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Abstract

The absence of new physics signals at the TeV scale has recently triggered a shift of interest towards
light and weakly coupled extensions of the Standard Model (SM). We consider a light new physics
scenario coupled to the SM fields in a SM +X effective theory. Different types of light new physics,
searched by present and future experiments at the intensity frontier, are studied and investigated,
from sub-GeV abelian gauge vector bosons to right-handed neutrinos at GeV scale. In the former
case, we study the dependence on the UV completion of the effective Wess-Zumino terms that
appears in the IR theory when gauge bosons are coupled to a SM current whose conservation is
broken at loop level. We show how to avoid the would be strong constraints of energy enhanced
process due to flavor changing neutral current generated by the Wess-Zumino terms [1, 2]. In the
latter case, we work in a minimal see-saw scenario with two right-handed neutrinos with mass at the
GeV scale and highlight the prospects for testing the decay N2 → N1γ induced by an effective dipole
operator at future facilities targeting long-lived particles such as the SHiP experiment [3]. In the
last part of the thesis, we critically re-examine the new particle interpretation of recent experimental
anomalies observed in nuclear transition from the ATOMKI collaboration. Indeed, the hypothetical
particle, denoted as X17 and proposed by the collaboration itself, would be a light and weakly-
interacting boson and we employ a multipole expansion to estimate the nucleon coupling to the
light state, identifying the axial vector state as the most promising candidate [4]. Intensity-frontier
experiments like MEG II and PADME will probe the ATOMKI anomaly in the near future.
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Introduction

The Standard Model (SM) of particle physics has achieved a remarkable success as a result of several
decades of exploration, of constantly pushing the boundaries of our knowledge of theory, experiment,
and technology. The discovery of the Higgs boson at LHC in 2012 [5] has been the last but not least
of the many successful predictions of the SM. Since the birth of the theory in the 60s [6] and during
its development in the 80s and 90s, the experimental search at the high-energy frontier provided the
best tool to explore the physics and processes beyond the SM theory and led to the verification of
almost all the SM predictions. The Livingston plot1 in figure 1 shows us the history of discovery at
the energy frontier and how accelerator science and technology provided the right tool to test and
discover the SM over the last fifty years, from the 60s to the time of the Higgs discovery [7].

Figure 1: Livingston plot from Planning the Future of U.S. Particle Physics (Snowmass 2013):
Chapter 6: Accelerator Capabilities [7].

However, while the SM provides a theoretically consistent description of all known particles
and their interactions (ignoring gravity) up to the Planck scale, it is clearly incomplete as it does
not address several pieces of evidence for new physics beyond the Standard Model (BSM), like the
Dark Matter (DM) or the neutrino masses, as well as left unsolved some questions or aspects, like
the hierarchy problem or the SM flavour structure. After the Higgs discovery, the community of
high energy physics was expecting the presence of new physics at TeV scale, as suggested by many

1Its name comes from the first plot representing accelerator evolution showed by M. Stanley Livingston in his book
High-energy accelerators (1954).
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theoretical models (supersymmetry, extra dimensions, composite Higgs,...) in order to explain the
hierarchy problem. Unfortunately, no BSM signal has been observed at the collider searches in the
last ten years of searches, thus letting down our high expectations. Obviously, new physics may
reside above the TeV-scale or may be even behind the corner, closer than we think, but the null
result at colliders affected how we approach the search and research of new physics.

The disappointment of the energy-frontier searches slightly changes the paradigm of the phe-
nomenological research over the last few years. The idea that new physics could well be found at the
“low-energy frontier”, and be accessible with intensity-frontier tools, has indeed gained more and
more attention. Experiments that use intense beams of photons, charged particles, and/or sensitive
detectors may be used to directly produce and study new, feebly-interacting particles that lie well
below the Weak scale. This is the reason why, in the last years, light and weakly coupled new
physics have raised considerable interest. Let consider as example two well motivated scenarios of
light and weakly coupled new physics: the dark photon and the axion.

Besides gravity, there are only a few well-motivated interactions allowed by SM symmetries
that provide a “portal” from the SM sector into the dark sector. One of this portal is the kinetic
mixing between the hypercharge and dark abelian gauge tensor fields, leading to the idea of a dark
photon [8]. Masses for the dark photon can arise trough an Higgs mechanism or a Stückelberg
mechanism, especially in the context of large volume string compactifications with branes [9, 10],
and can take on a large range of values, from the GeV scale to much smaller values (sub-eV).

One of the unresolved puzzles in the SM is the lack of any observed CP violation in the strong
interactions described by Quantum Chromodynamics (QCD). Solutions to this problem are scarce.
Perhaps the most popular suggestion is the so-called Peccei-Quinn (PQ) U(1) approximate global
symmetry, which is spontaneously broken at a scale fa [11]. The axion is a hypothetical particle
that arises as the pseudo-Nambu-Goldstone boson (PNGB) of this symmetry breaking [12].

In figure 2 we can see the net increase of citations per year of the axion and dark photon
paradigms in recent years, a clear sign of how the focus of the phenomenological community has
recently changed.

Figure 2: Number of citations per year of the funding papers of the axion [12] (left) and dark
photon [8] (right) paradigm.

Given the intricate structure of the SM, which describes only a subdominant component of the
Universe, it would not be too surprising if the dark sector contains a rich structure itself, with DM
making up only a part of it. Indeed, many dark sectors could exist, each with its own beautiful
structure, distinct particles, and forces. These dark sectors (or “hidden sectors”) may contain new
light weakly-coupled particles, particles well below the Weak-scale that interact only feebly with
ordinary matter. Such particles could easily have escaped past experimental searches, but a rich
experimental program has now been devised to look for several well-motivated possibilities. The
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existence of such dark sectors, consisting of new, light, weakly-coupled particles that do not interact
with the known SM forces, are motivated also by bottom-up and top-down theoretical considerations.
They arise in many theoretical extensions to the SM, such as moduli that are present in string theory
or new (pseudo-)scalars that appear naturally when symmetries are broken at high energy scales.
Various experimental “anomalies”, such as the discrepancy between the measured and calculated
muon anomalous magnetic moment and some puzzling results from astrophysics provide exciting
phenomenological motivations.

Existing facilities and technologies and small-case experiments enable the exploration of dark
sectors. A rich, diverse, and low-cost experimental program is already underway that has the
potential for one or more game-changing discoveries. Current ideas for extending the searches to
smaller couplings and higher masses increase this potential considerably. Looking at the plot in figure
3, we see that such searches could explore a region of dark sector parameter space complementary
to the one under observation in collider searches.

Figure 3: Figurative plot on the mass and coupling of Dark Matter searches from Jonathan Feng’s
talk at ”Shedding light on X17” workshop [13]

Stated the novel prospective of the high energy physics community, the approach of the thesis
has been to explore different lines of research that would include the presence of light new physics.
Indeed, due to the lack of a primary direction of research in the high energy physics nowadays, we
have chosen to space over the rich phenomenology that intensity-frontier can actually offer. We
consider here scenarios where new physics (NP) is ultraviolet (UV) completed at very high energy
scale but one or few NP states are light enough, i.e. are at the GeV scale or below, to be detectable
at intensity-frontier experiment, even if they are weakly coupled to the SM fields. Hence we assume
a infrared (IR) effective field theory where the field content is given by the SM plus a light new
state, denoted agnostically as X, while every other UV field is heavier than the electroweak scale and
integrated out. The focus is then to investigate the phenomenology of the SM +X effective theory,
where the X field can be for example a dark photon, an axion, right-handed neutrinos (RHNs), etc.
In this work we consider two scenarios:

• the X field is a gauge boson and we study the dependence on the UV completion of the
effective Wess-Zumino terms that appears in the IR theory;
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• the X fields are two RHNs with masses at the GeV-scale and we highlight the prospects for
testing the decay N2 → N1γ induced by an effective dipole operator,

and to each scenario we dedicate a chapter of first part of the thesis.
In the first chapter we investigate the dependence on UV physics of new light gauge vectors

coupled to non conserved currents. As known, non conservation of vector currents gives rise to energy
enhanced processes when the longitudinal state of the gauge boson is emitted, leading to strong
constraints on the coupling and mass of such particles [14, 15]. A particular class of non conserved
currents is when current conservation is exact at tree level but broken at loop by chiral anomalies,
requiring new fermions in the UV or equivalently Wess-Zumino terms in the IR which, as recently
pointed out [15], display an axion-like behaviour and lead to amplitudes that grow with the energy.
Taking as a paradigmatic examples the gauging of baryon and lepton family number, anomaly-free
UV models have been explicitly constructed introducing new mostly-chiral heavy fermions, such
that Wess-Zumino terms are suppressed in the IR, thus relaxing would-be strong bounds on light
dark vectors coupled to non-conserved currents [1]. However, the updated direct search for charged
stable and unstable particles rules out the scenarios we explicitly consider [2].

In the second chapter we study the phenomenology of right-handed neutrinos magnetic moments
at the GeV scale [3]. While the see-saw model [16, 17] is a full-fledged UV complete theory, in the
case of electroweak scale RH neutrinos it is interesting to consider it as a low energy effective field
theory (EFT) extended with higher dimensional operators build from the SM and the RHN fields,
the so-called νSMEFT [18–21]. A minimal see-saw extension of the Standard Model with two right-
handed singlet fermions with mass at the GeV scale is considered, augmented by an effective dipole
operator between the sterile states, and current bounds on this effective interaction from fixed-target
and collider experiments are taken in account to constraint the parameter space of the model.

