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ABSTRACT
While the integration of product images enhances the recommen-

dation performance of visual-based recommender systems (VRSs),

this can make the model vulnerable to adversaries that can produce

noised images capable to alter the recommendation behavior. Re-

cently, stronger and stronger adversarial attacks have emerged to

raise awareness of these risks; however, effective defense methods

are still an urgent open challenge. In this work, we propose "Adver-

sarial Image Denoiser" (AiD), a novel defense method that cleans up

the item images by malicious perturbations. In particular, we design

a training strategy whose denoising objective is to minimize both

the visual differences between clean and adversarial images and pre-

serve the ranking performance in authentic settings. We perform

experiments to evaluate the efficacy of AiD using three state-of-the-

art adversarial attacks mounted against standard VRSs. Code and

datasets at https://github.com/sisinflab/Denoise-to-protect-VRS.
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1 INTRODUCTION
Recommender systems (RSs) learn to uncover the users’ preferences 
for supporting their decision-making process on the huge catalogs 
of e-commerce (e.g., Amazon, Zalando), media stream (e.g., Netflix,
∗
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Figure 1: Visual-based RS protected by the Adversarial Image De-
noiser (AiD) in the presence of an Adversarial Image (𝑥∗) of the item
𝑖. 𝑥∗ is cleaned by AiD to product 𝑥 from which the CNN extracts the
feature Φ̃ used by the recommender to measure the relevance score
𝑠𝑢𝑖 of 𝑖 for the user 𝑢.

Spotify), and social networks (e.g., Instagram, Pinterest) websites.

While the core of recommendation algorithms is to exploit collabo-

rative filtering (CF) signals, recently, users’ visual preferences have

been demonstrated to enhance recommendation performance in

fashion [17], food [10], and social [6] domains.

The economic gain associated with RSs and the performance

enhancement proved by their visually-aware variants have made

them the target of adversaries [3, 8]. For instance, an adversary can

be a seller willing to boost her sales by manipulating items and rec-

ommenders with adversarial perturbations [1, 2, 5, 7, 9, 19, 22, 24].

Tang et al. [22] proposed the first adversarial attack procedures

for reducing the accuracy of VRSs by directly altering the image
features via gradient-based perturbation method [15]. Subsequent

works focused on adversaries that perform their malicious goals

(i.e., pushing an item or a set of items in high positions of the rec-

ommendation lists) by directly uploading adversarially perturbed

product images. For instance, [19] and [7] have proposed attacks

that perturb product images by crafting perturbations that maxi-

mize the preference scores predicted by a VRS. Liu and Larson [19]

have built the Insider Attack (WB-INSA) perturbations by directly

employing the gradients measured when maximizing the predicted

preference score, while Cohen et al. [7] have used the Sign of the

Gradient (WB-SIGN) to speed up the perturbation process when still

optimizing to increase the recommendability of the target items.

While the literature on proposing attack strategies is rich, only

a few works exist on finding solutions to defend visual recom-

menders. To the best of our knowledge, Adversarial Multimedia

Recommendation (AMR) [22] is the only state-of-the-art defensive

solution. In this model, Tang et al. [22] integrated VBPR with the

adversarial personalized training procedure proposed by He et al.

[15] to robustify the model against features perturbation. However,

while AMR has been proven to be effective against the adversarial

perturbations of the visual features [22], recent attacks by Liu and

Larson [19] have tested its limits against adversarial perturbations

of product images. Indeed, a small perturbation of a product image
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can cause a big variation in the image features against which AMR

is not trained on.

Motivated by the lack of adequate defenses, in this work, we

propose a novel solution named Adversarial Image Denoiser (AiD).

The main intuition of our proposal is to train a model capable

to remove the noise from the adversarial images. Technically, we

accomplish this by using a U-Net-based denoiser auto-encoder [18]

trained on a high- and recommendation- levels guided loss function.

The architectural schema of a VRS protected by AID is shown

in Figure 1.

To summarize, our main contributions are:

• the proposal of a novel defense solution, named Adversarial

Image Denoiser (AiD), that protects VRSs against adversaries

that can upload adversarial images on the recommendation

platform;

• the verification of AiD protective capabilities against stronger

versions of the explored attacks by varying the number of

pixels modifiable by the adversary (perturbation budget) and

the number of iterations that the adversary can perform to

build the malicious noise;

• the validation of AiD robustness by experimentally proving

on three real-world visual recommendation datasets that it

outperforms AMR on both reducing the variations of the

preference scores and the preservation of authentic ranking

performance on the target items under two state-of-the-art

adversarial attack methods, i.e., WB-SIGN and WB-INSA.

