau and the average nucleation time surprisingly coincide 
in the two algorithms. In Fig. 2 we plot the average energy, averaged over many samples for three different sizes 
N = 103, 104, 105 , as a function of the running time t for both MC and SGD-like algorithms. When temperature 
T and mini-batch size B are matched as explained above the energy relaxation and the mean nucleation time 
are very similar.

(3)Q =
maxπ∈Sq

∑

i δs∗i ,π(si)/N − 1/q

1− 1/q
,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

101 102 103 104 105

e

t

B=0.86
B=0.9

B=0.95

 0
 0.2
 0.4
 0.6
 0.8

 1

101 102 103 104 105

Q

t

Figure 1.   Intensive energy reached by the SGD-like algorithm with three different values of B as a function of 
time, for a single system of size N = 104 and mean connectivity c = 19 . For B = 0.86 the algorithm ends in a 
paramagnetic state, for B = 0.95 it ends in some spurious glassy states, while for B = 0.9 the algorithm manages 
to find the low-energy planted state. Inset: overlap as defined in Eq. (3) between the planted state and the 
configurations visited at time t by the SGD-like algorithm with the same values of B as in the main Figure.
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We then concentrate our attention on the distribution of the nucleation times for the two algorithms vary-
ing the problem size N. In Fig. 3 we show the averaged nucleation times tnucl and the corresponding standard 
deviation σtnucl for the same matching pairs (T, B) used in Fig. 2. We find that the values of both tnucl and σtnucl are 
very similar in the two algorithms for any value of N. So the two algorithms not only are quantitatively similar 
in their energy relaxation (which becomes N-independent in the large N limit, see Fig. 2), but they also have the 
same finite size effects. Thus making the (T, B) matching even more impressive.

It is worth stressing that the growth of both tnucl and σtnucl is roughly linear in N (the dashed lines in Fig. 3 are 
linear functions of N). The negative curvature of the data shown in Fig. 3 (in a double logarithmic scale) suggests 
the growth laws may be sub-linear in the large N limit, but it is not the scope of the present work to estimate them 
precisely. We remind the reader that the time is measured in sweeps and each sweep is made of N single variable 
updates. The actual time is thus almost quadratic in the problem size, in agreement with the results in Ref. 56. 
In the Supplementary Material, we show the total running time in seconds and also that the entire probability 
distribution of tnucl turns out to be the same for the two algorithms.

Comparison between MC and SGD‑like algorithms in the paramagnetic and the glassy regions
Having shown the equivalence of MC and SGD-like algorithms in the recovery region, we consider now the 
region where both converge to a paramagnetic state. For the MC algorithm, this region is defined by the condi-
tion T > TPM , where the exact value for TPM can be computed in the large N limit by standard techniques from 
statistical mechanics53 and reads T −1

PM
= − log

[

c−(q−1)2

q−1+c

]

 ( TPM ≃ 0.491 for q = 5 and c = 19 ). We find that, 
analogously, the SGD-like algorithm reaches a paramagnetic state for B smaller than a certain threshold. In the 
left panel of Fig. 4 we show the behavior of the energy obtained by an MC algorithm for T > TPM . As already 
explained, relaxation gets stuck in a plateau of quite high energy. We then identify the corresponding value of B 
for the SGD-like algorithm matching the plateau energy. Similarly to the recovery region, once we match the 
values of T and B from the plateau energy condition, the entire energy relaxation coincides in the two algorithms. 
At this point, to be sure that the phase reached by the SGD-like algorithm at small B is paramagnetic as for the 
MC algorithm, we look at two-times correlation functions and in particular we compute 
c(t, tw) =

∑N
i=1 si(tw)si(t + tw)/N  , which is a standard observable in the statistical mechanics analysis of 
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ē

MC, T = 0.49
SGD-like, B = 0.92

101 103 105
t

0.2

0.4

0.6

0.8

1.0

ē
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right), for MC and SGD-like algorithms. Left: In MC at a temperature T = 0.49 and SGD-like algorithm with 
a mini-batch parameter B = 0.92 the energy relaxes in a very similar way and the average nucleation times 
coincide. Right: as in the left panel, but with MC run at T = 0.47 and an SGD-like algorithm with B = 0.928.
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disordered systems. In the left panel of Fig. 4 we show the behavior of c(t, tw) for MC and SGD-like algorithms, 
for different values of tw : again the data match perfectly for the two algorithms. The observation that c(t, tw) 
rapidly decays to zero and is tw-independent provides a clear indication that a paramagnetic state has been 
reached.