In the second part we critically re-examine the possible theoretical interpretation of recent ex-
perimental anomalies observed in nuclear transition from the ATOMKI collaboration. Among the
various processes that can be investigated at intensity frontier, rare nuclear transition can provide a
good handle to observe NP appearing at the MeV scale, since they can significantly be affected by
BSM physics even if this is very weakly coupled. The search of the ATOMKI collaboration leads to
various anomalous measurements in the IPC decays of excited 8Be [22], 4He [23] and, more recently,
12C [24] nuclei. Although to this day no independent confirmation of these results has arrived, given
the multitude of processes in which these anomalies have been observed the ATOMKI results have
attracted a considerable attention from the particle physics community. The collaboration itself
proposed a new BSM boson X with mass around 17 MeV to explain the anomalous signal they
measured. Following the recent interest on the topic and in view of the latest experimental results
recently released by the ATOMKI collaboration [22, 23], we perform a phenomenological analysis
within the usual SM+X framework and estimate the range of values of the nucleon couplings to the
new light state in order to match the experimental observations employing a multipole expansion
method. Our conclusions identify the axial vector state as the most promising candidate, while
other spin/parity assignments seem disfavored for a combined explanation [4].
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Chapter 1

Light vectors coupled to
anomalous currents with harmless
Wess-Zumino terms

1.1 Introduction

The physics of light spin-1 dark boson has witnessed a growing amount of interest in the recent
years, from both a theoretical and phenomenological standpoint. A standard benchmark is that of a
secluded U(1) gauge boson, kinetically mixed with the photon [8] and hence universally coupled to
the SM sector via the electromagnetic current. This framework, although elegant and predictive, can
be too restrictive for phenomenological applications and hence more general forms of the light vector
boson interactions with the SM fields can be envisaged. Going beyond the kinetic mixing framework,
a theoretically motivated option is provided by the gauging of the accidental global symmetries of
the SM, that is baryon number U(1)B and family lepton number U(1)Li

(with i = e, µ, τ) in the
limit of massless neutrinos. Within the SM field content, only the Li − Lj combinations turn out
to be anomaly free [25–27]. Hence, in order to consistently gauge a general linear combination

X = αBB +
∑

i=e, µ, τ

αiLi , (1.1)

one requires new fermions, also known as anomalons, which cancel the anomalies of the new U(1)X
factor, also in combination with the electroweak gauge group. Note that Eq. (1.1) is the most general
linear combination of abelian global symmetries of the SM that can be gauged, under the assumption
that all SM Yukawa operators are allowed in the quark sector at the renormalizable level. Barring
the cases of B/3−Li and linear combinations thereof, the anomalons need to be charged under the
electroweak gauge group (henceforth indicated more precisely as electroweak anomalons).1 In the
latter case, in order to evade detection at high-energy particle colliders, the new fermions need to
be heavier than the electroweak scale. Consequently, their effects on the physics of the light vector
boson associated with the U(1)X gauge symmetry, here denoted as X , can be described within an
SM + X EFT approach. In particular, after integrating out the new heavy fermions at one loop,
one generates dimension-4 Wess-Zumino (WZ) terms, schematically of the form X (W∂W +WWW )
and XB∂B (with W and B denoting SU(2)L and U(1)Y gauge bosons). These contact interactions

1This is not the case if some of the quark Yukawa operators arise at the non-renormalizable level, as e.g. discussed
recently in Ref. [28].
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have the role of compensating, in the EFT without electroweak anomalons, the anomalous shift of
the effective action due to the anomalous SM fermion current coupled to X (see e.g. [29–32]).

As it was emphasized more recently in Refs. [14, 15], WZ terms display an axion-like behaviour
(as can be understood by applying the equivalence theorem to the longitudinal component of X ) and
lead to amplitudes that grow with the energy. The anomalous XW∂W vertex can be dressed with
SM flavour-violating interactions leading to loop-induced flavour changing neutral current (FCNC)
processes, while the anomalous XB∂B vertex is responsible for Z → γX decays at the tree level
(see also [33–36]). In both cases these processes are enhanced as (energy/mX )2, thus resulting into
the typically most stringent bounds on light vectors with no direct couplings to electrons, as e.g. in
the case of gauged baryon number.

It is known (see e.g. [15]) that in the limit where the mass of the anomalons stems from a SM-
preserving vacuum expectation value (VEV), the low-energy coefficients of the WZ terms are entirely
fixed by the requirement of canceling the SU(2)2LU(1)X and U(1)2Y U(1)X anomalies of the SM
sector. On the other hand, if the anomalons pick up a mass contribution from the electroweak VEV
then the coefficients of the WZ terms become model-dependent. In particular, in the limit where
the anomalons mass is completely due to electroweak symmetry breaking sources, the anomalous
couplings of the longitudinal component of X with SM electroweak gauge bosons goes to zero, thus
relaxing the above mentioned strong bounds on light vectors.

In this chapter, we revisit the argument why WZ terms become harmless in the limit where
the electroweak anomalons obtain their mass solely from the Higgs, classify the structure of UV
completions that allow for such a pattern and discuss their electroweak-scale phenomenology. Due
to its non-decoupling nature, the phenomenology of the electroweak anomalons is tightly constrained
(but not yet ruled out) by Higgs coupling measurements and direct searches, thus making the whole
setup testable at the high-luminosity phase of the LHC (HL-LHC). Chiral fermionic extensions of
the SM, sharing some similarities with our setup, were previously discussed in a different context in
Refs. [37,38]. Here, the main phenomenological interest consists in the physics of light (i.e. sub-GeV)
vector bosons coupled to anomalous SM currents and the possibility of re-opening a large portion
of parameter space, which might be probed by several low-energy experiments or help in explaining
current experimental anomalies, such as e.g. that of the muon g-2 [39].

The chapter is structured as follows. Sect. 1.2 is the core of the work, in which we provide the
general setup for the gauging of the generic linear combination of U(1) factors in Eq. (1.1). We
discuss in particular the heavy anomalons sector leading to the cancellation of gauge anomalies and
compute the resulting WZ terms in the EFT. In passing, we also deal with the issue of neutrino
masses when lepton family generators are gauged. Sect. 1.3 is devoted instead to the phenomenology
of the electroweak anomalons, in the limit where their mass dominantly stems from the Higgs VEV.
In Sect. 1.4 we briefly consider the case where the X field acquire a mass trough the Stückelberg
mechanism, thus leaving the U(1)X unbroken. We conclude in Sect. 1.5, while in App. A we collect
a series of technical results about the calculation of WZ terms.

1.2 Gauging the Standard Model accidental symmetries

In this Section, we provide an explicit UV completion for the gauging of the most general combination
of the SM global symmetries in Eq. (1.1), discuss the the conditions for the cancellation of gauge
anomalies, compute the spectrum and the EFT below the scale of the heavy fermions (anomalons)
assuming that the only new physics light state is the vector boson X .
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1.2.1 UV model

The field content of the model is displayed in Table 1.1, where the anomalon fields are highlighted
in color and we also extended the scalar sector of the SM in order to spontaneously break the U(1)X
symmetry. Similar setups for anomaly cancellation were considered e.g. in Refs. [40–45].2 Here,
the more general SM charges of the electroweak anomalon fields (L,N , E) are needed to evade LHC
constraints on purely-chiral fermions for Y ≈ 2,−1 [37,38], as it will be reviewed in Sect. 1.3. In fact,
as already anticipated in the Introduction, we will be interested in exploring the limit in which the
electroweak anomalon masses are dominantly due to the Higgs, so that the strong bounds stemming
from the anomalous WZ couplings of the light vector with SM gauge bosons are relaxed. We have
also included N copies of chiral SM-singlet fermions ναR (α = 1, . . . , N) which allow to have more
freedom for the cancellation of U(1)X and U(1)3X anomalies (as well as provide a seesaw setup for
neutrino masses), but whose presence does not impact the calculation of the electroweak WZ terms.

Field Lorentz SU(3)C SU(2)L U(1)Y U(1)X
qiL ( 1

2 , 0) 3 2 1/6 αB/3
uiR (0, 12 ) 3 1 2/3 αB/3
diR (0, 12 ) 3 1 −1/3 αB/3
ℓiL ( 1

2 , 0) 1 2 −1/2 αi
eiR (0, 12 ) 1 1 −1 αi
H (0, 0) 1 2 1/2 0
LL ( 1

2 , 0) 1 2 Y − 1/2 XLL

LR (0, 12 ) 1 2 Y − 1/2 XLR

EL ( 1
2 , 0) 1 1 Y − 1 XEL

ER (0, 12 ) 1 1 Y − 1 XER

NL ( 1
2 , 0) 1 1 Y XNL

NR (0, 12 ) 1 1 Y XNR

ναR (0, 12 ) 1 1 0 Xα
νR

S (0, 0) 1 1 0 XS

Table 1.1: Anomaly-free field content for a general SU(3)C×SU(2)L×U(1)Y ×U(1)X gauge theory,
with X = αBB +

∑
i=e,µ,τ αiLi. The conditions on the U(1)X charges fulfilling the cancellation of

gauge anomalies are reported in the text.

2For other anomalon configurations leading to anomaly cancellation when baryon and/or lepton number generators
are gauged see e.g. [46,47].
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Anomaly cancellation

The U(1)X charges are required to cancel all gauge anomalies. This corresponds to the following
five conditions:

Gravity × U(1)X : 2(XLL
−XLR

) + (XEL
−XER

) + (XNL
−XNR

) −
N∑
α=1

Xα
νR

+ αe + αµ + ατ = 0 , (1.2)

U(1)3X : 2(X3
LL

−X3
LR

) + (X3
EL

−X3
ER

) + (X3
NL

−X3
NR

) −
N∑
α=1

(
Xα
νR

)3
+ α3

e + α3
µ + α3

τ = 0 , (1.3)

SU(2)2L × U(1)X :
1

2
(XLL

−XLR
) +

1

2
(3αB + αe + αµ + ατ ) = 0 , (1.4)

U(1)2Y × U(1)X : 2(Y − 1

2
)2(XLL

−XLR
) + (Y − 1)2(XEL

−XER
) + Y2(XNL

−XNR
)

− 1

2
(3αB + αe + αµ + ατ ) = 0 , (1.5)

U(1)Y × U(1)2X : 2(Y − 1

2
)(X2

LL
−X2

LR
) + (Y − 1)(X2

EL
−X2

ER
) + Y(X2

NL
−X2

NR
) = 0 . (1.6)

Renormalizable operators

Further constraints on the U(1)X charges are obtained by the requirement that the electroweak
anomalons pick up their mass from the VEV of H. Hence, the Yukawa Lagrangian involving the
electroweak anomalon fields is (the discussion of neutrino masses is postponed to Sect. 1.2.3)

−LY = y1L̄LERH + y2L̄RELH + y3L̄LNRH̃ + y4L̄RNLH̃ + h.c. , (1.7)

with H̃ = iσ2H
∗. The extra conditions on the U(1)X charges stemming from Eq. (1.7) read

XER
= XLL

, (1.8)

XEL
= XLR

, (1.9)

XNR
= XLL

, (1.10)

XNL
= XLR

, (1.11)

thus reducing the number of independent charges to two. By substituting Eqs. (1.8)–(1.11) into
Eqs. (1.2)–(1.6), we obtain the following non-trivial conditions

XLR
−XLL

= 3αB + αe + αµ + ατ ≡ 3αB+L , (1.12)

N∑
α=1

Xα
νR = αe + αµ + ατ , (1.13)

N∑
α=1

(
Xα
νR

)3
= α3

e + α3
µ + α3

τ , (1.14)

where we have introduced the shorthand αB+L defined in Eq. (1.12). Note that the condition of
cancellation of electroweak anomalies fixes only the difference XLR

−XLR
, leaving us with one free

charge that we choose to be XLL
. This redundancy is related to the electroweak anomalon number

U(1)A, corresponding to a common re-phasing of the electroweak anomalon fields.
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Other renormalizable operators, which are allowed by the SM gauge symmetry, may or may not
be allowed by U(1)X invariance. For instance, extra Yukawas of the type3

−∆LY = yLL̄LLRS∗ + yE ĒLERS + yN N̄LNRS + h.c. , (1.15)

are only permitted for XS = XLR
−XLL

= 3αB+L. These terms would yield an additional vector-
like mass to the anomalons after U(1)X symmetry breaking. Finally, for specific values of U(1)Y
and U(1)X charges, the electroweak anomalons can mix with the SM leptons at the renormalizable
level. The classification of d = 4 mixing operators is provided in Table 1.2, where we emphasized the
phenomenologically relevant case Y = 2,−1 (see Sect. 1.3.2). Note that in the presence of mixing
operators the electroweak anomalon number is explicitly broken, and hence XLL

gets fixed in terms
of the coefficients of the X generator in Eq. (1.1).