2 ADVERSARIAL IMAGE DENOISER
To protect a VRS, we propose to remove the noise from 𝑥𝑖 , the

image of an item 𝑖 , via a convolutional version of a denoising auto-

encoder (DAE) [23] upgraded with a U-net [21] architecture, named

DUNET [18]. We define 𝑑Ω : 𝑥∗ −→ 𝑥 as the denoising function

where Ω are the AiD parameters, and 𝑥∗ is an adversarially per-

turbed item image (we omit 𝑖 for readability reasons). DUNET learns

how to reconstruct the adversarial noise (𝛿) to be removed from

the adversarial sample such that 𝑥 = 𝑥∗ − 𝑑𝑥 , where the denoised
image 𝑥 should be equal or similar to the clean one 𝑥 while 𝑑𝑥 ,

the AiD’s learned adversarial noise, should be equal to 𝛿 (i.e., the

adversarial perturbation added to 𝑥 to make 𝑥∗). AiD is composed

of a feedforward (encoder) and a feedback (decoder) path connected

with lateral links (fuse operation) going from the encoder layers to

their corresponding decoder ones. The input and output shapes are

both 224x224x3 which are the input dimensions of ResNet50 [12],

the CNN used in our experiments. Architectural details are in [18].

To protect the recommendation performance while preserving

the quality of images, we train AiDwith a loss function (L𝐴𝑖𝐷 ) com-

posed of two parts, L𝐻𝐺𝐷 and L𝑅𝐺𝐷 . The former is a high-level

guided denoiser (HGD) loss function that, differently from standard

pixel-level guided denoiser loss, is robust against the amplification

of adversarial noise along with the last layers of CNNs (the layers

used in VRSs) [18].

Definition 1 (High-level Guided Loss). Let 𝜑 be the item
visual features of a clean image 𝑥 , let 𝜑 be the features extracted from
the denoised image version 𝑥 , then the high-level guided denoiser
(HGD) loss function is defined as

L𝐻𝐺𝐷 = | |𝜑 − 𝜑 | | (1)

Algorithm 1: Training of AiD
Input: CF data S, Adv. Images D∗

𝑇
(training), D∗

𝑉
(validation).

Initial Parameters: Θ and Φ (fixed), Ω (trainable)

Output: Ω for AiD

for epoch = 1, ..., 𝑁𝑒𝑝 do
𝑉𝑎𝑙𝑖𝑑𝐿𝑜𝑠𝑠 ←− −∞, Ω𝐵𝐸𝑆𝑇 ←− Ω
for 𝑥∗ ∈ D∗

𝑇
do

// Compute AiD Loss

𝑥 ←− 𝑥∗ corresponding clean image

𝑥 ←− 𝑑 (𝑥∗)
𝜑, 𝜑 ←− 𝑓 (𝑥), 𝑓 (𝑥)
L𝐴𝑖𝐷 ←− ||𝜑−𝜑 | |+𝜂 1

|U |
∑
𝑢∈U

(
𝑠𝑢𝑖 (𝜑)−𝑠𝑢𝑖 (𝜑,𝑢, 𝑖)

)
2

// Compute Ω Gradients and Perform SGD-updates

𝑔Ω ←− 𝜕L𝐴𝑖𝐷 (Ω)/𝜕Ω
Ω ←− Ω + 𝜇𝑔Ω

end
// Compute Validation Loss on D∗

𝑉
𝐸𝑝𝑉𝑎𝑙𝑖𝑑𝐿𝑜𝑠𝑠 ←− 0

for 𝑥∗ ∈ D∗
𝑇
do

𝐸𝑝𝑉𝑎𝑙𝑖𝑑𝐿𝑜𝑠𝑠 ←− 𝐸𝑝𝑉𝑎𝑙𝑖𝑑𝐿𝑜𝑠𝑠 + L𝐴𝑖𝐷 (𝑥∗)
end
𝐸𝑝𝑉𝑎𝑙𝑖𝑑𝐿𝑜𝑠𝑠 ←− 𝐸𝑝𝑉𝑎𝑙𝑖𝑑𝐿𝑜𝑠𝑠/|D∗

𝑉
|

if L𝐴𝑖𝐷 (D∗𝑉 ) ≤ ValidLoss then
ValidLoss←− 𝐸𝑝𝑉𝑎𝑙𝑖𝑑𝐿𝑜𝑠𝑠
Ω𝐵𝐸𝑆𝑇 ←− Ω

end
end
Ω ←− Ω𝐵𝐸𝑆𝑇

, where the denoiser is explicitly trained to reconstruct the original
visual feature (𝜑) lately used in the VRS.