The last region left to analyze is the one at low temperatures for the MC algorithm that corresponds to high 
values of B for the SGD-like algorithm. We already know that the two algorithms perfectly coincide when T = 0 
for MC and B = 1 for SGD-like, since they reduce to the GD-like algorithm. From Ref. 56 we also know that, 
for q = 5 and c = 19 , the MC algorithm reaches glassy states almost uncorrelated with the planted signal when 
T < Tglassy ≃ 0.45452. Analogously, we find that the SGD-like algorithm reaches a glassy state for B higher than 
a certain threshold. In the right panel of Fig. 4 we show the behavior of the energy obtained by the MC algorithm 
at T < Tglassy . Since the energy gets stuck in a plateau we use the value of the energy at the plateau to match T 
and B values (as we did above for the other regions). It is clear that, once the right (T, B) matching is made, the 
dynamics of the two algorithms are very similar. To be sure that the state reached by the SGD-like algorithm at 
high B is a glassy one as for the MC algorithm, also in this case we look at two-times correlation function c(t, tw) . 
In the right panel of Fig. 4 we show the behavior of c(t, tw) for the MC and SGD-like algorithms for different 
values of tw : again the data match for the two algorithms. Moreover, now c(t, tw) does not rapidly decay to zero 
and strongly depends on tw , at variance with what happens in the paramagnetic region: this is the so-called 
aging behavior, typical of glassy states57. Please note that the aging behavior of c(t, tw) is a clear indication that 
the two algorithms are in the off-equilibrium regime, and their very similar behavior in this regime is highly 
non-trivial and unexpected.

Does the SGD‑like algorithm satisfy the detailed balance condition?
Given the strong resemblance in the dynamical behavior of the two algorithms, it is natural to ask if this similar-
ity comes from some fundamental property that they (may) have in common. The Metropolis MC algorithm 
is built to satisfy detailed balance, which is a sufficient (and strong) condition to guarantee convergence of the 
Markov process to the target equilibrium distribution when ergodicity is not spontaneously broken. For a Gibbs-
Boltzmann measure at inverse temperature β = 1/T the detailed balance condition reads

where p(A → B) coincides with the acceptance probability for the move A → B in the case of a symmetric 
proposal function (as in the single-spin-flip dynamics we adopt).

The question that we address here is whether Eq. (4) is still valid for the SGD-like algorithm. Since the SGD-
like algorithm does not involve temperature, being based on greedy dynamics, we look for a relation of the kind

for some function f(B) of the size of the mini-batch. If Eq. (5) is satisfied, then we expect the SGD-like algorithm 
to converge, when it is possible, to the Gibbs-Boltzmann equilibrium distribution at inverse temperature f(B). 
The relation β = f (B) would then provide an analytic mapping between the two algorithms. As we are going to 
show in the following, we have found that detailed balance is in this case not exactly satisfied, since the ratio of 
the transition probabilities between two states is not a function of their energy difference only. We are nonetheless 
able to quantify numerically the deviations from detailed balance. Interestingly, an arithmetic average over the 
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Figure 4.   Data for a single system of size N = 105 and c = 19 . Left: Intensive energy e and two-time 
correlations c(t, tw) at different values of tw for MC algorithm at T = 0.635 and a SGD-like algorithm with 
B = 0.87 . Values of T and B have been matched equating the plateau energy, and in turn, make the entire 
relaxation process of the two algorithms very similar. Right: As in the left panel, for the MC algorithm at 
T = 0.4 (lines) and the SGD-like algorithm with B = 0.95 (points). Both algorithms end in a low-temperature, 
aging regime, signaled by c(t, tw) depending on tw.
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approximate T − B relations one can obtain for the different choices of the energy levels is sufficient to obtain a 
good approximation to the experimental T(B) curve we obtain from numerical simulations, suggesting that the 
SGD-like algorithm is, in practice, performing close to detailed balance.

