
Journal of Optimization Theory and Applications
https://doi.org/10.1007/s10957-024-02519-x

Worst Case Complexity Bounds for Linesearch-Type
Derivative-Free Algorithms

Andrea Brilli1 ·Morteza Kimiaei2 · Giampaolo Liuzzi1 · Stefano Lucidi1

Received: 17 December 2023 / Accepted: 13 August 2024
© The Author(s) 2024

Abstract
This paper is devoted to the analysis of worst case complexity bounds for linesearch-
type derivative-free algorithms for the minimization of general non-convex smooth
functions. We consider a derivative-free algorithm based on a linesearch extrapolation
technique. Firstweprove that it enjoys the samecomplexity propertieswhichhavebeen
proved for pattern and direct search algorithms, namely that the number of iterations
and of function evaluations required to drive the norm of the gradient of the objective
function below a given threshold ε for the first time is O(ε−2) in the worst case. This
is the first contribution proving worst-case complexity properties for derivative-free
linesearch-type algorithms. Then we show that the lineasearch approach used by the
described algorithm allows us to guarantee the further property that the number of
iterations such that the norm of the gradient is bigger than ε is O(ε−2) in the worst
case.

Communicated by Lam M. Nguyen.

Morteza Kimiaei acknowledges the financial support of the Doctoral Program Vienna Graduate School on
Computational Optimization (VGSCO) funded by the Austrian Science Foundation under Project No
W1260-N35.

B Giampaolo Liuzzi
liuzzi@diag.uniroma1.it

Andrea Brilli
brilli@diag.uniroma1.it

Morteza Kimiaei
kimiaeim83@univie.ac.at

Stefano Lucidi
lucidi@diag.uniroma1.it

1 Department of Computer, Control and Management Engineering, Sapienza University of Rome,
Via Ariosto, 25, 00185 Rome, Italy

2 Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-024-02519-x&domain=pdf
http://orcid.org/0000-0002-4063-8370

Journal of Optimization Theory and Applications

Keywords Derivative-free optimization · Unconstrained optimization · Line search ·
Worst case complexity

Mathematics Subject Classification 90C30 · 90C56

1 Introduction

In this paper we consider the following unconstrained minimization problem

min
x∈Rn

f (x). (P)

We assume that f : Rn → R is a black-box function which is known by means of
an oracle that only outputs function values. Hence, derivatives of f can neither be
approximated nor computed explicitly.

1.1 Literature Review

Over the past decade, the analysis ofworst case complexity for optimization algorithms
has gained more and more interest and attracted many researchers [1, 5]. Specifically
for derivative-free algorithms, in [7, 18] worst case complexity bounds have been
derived for direct search methods using sufficient decrease in f . In particular, it has
been proved that direct searchmethods (based on a search step and a poll step and using
sufficient decrease acceptability) require at most O(nε−2) iterations and O(n2ε−2)

function evaluations to find a point xk such that ‖∇ f (xk)‖ ≤ ε.
In [4] an adaptive cubic regularization algorithm has been proposed which is based

on gradient estimation via finite differences. The algorithmhas aworst case complexity
ofO(n2ε−3/2)which is better than the complexity obtained for direct search methods.

In [10], the complexity of a smoothing technique for the optimization of nonsmooth
functions has been studied. It has been shown that the smoothing algorithm has a worst
case complexity of O(ε−3) to achieve ε-stationarity.

Analogous results for linesearch-based derivative algorithms (see e.g. [8, 14]) have
not yet been established. The latter algorithms typically have stronger asymptotic
convergence properties which are tied to the use of suitable though more complex
extrapolation techniques.

1.2 Our Contribution

In this paper we show that derivative free algorithms which are based on a linesearch-
type extrapolation technique with sufficient decrease have the same worst case
complexity proved for direct search methods. Proving this complexity result heav-
ily depends on showing that the algorithm is able to produce sufficient decrease of
an auxiliary function regardless of what type of iteration we are considering, either

123

Journal of Optimization Theory and Applications

a success or failure one. Furthermore, thanks to the linesearch approach with suf-
ficient decrease, they also have the property that the number of iterations (in the
worst case) for which ‖∇ f (xk)‖ ≥ ε is of the order of ε−2. This last property con-
siderably enriches the worst case analysis of derivative-free algorithm and, to the
best of our knowledge, is new in this context. We stress that the property character-
izes the behaviour of the derivative-free algorithm better than the usual complexity
result. Indeed, typical complexity results give the number of iteration required to drive
the norm of the gradient below a prefixed tolerance for the first time. If we let the
method run, the norm of the gradient might well rise above the tolerance again. The
property we prove in this paper indicates that the total number of iterations with a
gradient norm above a specified tolerance is bounded by a constant that depends on
ε−2.

1.3 Organization of the Paper

The paper is organized as follows. In Sect. 2 we describe an algorithm model which
is based on linesearch techniques. In Sect. 3 we prove the asymptotic convergence
properties of the algorithm model. Namely we prove that every limit point of the
sequence generated by the algorithm is stationary. In Sect. 4 we derive the worst case
complexity bounds for the number of iterations and function evaluations required by
the algorithm to drive the norm of the gradient below a preset tolerance. Furthermore,
we also prove that the number of iterations with a norm of the gradient above a preset
tolerance can be bounded by a constant in the worst case. In Sect. 5, we present two
more algorithms which are still based on a linesearch technique and that have slightly
different worst case complexity results. The theoretical results concerning these two
methods are similar to (though not trivially obtainable from) the preceding ones. For
that reason, the proofs of these latter results are reported in two appendices at the end
of the paper. In Sect. 6, we report the results of a numerical comparison between the
proposed methods and a well-established derivative-free method on a small set of test
problems.

Finally, in Sect. 7 we draw some conclusions.

2 A Linesearch-Type Algorithm

In the following section we introduce a derivative-free algorithm which is based on
an extrapolation technique.

123

Journal of Optimization Theory and Applications

Linesearch Algorithm Model (LAM)

Data: c ∈ (0, 1), θ ∈ (0, 1), x0 ∈ R
n , α̃i

0 > 0, i ∈ {1, . . . , n}, and set di0 = ei ,
for i = 1, . . . , n.

For k = 0, 1, . . .

Set y1k = xk .

For i = 1, . . . , n

Let ᾱi
k = max{α̃i

k, c max
j=1,...,n

{α̃ j
k }}.

Compute α and d by the DF-Linesearch(ᾱi
k, y

i
k, d

i
k;α, d).

Set yi+1
k = yik + αd, dik+1 = d, αi

k = α.

End For

Set xk+1 = yn+1
k .

If xk+1 = xk then α̃i
k+1 = θᾱi

k for all i = 1, . . . , n,

else set α̃i
k+1 = max{ᾱi

k, α
i
k} for all i = 1, . . . , n.

End For

As we can see, at each iteration k, LAM performs an exploration of the space
around the current iterate xk using the coordinate directions and producing the points
yik , i = 1, . . . , n + 1 (note that y1k = xk).

More in particular, points yik , for i = 2, . . . , n + 1, are computed by means of
a suitable derivative-free linesearch, namely the DF-Linesearch procedure. The
linesearch is invoked by passing a tentative step size, i.e.

ᾱi
k = max{α̃i

k, c max
j=1,...,n

{α̃ j
k }}.

It is worth noting that the initial step size ᾱi
k is quite unusual for linesearch-type

derivative-free algorithms. In this work, this initialization is of paramount impor-
tance since it allows us to prove that in each iteration the method achieves sufficient
decrease of an auxiliary function that is used to derive the worst-case complexity
bound.

Then, an actual step size, i.e. α is produced, which can either be 0 or strictly greater
than zero. When the exploration of the neighbourhood around the current iterate
xk “fails”, namely when xk+1 = xk , all the tentative steps for the next iteration are
reduced; when xk+1 �= xk , the tentative steps for the next iteration are updated and
possibly augmented.

In the following, we report the DF-Linesearch procedure.

123

Journal of Optimization Theory and Applications

DF-Linesearch (ᾱ, y, d;α, d̂).

Input. ᾱ, y, d. Output. α, d̂
Data. γ > 0, δ ∈ (0, 1).
Step 1. Set α = ᾱ, d̂ ← d.
Step 2. If f (y + αd̂) ≤ f (y) − γα2 then go to Step 5.
Step 3. If f (y − αd̂) ≤ f (y) − γα2 then set d̂ ← −d and go to Step 5.
Step 4. Set α = 0 and return (α, d̂).

Step 5. While f

(
y + α

δ
d̂

)
≤ f (y + αd̂) − γ

((
1

δ
− 1

)
α

)2

α ← α/δ.
Step 6. Return (α, d̂)

The DF-Linesearch procedure employs a sufficient decrease criterion, which is
evaluated between successive points, i.e.

f

(
y + α

δ
d̂

)
≤ f (y + αd̂) − γ

((
1

δ
− 1

)
α

)2

.

Regarding the linesearch (expansion) procedure, its primary distinction from other
linesearch techniques (see e.g. [13, 14]) lies in its continual expansion of the step
while maintaining adequate decrease between successive points. We note that other
derivative-free linesearch approaches employ the following sufficient decrease crite-
rion

f

(
y + α

δ
d̂

)
≤ f (y) − γ

(
α

δ

)2

.

As we can see the above formula uses as reference point the initial point y whereas
the criterion in our proposed method uses as reference point y + αd.

Let it be highlighted that the adopted sufficient decrease criterion allows us to obtain
the complexity bound on the number of function evaluations in a more straightforward
way than the usual criterion. Needless to say, both the criteria are able to convey the
method the same asymptotic global convergence properties.