Mixing operator U(1)Y U(1)X
ℓ̄iLERH Y = 0 XLL

= αi
ℓ̄iLERH̃ Y = 1 XLL

= αi
ℓ̄iL(EL)cH Y = 2 XLL

= −αi − 3αB+L

ℓ̄iL(EL)cH̃ Y = 1 XLL
= −αi − 3αB+L

ℓ̄iLNRH Y = −1 XLL
= αi

ℓ̄iLNRH̃ Y = 0 XLL
= αi

ℓ̄iL(NL)cH Y = 1 XLL
= −αi − 3αB+L

ℓ̄iL(NL)cH̃ Y = 0 XLL
= −αi − 3αB+L

L̄LeiRH Y = 0 XLL
= αi

L̄LeiRH̃ Y = −1 XLL
= αi

L̄R(eiR)cH Y = 2 XLL
= −αi − 3αB+L

L̄R(eiR)cH̃ Y = 1 XLL
= −αi − 3αB+L

L̄LναRH Y = 1 XLL
= Xα

νR

L̄LναRH̃ Y = 0 XLL
= Xα

νR
L̄R(ναR)cH Y = 1 XLL

= −Xα
νR − 3αB+L

L̄R(ναR)cH̃ Y = 0 XLL
= −Xα

νR − 3αB+L

L̄RℓiLS Y = 0 XLL
= αi +XS − 3αB+L

L̄L(ℓiL)cS Y = 1 XLL
= −αi +XS

ĒLeiRS Y = 0 XLL
= αi +XS − 3αB+L

ĒLναRS Y = 1 XLL
= Xα

νR +XS − 3αB+L

ĒR(eiR)cS Y = 2 XLL
= −αi +XS

ĒR(ναR)cS Y = 1 XLL
= −Xα

νR +XS
N̄Le

i
RS Y = −1 XLL

= αi +XS − 3αB+L

N̄Lν
α
RS Y = 0 XLL

= Xα
νR +XS − 3αB+L

N̄R(eiR)cS Y = 1 XLL
= −αi +XS

N̄R(ναR)cS Y = 0 XLL
= −Xα

νR +XS

Table 1.2: Renormalizable operators leading to a mixing between electroweak anomalons and SM
leptons (first column) and required conditions on U(1)Y and U(1)X charges (second and third
columns). For completeness, we also include mixings via RH neutrinos and/or S, whose U(1)X
charges depend on the mechanism giving mass to neutrinos (see Sect. 1.2.3). Mixing operators via
S∗ are trivially obtained by flipping the sign of XS in the third column.

3The case S → S∗ is trivially obtained by replacing XS → −XS .
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Spectrum

By adding a proper term in the scalar potential, ∆V (H,S), the following VEV configurations are
generated

⟨H⟩ =
1√
2

(
0
v

)
, ⟨S⟩ =

vX√
2
, (1.16)

with v ≃ 246 GeV and vX being the order parameter of U(1)X breaking. The latter is responsible
for the mass of the U(1)X gauge boson, X µ, that is

mX = XSgXvX , (1.17)

where gX is the U(1)X gauge coupling entering the covariant derivative, i.e.DµS = (∂µ+igXXSX µ)S.
The scalar field can be expanded around the vacuum as S = vX√

2
eiξ/vX + . . ., where ξ is the Gold-

stone boson associated with the massive state X and we neglected the radial mode. After U(1)X
and electroweak symmetry breaking the Yukawa terms in LY + ∆LY (see Eq. (1.7) and Eq. (1.15))
give mass to the electroweak anomalons (neglecting for simplicity possible mixings with the SM
sector)

−Lmass = Ψ̄E
LME ΨE

R + Ψ̄N
L MN ΨN

R + h.c. , (1.18)

which can be cast into 2-flavour Dirac fermions, ΨE
L,R = (ELL,R

, EL,R) and ΨN
L,R = (NLL,R

,NL,R),
with

ME =

(
mL m1

m∗
2 mE

)
, MN =

(
mL m3

m∗
4 mN

)
, (1.19)

and
mL, E,N =

yL, E,N√
2

vX , m1, 2, 3, 4 =
y1, 2, 3, 4√

2
v . (1.20)

The mass matrices are diagonalized via the bi-unitary transformations ΨE,N
R → UE,N ΨE,N

R and

ΨE,N
L → VE,N ΨE,N

L , with the unitary matrices entering non-trivially into the gauge currents in the
mass basis. In the limit yE = yN , y1 = y3, y2 = y4 (and hence ME = MN ), the Yukawa Lagrangian
features a custodial symmetry which helps in taming corrections to electroweak precision observables
(see Sect. 1.3.1). In the following, we will stick to the custodial limit, while for the calculations in
App. A we will consider the more general case.

1.2.2 EFT of a light vector and decoupling of WZ terms

We are interested in the limit where the electroweak anomalons are heavier the electroweak scale,
while the vector X is much lighter than the electroweak scale. Parametrically (see Eq. (1.17)), this
can be obtained in two ways: i) vX ≳ v and gX ≪ 1 or ii) vX ≪ v and gX ≲ 1. In case ii) or
if the ∆LY operators in Eq. (1.15) are absent due to charge assignment (i.e. XS ̸= 3αB+L), this
requires y1,2,3,4 ∼

√
4π in order for the anomalons to be heavier than the electroweak scale. Upon

integrating out the electroweak anomalons at one loop one finds in the EFT given by the SM and
the light vector X (also keeping the Goldstone mode ξ, see App. A for details)

L
U(1)X
EFT ⊃ gXg

′2CBB
24π2

ϵαµνβXαBµ∂βBν + gXg
2 Cab

24π2
ϵαµνβXαW a

µ∂βW
b
ν

+ gXgg
′ CaB
24π2

ϵαµνβXαW a
µ∂βBν + gXgg

′ CBa
24π2

ϵαµνβXαBµ∂βW a
ν

+ gXg
2 Dab

48π2

ξ

mX
ϵαµβν(∂αW

a
µ )(∂βW

b
ν ) + gXg

′2DBB

48π2

ξ

mX
ϵαµβν(∂αBµ)(∂βBν)

+ gXgg
′DaB

24π2

ξ

mX
ϵαµβν(∂αW

a
µ )(∂βBν) , (1.21)
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where a, b = 1, 2, 3 and we neglected non-abelian W terms scaling with an extra gauge coupling g.
In general, from the requirement that the electromagnetic group remains unbroken, one obtains

Cab =

 C11 C12 0
−C12 C11 0

0 0 C33

 , CaB =
(
0, 0, C3B

)
, CBa =

(
0, 0, CB3

)
, (1.22)

Dab =

D11 0 0
0 D11 0
0 0 D33

 , DaB =
(
0, 0, D3B

)
, (1.23)

together with the sum-rules

C33 + C3B + CB3 + CBB = 0 , (1.24)

D33 + 2D3B +DBB = 0 . (1.25)

A relatively simple case is given in the limit where the masses of the anomalon fields stem completely
from the VEV of S, yielding

C11 = C33 = −CBB = 3αB+L , (1.26)

CB3 = −C3B = D3B = C12 = 0 , (1.27)

D11 = D33 = −DBB = −9αB+L , (1.28)

where the effective coefficients are set by the anomalous trace of the SM current (see Eqs. (A.46)–
(A.47)). Here, instead, we focus on the more general case where the anomalon masses have both
a SM-singlet and an electroweak symmetry breaking source. Although we were not able to cast
explicit expressions for the EFT coefficients into a simple analytical form (see Eqs. (A.28)–(A.29)),
we will present them here under the simplified (but phenomenologically motivated) hypothesis in
which the anomalon masses are degenerate, that is

M†
EME = M†

NMN = m2
Ψ

(
1 0
0 1

)
, (1.29)

with mΨ denoting the degenerate anomalons mass. Eq. (1.29) enforces the mass matrices to be

ME = MN =
1√
2

(
ySvX iyHv
iyHv ySvX

)
= mΨ

(
cos θ i sin θ
i sin θ cos θ

)
, (1.30)

with yS,H real parameters,4 while

m2
Ψ =

1

2

(
(yHv)2 + (ySvX)2

)
, (1.31)

and
tan θ =

yHv

ySvX
. (1.32)

4The accidental global U(1)6 symmetry corresponding to the re-phasing of the each electroweak anomalon field
is broken by the LY + ∆LY , leaving an unbroken electroweak anomalon number U(1)A, that is the subgroup
corresponding to the common re-phasing of all the anomalon fields. Hence, of the seven complex parameters introduced
in LY + ∆LY , 6 − 1 = 5 phases are unphysical and can be rotated away. One possible choice is to set Arg(yL) =
Arg(yE) = Arg(yN ) = 0, Arg(y1) = −Arg(y2), and Arg(y3) = −Arg(y4).
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Specializing the general expressions in Eqs. (A.28)–(A.29) to the degenerate case above, we find

C11 = C33 = −CBB =
3

4
αB+L(1 + 3 cos 2θ) , (1.33)

CB3 = −C3B =
9

4
αB+L(1 − cos 2θ), C12 = 0 , (1.34)

D11 = D33 = −DBB = −9

2
αB+L(1 + cos 2θ), D3B = 0 . (1.35)

The important point to be noted is that when the anomalons pick-up a mass from both electroweak
preserving and breaking sources, the low-energy WZ coefficients acquire a model dependence through
the angle θ.