To write the transition probabilities between configurations A and B in the mini-batch case, it is convenient 
to introduce the following nomenclature: we call s the number of interactions that are satisfied in configuration 
A but become violated in configuration B. Conversely, u is the number of interactions that are violated in con-
figuration A but become satisfied in configuration B. The total number of interactions is M = cN/2 ≫ 1 . We 
are restricting ourselves to single-spin-flip dynamics. This implies that, since each spin is involved in roughly c 
interactions (being c the average connectivity), the total number of interactions that change their nature (satis-
fied/unsatisfied) when going from A to B is bounded by s + u ≤ O(c) = O(1) for M,N → ∞ . Also, from their 
definition, we have that s − u = EB − EA = O(1) . We now study the transition probability for the direct process 
p(A → B) . First, we extract a mini-batch containing M · B interactions among the M total ones. There are 3 
kinds of interactions in the system: s interactions of “type-s”, u interactions of “type-u”, and finally (M − s − u) 
interactions that do not change their satisfied/unsatisfied nature upon going from A to B, and thus do not 
contribute to the energy difference between the two configurations. The probability that a uniformly extracted 
mini-batch of size M · B selects Ns interactions of type-s and Nu interactions of type-u follows a multivariate 
hypergeometric distribution

Since Ns ≤ s and Nu ≤ u by construction, we have that these quantities are O(1) in the large M limit. We can 

then evaluate the limM→∞ PM by expanding 
(

M − s − u
M · B− Ns − Nu

)

 and 
(

M
M · B

)

 . Neglecting 1/M correction in 

the exponent, we get

Since the SGD-like dynamics is greedy (in the energy function Ẽ calculated over the mini-batch), the Metropo-
lis probability for accepting a move is simply 1 if ẼB − ẼA ≤ 0 , and 0 otherwise. In the same way we wrote 
s − u = EB − EA before, it also holds Ns − Nu = ẼB − ẼA . This means that in all the cases for which Ns ≤ Nu 
the move is accepted and we have

For the reverse process p(B → A) , we consider the same configurations A and B. We also keep the same defi-
nitions of s and u. The difference with the previous case is that now we want to go from B to A, and this only 
happens when ẼB − ẼA ≥ 0 , that is when Ns − Nu ≥ 0 . Putting together the results

We now ask if the quantity G(B, s, u) ≡ −
log g(B,s,u)

(s−u)  is independent of the choice of the starting and ending 
configurations, that is from s and u. To this end, in the left panel of Fig. 5 we plot G(B, s, u) as a function of B, 
for all the possible values of s and u. We consider for definiteness the case c = 19 . Even though the expression 
for G is independent of the value of c, the connectivity affects the admissible values of s and u. The left panel of 
Fig. 5 shows a clear dependence of G on s and u, which implies G(B, s, u)  = f (B) , that is the detailed balance 
is not satisfied. In the right panel of Fig. 5 we show the inverse of the arithmetic average over all the possible 
choices of s and u, 

(

G(B, s, u)
)−1 , as a function of B; we believe this is a good proxy for the T(B) relation. We 

also show in the same panel the maximum and minimum values of (G(B, s, u))−1 . Despite the large variability 
of this effective temperature, the averaged value 

(

G(B, s, u)
)−1 stays very close to the points in the (B, T) plane 

that were obtained from our numerical experiments through the matching condition. This indicates that the 
SGD-like algorithm, although not respecting exactly the detailed balance, is in some sense effectively very close 
to satisfying it. We want to stress again that the detailed balance is a sufficient but not necessary condition for 
the existence of an equilibrium measure. It could be possible that the SGD-like algorithm only satisfies the more 
general balance equation, and thus admits the same equilibrium measure as the MC algorithm. However checking 
for full balance condition is quite involving both numerically and analytically. We also highlight that, even if we 
could manage to prove that both algorithms share the same equilibrium measure, this will not fully explain the 
impressive similarity of the two algorithms numerically found in the short-time, out-of-equilibrium regime, or 
in the long-time aging regime inside the glassy phase. The identification of the deep reason for the matching in 
the out-of-equilibirum regions certainly will need further research in the future.