3 Asymptotic Convergence Analysis for LAM

In order to carry out the convergence analysis for LAM,we need the following standard
assumptions.

123

Journal of Optimization Theory and Applications

Assumption 3.1 The function f is continuously differentiable on Rn , and its gradient
is Lipschitz continuous with Lipschitz constant L , i.e. for all x, y ∈ R

n ,

‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖.

Assumption 3.2 The function f is bounded from below, i.e. fmin ∈ R exists such that

fmin ≤ f (x), for all x ∈ R
n .

First of all, we derive an upper bound on the norm of ∇ f (xk) at each iteration k.

Proposition 3.1 Suppose that Assumption 3.1 holds. Let {xk} be the sequence produced
by the LAM framework. Then, for each k such that xk+1 �= xk

‖∇ f (xk)‖ ≤ √
n

(
γ + L(

√
n + 1)

δ

)
max

i=1,...,n
{α̃i

k+1}, (1)

whereas, for each k such that xk+1 = xk

‖∇ f (xk)‖ ≤ √
n
γ + L

θ
max

i=1,...,n
{α̃i

k+1}, (2)

where the constants γ, δ, θ are those defined in the LAM algorithm and the DF-
Linesearch procedure.

Proof For each iteration k such that xk+1 �= xk and every index i = 1, . . . , n, one of
two cases can occur:

Case (i), αi
k = 0. By αi

k = 0, and α̃i
k+1 = ᾱi

k , we have:

f (yik + ᾱi
kei) > f (yik) − γ (ᾱi

k)
2,

f (yik − ᾱi
kei) > f (yik) − γ (ᾱi

k)
2.

Then we get from the Mean Value Theorem

∇ f (uik)
T ei > −γ ᾱi

k, (3)

∇ f (vik)
T ei < γ ᾱi

k, (4)

where uik = yik + λik ᾱ
i
kei and vik = yik − μi

k ᾱ
i
kei with λik, μ

i
k ∈ (0, 1). From (3) and

(4) and the Lipschitz continuity of ∇ f , we have that

∇ f (xk)
T ei > −γ ᾱi

k − L‖xk − uik‖ > −γ ᾱi
k − L‖xk − yik‖ − Lᾱi

k,

∇ f (xk)
T ei < γ ᾱi

k + L‖xk − vik‖ < γ ᾱi
k + L‖xk − yik‖ + Lᾱi

k .

123

Journal of Optimization Theory and Applications

Hence

|∇ f (xk)
T ei | < (γ + L)ᾱi

k + L‖xk − yik‖ ≤ (γ + L)ᾱi
k + L

√
n max
i=1,...,n

{α̃i
k+1}

= (γ + L) α̃i
k+1 + L

√
n max
i=1,...,n

{α̃i
k+1}

≤ (γ + L) max
i=1,...,n

{α̃i
k+1} + L

√
n max
i=1,...,n

{α̃i
k+1},

so that

|∇ f (xk)
T ei | ≤

(
γ + L(

√
n + 1)

)
max

i=1,...,n
{α̃i

k+1}.

Case (ii). From αi
k = α, and α̃i

k+1 = α ≥ ᾱi
k , it results either

f

(
yik + α̃i

k+1

δ
ei

)
> f (yik + α̃i

k+1ei) − γ

(
1

δ
− 1

)2

(α̃i
k+1)

2,

f (yik + δα̃i
k+1ei) ≥ f (yik + α̃i

k+1ei) + γ (1 − δ)2(α̃i
k+1)

2

or

f

(
yik − α̃i

k+1

δ
ei

)
> f (yik − α̃i

k+1ei) − γ

(
1

δ
− 1

)2

(α̃i
k+1)

2,

f (yik − δα̃i
k+1ei) ≥ f (yik − α̃i

k+1ei) + γ (1 − δ)2(α̃i
k+1)

2.

Then, we get,

∇ f (ūik)
T ei > −γ

(
1 − δ

δ

)
α̃i
k+1, −∇ f (ûik)

T ei ≥ γ (1 − δ)α̃i
k+1, (5)

or

∇ f (v̄ik)
T ei < γ

(
1 − δ

δ

)
α̃i
k+1, −∇ f (v̂ik)

T ei ≤ −γ (1 − δ)α̃i
k+1, (6)

where ūik = yik + λ̄ik

(
1 − δ

δ

)
α̃i
k+1ei , û

i
k = yik + λ̂ik(1 − δ)α̃i

k+1ei , v̄ik = yik −

μ̄i
k

(
1 − δ

δ

)
α̃i
k+1ei , and v̂ik = yik − μ̂i

k(1 − δ)α̃i
k+1ei , with λ̄ik, λ̂

i
k, μ̄

i
k, μ̂

i
k ∈ (0, 1).

When (5) holds, from ∇ f (ūik)
T ei > −γ

(
1 − δ

δ

)
α̃i
k+1 we can write

[∇ f (ūik) − ∇ f (xk) + ∇ f (xk)]T ei > −γ

(
1 − δ

δ

)
α̃i
k+1,

123

Journal of Optimization Theory and Applications

so that we obtain

∇ f (xk)
T ei > −γ

(
1 − δ

δ

)
α̃i
k+1 − L‖xk − ūik‖

> −γ

(
1 − δ

δ

)
α̃i
k+1 − L‖xk − yik‖ − L

(
1 − δ

δ

)
α̃i
k+1.

(7)

From ∇ f (ûik)
T ei ≤ −γ (1 − δ)α̃i

k+1 in (5), we can write

[∇ f (ûik) − ∇ f (xk) + ∇ f (xk)]T ei ≤ −γ (1 − δ)α̃i
k+1,

so that, in this case, we obtain

∇ f (xk)
T ei ≤ −γ (1 − δ)α̃i

k+1 + L‖xk − ûik‖
≤ γ

(
1 − δ

δ

)
α̃i
k+1 + L‖xk − yik‖ + L

(
1 − δ

δ

)
α̃i
k+1.

(8)

Now, considering (7) and (8), we get

|∇ f (xk)
T ei | ≤

(
γ + L(

√
n + 1)

δ

)
max

i=1,...,n
{α̃i

k+1}. (9)

The same bound can be obtained when (6) holds. Thus, finally, we obtain

‖∇ f (xk)‖ ≤ √
n

(
γ + L(

√
n + 1)

δ

)
max

i=1,...,n
{α̃i

k+1}.

On the other hand, for each iteration k such that xk+1 = xk , i.e. yik = xk for all
i = 1, . . . , n + 1, we have for every index i = 1, . . . , n

f

(
xk + α̃i

k+1

θ
ei

)
> f (xk) − γ

(
α̃i
k+1

θ

)2

,

f

(
xk − α̃i

k+1

θ
ei

)
> f (xk) − γ

(
α̃i
k+1

θ

)2

.

Then we get from the Mean Value Theorem

∇ f (uik)
T ei > −γ

α̃i
k+1

θ
, (10)

∇ f (vik)
T ei < γ

α̃i
k+1

θ
, (11)

123

Journal of Optimization Theory and Applications

where uik = xk +λik

α̃i
k+1

θ
ei and vik = xk −μi

k

α̃i
k+1

θ
ei with λik, μ

i
k ∈ (0, 1). From (10)

and (11) and the Lipschitz continuity of ∇ f , we have that

∇ f (xk)
T ei > −γ

α̃i
k+1

θ
− L‖xk − uik‖ > −γ

α̃i
k+1

θ
− L

α̃i
k+1

θ
,

∇ f (xk)
T ei < γ

α̃i
k+1

θ
+ L‖xk − vik‖ < γ

α̃i
k+1

θ
+ L

α̃i
k+1

θ
.

Hence

|∇ f (xk)
T ei | < (γ + L)

α̃i
k+1

θ
,

so that we can write

‖∇ f (xk)‖ ≤ √
n
γ + L

θ
max

i=1,...,n
{α̃i

k+1},

concluding the proof. ��
Drawing inspiration from [3, 6, 12], we now introduce the following function:

Φk = f (xk) + η max
i=1,...,n

{α̃i
k}2, (12)

where η satisfies:

0 < η < γ (1 − δ)2. (13)

Note that, whenever Assumption 3.2 holds, we have

Φk ≥ fmin. (14)

Function Φk allows us to state the following result which characterizes the evolution
of the algorithm at each iteration.

Proposition 3.2 Let {xk} and {α̃i
k}, i = 1, . . . , n, be the sequences produced by LAM.

Then for all k = 0, 1, . . . :

Φk+1 − Φk ≤ −c̃LAM max
i=1,...,n

{α̃i
k+1}2, (15)

where

c̃LAM = min

{
η

(
1 − θ2

θ2

)
, γ c2, γ (1 − δ)2 − η

}
, (16)

η is a parameter satisfying (13) and c, γ, δ, θ are the constants defined in the LAM
algorithm and the DF-Linesearch procedure.

123

Journal of Optimization Theory and Applications

Proof We split the set of iteration indices {0, 1, 2, . . . } into the two subsets K1 and
K2, namely

(i) k ∈ K1 when xk �= xk−1;

(ii) k ∈ K2 when xk = xk−1.

Let us first consider the case when k ∈ K2, i.e. the (k − 1)-th iteration is of failure,
we have

(i) f (xk) = f (xk−1);
(ii) α̃i

k = θᾱi
k−1, for every i = 1, . . . , n.

In particular, since, for every i = 1, . . . , n, ᾱi
k−1 = max{α̃i

k−1, c max
j=1,...,n

{α̃ j
k−1}}, we

have either

α̃i
k = θα̃i

k−1 ≤ θ max
i=1,...,n

{α̃i
k−1}

or

α̃i
k = θc max

i=1,...,n
{α̃i

k−1} ≤ θ max
i=1,...,n

{α̃i
k−1}.