In order to understand the phenomenological implications of this model dependence, we briefly
recall here the argument of Refs. [14,15] regarding the energy-enhanced emission of the longitudinal
modes of X stemming from the WZ operators. Taking the limit gX → 0 and mX → 0, while keeping
fixed the ratio mX /gX ∝ vX , the transverse modes of X decouple, while the longitudinal mode is
enhanced as E/mX . In this regime, the equivalence theorem states that the longitudinally polarized
vectors are equivalent to the corresponding scalar Goldstone bosons. This is readily seen by working
in the so-called “Equivalent Gauge” of Ref. [48], where the longitudinally polarized state, |XL⟩, is
represented as

⟨0|Xµ(x)|XL(p⃗)⟩ = ϵLµ(p⃗)e−ipx , ⟨0|ξ(x)|XL(p⃗)⟩ = −ie−ipx , (1.36)

with the polarization vector

ϵLµ(p⃗) = − mX

Ep⃗ + |p⃗|

{
1,

p⃗

|p⃗|

}
, (1.37)

vanishing in the mX → 0 limit. The advantage of this representation is that it makes the equivalence
theorem explicit, since in the high-energy limit (or equivalently mX → 0) only the Goldstone mode
survives. Hence, adopting the above prescription, only the diagrams with one external ξ contribute
to physical processes in the mX → 0 limit. For instance, upon integrating out the W boson, the
axion-like operator ξW−W̃+ proportional to D11 in Eq. (1.21) yields the effective interaction

gξdidj d̄jγ
µPLdi (∂µξ/mX ) + h.c. , (1.38)

in terms of the effective coupling [49]

gξdidj = − gXg
4

(4π)4
D11

∑
α=u,c,t

VαiV
∗
αjF (m2

α/m
2
W ) , (1.39)

with D11 ∝ (1 + cos 2θ) given in Eq. (1.35), V denoting the CKM matrix and the loop function

F (x) =
x(1 + x(lnx− 1))

(1 − x)2
. (1.40)

This leads to FCNC processes, such as K → πXL, B → KXL, etc, whose rate is enhanced as
(E/mX )2, where E is the decay energy (cf. the derivative operator in Eq. (1.38)), thus implying
strong bounds on light vector bosons coupled to anomalous currents [14,15].

On the other hand, the above constraints from energy-enhanced XL emission disappear for
D11 = 0, that is when the U(1)X Goldstone decouples from the electroweak anomalons. This
corresponds to θ = π/2, which implies that the anomalon masses are entirely due to the Higgs VEV
(cf. Eq. (1.32)). From a top-down perspective this condition can be neatly obtained in terms of
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U(1)X charges (XS ̸= 3αB+L) which forbid the operators of ∆LY in Eq. (1.15). Alternatively, it
can be parametrically obtained by taking vX ≪ v or yS ≈ 0. Note that the latter condition is
radiatively stable, since it corresponds to an enhanced U(1) global symmetry of the Lagrangian in
which LH and RH anomalons fields are rotated with an opposite phase.

In conclusion, we have shown that the bounds of Refs. [14, 15] can be relaxed by assuming that
the anomalon fields are mostly chiral (namely, their mass mostly stems from the Higgs VEV). This
possibility, however, leads to non-decoupling signatures in Higgs observables and direct searches, to
be discussed in Sect. 1.3.

1.2.3 Neutrino masses

If the X generator has a non-trivial projection on family lepton numbers, αi ̸= 0 (i = e, µ, τ),
then we need RH neutrinos, ναR (α = 1, . . . , N), in order to cancel U(1)X and U(1)3X anomalies
(cf. conditions in Eqs. (1.13)–(1.14)). The simplest solution is to introduce one RH neutrino for
each αi ̸= 0 and set Xi

νR = αi. Another possibility is to have universal charges Xα
νR = XνR , so that

the anomaly-free conditions are

XνR =

(
α3
e + α3

µ + α3
τ

αe + αµ + ατ

)1/2

, N =

(
(αe + αµ + ατ )3

α3
e + α3

µ + α3
τ

)1/2

. (1.41)

The SM-singlet states ναR can be used to give mass to light neutrinos via the seesaw mechanism. In
fact, SM gauge invariance would allow the operators5

−L νR
Y = yiβD ℓ̄

i
Lν

β
RH̃ +

1

2
yαβνR ν

α
Rν

β
RS

∗ + h.c. −→ miβ
D ℓ̄iLν

β
R +

1

2
Mαβ
R ναRν

β
R + h.c. , (1.42)

withmD = yDv/
√

2 andMR = yRvX/
√

2, leading to light neutrino masses via the seesaw mechanism

mν = mDM
−1
R mT

D . (1.43)

However, in order for the operators in Eq. (1.42) to be U(1)X invariant, the following constraints
on U(1)X charges need to be satisfied

−αi +Xβ
νR = 0 , (1.44)

Xα
νR +Xβ

νR −XS = 0 . (1.45)

While the first condition can be easily fulfilled (since it also ensures the cancellation of U(1)X and
U(1)3X anomalies), the second one could imply texture zeros in MR if some leptonic generators are
non-universal αi ̸= αj . Consistency with light neutrino data might then require the introduction of
extra scalars in order to reproduce realistic low-energy textures (see e.g. [50–52]).

1.3 Electroweak anomalons phenomenology

In the previous Section we have seen that mostly chiral electroweak anomalons (i.e. which take
their mass mostly from the Higgs VEV) allow to decouple dangerous WZ terms, which would
otherwise lead to the energy-enhanced longitudinal emission of light vectors coupled to anomalous
currents. We are hence interested in studying the electroweak phenomenology of the exotic leptons
L+N +E , whose quantum numbers are displayed in Table 1.1. In particular, following the analysis
of Refs. [37, 38], we will argue that phenomenology requires Y ≈ 2,−1.

5We neglect here bare Majorana mass terms, since in that case RH neutrinos would not contribute to the cancel-
lation of U(1)X and U(1)3X anomalies. Instead, possible mixings between RH neutrinos and electroweak anomalons
have been classified in Table 1.2.
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1.3.1 Electroweak precision tests

The contribution of the electroweak anomalons in terms of mass eigenstates (cf. Table 1.1 and
Eq. (1.18)) to the S and T parameters is [37]

S =
1

6π

[(
1 − 2(Y − 1

2
) log

m2
N1

m2
E1

)
+
(
1 + 2(Y − 1

2
) log

m2
N2

m2
E2

)
+O

( m2
Z

m2
N , E

)]
≈ 1

3π
, (1.46)

T =
1

16πc2W s
2
Wm

2
Z

(
m2

N1
+m2

E1
− 2

m2
N1
m2

E1

m2
N1

−m2
E1

log
m2

N1

m2
E1

)
+

1

16πc2W s
2
Wm

2
Z

(
m2

N2
+m2

E2
− 2

m2
N2
m2

E2

m2
N2

−m2
E2

log
m2

N2

m2
E2

)
≈ 0 , (1.47)

where the approximation in the last steps holds in the custodial limit mN1,2 ≈ mE1,2 . Recent fits
for oblique parameters, e.g. from Gfitter [53], yield

S = 0.05 ± 0.11 , T = 0.09 ± 0.13 , (1.48)

which are easily satisfied in the custodial limit, although a mass splitting might play a role to explain
the recent MW anomaly [54].

1.3.2 Higgs physics

We now consider the constraints from Higgs coupling measurements. In particular, we assess the
impact of the new heavy fermions on the decay rate of the Higgs boson to two photons, or to a
photon and a Z boson. Taking a fermion ψ of mass mψ the interaction Lagrangian is given by

Lint
ψ = −mψ

v
hψψ + eQψψγ

µψAµ +
e

cW sW
ψγµ

(
T 3
ψ

2
−Qψs

2
W −

T 3
ψ

2
γ5

)
ψZµ , (1.49)

where h is the 125 GeV Higgs, Aµ and Zµ the photon and Z boson fields, T 3
ψ is the eigenvalue of

the third generator of SU(2)L when it acts on the left-handed component of ψ, so that T 3
ψ = ± 1

2
when ψL arises from a doublet in the fundamental of SU(2)L. Its one-loop contributions to the
amplitudes h→ γγ and h→ γZ are [55]

Aψ
γγ ≈ 4

3
Q2
ψ , Aψ

Zγ ≈ −1

3
Qψ

T 3
ψ − 2Qψs

2
W

cW
, (1.50)

where we assumed that ψ is much heavier than the Higgs and the Z boson, which holds for the heavy
fermions we consider here. In the SM, these amplitudes are dominated by the loop of the W gauge
boson interfering negatively with the loop of the top quark and they amount to ASM

γγ ≈ −6.5 and

ASM
γZ ≈ 5.7 at leading order. In the presence of a single Higgs doublet, the new physics contribution

yields ANP
γγ ≈ 8

3 (1 − 2Y + 2Y2). Writing the modified Higgs width to photons as

Rγγ =
|ASM

γγ + ANP
γγ |

2

|ASM
γγ |

2 , (1.51)

a recent ATLAS analysis found Rγγ = 1.00± 0.12 [56]. There is in fact the possibility that the new
physics contribution interferes negatively with the SM amplitude, namely ANP

γγ ≈ −2ASM
γγ ≈ 13.0.

This is obtained either for Y ≈ 2 (1.93 ≲ Y ≲ 2.03 [2σ range]) or Y ≈ −1 (−1.03 ≲ Y ≲ −0.93 [2σ
range]), both yielding ANP

γγ (Y = 2) = ANP
γγ (Y = −1) ≈ 13.3. A correlated signal in the γZ channel
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Figure 1.1: Rγγ and RγZ signal strength in function of the parameter value Y of the anomalon
hypercharges. The shaded areas around the central values represent the 1σ uncertainty bands.

yields ANP
γZ ≈ − 2

3cW [1 − (3 − 8Y + 8Y2)t2W ], leading to a large deviation ANP
γZ (Y = 2) = ANP

γZ (Y =
−1) ≈ 2.33 in the region where the value of Y is compatible with the di-photon channel. Thus the
model with a single Higgs doublet predicts a strong departure of RZγ from its SM value, although
extended Higgs sectors can help to tame modifications of Higgs signals (see e.g. [38]). The γZ decay
channel of the Higgs has been recently observed both by ATLAS and CMS analysis based on the
data from the run-2 [57] and they found RZγ = 2.2 ± 0.7, compatible with the SM within 1.9σ.
However the CMS and ATLAS measurement could potentially be a hint of NP and, as it can be
seen in Fig.1.1, the central value of their measurements is closed to the prediction of our theory.
In the next years HL-LHC is expected to measure κγZ within 10% precision [58] and hence it will
confirm or not the central value of the run-2 result.