(6)PM(Ns ,Nu,B, s, u) =

(

s
Ns

)(

u
Nu

)(

M − s − u
M · B− Ns − Nu

)

(

M
M · B

) .

(7)lim
M→∞

PM(Ns ,Nu,B, s, u) = P(Ns ,Nu,B, s, u) =

(

s
Ns

)(

u
Nu

)

(1− B)s+u−Ns−NuBNs+Nu .

(8)p(A → B) =

u
∑

Nu=0

min[Nu ,s]
∑

Ns=0

P(Ns ,Nu,B, s, u).

(9)
p(A → B)

p(B → A)
=

∑u
Nu=0

∑min[Nu ,s]
Ns=0 P(Ns ,Nu,B, s, u)

∑s
Ns=0

∑min[Ns ,u]
Nu=0 P(Ns ,Nu,B, s, u)

≡ g(B, s, u).
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Discussion and conclusions
In this work, we have performed for the first time a quantitative comparison between an algorithm very similar 
in spirit to the well-known Stochastic Gradient Descent and a Monte Carlo algorithm based on the Metropolis 
updating rule. We have considered discrete optimization and inference problems. The model we have studied is 
always the same—the planted 5-coloring problem on random graphs of mean degree c = 19—but depending on 
the parameters of the algorithms the dynamics can be very different: in the retrieval region, the planted signal 
is recovered with high probability and thus the algorithms perform an inference task, while outside this region 
the signal is undetectable56 and thus the algorithms are performing an optimization task over random problems.

To perform a quantitative analysis between the two algorithms we have proposed a condition to map the 
temperature T of the MC algorithm to the mini-batch size B in the SGD-like algorithm. This matching condi-
tion is very simple and just requires to have the same energy in the plateau reached by both algorithms. In some 
sense, both the temperature and the mini-batch size are conjugated parameters to the energy (this is obvious for 
the MC algorithm, while it is an interesting observation for the SGD-like algorithm).

Once the (T, B) mapping has been established, we have performed extensive numerical simulations for the 
two algorithms, both in the retrieval phase and outside it, at equilibrium and in the out-of-equilibrium regime. 
Surprisingly, we find in all the above regimes a striking similarity in any observable we have measured: the 
energy relaxation, the nucleation time, and the auto-correlation function. The conclusion is highly unexpected: 
the evolution of the SGD-like algorithm is very close to that of the MC algorithm.

To justify theoretically the above findings, we have checked whether the SGD-like algorithm would satisfy 
the detailed balance condition which is at the heart of the Metropolis MC update. We have found that the SGD-
like algorithm does not satisfy exactly the detailed balance, but it seems to satisfy it on average. This looks like 
a promising explanation (completely new to the best of our knowledge) that could support the unexpected 
similarity between the two algorithms.

The similarity between the MC and SGD-like algorithms found in this work opens a lot of possible future 
research paths. While the analysis of SGD-like algorithms cannot be made exactly and often relies on several 
hypotheses and approximations, the Metropolis MC dynamics has been studied in great detail and many predic-
tions about it are available (because of the detailed balance condition). In particular, we have used the knowledge 
of the equilibrium measure at which the MC should tend at infinite times to make predictions on the type of 
states—glassy, paramagnetic or planted—that would be reached by MC as well as by SGD. We believe that the 
surprising findings presented in this work can stimulate the application of techniques borrowed from the study 
of the Metropolis MC dynamics to SGD-like algorithms (eventually adapted to take into account that detailed 
balance seems to be satisfied in an average sense).