Hence, in case of failure, we can write α̃i
k ≤ θ max

i=1,...,n
{α̃i

k−1}, so that max
i=1,...,n

{α̃i
k} ≤

θ max
i=1,...,n

{α̃i
k−1}. Then, from

Φk − Φk−1 = f (xk) − f (xk−1) + η

(
max

i=1,...,n
{α̃i

k}2 − max
i=1,...,n

{α̃i
k−1}2

)

and considering

− 1

θ2
max

i=1,...,n
{α̃i

k}2 ≥ − max
i=1,...,n

{α̃i
k−1}2, and f (xk) = f (xk−1),

we obtain

Φk − Φk−1 = η

(
max

i=1,...,n
{α̃i

k}2 − max
i=1,...,n

{α̃i
k−1}2

)

≤ η

(
max

i=1,...,n
{α̃i

k}2 − 1

θ2
max

i=1,...,n
{α̃i

k}2
)

,

so that

Φk − Φk−1 ≤ −η

(
1 − θ2

θ2

)
max

i=1,...,n
{α̃i

k}. (17)

Let us now consider the case when k ∈ K1, i.e. the (k − 1)-th iteration is of
“success”. In this case, we have xk �= xk−1 and f (xk) < f (xk−1). Then, we consider
the following two cases:

123

Journal of Optimization Theory and Applications

1. max
i=1,...,n

{α̃i
k} = max

i=1,...,n
{α̃i

k−1};
2. max

i=1,...,n
{α̃i

k} > max
i=1,...,n

{α̃i
k−1}.

Case 1. Since the (k − 1)-th iteration is of success, there is an index j̄ such that:

f (y j̄+1
k−1) ≤ f (y j̄

k−1) − γ (ᾱ
j̄
k−1)

2

with

ᾱ
j̄
k−1 = max{α̃j̄

k−1, c max
i=1,...,n

{α̃i
k−1}} ≥ c max

i=1,...,n
{α̃i

k−1},

Then we have

f (y j̄+1
k−1) ≤ f (y j̄

k−1) − γ (ᾱ
j̄
k−1)

2 ≤ f (y j̄
k−1) − γ c2 max

i=1,...,n
{α̃i

k−1}2.

and, exploiting that we are in case 1,

f (y j̄+1
k−1) ≤ f (y j̄

k−1) − γ c2 max
i=1,...,n

{α̃i
k}2.

That implies

f (xk) ≤ f (xk−1) − γ c2 max
i=1,...,n

{α̃i
k}2.

Recalling, again, that we are in case 1, we obtain:

Φk − Φk−1 = f (xk) − f (xk−1) ≤ −γ c2 max
i=1,...,n

{α̃i
k}2. (18)

Case 2. Since max
i=1,...,n

{α̃i
k} > max

i=1,...,n
{α̃i

k−1}, we have that an index j̄ exists such

that a linesearch has been performed along the j̄ -th direction which determines a
steplength α

j̄
k−1 satisfying

α
j̄
k−1 = α̃

j̄
k = max

i=1,...,n
{α̃i

k}.

More specifically, we have

f (xk) ≤ f (y j̄
k−1 + α̃

j̄
k d

j̄
k)

≤ f (y j̄
k−1 + δα̃

j̄
k d

j̄
k) − γ (1 − δ)2(α̃

j̄
k)

2 ≤ f (xk−1) − γ (1 − δ)2(α̃
j̄
k)

2

= f (xk−1) − γ (1 − δ)2 max
i=1,...,n

{α̃i
k}2.

(19)

123

Journal of Optimization Theory and Applications

Hence, we obtain:

Φk − Φk−1 = f (xk) − f (xk−1) + η

(
max

i=1,...,n
{α̃i

k}2 − max
i=1,...,n

{α̃i
k−1}2

)

≤ −γ (1 − δ)2 max
i=1,...,n

{α̃i
k}2 + η

(
max

i=1,...,n
{α̃i

k}2 − max
i=1,...,n

{α̃i
k−1}2

)

≤ −γ (1 − δ)2 max
i=1,...,n

{α̃i
k}2 + η max

i=1,...,n
{α̃i

k}2

≤ −
(
γ (1 − δ)2 − η

)
max

i=1,...,n
{α̃i

k}2. (20)

Finally (17), (18) and (20) conclude the proof. ��
Exploiting the properties of the function Φ, we prove that the sequences of initial

stepsizes α̃i
k , i = 1, . . . , n, are all convergent to zero.

Proposition 3.3 Suppose that Assumption 3.2 holds. Then, the LAM framework pro-
duces sequences {α̃i

k}, i = 1, . . . , n, such that

lim
k→∞ max

i=1,...,n
{α̃i

k} = 0.

Proof By Proposition 3.2, the sequence {Φk} is monotonically decreasing. SinceΦk ≥
fmin, we have that

lim
k→∞ Φk = Φ̄.

Then, the proof is concluded recalling again Proposition 3.2 and the above limit. ��
Corollary 3.1 Suppose that Assumptions 3.1 and 3.2 hold. Then, LAM produces an
infinite sequence {xk} such that

lim
k→∞ ‖∇ f (xk)‖ = 0.

Proof The proof easily follows recalling Proposition 3.1 and Proposition 3.3. ��
Remark Note that the result of Proposition 3.3 is somewhat stronger than analogous
results for GPS [17] and MADS-type [2] algorithms. Indeed, for those algorithms it
is only possible to show that a subsequence of the stepsizes converges to zero. As a
consequence, also the result of Corollary 3.1 is stronger in that it states that every limit
point of the sequence of iterates is stationary.

4 Complexity Bounds for LAM

This section is devoted to the definition of the worst case complexity bounds for the
LAM algorithm.

123

Journal of Optimization Theory and Applications

The next two propositions ensure that the algorithm model takes at most O(nε−2)

iterations and O(n2ε−2) function evaluations to produce a point xk such that
‖∇ f (xk)‖ ≤ ε.

Proposition 4.1 Suppose that Assumptions 3.1 and 3.2 hold. Let {xk} be the sequence
of points produced by LAM.Given any ε ∈ (0, 1) and α̃i

0 ≥ ε, for i = 1, . . . , n, assume
that j̄ε + 1 is the first iteration such that ‖∇ f (xj̄ε+1)‖ ≤ ε, i.e. ‖∇ f (xk)‖ > ε, for
all k = 0, 1, . . . , j̄ε . Then,

j̄ε ≤
⌈
n c21 (Φ0 − fmin)

c̃LAM

ε−2

⌉
= O(nε−2), (21)

where c̃LAM is given by (16) and

c1 = γ + L

θ
. (22)

Proof Using the function Φk defined by (12) we can write:

Φj̄+1 − Φ0 = (Φj̄+1 − Φj̄) + (Φj̄ − Φj̄−1) + · · · + (Φ1 − Φ0)

and exploiting Proposition 3.2 we have:

Φj̄+1 − Φ0 ≤ −c̃LAM

j̄+1∑
k=1

max
i=1,...,n

{α̃i
k}2 = −c̃LAM

j̄∑
k=0

max
i=1,...,n

{α̃i
k+1}2.

By recalling (14), we can write

fmin − Φ0 ≤ Φj̄ − Φ0 ≤ −c̃LAM

j̄∑
k=0

max
i=1,...,n

{α̃i
k+1}2. (23)

As done previously the set of iteration indices {0, 1, 2, . . . } can be divided into the
two subsets K1 and K2, namely

(i) k ∈ K1 when xk �= xk−1;

(ii) k ∈ K2 when xk = xk−1.

Furthermore Proposition 3.3 implies that K2 is infinite.
Now it is possible to define the following two set of indices:

J1 = {0, . . . , j̄ } ∩ K1 succ. iterations up to j̄ ,

J2 = {0, . . . , j̄ } ∩ K2 unsucc. iterations up to j̄ ,

and to rewrite (23):

fmin − Φ0 ≤ −c̃LAM

∑
k∈J1

max
i=1,...,n

{α̃i
k+1}2 − c̃LAM

∑
k∈J2

max
i=1,...,n

{α̃i
k+1}2. (24)

123

Journal of Optimization Theory and Applications

For all k ∈ J1 we associate an index m(k) given by:

(i) if J2 ∩ {0, . . . , k − 1} �= ∅ then m(k) in the biggest index of J2 ∩ {0, . . . , k − 1};
(ii) if J2 ∩ {0, . . . , k − 1} = ∅ then m(k) = −1.

The steps of LAM ensure that, for all k ∈ J1,

max
i=1,...,n

{α̃i
k+1}2 ≥ max

i=1,...,n
{α̃i

m(k)+1}2. (25)

Using these inequalities in (24), we obtain

fmin − Φ0 ≤ −c̃LAM

∑
k∈J1

max
i=1,...,n

{α̃i
m(k)+1}2 − c̃LAM

∑
k∈J2

max
i=1,...,n

{α̃i
k+1}2. (26)

Now recalling (2) of Proposition 3.1, the choices for αi
0, for i = 1, . . . , n and that

‖∇ f (xk)‖ > ε, for all k = 0, 1, . . . , j̄ε , we obtain:

Φ0 − fmin ≥ (j̄ + 1)c̃LAM

θ2

n(γ + L)2
ε2.

Thus, the number j̄ε of iterations can be bounded from above by

j̄ε ≤
⌈
n(γ + L)2(Φ0 − fmin)

c̃LAM θ2
ε−2

⌉
= O(nε−2)

which concludes the proof. ��
Now, we prove the worst case complexity bound for the number of function evalu-

ations.