1.3.3 Direct searches

Direct searches at high-energy particle colliders depend on whether the exotic leptons mix with
the SM leptons. In fact, this is possible only for the values Y = 0,±1, 2 (see Table 1.2), including
the phenomenologically favored case Y = 2,−1. We discuss in turn the two different scenarios
corresponding to Y ≠ 2,−1 (stable charged leptons) and Y = 2,−1 (unstable charged leptons) [2].

Stable charged leptons

If Y ≈ 2,−1 (but Y ̸= 2,−1), no mixing terms are allowed. In this case for each flavor i the heaviest
between the ΨEi and ΨNi states decays into the lightest one via CC interactions, which is stable
because of exotic lepton number conservation. Charged stable states are cosmologically dangerous
and largely excluded unless they are not produced in the early Universe or some mechanism dilutes
their abundance. They also provide striking signatures at collider, in terms of charged tracks.

The strongest limit on stable states with Q = 2e is enforced by the ATLAS analysis [59] which
searches for stable particles with various choices for their electric charge, ranging from Q = 2e to
Q = 7e, and specific coupling structure to the Z−boson. They consider production via both DY
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and photon-fusion interactions at
√
s = 13 TeV with 139 fb−1 of integrated luminosity. By properly

taking into account the different coupling structure of the model we are investigating with respect
to the one assumed by the ATLAS analysis, one obtains a limit mEi

≳ 1030 GeV for a single flavor
of doubly charged exotic leptons. This limit increases to ∼ 1140 GeV for two degenerate doubly
charged exotic leptons.

This analysis do not consider the case of singly charged heavy leptons with Q = e. In the
scenario where this state is the lightest present in the spectrum, the strongest limit is set by the
CMS analysis [60], performed at

√
s = 13 TeV with 3.2 fb−1 of integrated luminosity. By recasting

the CMS results one obtains a limit mNi
≳ 540 GeV, with the available data set for a single

flavor of singly charged exotic lepton, limits that increases to ∼ 630 GeV, for two degenerate singly
charged exotic leptons. By projecting the results of this analysis to an integrated luminosity of
139 fb−1, corresponding to the luminosity of the ATLAS search for doubly charged leptons, these
limits increase to 820 GeV and 930 GeV respectively.

Unstable charged leptons

For Y = 2,−1 the electroweak anomalons have electric charge Q = 2,−1 (N components) and
Q = 1,−2 (E components). The |Q| = 2 states can decay into a W and a |Q| = 1 fermion, while
the latter can mix with SM leptons and decay into Zℓ or hℓ. The experimental measurements on
the Z couplings to leptons [61] requires that the mixing angle between SM and anomalons to be
≲ O(10−3). The constraints coming from lepton flavour violating decays Z → eµ, µτ, τe, which
are generated from the same mixing terms, are estimated to be of the same order. Let us consider
Y = −1 (the other can be obtained by charge conjugation) and denote the mass eigenstates as ΨE1,2

and ΨN1,2 . The charged current interaction yields that doubly charged promptly decay, for mixing
angles ≳ 10−7, into a final state with a same-sign (SS) lepton pair via

ΨEi →W−ℓ− → ℓ−ℓ− /ET . (1.52)

Final states with SS leptons have small SM backgrounds.
No direct searches for doubly charged lepton exist. There exist however an ATLAS analy-

sis targeting pair-produced doubly charged scalars decaying into a SS lepton pair, performed at√
s = 13 TeV with 36.1 fb−1 of integrated luminosity [62]. In order to recast this analysis we

have implemented the model into the Feynrules [63] package using the UFO [64] format in order to
perform a simulation with MadGraph [65]. The ATLAS search defines 8 mutually exclusive signal
regions (SRs), each them featuring (at least) one SS lepton pair, categorizing them with respect to
lepton multiplicity and flavor.

From the measured number of events in each signal region and the estimation of the SM back-
ground we estimate the observed number of signal events excluded at 95% confidence level (CL)
via the CLs procedure [66, 67]. Projections for for higher integrated luminosities are obtained by
extrapolating the expected 95% CL exclusion. A summary of the exclusion yields are reported in
Tab. 1.3 for the various SRs defined by the ATLAS search.

We then consider the pair-production of both the doubly charged leptons pp → Ψ̄E1,2ΨE1,2 and
study the limits obtained from the recast of the ATLAS search [62], under various assumptions for
the flavor mixing pattern of the exotic leptons. For concreteness we study two scenarios. In the
former both the exotic fermions only mix with the first two generations of SM leptons with equal
weights, thus BR(ΨE1,2 → W−e−) = BR(ΨE1,2 → W−µ−) = 50%. In the latter we assume them
to democratically mix with all the three SM lepton families BR(ΨE1,2 → W−e−) = BR(ΨE1,2 →
W−µ−) = BR(ΨE1,2 → W−τ−) = 1/3. The strongest exclusion limits come in both cases from
SRs with three leptons and are shown in Fig. 1.2 for the actual luminosity of the ATLAS search
L = 36.1 fb−1 as well as for two projected benchmark values, L = 300, 3000 fb−1. Current limits in
the first scenario are around 500 GeV, if one of the two exotic lepton is decoupled from the spectrum,
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Signal region Nobs Nbkg N95%CL
obs N95%CL

exp

e±e± 132 160±14 23.4 39.0
e±µ± 106 97.1±7.7 33.7 27.1
µ±µ± 26 22.6±2.0 15.1 12.4
e±e±e∓ 11 13.0±1.6 8.1 9.7
e±µ±ℓ∓ 23 34.2±3.6 8.6 16.0
µ±µ±µ∓ 13 13.2±1.3 9.4 10.2
ℓ±ℓ±ℓ′∓ 2 3.1±1.4 4.9 7.0
ℓ±ℓ±ℓ∓ℓ∓ 1 0.33±0.23 4.2 4.2

Table 1.3: Number of observed events in the various signal region of the ATLAS search [62], together
with the SM background expectation. The observed and expected number of excluded signal event
is computed via the CLs procedure [66,67].

500 600 700 800 900 1000 1100 1200
500

600

700

800

900

1000

1100

1200

mΨℰ1 [GeV]

m
Ψ
ℰ
2
[G
eV

]

BR(ΨℰiW-e-,W-μ-)=50%

ℒ=36.1 fb-1

ℒ=300 fb-1

ℒ=3000 fb-1

500 600 700 800 900 1000 1100 1200
500

600

700

800

900

1000

1100

1200

mΨℰ1 [GeV]

m
Ψ
ℰ
2
[G
eV

]

BR(ΨℰiW-e-,W-μ-,W-τ-)=1/3

ℒ=36.1 fb-1

ℒ=300 fb-1

ℒ=3000 fb-1

Figure 1.2: 95% CL exclusion limits obtained from the LHC ATLAS search [62], solid line. The
dashed and dot-dashed lines show the projected exclusion with 300, 3000fb−1 of integrated lumi-
nosity. In the left panel we assume exclusive mixing with the first two generation of SM leptons
with equal weights, BR(ΨE1,2 → W−e−) = BR(ΨE1,2 → W−µ−) = 50%. In the right panel we
assume them to democratically mix with all the three SM lepton families BR(ΨE1,2 → W−e−) =
BR(ΨE1,2 →W−µ−) = BR(ΨE1,2 →W−τ−) = 1/3.

reaching ∼ 600 GeV if the two states are mass degenerate. At the end of the high luminosity phase
of the LHC, values up to mΨE1,2 ≃ 1 TeV could be tested. Allowing for a mixing with the τ
lepton, relaxes these limits of O(100 GeV) given that this final state is not directly targed by the
analysis [62], and is anyway expected harder to be tested.

Turning our attention to the Q = e anomalon states, they promptly decay, for mixing angles
≳ O(10−7), as

ΨNi →W−ν , Zℓ− , (1.53)

where the branching ratio of each channel is a function of the model parameters. The experimental
signature depends on how the W or Z boson decays and in particular signatures as in Tab. 1.3 are
possible. The inclusion of the ΨNi decay modes would then increase the constraints from direct
searches but it requires a less straightforward analysis than the double charged states. We choose
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to be conservative and rely on the constraints we already obtained in Fig. 1.2 since the take-home
message, that we are beyond the edge of perturbativity, would not substantially change.

1.3.4 Perturbative unitarity

In the previous section we have shown that current LHC limits pushes the exotic leptons to have a
mass ≳ 500 − 600 GeV, depending on the flavor structure of the model, in the case that they mix
with the SM fermions. In case of no SM-BSM mixing these limits might be pushed to higher values,
from the null results for searches of heavy-stable charged particles.

Given that the exotic fermions are chiral states which acquire their mass only via their couplings
to the Higgs boson, the model Yukawa y1,2,3,4 attain large values, possibly at the edge of the
perturbative regime of the theory. In order to quantify this statement we apply the procedure
shown in [68] and compute the perturbative unitarity bounds obtained by considering all the 2 → 2
scatterings present in the model. The strongest limit is obtained in the J = 0 partial wave and,
working for simplicity in the custodial limit y1 = ỹ3, y2 = ỹ4, reads

3y21 + 3y22 +
√

9y41 − 2y21y
2
2 + 9y42 < 16π . (1.54)

This can be then translated into a perturbative limit on the exotic fermion masses, which fixes
mΨE1,2 ≲ 400 GeV. This shows that current LHC exclusion already push the model beyond the edge
of perturbativity.6

1.4 Unbroken symmetry in the Stückelberg scenario

In the previous section we consider the presence of an exotic Higgs field S in order to break the
new symmetry and give mass to the gauge vector boson. A different scenario appears if the X field
acquires its mass with a Stückelberg mechanism.