The latter component of L𝐴𝑖𝐷 is introduced to make AiD sen-

sitive in preserving the recommendation behavior in authentic

settings.

Definition 2 (Recommendation-level Guided Loss). Let 𝑖 be
the attacked item with (𝑥, 𝑥∗)-pair of clean and perturbed images, let
𝑥 be the image denoised by AiD, and 𝑠𝑢𝑖 be the predicted score for the
user 𝑢 ∈ U on the item 𝑖 ∈ I, whereU and I are the sets of users
and items, then RGD loss is:

L𝑅𝐺𝐷 =
1

|U |
∑︁
𝑢∈U

(
𝑠𝑢𝑖 (𝜑 ) − 𝑠𝑢𝑖 (𝜑,𝑢, 𝑖 )

)
2

(2)

After having introduced the two components of the AiD loss,

the defense is trained by optimizing the following problem:

argmin

Ω
L𝐴𝑖𝐷 = argmin

Ω

(
L𝐻𝐺𝐷 + 𝜂L𝑅𝐺𝐷

)
(3)

where 𝜂 is a coefficient to control the impact of L𝑅𝐺𝐷 . Note that

being our defense solution applied on pre-trained visual recom-

menders, the parameters of the CNN, and the parameters of the

VRS, are fixed, while Ω, the AiD parameters, need to be learned to

perform the cleaning of the adversarially perturbed item images.

Algorithm 1 shows the pseudocode used for the training of AiD.
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3 EXPERIMENTAL SETUP
Datasets. We test the recommendation performance for our defen-

sive method on three datasets. The first two datasets are Amazon
Boys & Girls [14, 20]) and Amazon Men [13, 14, 20]. These are fash-
ion datasets containing feedback on clothing articles. Following the

methodology in [13, 14], we filter them with the 5-core technique

by removing the users, as well as, the items with less than five

feedbacks. The first dataset has 1425 users, 4507 items, and 9213

feedbacks, the second has 16278 users, 31750 items, and 113106

feedbacks. The third dataset is Pinterest [11, 16]. We apply 5-core

filtering on users, producing a version of 30375 users, 19976 items,

and 395418 feedback. We split each dataset into the train, validation,

and test sets by adopting the temporal leave-one-out protocol for
Amazon Boys & Girls and Amazon Men, and random leave-one-out
protocol for Pinterest since it does not have temporal information.

Since AiD is a model that has to learn to remove noise from

adversarially perturbed images, we build a dataset of cleaned and

noised images. We select 200 random items in the catalog and run

WB-SIGN and WB-INSA with 𝑇 ∈ 1, 4, 8 and 𝜖 ∈ rnd( [1, 16]), where
rnd(·) uniformly samples one integer inside the defined range. Note

that bigger 𝑇 and 𝜖 result in stronger attacks [7, 19]. Then, we split

the target items in training (D∗
𝑇
), validation (D∗

𝑉
), and test (D∗𝜏 )

sets using the 8:1:1 proportion.

Recommendation Model.We test the defense solution on VBPR
(Visual Bayesian Personalized Ranking from Implicit Feedback) [14],

the standard visual-based MF recommender widely adopted in to

test the robustness of multimedia recommenders in adversarial

settings [7, 19].

Defense Baseline.We test the only existing baseline for the protec-

tion of visual recommenders that is AMR (Adversarial Multimedia

Recommendation) [22], an extension of VBPR that integrates the

adversarial training procedure proposed by [15].

Attacks. We used two state-of-the-art attacks, i.e., WB-SIGN and

WB-INSA. WB-SIGN [7] builds an attack by computing the sign of the

gradient of the recommendation score function 𝑠 (·) with respect to

all the pixels 𝑝𝑥 in the product image 𝑥 . In particular, the authors

apply the chain rule to evaluate the gradient direction. WB-INSA [19]
adds an adversarial perturbation on the item images through an

iterative methodology to maximize the predicted scores over the

users in the platform.