Proposition 4.2 Suppose that Assumptions 3.1 and 3.2 hold. Let {xk} be the sequence
of point produced by LAM. Given any ε ∈ (0, 1) and α̃i

0 ≥ ε, assume that j̄ε +1 is the
first iteration such that ‖∇ f (xj̄ε+1)‖ ≤ ε, i.e. ‖∇ f (xk)‖ > ε, for all k = 0, 1, . . . , j̄ε .
Then, the number of function evaluations N fε required by LAMuntil the j̄ε-th iteration
are in the worst case such that

N fε ≤ 2n

⌈
nc21(Φ0 − fmin)

c̃LAM

ε−2

⌉
+

⌈
nc21(f (x0) − fmin)

γ c2
δ2

(1 − δ)2
ε−2

⌉
= O(n2ε−2),

where c1 and c̃LAM are defined in (22) and (16), respectively.

Proof By assumption, for all k = 0, 1, . . . , j̄ , we have that

ε < ‖∇ f (xk)‖. (27)

123

Journal of Optimization Theory and Applications

Let Uj̄ε and Sj̄ε be the index sets of unsuccessful and successful iterations until the
iteration j̄ε .
Then, for every iteration k, if k ∈ Uj̄ε , the algorithm performs

N f uk = 2n

function evaluations.
On the other hand, if k ∈ Sj̄ε , we can distinguish the function evaluations performed

by the algorithm in those producing a sufficient decrease in the objective function value
and those producing a failure, i.e. the last function evaluation performed by the DF-
Linesearch procedure. Hence, in that case we can further distinguish the function
evaluations as N f sk and N f

s
k . As concerns N f

s
k we have

N f
s
k ≤ 2n.

Concerning N f sk , every time that such a function evaluation is performed, we have by
the instructions of the DF-Linesearch procedure that

f (yik + α j d̂) − f (yik + α j/δd̂) ≥ γ

(
1 − δ

δ

)2

α2
j ≥ γ

(
1 − δ

δ

)2

c2 max
i=1,...,n

{α̃i
k}2.

Now, for all k ∈ Sj̄ε we can define an index m̃(k) given by:

(i) if k > 0 and Uj̄ε ∩ {0, . . . , k − 1} �= ∅ then m̃(k) in the biggest index of
Uj̄ε ∩ {0, . . . , k − 1};

(ii) if k = 0 or Uj̄ε ∩ {0, . . . , k − 1} = ∅ then m̃(k) = 0.

Then, we obtain:

f (yik + α j d̂) − f (yik + α j/δd̂) ≥ γ

(
1 − δ

δ

)2

c2 max
i=1,...,n

{α̃i
m(k)}2

≥ γ

(
1 − δ

δ

)2

c2
ε2

nc21
.

Then, recalling that f is bounded from below by fmin, summing the above relation
over all such function evaluations, we obtain

f0 − fmin ≥ N f sk γ

(
1 − δ

δ

)2

c2
ε2

nc21
,

so that

N f sk ≤ c21n(f0 − fmin)

γ c2ε2
δ2

(1 − δ)2
.

123

Journal of Optimization Theory and Applications

Finally, recalling the the number of iterations performedby the algorithm is bounded
by O(ε−2), and denoting by N fε the total number of function evaluations performed
by the algorithm, we can write in the worst case

N fε ≤ 2n

⌈
nc21(Φ0 − fmin)

c̃LAM

ε−2

⌉
+

⌈
nc21(f0 − fmin)

γ c2ε2
δ2

(1 − δ)2

⌉
= O(n2ε−2),

(28)

where c1 and c̃LAM are defined in (22) and (16), respectively. This concludes the proof.
��

The previous results show that the linesearch DF approach is also able to propose
algorithms with exactly the same complexity bounds of those obtained in [18] for
direct search methods.
Instead, the next proposition shows that the use of the linesearch technique allows us
to guarantee to a DF algorithm the further property that the number of iterations such
that ‖∇ f (xk)‖ > ε is of the order of ε−2. In particular, for the LAM algorithm, the
number of such iterations is O(n2 ε−2) in the worst case.

Proposition 4.3 Suppose that Assumptions 3.1 and 3.2 hold. Let {xk} be the sequence
of point produced by LAM. Given any ε ∈ (0, 1), consider the following subset of
indices:

Kε = { k = 1, . . . : ‖∇ f (xk)‖ > ε } . (29)

Then,

|Kε | ≤
⌈
n c22 (Φ0 − fmin)

c̃LAM

ε−2

⌉
= O(n2ε−2), (30)

where c̃LAM is given by (16) and

c2 = max

{
γ + L(

√
n + 1)

δ
,

γ + L

θ

}
. (31)

Proof Proposition 3.2 shows that the sequence {Φk} is not increasing and that, for
every k, we have:

Φk − Φ0 ≤ −c̃LAM

k∑
k̃=1

max
i=1,...,n

{α̃i
k̃
}2 = −c̃LAM

k∑
k̃=0

max
i=1,...,n

{α̃i
k̃+1

}2. (32)

Since the sequence {Φk} is bounded from below, Φ∗ exists such that:

lim
k→∞ Φk = Φ∗ ≥ fmin.

123

Journal of Optimization Theory and Applications

Taking the limit for k → ∞ in (32) we obtain:

Φ0 − Φ∗ ≥ c̃LAM

∞∑
k=0

max
i=1,...,n

{α̃i
k+1}2 ≥ c̃LAM

∑
k∈Kε

max
i=1,...,n

{α̃i
k+1}2,

which, together with the definition of Kε and Proposition 3.1, gives

Φ0 − fmin ≥ c̃LAM

∑
k∈Kε

max
i=1,...,n

{α̃i
k+1}2 ≥ |Kε |c̃LAM

ε2

nc22
.

Thus

|Kε | ≤
⌈
nc22(Φ0 − fmin)

c̃LAM

ε−2

⌉
= O(n2ε−2)

and the proof is concluded. ��

5 Other Types of LinesearchMethods

In this section we propose two variants of the LAM algorithm which enjoy similar
complexity bounds as those of LAM. In particular, the new algorithms have complexity
bounds which are of the order of ε−2 and differ only on the dependence on the size
n of the problem. These differences derive from the particular strategies used by the
algorithms for updating the tentative steps α̃i

k , for i = 1, . . . , n and the current point xk .
As seen before, LAM reduces the tentative steps only when all of them fail to produce
a sufficient decrease of the objective function along the corresponding directions.
Regarding the points, we recall that LAM accepts every point yi+1

k , provided that a
sufficient decrease of the objective function has been obtained, as a possible candidate
to become the next point xk+1. Roughly speaking, we can say that LAM updates the
point by exploiting the information obtained along a single direction while it updates
the tentative steps only when it has obtained information on all directions.
Of course, different approaches can be used to define derivative-free linesearch-type
algorithms. As examples, we describe two algorithms which, differently from LAM,
use the same strategy to update the trial steps and the current point. In particular, LAM1
differs from LAM since it updates every tentative step on the basis of information
obtained only on the corresponding direction. Whereas, LAM2 differs from LAM
since it exploits the information obtained from all the direction to compute the new
current point.

In the following, for LAM1 and LAM2, we report the theoretical results concerning
the complexity of the two algorithms. Since the proofs of these results are very similar
to the analogous results of LAM, we report them in the appendix for the sake of
completeness.

123

Journal of Optimization Theory and Applications

Linesearch Algorithm Model 1 (LAM1)

Data. c ∈ (0, 1), θ ∈ (0, 1), x0 ∈ R
n , α̃i

0 > 0, i ∈ {1, . . . , n}, and set di0 = ei ,
for i = 1, . . . , n.

For k = 0, 1, . . .
Set y1k = xk .
For i = 1, . . . , n

Let ᾱi
k = max{α̃i

k, c max
j=1,...,n

{α̃ j
k }}.

Compute α and d by the DF-Linesearch(ᾱi
k, y

i
k, d

i
k;α, d).

If α = 0 then set αi
k = 0 and α̃i

k+1 = θᾱi
k .

else set αi
k = α, α̃i

k+1 = α.

Set dik+1 = d, yi+1
k = yik + αi

kd
i
k+1.

End For
Set xk+1 = yn+1

k .
End For

We remark that tentative step αi
k is decreased as soon as it fails to sufficiently

decrease the objective function along the direction dik .
By repeating the same analysis made for LAM it is possible to state the following
proposition.

Proposition 5.1 Suppose that Assumption 3.1 holds. Let {xk} be the sequence produced
by LAM1. Then, for each k such that xk+1 �= xk

‖∇ f (xk)‖ ≤ √
n

(
γ + L(

√
n + 1)

min{θ, δ}
)

max
i=1,...,n

{α̃i
k+1},

whereas, for each k such that xk+1 = xk

‖∇ f (xk)‖ ≤ √
n
γ + L

θ
max

i=1,...,n
{α̃i

k+1}.

Proof See “Appendix A”. ��
Next we prove that we can bound the difference Φk+1 − Φk with the quantity

max
i=1,...,n

{α̃i
k+1}2.

Proposition 5.2 Let {xk} and {αi
k}, i = 1, . . . , n, be the sequences produced by LAM1.

Then for all k = 0, 1, . . . ,:

Φk+1 − Φk ≤ −c̃LAM max
i=1,...,n

{α̃i
k+1}2, (33)

where c̃LAM is defined in (16).