1.4.1 Brief introduction to the Stückelberg mechanism

Consider a theory with abelian gauge symmetry U(1)X and corresponding gauge boson Xµ, whose
UV Lagrangian is given by

LU(1)X =
∑
i

(Dµϕi)
†(Dµϕi) − V (ϕi) +

∑
i

Ψ̄ii /DΨi + LYukawa −
1

4
XµνX µν , (1.55)

where ϕi and Ψi denote the scalar and fermion fields of the theory and the covariant derivative is
defined as usual, Dµϕi = (∂µ − igXXϕi

Xµ)ϕi and DµΨi = (∂µ − igXXΨi
Xµ)Ψi. Under a U(1)X

transformation

Xµ → Xµ + ∂µα(x) , (1.56)

ϕi → eigXXϕi
α(x)ϕi , (1.57)

Ψi → eigXXΨi
α(x)Ψi . (1.58)

Note that gauge invariance does not allow to write a mass term for the gauge field, leaving the
Xµ massless. However, following Stückelberg’s trick [69, 70], one could introduce an extra physical

6Large higher-order corrections (starting at two loops) are then expected for Higgs decays and they might slightly
change the solutions Y ≈ 2,−1.
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scalar field π to describe covariantly the three polarizations of a massive vector field and write

LSt = LU(1)X +
1

2
m2

X

(
Xµ − ∂µπ

mX

)2

. (1.59)

The scope of the Stückelberg field is to restore the gauge symmetry, which would be broken by the
mass term, and make it manifest. Under a U(1)X transformation

π → π +mXα(x) , (1.60)

which is essential to make the mass term gauge invariant. The five degrees of freedom of Xµ and π
fields are then reduced by the gauge symmetry to the three physical polarization states of massive
spin-1 boson.

The Stückelberg model relies on the peculiarity that the Stückelberg field is not interacting7,
thus adding a mass mX for a U(1)X gauge boson does not spoil renormalizability of the theory.
This should be compared with the non-abelian case where adding the mass leads to a high energy
inconsistency or equivalently to a cutoff determined by the coupling gX of order Λ ∼ mX/gX ; the
theory requires a completion not far above the mass of the particle and/or the introduction of new
physical degrees of freedom, see the discussion at the beginning of [71]. In a similar way, a mass
term for the fermions via a non-linear Yukawa-like interaction

Ψ̄Ψ′eigX(XΨ−XΨ′ )π/mX , (1.61)

even if gauge invariant, would spoil renormalizability and hence are not allowed.
In addition to (1.59), one introduces a gauge-fixing term with the usual Faddeev and Popov

techniques [72] and the Stückelberg’s Lagrangian for real vector fields, complemented with ghost
terms, is actually BRST invariant [73–75]. The BRST symmetry facilitates considerably the effort
to prove the perturbative renormalizability and the unitary of the theory [76–78].

A common choice of the gauge-fixing term is the t’ Hooft gauge

Lgf = − 1

2ξ
(∂µX µ + ξmXπ)

2
(1.62)

with ξ being a free gauge parameter which the physics is independent of. Then the propagators of
the Xµ and π fields are

∆µν
X (q) =

i

q2 −m2
X

[
−gµν + (1 − ξ)

qµqν

q2 − ξm2
X

]
, (1.63)

∆π(q) =
i

q2 − ξm2
X

(1.64)

and the Stückelberg field turns out to be a free field with no need of renormalization. For this
particular choice of the gauge, the ghost fields decouple from the theory. For ξ = 1 (Feynman gauge),
the high energy behavior of the vector field propagator goes like −igµν/q2, so the Stückelberg theories
are power–counting renormalizable (being also unitary). Note that in the ξ → ∞ one recovers the
unitary gauge which is nothing else that the Proca formulation of a massive vector boson [79].
Hence, the Stückelberg mechanism consists in the introduction of new fields to reveal a symmetry
of a gauge–fixed theory [80] and does not provide at all any spontaneously symmetry breaking
dynamics.

7A similar feature appears in the spontaneous symmetry breaking of U(1) global symmetries at leading order in
the derivative expansion of the corresponding Goldstone boson.
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1.4.2 Unbroken accidental symmetries

Noted that the Stückelberg mechanism does not break the gauge symmetry but it just gives mass
to the relative gauge boson, we are left with an unbroken gauge symmetry. Let us rewrite

X = αB+L(B + L) + αB−L(B − L) + αeµ(Le − Lµ) + αµτ (Lµ − Lτ ) (1.65)

and consider the a few benchmark scenarios

• X = B + L

The anomalons need to be charged under the electroweak group and, moreover, they need to
be chiral either under the U(1)X or the SM gauge group (otherwise they cannot cancel the
U(1)XSM2 anomalies). In either cases it is not possible to write down a vector-like bare mass
term Ψ̄Ψ′, neither they can pick up mass via the VEV of a scalar field that breaks the U(1)X ,
since in the Stückelberg approach the gauge symmetry remains unbroken. This possibility is
marginally allowed by Higgs signals and direct searches, and it will be decisively tested at the
HL-LHC via the measurement of h → γZ. However, direct searches push us to the edge of
perturbativity of the Yukawa couplings.

• X = αeµ(Le − Lµ) + αµτ (Lµ − Lτ )

Here we do not need to introduce new fermions beyond the SM in order to cancel gauge
anomalies. However, this case is ruled out by neutrino oscillations, i.e. by the fact some
entries in the neutrino mass matrix are forbidden and PMNS mixing is trivial. In other words,
Li − Lj cannot be an exact symmetry of the SM.

• X = B − L

We need to introduce 3 RH neutrinos in order to cancel U(1)X -gravity and U(1)3X anomalies.
However, the RH neutrinos cannot pick-up a vector-like mass and hence we predict Dirac
neutrinos. This is consistent with the fact that the U(1)X remains unbroken. Note the
orthogonal case of the U(1)X realized à la Higgs where the B − L is spontaneously broken
and one predicts Majorana neutrinos. An unbroken B − L scenario with Stückelberg mass
has been studied in [81] where the author highlights in particularly that successful Big Bang
nucleosynthesis provides strong bounds for masses 10 eV < mX < 10 GeV due to resonant
enhancement of the rate ff̄ ↔ νRν̄R.

1.5 Summary

In this chapter we have revisited the case of light vector bosons coupled to anomalous currents which
are UV completed by new anomaly-canceling heavy fermions (anomalons). After the latter have
been integrated out, WZ terms of the type in Eq. (1.21) are generated. On the one hand, they take
care of anomaly cancellation in the IR and, on the other, they source the energy-enhanced emission
of longitudinally polarized vectors, X , which typically results in very strong bounds on gX/mX ∝
1/vX whenever the decay channels Z → γX , B → KX , K → πX , etc, are kinematically open
[14,15]. Here, we have studied the model-dependence of such bounds, considering as a paradigmatic
framework the gauging of the most general (anomalous) linear combination of SM global symmetries,
U(1)X , with the generator X given in Eq. (1.1). To this end, we provided a UV completion including
electroweak anomalons L + E + N (cf. Table 1.1) to cancel U(1)X anomalies in combination with
electroweak gauge factors and RH neutrinos to take care of U(1)X anomalies in isolation when the
lepton number generators are gauged. An extra scalar S provides the spontaneous breaking of the
U(1)X factor and gives mass to the vector X . Then, we have computed the EFT of a light X
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when the heavy anomalons are integrated, keeping in general both electroweak symmetry breaking
and preserving sources for the mass of the anomalons (see App. A for details). This allowed us to
conclude (cf. e.g. Eq. (1.39)) that the bounds mentioned above on light X can be evaded in the limit
where the mass of the electroweak anomalons comes mostly from the Higgs VEV. This condition can
be neatly imposed in terms of U(1)X gauge charges (so that the operators in Eq. (1.7) are allowed
while those in Eq. (1.15) are forbidden) or parametrically by decoupling the vector-like masses of
the exotic leptons by taking a small Yukawa and/or a small VEV for S. On the other hand, mostly
chiral exotic leptons (receiving their mass mostly from the Higgs VEV) are strongly constrained due
to their non-decoupling nature by electroweak-scale phenomenology, in particular Higgs couplings
and direct searches. We have reviewed in Sect. 1.3 those constraints, based on the previous analyses
in [37, 38], and argued that it is possible to evade h → γγ bounds for Y ≈ 2,−1 (including the
exact cases Y = 2,−1 allowing for mixings between anomalons and SM leptons, cf. Table 1.2). For
Y ≈ 2,−1, the h → γZ channel differs O(1) from the SM and it is in agreement with the recent
measurement from ATLAS and CMS [57]. Direct searches, whose signatures depend on whether the
electroweak anomalons mix or not with the SM leptons, are also very stringent and they practically
push the present model beyond the edge of perturbativity.
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Chapter 2

Probing right-handed neutrinos
dipole operators

2.1 Introduction and framework

The see-saw mechanism [16, 17, 82–84] is arguably the simplest extension of the SM that is able
to explain the observed pattern of neutrino masses and oscillations. In its simplest incarnation, it
consists in adding to the SM particle content a right-handed neutrino, that is a spin 1/2 fermion,
singlet under the SM gauge group, which has a Yukawa interaction with SM leptons, as well as
a Majorana mass term. One of the active neutrinos acquire thus a non-vanishing mass mν and a
mixing θ with the new sterile state, parametrically expressed by the relations

mν ≃ y2νv
2

mN
, θ ≃

√
mν

mN
, (2.1)

where yν and mN are the RH neutrino Yukawa interaction and mass respectively and v is the
electroweak (EW) vacuum expectation value (VEV). Since experimental data point to at least two
massive neutrinos, at least two RH states must be added to obtain a realistic phenomenology. In
this case the essence of the see-saw mechanism is unaltered, with the obvious promotion of yν
and mN to matrices in flavor space, but the relations of Eq. (2.1) turn out to be modified. In
particular the mixing angles can receive an exponential enhancement with respect to the naive
see-saw scaling case, that may drastically modify the phenomenology. This is best seen in the
Casas-Ibarra parametrization [85]. From the practical point of view, this means that masses and
mixings can be treated as independent parameters. Irrespective of this consideration, by fixing mν

Eq. (2.1) doesn’t uniquely point to a preferred mass range for mN , which could lie all the way
up the grand unification scale if yν is an O(1) parameter. However, in recent years RH neutrinos
with mass below the EW scale have gained more and more attention in that they can explain the
matter-antimatter asymmetry of the Universe via neutrino oscillations [86,87] and, crucially, can be
tested at present and future colliders and fixed-target experiments, see e.g. [88–114].