We have analyzed the coloring model, which is a sparse discrete problem for optimization or inference. We 
have chosen this particular model because we prefer studying a case in which exact predictions for the results 
of MC algorithms are known: in the case of coloring, MC performances were largely studied in Ref.56. Being the 
coloring a discrete problem, we had to design a generic version of an SGD-like algorithm that could be applied 
to discrete variables. However, in standard practical applications, SGD is an algorithm working on continuous 
problems. We should then check the equivalence between MC and SGD in a case with continuous variables. 
Unfortunately, the behavior of MC algorithms has not been studied systematically in those cases. We plan to 
extend our work in this sense in the following, both characterizing the behavior of MC and SGD. In this direc-
tion, Refs.58–60 have shown that a MC dynamics is equivalent, in the limit of small updates of the parameters, to 

Figure 5.   Left: G(B, s, u) as a function of B, for all possible values of s and u for c = 19 : the fact that it 
depends on s and u implies the failure of detailed balance (see text for more details) Right: The blue dashed 
line corresponds to 

(

G(B, s, u)
)−1 , the blue full lines correspond to the maximum and minimum values of 

(G(B, s, u))−1 over the possible choices of s and u. Crosses and circles correspond to (B, T) pairs obtained 
in previous sections through the matching condition on the plateau energy, which in turn make the entire 
dynamics of the two algorithms very similar. Horizontal dashed lines correspond to TPM and Tglassy , the only 
recovery region for the MC algorithm being Tglassy < T < TPM.
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gradient descent in the presence of Gaussian white noise. However this result is valid only for small updates of the 
parameters, it relates MC to GD with Gaussian noise that is in principle different from SGD and the equivalence 
breaks down when the underlying measure is not ergodic, that is when extensive barriers need to be crossed to 
sample the whole measure, as in the case for complex energy landscapes. We leave for future work a better check 
(i.e. without the above limitations) for a quantitative correspondence between MC and SGD in problems with 
continuous variables and complex energy landscapes.

Moreover, the coloring problem that we have analyzed is sparse, because the connectivity of each variable 
stays finite in the large N limit. One should also check that the same equivalence between MC and SGD holds 
also for a dense problem, in which the connectivity of nodes could scale with N. However, we think that our 
work is a fundamental preliminary step that opens a new perspective on the problem and is then quite simple 
to generalize to more complex problems.

One more important message to take from the present work is the need to optimize the mini-batch size. This 
is a parameter that is often set to a given value without any good reason. For the planted coloring problem we 
have studied here, we have shown that only setting the mini-batch size to a value in the retrieval range allows the 
SGD-like algorithm to converge to the optimal solution. We believe this can be true in many other contexts and 
the optimization of the mini-batch size should become a standard process among machine learning practition-
ers. In our specific case, the planted coloring model near to the MC recovery transition, the optimal batch size is 
nearly 90% , that seems quite challenging for ML applications. However, this is just a specific case, in a regime of 
parameters very close to the critical connectivity cMC . But in turn, in any realistic ML context, one is generically 
further away from critical thresholds, also as an effect of strong over-parametrization and we expect the margin 
for B also to be wider. Moreover, the case we have studied is a sparse case, in which the number of data (that 
corresponds to edges in our case) is linearly proportional to the size of the signal that we want to recover. If the 
mini-batch size is too small, the recovery problem quickly becomes impossible because the underlying graph 
becomes disconnected, and local information cannot propagate to large distances. This is not the common situ-
ation in ML problems, that could be instead classified as dense problems. In such cases, we expect an optimal 
batch size that could be much lower than the one in sparse problems.

We want also to add a last, more general comment. The findings of our paper fit in a more general debate about 
the nature of fluctuations that drive a system. In fact, the question about the equivalence of thermal fluctuations 
with respect to other forms of noise driving a system, such as the stochastic selection in our SGD-like algorithm, 
also arises in other contexts. For instance, the definition of an effective temperature is possible in a variety of 
non-equilibirum systems: some examples are dense tapped granular systems61; looking at an intruder immersed 
in a vibro-fluidized granular medium at small packing fraction (but not at high ones)62; (self-propelled) active 
matter systems63,64. Moreover two-time aging correlation functions equivalent to the ones of glassy thermal 
systems are found in frustrated models for granular materials65; The problem we looked at is thus just another 
situation in which a different source of noise leads to consequences analogous to thermal noise.

Data availability
The code source to reproduce data shown in the paper is available at https://​github.​com/​Raffa​eleMa​rino/​SGDli​
ke_​eq_​Mdyn.
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