123

Journal of Optimization Theory and Applications

Proof See “Appendix A”. ��
Finally, the following proposition gives the asymptotic convergence property for

LAM1 along with the worst case complexity bounds. Specifically, we give complexity
bounds in terms of iterations and function evaluations to achieve a norm of the gradient
below a given threshold and number of iterations for which the norm of the gradient
is above a given threshold.

Proposition 5.3 Suppose that Assumptions 3.1 and 3.2 hold. Then, LAM1 produces
an infinite sequence {xk} such that

lim
k→∞ ‖∇ f (xk)‖ = 0.

Given any ε ∈ (0, 1) let j̄ε + 1 be the first iteration such that ‖∇ f (xj̄ε+1)‖ ≤ ε and
Kε be the set

Kε = { k = 1, . . . : ‖∇ f (xk)‖ > ε } .

Then:

j̄ε ≤
⌈
n c23 (Φ0 − fmin)

c̃LAM
ε−2

⌉
= O(n2ε−2),

|Kε | ≤
⌈
n c23 (Φ0 − fmin)

c̃LAM
ε−2

⌉
= O(n2ε−2),

N fε ≤ 2n

⌈
nc23(Φ0 − fmin)

c̃LAM
ε−2

⌉
+

⌈
nc23(f (x0) − fmin)

γ c2
δ2

(1 − δ)2
ε−2

⌉
= O(n3ε−2),

where N fε is the number of function evaluations required by LAM1 until the j̄ε-th
iteration,

c3 = max

{(
γ + L(

√
n + 1)

min{θ, δ}
)

,

(
γ + L

θ

)}
, (34)

and c̃LAM is given by (16).

Proof See “Appendix A”. ��
We note that the complexity bounds of LAM1 are worse than those obtained for

LAM. In fact LAM1 achieves a norm of the gradient less than ε in at most O(n2ε−2)

iterations and O(n3ε−2) function evaluations in the worst case. Therefore a larger
freedom of movement of LAM1 can positively impact the efficiency of the overall
scheme but, on the other hand, it makes the theoretical analysis of the algorithm
more complex. In particular, it requires bounding the norm of the gradient even in the
successful iterations and this introduces a (

√
n)2 rather than

√
n in the coefficient used

in the bound of the gradient.
Next, we present a further algorithm model, namely LAM2.

123

Journal of Optimization Theory and Applications

Linesearch Algorithm Model 2 (LAM2)

Data. c ∈ (0, 1), θ ∈ (0, 1), x0 ∈ R
n , α̃i

0 > 0, i ∈ {1, . . . , n}, and set di0 = ei ,
for i = 1, . . . , n.

For k = 0, 1, . . .
For i = 1, . . . , n

Let ᾱi
k = max{α̃i

k, c max
j=1,...,n

{α̃ j
k }}.

Compute α and d by the DF-Linesearch(ᾱi
k, xk, d

i
k;α, d).

If α = 0 then set αi
k = 0 and α̃i

k+1 = θᾱi
k .

else set αi
k = α, α̃i

k+1 = α.

Set dik+1 = d.

End For
Set xk+1 = argmin

i=1,...,n
{ f (xk + αi

kd
i
k+1)}.

End For

LAM2 always explores all the search directions starting from xk , and then chooses
the best point to define the new iterate. The theoretical analysis of LAM2 can be done
in a similar way to that of LAM. In particular we can state the following propositions.

For LAM2, in the next proposition we show that the norm of the gradient can be
bounded in each iteration.

Proposition 5.4 Suppose that Assumption 3.1 holds. Let {xk} be the sequence produced
by the LAM2 framework. Then, for each k

‖∇ f (xk)‖ ≤ √
n

(
γ + L

min{δ, θ}
)

max
i=1,...,n

{α̃i
k+1}. (35)

Proof See “Appendix B”. ��
Next, we show that the difference Φk+1 − Φk can be bounded with the maximum

of the tentative stepsizes.

Proposition 5.5 Let {xk} and {α̃i
k}, i = 1, . . . , n, be the sequences produced by LAM2.

Then for all k = 0, 1, . . .

Φk+1 − Φk ≤ −c̃LAM max
i=1,...,n

{α̃i
k+1}2, (36)

where c̃LAM is defined in (16).

Proof See “Appendix B”. ��

123

Journal of Optimization Theory and Applications

Proposition 5.6 Suppose that Assumptions 3.1 and 3.2 hold. Then, LAM2 produces
an infinite sequence {xk} such that

lim
k→∞ ‖∇ f (xk)‖ = 0.

Given any ε ∈ (0, 1) let j̄ε + 1 be the first iteration such that ‖∇ f (xj̄ε+1)‖ ≤ ε and
Kε be the set

Kε = { k = 1, . . . : ‖∇ f (xk)‖ > ε } .

Then:

j̄ε ≤
⌈
n c24 (Φ0 − fmin)

c̃LAM
ε−2

⌉
= O(nε−2),

|Kε | ≤
⌈
n c24 (Φ0 − fmin)

c̃LAM
ε−2

⌉
= O(nε−2),

N fε ≤ 2n

⌈
nc24(Φ0 − fmin)

c̃LAM
ε−2

⌉
+

⌈
nc24(f (x0) − fmin)

γ c2
δ2

(1 − δ)2
ε−2

⌉
= O(n2ε−2),

where N fε is the number of function evaluations required by LAM2 until the j̄ε-th
iteration and c̃LAM is given by (16) and

c4 = γ + L

min{θ, δ} . (37)

Proof See “Appendix B”. ��

6 Numerical Experiments

In this section we report the results of a brief numerical comparison between the pro-
posed algorithms and another well-established derivative-free method. In particular,
we consider the variant of the Nelder–Mead algorithm [9, 16] implemented in the
Python library scipy. We acknowledge that the comparison is very partial and pre-
liminary but the main aim of the paper is the theoretical analysis of linesearch based
derivative-free algorithms and the derivation of worst complexity bounds. The numeri-
cal experiments are inserted with the sole purpose of showing that the studied methods
have numerical performances that align with other commonly used derivative-free
algorithms. A thorough and extensive numerical comparison with other state-of-the-
art derivative-free solvers is out of the scope of the present paper.

To carry out the numerical experiments, we selected a small set of problems from
the CUTEst collection [11]. In particular, we extracted the unconstrained problems
with more than 10 variables and such that the number of variables is not parametric.
The set of problems with their dimensions is reported in Table 1.

LAM, LAM1 and LAM2 were run using the following values for the parameters.

c = 10−10, θ = δ = 0.5, γ = 10−6, α̃i
0 = 1, ∀ i = 1, . . . , n.

123

Journal of Optimization Theory and Applications

Table 1 Set of CUTEst test
problems used in the comparison

Problem n

3PK 30

BA-L1LS 57

BA-L1SPLS 57

BQPGABIM 46

BQPGASIM 50

COATING 134

DECONVB 51

DECONVBNE 51

DECONVNE 51

DECONVU 51

DIAMON2DLS 66

DIAMON3DLS 99

DMN15103LS 99

DMN15332LS 66

DMN15333LS 99

DMN37142LS 66

DMN37143LS 99

HATFLDC 25

HATFLDCNE 25

HATFLDGLS 25

HOLMES 180

HYDC20LS 99

HYDCAR6LS 29

METHANB8LS 31

METHANL8LS 31

MINSURF 36

PARKCH 15

SANTALS 21

STRATEC 10

TOINTGOR 50

TOINTPSP 50

TOINTQOR 50

All the codes were run allowing a maximum of 10000 function evaluations. For the
LAM’s methods we also stop the codes when maxi=1,...,n{α̃i

k} ≤ 10−5.
The results are reported in terms of data profiles [15] with values of the precision

parameter τ ∈ {10−3, 10−4, 10−5, 10−6}.
From Fig. 1, we can see that all the LAM’s algorithms dominate Nelder-Mead

algorithm. Furthermore, from the data profiles, we can also notice that LAM1 is
numerically the method of choice. The second-best method is LAM, even though at
high precision levels, LAM and LAM2 are almost comparable.

123

Journal of Optimization Theory and Applications

7 Conclusions

In this paper we are concerned about the worst case complexity of linesearch-based
derivative-free algorithms for the unconstrained optimization of a black-box objective
function.

First, we considered a particular algorithmmodel, namely LAM, based on a suitable
derivative-free linesearch procedure. We managed to show that the algorithm model
takes at mostO(nε−2) iterations andO(n2ε−2) function evaluations to drive the norm
of the gradient below ε and that produces at mostO(n2ε−2) iterations where the norm
of the gradient is above ε.

Then, to generalize the proposed analysis, we consider two other linesearch
derivative-free algorithms LAM1 and LAM2. They differ from LAM because they
use different strategies to exploit the information obtained by the samplings of the
objective function along the coordinate axes. We prove that also LAM1 and LAM2
have similar theoretical properties. In the following table we summarize the complex-
ity results for the three algorithms, namely LAM, LAM1 and LAM2.

j̄ε |Kε | N fε
LAM O(nε−2) O(n2ε−2) O(n2ε−2)

LAM1 O(n2ε−2) O(n2ε−2) O(n3ε−2)

LAM2 O(nε−2) O(nε−2) O(n2ε−2)

LAM
Name Constant value used in

γ + L(
√
n + 1)

δ
(1)

γ + L

θ
(2)

η (12) and (13)

c̃LAM min

{
η

(
1 − θ2

θ2

)
, γ c2,

(
γ (1 − δ)2 − η

)}
(15) and (16)

c1
γ + L

θ
(21) and (22)

c2 max

{(
γ + L(

√
n + 1)

δ

)
,

(
γ + L

θ

)}
(30) and (31)

LAM1
Name Constant value used in

c3 max

{(
γ + L(

√
n + 1)

min{θ, δ}
)

,

(
γ + L

θ

)}
(34)

LAM2
Name Constant value used in

c4
γ + L

min{θ, δ} (37)

We note that LAM2 has the same complexity bounds of LAM both for the number
of iterations and the number of function evaluations needed to obtain a point where
the norm of the gradient of the objective function is below a given threshold. LAM2

123

Journal of Optimization Theory and Applications

Fig. 1 Data profiles

is better in terms of bound of the number of iterations with norm of the gradient above
a given threshold. This bound is O(nε−2) in the worst case.
Even thoughLAM2 is better thanLAM in theworst case, it can be less computationally
efficient than LAM on average. Indeed, the sampling technique of LAM2 is such that
a complete exploration starting from the current iterate has to be performed before
the selection of the new iterate. This, in many situations, can be too costly. On the
contrary, LAM changes the iterate as soon as a sufficiently improving new point is
detected by the linesearch.