While the see-saw model is a full-fledged UV complete theory, at least in the same way as the
SM is, in the case where RH neutrinos lie at the EW scale it is interesting to consider it as a low
energy EFT extended with higher dimensional operators built from the SM and the RH neutrino
fields. The resulting theory is called νSMEFT and is described by the following Lagrangian

L = LSM + iN̄ /∂N − L̄LYνH̃N − 1

2
N̄ cMNN +

∑
n>4

On

Λn−4
+ h.c. , (2.2)
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where N is a vector describing Nf flavors of RH neutrino fields and N c = CN̄T , with C = iγ2γ0.

Furthermore, Yν is the 3 × Nf Yukawa matrix of the neutrino sector with H̃ = iσ2H∗, MN is a
Nf × Nf Majorana mass matrix for the RH neutrinos and On the Lorentz and gauge invariant
operators with dimension n built out from the SM and the RH neutrino fields, with Λ parametrizing
the Wilson coefficient of the operator. A complete and independent set of operators has been
built up to dimension nine [20, 115, 116]. Interestingly, already at d = 5 two genuine νSMEFT
operators appear1. The first is an operator coupling the RH neutrinos with the Higgs boson, O5

NH =
N̄ cNH†H. This triggers a new decay mode for the Higgs, with interesting consequences for collider
phenomenology, both at the Large Hadron Collider (LHC) [18,19,117,118] and future colliders [119].
The second operator is a dipole with the hypercharge gauge boson2 O5

NB = N̄ cσµνNBµν , which has
so far been less investigated [21,119–123]3. Among other effects, this operator generates the decay4

Nheavy → Nlight + γ , mNheavy
> mNlight

. (2.3)

This interaction is the subject of our study. Our focus will be on light RH neutrinos with masses
up to a few GeV. Such light states can be produced not only at high energy colliders via parton
interactions, but also at fixed-target experiments, typically via meson decay. More specifically, we
will analyze in detail the current bounds from colliders experiments, such as LHC, LEP and BaBar,
and fixed-target experiments, such as CHARM [128], NuCal [129,130] and NA64 [131]. We will then
compute the predicted sensitivity to the νSMEFT parameter space of the proposed experiments
ANUBIS [132] , CODEX-b [133–135], FACET [136], FASER 2 [137, 138], MAPP [139, 140] and
SHiP [141,142]. In addition, we will also discuss constraints from cosmology and astrophysics.

Throughout this work we will consider the theory of Eq. (2.2), focusing on the d = 5 dipole
operator. Given its symmetry properties, this operator is non-vanishing only for Nf ≥ 2. Since
we are primarily interested in probing the effect of the dipole operator, we will work under the
assumption that the active-sterile mixing effects are negligible for what concerns the heavier sterile
neutrinos phenomenology, in such a way that their decay proceeds only via the dipole operator under
our scrutiny through the process of Eq. (2.3). As for the lightest RH neutrino N1, its decay pattern is
completely determined by the active-sterile mixing, as in the standard see-saw case. As we are going
to discuss in Sec. 2.3, the N1 lifetime can be strongly constrained by cosmological observations,
especially the ones related to the epoch of Big Bang Nucleosynthesis (BBN). A relatively safe
scenario is the one in which N1 mixes dominantly with the third generation of SM neutrinos, ντ .
We found that this configuration can be easily obtained by choosing Nf = 3, satisfying at the
same time all other relevant constraints. Interestingly, in this case the heaviest RH neutrinos N3

can be decoupled from the spectrum without affecting the mixing pattern for N1, leaving only the
two lightest RH neutrinos N1,2 as dynamical states. In presenting our main findings we will thus
consider a framework with only these two states living at the EW scale and interacting via the
dipole operator which we normalize as

O5
NB =

gY
16π2

eiα

Λ
N̄ c

1σ
µνN2Bµν + h.c. , (2.4)

where mN2
> mN1

, and where gY and Bµν are the U(1)Y coupling and field strength tensor
respectively. The loop suppression factor is explicitly introduced since this operator only arises at
loop level in any weakly coupled UV completion, see e.g. [143,144], while the hypercharge coupling

1The other d = 5 operator is clearly the Weinberg operator O5
W = (L̄cH̃∗)(H̃†L).

2We define σµν = i[γµ, γν ]/2.
3Recent works on the phenomenology of d=6 operators involving sterile neutrinos at accelerators are [113, 114,

124–127]
4Given the mass range that we consider, the decay process in which the γ is substituted with a Z boson is

kinematically closed.
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is added because of the presence of Bµν . Explicit UV completions include models with additional
scalar and fermions or models with additional vectors and fermions, with non-vanishing hypercharge
[21,145]. We will comment later on possible strongly interacting UV completions. Since the Wilson
coefficient can be complex, we show explicitly its phase α. In this scenario, O5

NB completely governs
the RH neutrinos phenomenology5. In particular, it dictates the heaviest neutrino N2 total decay
width. For RH neutrinos below the Z mass the dominant decay mode is N2 → N1γ whose rate
reads

Γ(N2 → N1γ) =
gY

2

(16π2)2
c2w
2π

m3
N1

Λ2
δ3
(

2 + δ

1 + δ

)3

≃ g2Y
64π5

c2w
m3
N1

Λ2
δ3 , (2.5)

where cw is the cosine of the Weinberg angle and the last equality holds for small values of δ, which
is defined as

δ =
mN2 −mN1

mN1

. (2.6)

The three-body decay into an off-shell Z boson provides a subdominant contribution. As it is
clear from Eq. (2.5), the relative mass splitting δ is crucial in determining the RH neutrino decay
length, and hence its lifetime. This gives an indication on the type of experiments that can have
a sensitivity to this scenario, depending on how far the detector is located with respect to the N2

production points. For example the neutrinos N2 could decay promptly, i.e. with a typical decay
length smaller than O(mm). In this case they are a primary target for standard collider searches.
Their lifetime could also be longer, with corresponding decay lengths in the O(1 m − 100 m), for
which different strategies need to be envisaged. In the more extreme case, they can be stable with
respect to the length scale of any terrestrial experiment and hence completely invisible for what
concerns laboratory searches. We will comment upon all these possibilities in the following, mainly
focusing however on a region of parameter space in which the heavier neutrino N2 is a long-lived
state with a macroscopic decay length. This choice has a twofold motivation. From one side, light
new states with suppressed interactions, as the one inherited from the dipole operator, have usually
a long lifetime. From the other side, the study of long-lived particles is an active field which has
received a lot of attention in the last years, following the philosophy of leaving no stones unturned
and lighting new lampposts in the quest of new physics beyond the SM. In this area, big experimental
progresses are foreseen in the mid- and short-term.

The relative mass splitting is also important in determining the photon energy arising from the
decay of Eq. (2.3). From basic kinematics in the N2 rest frame one has

Ecom
γ = mN2

δ

2

2 + δ

(1 + δ)2
. (2.7)

Assuming the photon to be produced collinearly with the direction of N2 in the laboratory frame,
which maximizes the photon energy in this frame of reference, one has

Elab
γ =

(
PN2 +

√
m2
N2

+ P 2
N2

) δ
2

2 + δ

(1 + δ)2
≃ 2PN2δ , (2.8)

where PN2
is the modulus of the N2 spatial momentum and the last equality holds for mN2

/PN2
≪ 1

and δ ≪ 16. Thus the smaller the relative mass splitting the softer the final state photons, which

5Our analysis focuses on the radiative decays of N2 induced by the dipole operator but, of course, additional
signals at the experiments under study could be produced by N1 decays, if the mixing with the active sector is not
too suppressed.

6Notice that, for vanishing active-sterile mixing, in the δ → 0 limit the mass term in Eq. (2.2) becomes symmetric
under a global SO(2) symmetry that acts on the vector N = (N1, N2)T . It is thus technically natural to have small
δ.
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however should satisfy some minimal threshold requirement in order to be identified in a detector.
Hence too small relative mass splittings will hardly be experimentally testable.

The rest of the chapter is organized as follows. In Sec. 2.2 we report useful formulæ for computing
the decay of a QCD meson into a pair of RH neutrinos via the dipole operator. In Sec. 2.3 we review
the existing limits on the dipole operator from cosmology, colliders and other type of experiments,
while in Sec. 2.4 we discuss the future sensitivity of SHiP and FASER 2 on the model parameter
space, wrapping up our conclusion in Sec. 2.5.

2.2 Mesons decay into RH neutrinos

For the decay V → N1N2 we need the following matrix element:

⟨0|q̄γµq|V (p)⟩ = fqV mV ϵ
µ(p), (2.9)

where mV is the vector meson V mass, ϵµ(p) its polarization vector and explicit expressions for the
coefficients fqV can be found in Appendix A of [146]. Given the range of masses to which we are
interested, in our computation we will consider only photon exchange. The explicit expression for
the decay width is given by

Γ(V → N1N2) =
g2Y

(16π2Λ)2
(cwQq e f

q
V )2mV

6π

(
1 − (mN2

−mN1
)2

m2
V

)1/2(
1 − (mN2

+mN1
)2

m2
V

)1/2

(
1 +

m2
N1

+m2
N2

− 6mN1mN2 cos(2α)

m2
V

− 2
(m2

N2
−m2

N1
)2

m4
V

)
,

(2.10)

where cw is the cosine of the weak angle, Qq the electric charge of quark q, in units of the electron’s
electric charge e. To produce our plots we set α = π/2 to maximize the number of events, although
the results remain qualitatively the same for other choices of the phase.