Attack Evaluation. We start by analyzing the adversary’s capacity

in increasing the predicted preference score measuring the mean

variation of the preference scores across all the attacked (target)

items defined by Burke et al. [4] as PS = 1

|D∗𝜏 |
∑

𝑗∈D∗𝜏
(
𝑠𝑢 𝑗 (𝑥∗) −

𝑠𝑢 𝑗 (𝑥)
)
where 𝑠𝑢 𝑗 (𝑥) is the score predicted on the authentic im-

age associated with the item 𝑗 against which the adversary has

performed an attack — whose altered predicted score is 𝑠𝑢 𝑗 (𝑥∗).
Then, to evaluate the adversarial effects on robustifying the rec-

ommendation ranking, we start by introducing the Attack Hit

Ratio (aHR@K) following the definition in [7]. In particular, let

attack
hit
@K( 𝑗, 𝑢) be a hit function that is 1 when the target item

is in the top-𝐾 list of the user 𝑢, 0 otherwise, then aHR@K :=
1

|D∗𝜏 |
∑

𝑗∈D∗𝜏
1

|U |
∑
𝑢∈ |U | attackhit@K( 𝑗, 𝑢), where, 𝑗 ∈ D∗𝜏 indi-

cates that attack
hit
@K is measured on a target item whose image

has been adversarially perturbed. To measure whether the defense

Table 1: PSmeasured on (𝜖 = 4,𝑇 = 1)-attacks. We bold values
with effective defenses.

Dataset Attack No Def. Base Def. Our
PS

𝑉𝐵𝑃𝑅
PS

𝐴𝑀𝑅
PS

𝐴𝑖𝐷
PS

𝐴𝑀𝑅+𝐴𝑖𝐷

Amazon
B&G

WB-INSA 0.8250 1.0432 0.1410 0.2193
WB-SIGN 1.8466 1.3349 1.2668 1.1183

Amazon
Men

WB-INSA 2.2217 2.2418 0.5560 0.6057
WB-SIGN 2.2413 2.5066 1.0005 1.0969

Pinterest
WB-INSA 1.9113 1.3108 0.4931 0.2205
WB-SIGN 1.8929 1.2817 0.6434 0.3345

has been optimal in preserving the original behavior of the recom-

mender, we introduce a novel measure, i.e., Ranking Robustness,

defined in Definition 3.

Definition 3 (Ranking Robustness atK (RR@K)). Let aHR@K𝑏𝑒𝑓

and aHR@K𝑎𝑓 𝑡 be the attack hit ratios measured before and after

the attack, respectively, and let ΔaHR@K =
aHR@K𝑎𝑓 𝑡−aHR@K𝑏𝑒𝑓

aHR@K𝑏𝑒𝑓
be

the difference ratio, then RR@K is defined as follows:

RR@K =

��� ΔaHR@K
𝑤

ΔaHR@K
𝑤𝑜

��� (4)

where ΔaHR@K
𝑤 and ΔaHR@K

𝑤𝑜 are measured when the VRS is
protected with and without AiD.

RR@K ≃ 0 means that AiD has reached optimal performance,

RR@K ≃ 1 is the scenario where AiD does not impact the attacks’

efficacy, and RR@K >> 1 is the awful situation where the AiD

could have considerably impacted the presence of target items in

the top-𝐾 lists. Note that ΔaHR@K can be negative when the hit

ratio after the attack is smaller than before.

Reproducibility Details.We train each visual recommender by

varying the learning rate in {0.0001, 0.001, 0.01} and the regular-

ization coefficients in {0.00001, 0.001}, and fixing the number of

training epochs to 100, the batch size to 256, and the number of

latent factors to 128. The adversarial epochs used for training AMR

are 50 (performed after the initial 50 epochs with standard VBPR

training) with the adversarial regularization coefficient and 𝜖 set to

1. Then, we train the proposed AiD for 100 epochs. We set 𝜂 = 0 for

the first 50 epochs to allow the denoiser to focus on the high-level

guided reconstruction. Then, we train AiD for additional 50 epochs,

fixing 𝜂 = 1, to learn how to preserve the recommendation-level

quality. We set the batch size to 16, and, following the experimental

protocol by [18], we train the denoiser with the Adam optimizer

with 𝜇 = 0.001 (the learning rate of the denoiser), validating AiD

at the end of each epoch, and conducting the experiment with the

checkpoint with the smallest validation loss.

4 RESULTS AND DISCUSSION
In this section, we perform, analyze and discuss the experimental

results answering three research questions.

[RQ1]CanAiDpreserve the original predicted preference scores?
We start by comparing 𝑃𝑆 with 𝜖 = 4 and 𝑇 = 1 whose results are

reported in Table 1. It can be seen that the use of AiD has been

effective in reducing the average prediction shifts for all combina-

tions of black-box and white-box attacks performed against VBPR.
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Table 2: Ranking Robustness at 50. Note that AMR is the
baseline defense strategy. We bold the most effective defense
and we italic the second-to-best defenses.