We also report the results of a brief numerical experimentation on a small set of
problems from the CUTEst collection [11]. On the basis of this experimentation, we
can say that:

(i) the three versions of LAM compare favorably with a widely used derivative-free
methods, i.e. the Nelder-Mead algorithm;

(ii) among the three versions of LAM, the most efficient one is LAM1, which was
largely expected; LAM and LAM2 are very similar with LAM slightly dominating
LAM2.

123

Journal of Optimization Theory and Applications

Funding Open access funding provided by Università degli Studi di Roma La Sapienza within the CRUI-
CARE Agreement.

Data availability statement The problems used in this study are available as part of the CUTEst collection
of problems [11]. Data sets, codes and results generated during the current study are available from the
corresponding author on reasonable request.

Declarations

Conflict of interest The authors have no Conflict of interest to declare that are relevant to the content of
this article.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Proofs of Propositions for LAM1

Proof of Proposition 5.1 The proof is very similar to the proof of Proposition 3.1. The
only difference being the case of an iteration k such that xk+1 �= xk and for an index
i = 1, . . . , n such that αi

k = 0, and α̃i
k+1 = θᾱi

k . In this situation, we have:

f (yik + ᾱi
kei) > f (yik) − γ (ᾱi

k)
2,

f (yik − ᾱi
kei) > f (yik) − γ (ᾱi

k)
2.

Then we get from the Mean Value Theorem

∇ f (uik)
T ei > −γ ᾱi

k, (38)

∇ f (vik)
T ei < γ ᾱi

k, (39)

where uik = yik + λik ᾱ
i
kei and vik = yik − μi

k ᾱ
i
kei with λik, μ

i
k ∈ (0, 1). From (38) and

(39) and the Lipschitz continuity of ∇ f , we have that

∇ f (xk)
T ei > −γ ᾱi

k − L‖xk − uik‖ > −γ ᾱi
k − L‖xk − yik‖ − Lᾱi

k,

∇ f (xk)
T ei < γ ᾱi

k + L‖xk − vik‖ < γ ᾱi
k + L‖xk − yik‖ + Lᾱi

k .

Hence

123

http://creativecommons.org/licenses/by/4.0/

Journal of Optimization Theory and Applications

|∇ f (xk)
T ei | < (γ + L)ᾱik + L‖xk − yik‖ ≤ (γ + L)ᾱik + L

√
n max
i=1,...,n

{α̃ik+1} =

(γ + L)
α̃ik+1

θ
+ L

√
n max
i=1,...,n

{α̃ik+1}

≤ (γ + L)

θ
max

i=1,...,n
{α̃ik+1} + L

√
n max
i=1,...,n

{α̃ik+1},

so that we can finally write

|∇ f (xk)
T ei | ≤

(
γ + L(

√
n + 1)

θ

)
max

i=1,...,n
{α̃i

k+1}. (40)

Thus, recalling (40) and (9) (from the proof of Proposition 3.1 case (ii)), when xk+1 �=
xk we can write

‖∇ f (xk)‖ ≤ √
n

(
γ + L(

√
n + 1)

min{θ, δ}
)

max
i=1,...,n

{α̃i
k+1}.

Theproof is then concluded noting that, given the definition ofLAM1,when xk+1 = xk
we can prove the bound on the norm of the gradient by the same reasonings as in the
proof of Proposition 3.1. ��
Proof of Proposition 5.2 If the (k − 1)-th iteration is of failure, then

(i) f (xk) = f (xk−1);
(ii) α̃i

k = θᾱi
k−1, for every i = 1, . . . , n.

In particular, since, for every i = 1, . . . , n, ᾱi
k−1 = max{α̃i

k−1, c max
j=1,...,n

{α̃ j
k−1}}, we

have either

α̃i
k = θα̃i

k−1 ≤ θ max
i=1,...,n

{α̃i
k−1}

or

α̃i
k = θc max

i=1,...,n
{α̃i

k−1} ≤ θ max
i=1,...,n

{α̃i
k−1}.

Hence, in case of failure, we can write α̃i
k ≤ θ max

i=1,...,n
{α̃i

k−1}, so that max
i=1,...,n

{α̃i
k} ≤

θ max
i=1,...,n

{α̃i
k−1}. Then, from

Φk − Φk−1 = f (xk) − f (xk−1) + ηγ

(
max

i=1,...,n
{α̃i

k}2 − max
i=1,...,n

{α̃i
k−1}2

)

123

Journal of Optimization Theory and Applications

and

− 1

θ2
max

i=1,...,n
{α̃i

k}2 ≥ − max
i=1,...,n

{α̃i
k−1}2

we obtain

Φk − Φk−1 = η

(
max

i=1,...,n
{α̃i

k}2 − max
i=1,...,n

{α̃i
k−1}2

)

≤ η

(
max

i=1,...,n
{α̃i

k}2 − 1

θ2
max

i=1,...,n
{α̃i

k}2
)

,

so that

Φk − Φk−1 ≤ −η

(
1 − θ2

θ2

)
max

i=1,...,n
{α̃i

k}.

Let us now consider the case when (k − 1)-th iteration is of “success”, i.e. xk �= xk−1
so that f (xk) < f (xk−1). Then, we consider the following three cases:

1. max
i=1,...,n

{α̃i
k} = max

i=1,...,n
{α̃i

k−1};
2. max

i=1,...,n
{α̃i

k} > max
i=1,...,n

{α̃i
k−1};

3. max
i=1,...,n

{α̃i
k} < max

i=1,...,n
{α̃i

k−1}.
Case 1. Since the (k − 1)-th iteration is of success, there is an index i such that the

following holds

f (yi+1
k−1) ≤ f (yik−1) − γ (ᾱi

k−1)
2

since the extrapolation cycle gets started when

f (yik−1 + ᾱi
k−1d̂) ≤ f (yik−1) − γ (ᾱi

k−1)
2.

Then, considering that

ᾱi
k−1 = max{α̃i

k−1, c max
j=1,...,n

{α̃ j
k−1}} ≥ c max

j=1,...,n
{α̃ j

k−1},

we have

f (yi+1
k−1) ≤ f (yik−1) − γ (ᾱi

k−1)
2 ≤ f (yik−1) − γ c2 max

j=1,...,n
{α̃ j

k−1}2.

Then, recalling that we are in case 1,

f (yi+1
k−1) ≤ f (yik−1) − γ c2 max

j=1,...,n
{α̃ j

k }2.

123

Journal of Optimization Theory and Applications

Moreover, since by definition f (xk) ≤ f (yn+1
k−1) and f (yik−1) ≤ f (xk−1), we can

write

f (xk) ≤ f (yi+1
k−1) ≤ f (yik−1) − γ c2 max

j=1,...,n
{α̃ j

k }2 ≤ f (xk−1) − γ c2 max
j=1,...,n

{α̃ j
k }2.

Then, we have

Φk − Φk−1 = f (xk) − f (xk−1) ≤ −γ c2 max
i=1,...,n

{α̃i
k}2.

Case 2. Since max
i=1,...,n

{α̃i
k} > max

i=1,...,n
{α̃i

k−1}, we have that an index j̄ exists such

that

max
i=1,...,n

{α̃i
k} = α̃

j̄
k

and a linesearch has been performed along the j̄ -th direction, so that (repeating the
same reasonings as in the proof of Proposition 3.3) we have

f (y j̄+1
k−1) ≤ f (y j̄

k−1) − γ (1 − δ)2(α̃
j̄
k)

2.

Hence,

f (xk) − f (xk−1) ≤ −γ (1 − δ)2(α̃
j̄
k)

2,

so that

Φk − Φk−1 = f (xk) − f (xk−1) + η

(
max

i=1,...,n
{α̃i

k}2 − max
i=1,...,n

{α̃i
k−1}2

)

≤ −γ (1 − δ)2 max
i=1,...,n

{α̃i
k}2 + η

(
max

i=1,...,n
{α̃i

k}2 − max
i=1,...,n

{α̃i
k−1}2

)

≤ −γ (1 − δ)2 max
i=1,...,n

{α̃i
k}2 + η max

i=1,...,n
{α̃i

k}2

≤ −(γ (1 − δ)2 − η) max
i=1,...,n

{α̃i
k}2.

Case 3. In this case, we know that an index ı̄ exists such that

α̃ ı̄
k ≥ ᾱ ı̄

k−1 = max{α̃ ı̄
k−1, c max

i=1,...,n
{α̃i

k−1}} ≥ c max
i=1,...,n

{α̃i
k−1}.

Then, we can write (recalling that the iteration is of success)

f (xk) ≤ f (xk−1) − γ c2 max
i=1,...,n

{α̃i
k−1}2.

123

Journal of Optimization Theory and Applications

Hence, we have

Φk − Φk−1 = f (xk) − f (xk−1) + η max
i=1,...,n

{α̃i
k}2 − η max

i=1,...,n
{α̃i

k−1}2

≤ −γ c2 max
i=1,...,n

{α̃i
k−1}2 + η

(
max

i=1,...,n
{α̃i

k}2 − max
i=1,...,n

{α̃i
k−1}2

)

= −γ c2 max
i=1,...,n

{α̃i
k}2 + γ c2

(
max

i=1,...,n
{α̃i

k}2 − max
i=1,...,n

{α̃i
k−1}2

)

+η

(
max

i=1,...,n
{α̃i

k}2 − max
i=1,...,n

{α̃i
k−1}2

)

< −γ c2 max
i=1,...,n

{α̃i
k}2,

where the last inequality follows from the fact that we are in case 3. Hence, recalling
the above three cases, for all k we can always write

Φk − Φk−1 ≤ −c̃LAM max
i=1,...,n

{α̃i
k}2,

where c̃LAM is defined in (16), thus concluding the proof. ��
Proof of Proposition 5.3 For all iterations k, by Proposition 5.2, we have

Φk − Φk−1 ≤ −c̃LAM max
i=1,...,n

{α̃i
k}2,

where c̃LAM is defined in (16). Recalling the Φk ≥ fmin, it results

lim
k→∞ max

i=1,...,n
{α̃i

k} = 0.

Hence, by Proposition 5.1, we obtain

lim
k→∞ ‖∇ f (xk)‖ = 0.

For all iterations k = 0, 1, . . . , j̄ε , by Proposition 5.1, we have that

ε < ‖∇ f (xk)‖ ≤ c3
√
n max
i=1,...,n

{α̃i
k+1}. (41)

Hence,

max
i=1,...,n

{α̃i
k+1} ≥ ε

c3
√
n
, (42)

Then, considering that

Φj̄ε+1 − Φ0 = (Φj̄ε+1 − Φj̄ε) + (Φj̄ε − Φj̄ε−1) + · · · + (Φ1 − Φ0)

123

Journal of Optimization Theory and Applications

and recalling (33) we can write

Φj̄ε+1 − Φ0 ≤ −c̃LAM

j̄ε+1∑
k=1

max
i=1,...,n

{α̃i
k}2 = −c̃

j̄ε∑
k=0

max
i=1,...,n

{α̃i
k+1}2.

By recalling (14), we can write

fmin − Φ0 ≤ Φj̄ε − Φ0 ≤ −c̃LAM

j̄ε∑
k=0

max
i=1,...,n

{α̃i
k+1}2. (43)

Now, by (42), we have

max
i=1,...,n

{α̃i
k+1}2 ≥ ε2

c23n
, for k = 0, 1, . . . , j̄ε,

and, from (43), we can write

Φ0 − fmin ≥ c̃LAM

j̄ε∑
k=0

max
i=1,...,n

{α̃i
k+1}2 ≥ (j̄ε + 1)c̃LAM

ε2

nc23
.

Thus, the number of iterations j̄ε can be bounded from above by

j̄ε ≤
⌈
nc23(Φ0 − fmin)

c̃LAM

ε−2

⌉
= O(n2ε−2).

The proof is concluded noting that the bounds on |Kε | and N fε can be obtained
by the same reasoning as those carried out in the proof of Propositions 4.3 and 4.2,
respectively. ��

B Proofs of Propositions for LAM2

Proof of Proposition 5.4 For each iteration k such that xk+1 �= xk and every index
i = 1, . . . , n, one of two cases can occur:

Case (i), αi
k = 0. By αi

k = 0, and α̃i
k+1 = θᾱi

k , we have:

f (xk + ᾱi
kei) > f (xk) − γ (ᾱi

k)
2,

f (xk − ᾱi
kei) > f (xk) − γ (ᾱi

k)
2.

Then we get from the Mean Value Theorem

∇ f (uik)
T ei > −γ ᾱi

k, (44)

∇ f (vik)
T ei < γ ᾱi

k, (45)

123

Journal of Optimization Theory and Applications

where uik = xk + λik ᾱ
i
kei and vik = xk − μi

k ᾱ
i
kei with λik, μ

i
k ∈ (0, 1). From (44) and

(45) and the Lipschitz continuity of ∇ f , we have that

∇ f (xk)
T ei > −γ ᾱi

k − L‖xk − uik‖ > −γ ᾱi
k − Lᾱi

k,

∇ f (xk)
T ei < γ ᾱi

k + L‖xk − vik‖ < γ ᾱi
k + Lᾱi

k .

Hence

|∇ f (xk)
T ei | < (γ + L)ᾱi

k = (γ + L)
α̃i
k+1

θ
≤

(
γ + L

θ

)
max

i=1,...,n
{α̃i

k+1}. (46)

Case (ii). From αi
k = α, and α̃i

k+1 = α ≥ ᾱi
k , we results in either

f

(
xk + α̃i

k+1

δ
ei

)
> f (xk + α̃i

k+1ei) − γ

(
1

δ
− 1

)2

(α̃i
k+1)

2,

f (xk + δα̃i
k+1ei) ≥ f (xk + α̃i

k+1ei) + γ (1 − δ)2(α̃i
k+1)

2

or

f

(
xk − α̃i

k+1

δ
ei

)
> f (xk − α̃i

k+1ei) − γ

(
1

δ
− 1

)2

(α̃i
k+1)

2,

f (xk − δα̃i
k+1ei) ≥ f (xk − α̃i

k+1ei) + γ (1 − δ)2(α̃i
k+1)

2.

Then, we get,

∇ f (ūik)
T ei > −γ

(
1 − δ

δ

)
α̃i
k+1, −∇ f (ûik)

T ei ≥ γ (1 − δ)α̃i
k+1, (47)

or

∇ f (v̄ik)
T ei < γ

(
1 − δ

δ

)
α̃i
k+1, −∇ f (v̂ik)

T ei ≤ −γ (1 − δ)α̃i
k+1, (48)

where ūik = xk + λ̄ik

(
1 − δ

δ

)
α̃i
k+1ei , û

i
k = xk + λ̂ik(1 − δ)α̃i

k+1ei , v̄ik = xk −

μ̄i
k

(
1 − δ

δ

)
α̃i
k+1ei , and v̂ik = xk − μ̂i

k(1 − δ)α̃i
k+1ei , with λ̄ik, λ̂

i
k, μ̄

i
k, μ̂

i
k ∈ (0, 1).

When (47) holds, from ∇ f (ūik)
T ei > −γ

(
1 − δ

δ

)
α̃i
k+1 we can write

[∇ f (ūik) − ∇ f (xk) + ∇ f (xk)]T ei > −γ

(
1 − δ

δ

)
α̃i
k+1,

123

Journal of Optimization Theory and Applications

so that we obtain

∇ f (xk)
T ei > −γ

(
1 − δ

δ

)
α̃i
k+1 − L‖xk − ūik‖

> −γ

(
1 − δ

δ

)
α̃i
k+1 − L(

1 − δ

δ
)α̃i

k+1.

(49)

From ∇ f (ûik)
T ei ≤ −γ (1 − δ)α̃i

k+1 in (47), we can write

[∇ f (ûik) − ∇ f (xk) + ∇ f (xk)]T ei ≤ −γ (1 − δ)α̃i
k+1,

so that, in this case, we obtain

∇ f (xk)
T ei ≤ −γ (1 − δ)α̃i

k+1 + L‖xk − ûik‖
≤ γ

(
1 − δ

δ

)
α̃i
k+1 + L

(
1 − δ

δ

)
α̃i
k+1.

(50)

Now, considering (49) and (50), we get

|∇ f (xk)
T ei | ≤

(
γ + L

δ

)
max

i=1,...,n
{α̃i

k+1}. (51)

The same bound can be obtained when (48) holds. Thus, recalling (46) and (50), we
obtain

‖∇ f (xk)‖ ≤ √
n

(
γ + L

min{δ, θ}
)

max
i=1,...,n

{α̃i
k+1}.

On the other hand, for each iteration k such that xk+1 = xk , i.e. αi
k = 0 for all

i = 1, . . . , n. In this case, the proof exactly follows the proof of Proposition 3.1 for
the LAM algorithm. Thus, in this case we can write

|∇ f (xk)
T ei | <

(
γ + L

θ

)
α̃i
k+1.

Hence, we can finally obtain

‖∇ f (xk)‖ ≤ √
n

(
γ + L

min{δ, θ}
)

max
i=1,...,n

{α̃i
k+1},

concluding the proof. ��
Proof of Proposition 5.5 We split the set of iteration indices {0, 1, 2, . . . } into the two
subsets K1 and K2, namely

(i) k ∈ K1 when xk �= xk−1;

123

Journal of Optimization Theory and Applications

(ii) k ∈ K2 when xk = xk−1.

and note that the sets K1 and K2 cannot be both finite.
Let us first consider the case when k ∈ K2, i.e. the (k − 1)-th iteration is of failure,

we have

(i) f (xk) = f (xk−1);
(ii) α̃i

k = θᾱi
k−1, for every i = 1, . . . , n.

In this case, the same reasoning of Proposition 3.2 can be repeated thus leading us to
obtain

Φk − Φk−1 ≤ −η

(
1 − θ2

θ2

)
max

i=1,...,n
{α̃i

k}. (52)

Let us now consider the case when k ∈ K1, i.e. the (k − 1)-th iteration is of
“success”. In this case, we have xk �= xk−1 and f (xk) < f (xk−1). Then, we consider
the following three cases:

1. max
i=1,...,n

{α̃i
k} = max

i=1,...,n
{α̃i

k−1};
2. max

i=1,...,n
{α̃i

k} > max
i=1,...,n

{α̃i
k−1};

3. max
i=1,...,n

{α̃i
k} < max

i=1,...,n
{α̃i

k−1}.