Dataset Attack Base Def. Our
RR

𝐴𝑀𝑅
RR

𝐴𝑖𝐷
RR

𝐴𝑀𝑅+𝐴𝑖𝐷

Amazon
B&G

WB-INSA 0.5138 0.1509 0.2627
WB-SIGN 0.2972 0.6854 0.2088

Amazon
Men

WB-INSA 0.4270 0.0930 0.1145
WB-SIGN 0.4828 0.0771 0.2557

Pinterest
WB-INSA 3.2402 1.1232 0.0423
WB-SIGN 11.9042 3.3317 3.5820

For instance, PS
𝑉𝐵𝑃𝑅

is always reduced by more than three times

for each WB-INSA attack independently of the datasets (e.g., 0.1410

< 0.8250; 0.5560 < 2.2217; and 0.4931 < 1.9113 from the top of the

table to the bottom). In addition, we can see that protecting VBPR

with AiD is more effective than protecting it with only AMR. In-

deed, PS
𝐴𝑖𝐷

are steadily closer to 0 than PS
𝐴𝑀𝑅

(e.g., 0.4931 vs.

1.3108 for WB-INSA in Pinterest). In addition, we can see from Ta-

ble 1 that the integration of AiD with AMR can make the defense

even stronger in some cases. Indeed, PS
𝐴𝑀𝑅+𝐴𝑖𝐷

is 0.2205 for the

Pinterest example shown below. These results endorse that AiD
outperforms AMR in reducing the impact of the attack on the original
preference scores of target items, and it can be empowered when AiD
is combined with an adversarially trained recommender (AMR).

[RQ2] Can AiD preserve the original predicted ranking lists?
To verify if the defense is effective when protecting the recom-

mender when the adversary wants to increase the average position

of target items in the recommendation lists, we report in Table 2 the

results of the proposed RR measured on top-50 recommendation

lists. We can see that applying the proposed denoising approach

has been adequate in most of the tested scenarios. Indeed, the fact

that the RR values are mostly smaller than 1 in any attack sce-

nario demonstrates that the presence of the AiD has reduced the

adversaries’ capability to push the target items in higher recom-

mendation positions. Additionally, it is interesting to observe that

the only three scenarios in which the RR is higher than one are

related to cases where the adversarial attacks were not very pow-

erful in the not-defended setting. In these contexts, we note that

the best and second-to-best RR values are related to the usage of

AiD either alone or in combination with AMR. We can summarize

that AiD effectively reduces both the adversaries’ impact in varying
the predicted preference scores and, as shown in this paragraph, the
changes of target items’ positions in the recommendation lists.

[RQ3] Is AiD effective with stronger and stronger attacks?
Table 3 presents six plots that show PS

𝑤𝑜
and PS

𝑤
when varying

the number of steps 𝑇 ∈ {1, 4, 8} and the perturbations budget

𝜖 ∈ {4, 8, 16} for the WB-INSA attack performed against both rec-

ommenders being the WB-attack with the lowest PS
𝑤
values. First,

analyzing the continuous lines, we get evidence that the adversary
is more and more effective in the absence of the denoiser with big-
ger 𝑇 and 𝜖 . Then, the application of the denoiser (dotted lines)

intercepted the attempts of stronger adversaries by always show-

ing very low prediction shifts. For instance, it can be noted that

while PS
𝑤𝑜

increases from values close to 1 to higher than 3 for

Table 3: Prediction Shift (PS) of the WB-INSA attack by varying
the budget (𝜖 ∈ {4, 8, 16}) and the iterations (𝑇 ∈ {1, 4, 8}).

VBPR AMR

Amazon
Boys&
Girls

Amazon
Men

Pinterest

Legend:

VBPR trained on Amazon Boys & Girls, PS
𝑤
always remains less

than 1. The same efficient behavior can also be noted on the other

plots, and, above all, in AMR for Pinterest, we can observe that

the prediction shifts have been maintained close to 0 even when

the attack becomes very strong (𝜖 = 8). We can conclude that AiD
guarantees low variations of the predicted scores, even with stronger
and stronger adversarial attacks.

5 CONCLUSION
This work has proposed a novel defense to protect visual-based

recommender systems (VRS) under adversarial attacks. The defense

solution, named Adversarial Image Denoiser (AiD), is a novel model

component trained to clean up perturbed images by minimizing an

image- and recommendation-aware reconstruction loss. We have

investigated the defense performance on three real-world datasets

and two standard visual recommender models in adversarial set-

tings under two attack strategies. Experiments have confirmed AiD

as a practical solution since it reduced the attacks’ power in vary-

ing the predicted preference scores and the positions of attacked

products outperforming AMR, the state-of-the-art defensive solu-

tion. We plan to empower AiD against possible novel and stronger

adversarial attacks that might break it. Finally, we want to adapt

AiD in multi-modal settings.
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