Case 1. Since the (k − 1)-th iteration is of success, there is an index i such that the
following holds

f (xk−1 + ᾱi
k−1d̂) ≤ f (xk−1) − γ (ᾱi

k−1)
2.

Then, considering that f (xk) < f (xk−1) and

ᾱi
k−1 = max{α̃i

k−1, c max
j=1,...,n

{α̃ j
k−1}} ≥ c max

j=1,...,n
{α̃ j

k−1},

we have

f (xk) ≤ f (xk−1) − γ (ᾱi
k−1)

2 ≤ f (xk−1) − γ c2 max
j=1,...,n

{α̃ j
k−1}2.

Then, we have

Φk − Φk−1 = f (xk) − f (xk−1) ≤ −γ c2 max
i=1,...,n

{α̃i
k}2.

Case 2. Since max
i=1,...,n

{α̃i
k} > max

i=1,...,n
{α̃i

k−1}, we have that an index j̄ exists such

that

max
i=1,...,n

{α̃i
k} = α̃

j̄
k

123

Journal of Optimization Theory and Applications

and a linesearch has been performed along the j̄ -th direction, so that (repeating the
same reasonings as in the proof of Proposition 3.3) we have

f (xk) − f (xk−1) ≤ −γ (1 − δ)2(α̃
j̄
k)

2.

Hence,

Φk − Φk−1 = f (xk) − f (xk−1) + η

(
max

i=1,...,n
{α̃i

k}2 − max
i=1,...,n

{α̃i
k−1}2

)

≤ −γ (1 − δ)2 max
i=1,...,n

{α̃i
k}2 + η

(
max

i=1,...,n
{α̃i

k}2 − max
i=1,...,n

{α̃i
k−1}2

)

≤ −γ (1 − δ)2 max
i=1,...,n

{α̃i
k}2 + η max

i=1,...,n
{α̃i

k}2

≤ −(γ (1 − δ)2 − η) max
i=1,...,n

{α̃i
k}2.

Case 3. In this case, we know that an index ı̄ exists such that

α̃ ı̄
k ≥ ᾱ ı̄

k−1 = max{α̃ ı̄
k−1, c max

i=1,...,n
{α̃i

k−1}} ≥ c max
i=1,...,n

{α̃i
k−1}.

Then, we can write (recalling that the iteration is of success)

f (xk) ≤ f (xk−1) − γ c2 max
i=1,...,n

{α̃i
k−1}2.

Hence, we have

Φk − Φk−1 = f (xk) − f (xk−1) + η max
i=1,...,n

{α̃i
k}2 − η max

i=1,...,n
{α̃i

k−1}2

≤ −γ c2 max
i=1,...,n

{α̃i
k−1}2 + η

(
max

i=1,...,n
{α̃i

k}2 − max
i=1,...,n

{α̃i
k−1}2

)

= −γ c2 max
i=1,...,n

{α̃i
k}2 + γ c2

(
max

i=1,...,n
{α̃i

k}2 − max
i=1,...,n

{α̃i
k−1}2

)

+η

(
max

i=1,...,n
{α̃i

k}2 − max
i=1,...,n

{α̃i
k−1}2

)

< −γ c2 max
i=1,...,n

{α̃i
k}2,

where the last inequality follows from the fact that we are in case 3. Hence, recalling
the above three cases, for all k we can always write

Φk − Φk−1 ≤ −c̃LAM max
i=1,...,n

{α̃i
k}2,

where c̃LAM is defined in (16). ��

123

Journal of Optimization Theory and Applications

Proof of Proposition 5.6 For all iterations k, by Proposition 5.5, we have

Φk − Φk−1 ≤ −c̃LAM max
i=1,...,n

{α̃i
k}2,

where c̃LAM is defined in (16). Recalling the Φk ≥ fmin, it results

lim
k→∞ max

i=1,...,n
{α̃i

k} = 0.

Hence, by Proposition 5.4, we obtain

lim
k→∞ ‖∇ f (xk)‖ = 0.

For all iterations k = 0, 1, . . . , j̄ε , by Proposition 5.4, we have that

ε < ‖∇ f (xk)‖ ≤ c4
√
n max
i=1,...,n

{α̃i
k+1}. (53)

Hence,

max
i=1,...,n

{α̃i
k+1} ≥ ε

c4
√
n
, (54)

Then, considering that

Φj̄ε+1 − Φ0 = (Φj̄ε+1 − Φj̄ε) + (Φj̄ε − Φj̄ε−1) + · · · + (Φ1 − Φ0)

and recalling (36) we can write

Φj̄ε+1 − Φ0 ≤ −c̃LAM

j̄ε+1∑
k=1

max
i=1,...,n

{α̃i
k}2 = −c̃LAM

j̄ε∑
k=0

max
i=1,...,n

{α̃i
k+1}2.

By recalling (14), we can write

fmin − Φ0 ≤ Φj̄ε+1 − Φ0 ≤ −c̃LAM

j̄ε∑
k=0

max
i=1,...,n

{α̃i
k+1}2. (55)

Now, by (54), we have

max
i=1,...,n

{α̃i
k+1}2 ≥ ε2

c24n
, for k = 0, 1, . . . , j̄ε,

and, from (55), we can write

Φ0 − fmin ≥ c̃LAM

j̄ε∑
k=0

max
i=1,...,n

{α̃i
k+1}2 ≥ (j̄ε + 1)c̃LAM

ε2

nc24
.

123

Journal of Optimization Theory and Applications

Thus, the number of iterations j̄ can be bounded from above by

j̄ε ≤
⌈
nc24(Φ0 − fmin)

c̃LAM

ε−2

⌉
= O(nε−2).

The proof is concluded noting that the bounds on |Kε | and N fε can be obtained
by the same reasoning as those carried out in the proof of Propositions 4.2 and 4.3,
respectively. ��

References

1. Amaral, V.S., Andreani, R., Birgin, E.G., Marcondes, D.S., Martínez, J.M.: On complexity and
convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained min-
imization. J. Glob. Optim. 84(3), 527–561 (2022)

2. Audet, C., Dennis, J.E., Jr.:Mesh adaptive direct search algorithms for constrained optimization. SIAM
J. Optim. 17(1), 188–217 (2006)

3. Audet, C., Dzahini, K.J., Kokkolaras, M., Le Digabel, S.: Stochastic mesh adaptive direct search for
blackbox optimization using probabilistic estimates. Comput. Optim. Appl. 79(1), 1–34 (2021)

4. Cartis, C., Gould, N.I.M., Toint, P.L.: On the oracle complexity of first-order and derivative-free
algorithms for smooth nonconvex minimization. SIAM J. Optim. 22(1), 66–86 (2012)

5. Cartis, C., Gould, N.I.M., Toint, Ph.L.: Evaluation Complexity of Algorithms for Nonconvex Opti-
mization: Theory, Computation and Perspectives. SIAM, Philadelphia (2022)

6. Chen, R., Menickelly, M., Scheinberg, K.: Stochastic optimization using a trust-region method and
random models. Math. Program. 169, 447–487 (2018)

7. Dodangeh, M., Vicente, L.N., Zhang, Z.: On the optimal order of worst case complexity of direct
search. Optim. Lett. 10(4), 699–708 (2016)

8. Fasano, G., Liuzzi, G., Lucidi, S., Rinaldi, F.: A linesearch-based derivative-free approach for nons-
mooth constrained optimization. SIAM J. Optim. 24(3), 959–992 (2014)

9. Gao, F., Han, L.: Implementing theNelder-Mead simplex algorithmwith adaptive parameters. Comput.
Optim. Appl. 51(1), 259–277 (2012)

10. Garmanjani, R., Vicente, L.N.: Smoothing and worst-case complexity for direct-search methods in
nonsmooth optimization. IMA J. Numer. Anal. 33(3), 1008–1028 (2012)

11. Gould, N.I.M., Orban, D., Toint, P.L.: Cutest: a constrained and unconstrained testing environment
with safe threads for mathematical optimization. Comput. Optim. Appl. 60, 545–557 (2015)

12. Larson, J., Billups, S.C.: Stochastic derivative-free optimization using a trust region framework. Com-
put. Optim. Appl. 64, 619–645 (2016)

13. Lucidi, S., Sciandrone, M.: A derivative-free algorithm for bound constrained optimization. Comput.
Optim. Appl. 21(2), 119–142 (2002)

14. Lucidi, S., Sciandrone, M.: On the global convergence of derivative-free methods for unconstrained
optimization. SIAM J. Optim. 13(1), 97–116 (2002)

15. Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1),
172–191 (2009)

16. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)
17. Torczon, V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7(1), 1–25 (1997)
18. Vicente, L.N.: Worst case complexity of direct search. EURO J. Comput. Optim. 1, 143–153 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Worst Case Complexity Bounds for Linesearch-Type Derivative-Free Algorithms
	Abstract
	1 Introduction
	1.1 Literature Review
	1.2 Our Contribution
	1.3 Organization of the Paper

	2 A Linesearch-Type Algorithm
	3 Asymptotic Convergence Analysis for LAM
	4 Complexity Bounds for LAM
	5 Other Types of Linesearch Methods
	6 Numerical Experiments
	7 Conclusions
	A Proofs of Propositions for LAM1
	B Proofs of Propositions for LAM2
	References