2.3 Current limits from cosmology, colliders and other ex-
periments

The parameter space of the simplified scenario considered in this work is spanned by the lighter
neutrino mass mN1

, the relative mass splitting δ with the heavier RH neutrino, and the Wilson
coefficient of the dipole operator, parametrized by Λ and its phase α. This parameter space is
already constrained by laboratory data from colliders and past beam dump experiments, as well as
by astrophysical and cosmological measurements. In this section we will review the most important
and stringent ones. Particular care must be taken in ensuring the validity of the EFT in the
various considered processes. The dipole operator in Eq. (2.4) induces N1N2 production through
the exchange of a photon or a Z boson. Following Ref. [147] and assuming couplings of order one,
we identify the EFT cut-off scale with Λ, and for the EFT to be valid we require

√
ŝ < Λ, (2.11)

where ŝ = (pN1
+ pN2

)2 is the Lorentz invariant energy that enters the vertex. One important
production mechanism for light N1,2 is via heavy meson decay, that can be copiously produced in
fixed-target experiments. In this case the heavy neutrino production proceeds via an s-channel γ
and we have ŝ = m2

M , with mM the meson mass. For higher masses direct production at collider
can be relevant. In this case, ŝ is the center of mass energy squared of the parton pair that exchange
the photon or the Z boson, e.g. e+e− for LEP or qq̄ for the LHC. Analogous considerations apply
for other production modes, as for example production via photon bremsstrahlung.
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2.3.1 Fixed-target experiments

We start our discussion with fixed-target experiments, for which we have considered data collected
at CHARM [128], NuCal [129, 130] and NA64 [131]. We consider the production of RH neutrinos
from the decay M → N1N2, with M a vector meson produced at these experiments. 7

CHARM: In the CHARM experiment, a 400 GeV proton beam was dumped on a copper target.
The detector, placed at a distance of 480 m from the interaction point (IP) and 5 m off the beam axis,
consisted of a decay volume 35 m long and with a surface area of 9 m2. We have modeled the detector
following [148] and recast the analysis of [128], in which an axion-like particle (ALP) decaying
into a pair of photons was searched for. Since the analysis required only a single electromagnetic
shower, it can be applied to the decay N2 → N1γ. We compute the number of events expected at
CHARM following the equations that will be described in more details in Sec. 2.4, see Eq. (2.13) and
subsequent ones. In our analysis, we simulate the production of N1N2 pairs from the decay of the
mesons ρ, ω, J/Ψ and Υ using PYTHIA 8.3 [149,150], finding the following production multiplicities:
Nρ = 0.58, Nω = 0.57, NJ/Ψ = 4.7 × 10−6 and NΥ = 2.2 × 10−9, see Sec. 2.4 for their definition.
Then, we require the energy of the photon in the laboratory frame to satisfy Eγ ≥ 1 GeV and,
following [128], we take a signal acceptance of 51%. The number of protons-on-target (POT) is
taken to be NPOT = 2.4 × 1018. Since no signal events were observed in the search of [128], we set
an upper limit at 95% confidence level (CL) of Nsignal = 3. The region excluded by the CHARM
experiment is shown in Fig. 2.1 , 2.2 and Fig. 2.3.

NuCal: In the ν-calorimeter I experiment (NuCal), a 70 GeV proton beam from the U70 acceler-
ator was dumped on an iron target. The detector consisted of a cylindrical decay volume 26 m long
and with a diameter of 2.6 m, placed at 64 m from the iron target. We implement such geometry
accepting N2 events with a maximum angle of 0.014 rad from the beam axis. To set a limit on the
parameter space of our scenario, we simulate N1N2 production from ρ and ω decays8 using PYTHIA

8.3 obtaining the following production multiplicities: Nρ = 0.30, Nω = 0.30. Then, we follow the
analysis in [151], requiring the photons produced in the N2 → N1γ decay to satisfy two conditions:
their energy in the laboratory frame must be Eγ ≥ 3 GeV, while their angle with respect to the
beam axis must satisfy θγ < 0.05 rad. After these selection cuts, 5 events were observed, with an
estimated background of 3.5 events from the simulated neutrino interactions in the detector [129].
Given these numbers, assuming Poisson likelihood we set a 95% CL upper limit of Nsignal ∼ 7.1 [151].
The region excluded by NuCal is shown in Fig. 2.1 , 2.2 and 2.3.

NA64: In the NA64 experiment, an electron beam of 100 GeV was dumped on a lead target. We
have considered the analysis of [152], in which an ALP decaying into a pair of photons was searched
for. Since the two photons are too collimated to be distinguished, the final state was reconstructed
as a single photon, allowing us to reinterpret this search. In this case the N1N2 pair is produced
via photon bremsstrahlung. Using 2.84× 1011 electrons-on-target [152], we find that the number of
events produced at NA64 is too small to put any bound on the parameter space of the model.

2.3.2 Colliders

We now analyze the bounds enforced by collider experiments, by considering searches performed at
LEP, BaBar and LHC. In this case different searches apply, depending on whether the N2 → N1γ

7We have checked that the amplitude for the decay P → N1N2 mediated by Z boson exchange and with P a
pseudoscalar meson vanishes identically. Moreover, we have estimated that the decay P → N1N2γ provides only a
marginal improvement of our sensitivities. For this reason, we do not consider this contribution.

8We checked that production from heavier vector meson decays is negligible.
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decay is prompt, i.e. it happens at a distance smaller than ∼ 1 mm from the IP, displaced, i.e.
it happens within ∼ 1 mm and ∼ 1 m, or else is detector-stable, i.e when the decay happens at a
distances greater than ∼ 1 m. For a 2 → 2 scattering, in terms of ŝ = (pN1

+ pN2
)2, we have

βN2
γN2

=

√
ŝ

2mN2

√
1 +

(m2
N2

−m2
N1

)2

ŝ2
−

2 (m2
N1

+m2
N2

)

ŝ
, (2.12)

while the N2 lifetime is given by τN2
= Γ(N2 → N1γ)−1, with the decay width of Eq. (2.5).

In the case of prompt decays, we consider two analyses: one from LEP [153] and one from
BaBar [154]. In the LEP analysis, data were taken at various center of mass energies around the Z
peak. We employ the largest dataset, taken at

√
ŝ = 91.26 GeV with an integrated luminosity of

52.462 pb−1. We have simulated our signal at the parton level by using MadGraph5 aMCNLO [65]. We
enforce the analysis selections by requiring a single photon with | cos θγ | < 0.7 and considering two
signal regions. In the first one a minimum energy of the photon was required Eγ > 22 GeV, and
no events were observed. In the second region the cut is loosened to Eγ > 3 GeV, with 73 observed
events and 72 ± 5 expected SM events. Therefore, we set a 95% CL upper limit on the number of
signal events Nsignal = 3 for the first signal region and Nsignal ∼ 22 for the second one. For the
weakly coupled normalization of the operator shown in Eq. (2.4), the stronger bound corresponds
to Λ ≲ 17 − 50 GeV for δ = 0.1 − 1. However, these values of Λ lie outside the range of validity
of the EFT, implemented as in Eq. (2.11), therefore we conclude that no meaningful constraints on
the cutoff scale Λ can be set.

We then move to the analysis of BaBar in Ref. [154], which derived bounds on single photon
events produced in association with an invisibly decaying dark photon. The selection of signal
events makes use of a multivariate Boosted Decision Tree discriminant. Given the complexity of
the analysis, we adopt a simplified strategy to estimate the constraint. We use MadGraph5 aMCNLO

to simulate a sample of e+e− → N1N2 events at the center of mass energies corresponding to the
Υ(2s), Υ(3s) and Υ(4s) resonances, considering the luminosities reported in [154]. We enforce the
selections −0.4 < cos θγ < 0.6 and Eγ > 3 GeV, corresponding to the LowM region of Tab. 1
of [154]. To extract a bound, we focus on the loose R′

L selection of [154], and assume an equal
number of observed and background events. This allows us to set an upper limit at 95% CL of
Nsignal ∼ 28. The excluded region is largely independent of mN1

but depends quite strongly on δ,
since for δ ≪ 1 the energy of the photon in the laboratory frame is too small to pass the 3 GeV
cut, see Eq. (2.8). We find that, for δ = (0.5 − 1), the bound extends up to Λ ∼ 60 GeV, while for
δ < 0.5 the bound disappears. Given the approximate nature of our computation, we do not show
these results explicitly in our figures.

Turning to searches for displaced events, we have considered analyses from ALEPH, ATLAS,
CDFII and DELPHI [155–158]. Their reinterpretation is generally less straightforward than the
ones for prompt signatures, due to the need of cutting on additional quantities as the photon time
of flight and pointing variable. We decide to firstly apply a simplified strategy, by only imposing
energy threshold and angular selection cuts on the final state photon. In this way the limit that
we extract will be stronger than the one obtained by a full implementation of the analysis. Using
this strategy we find that the strongest bounds come from the DELPHI search [158], see also [159].
In this case we enforce Eγ > 10 GeV and |ηγ | < 4.04, which corresponds to the angular coverage
between 2◦ and 178◦ reported in the analysis. We have once again simulated e+e− → N1N2 and the
subsequent N2 → N1γ decay using MadGraph5 aMCNLO, with center of mass energies between 180
and 209 GeV, and with the corresponding luminosities as reported in [158]. Following this approach,
we obtain 95% CL limits which are in the 20−40 GeV ballpark, for δ = 0.1−1. Given these results,
we avoid implementing the full selection for the displaced analysis, since the obtained limits are
already to be discarded because they lie beyond the validity of the EFT.

Finally, when N1 and N2 are both detector-stable, we consider searches of mono-γ with missing
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energy, and the LEP limits on the invisible Z width. It turns out that the strongest bound comes
from the latter. By requiring Γ(Z → N1N2) < 0.56 MeV [160] we obtain Λ ≳ 9 GeV, which again
lies beyond the validity of the EFT9.

We conclude this section by observing that some of the searches mentioned above could put
meaningful constraints on the parameter space of strongly coupled UV completions of the EFT
dipole operator. Implicit in our identification of the EFT cut-off scale with Λ in Eq. (2.4), is the
hypothesis that the dipole operator is generated perturbatively at one loop level by some heavy
states. An alternative possibility could be for the dipole operator to be generated by some strong
dynamics, similarly to what happens for the neutron in QCD. In this case, adopting the convenient
parametrization of the dipole operator O5

NB = 1/Λ′ N̄ cσµνNBµν , one expects the EFT cut-off scale
to be of the order of Λ′ = Λ (16π2)/gY . The bounds discussed above from the LEP search [153]
valid for prompt decays are simply rescaled into Λ′ ≳ (8 − 23) TeV for δ = (0.1 − 1), essentially
independent of mN1

. Analogously, the simplified approach adopted for the DELPHI search [158]
for displaced decays leads to the constraint Λ′ ≳ (9 − 18) TeV, again for δ = (0.1 − 1), essentially
independent of mN1 . Clearly in this case a more thorough reinterpretation of the analysis will be
needed, with respect to the simplified approach previously described. Finally, the bound from the
invisible Z decay width valid for the detector-stable case would read 4 TeV. Clearly, these constraints
are probing a relevant part of the parameter space lying inside the regime of validity of the EFT,
i.e.

√
ŝ < Λ′. It is important to notice that such bounds might be quite at odds with the range

of N1 and N2 masses to which we are interested in. For example in a QCD-like strongly coupled
scenario, we expect N1 and N2 to emerge as baryons, with masses of order Λ′ and not much lighter
as it would emerge from our analysis. A possibility of having a composite state much lighter than
Λ′ could be envisaged in a scenario where a light baryon arises in order to match the anomaly of an
unbroken global chiral symmetry in the UV, along the lines of [161, 162]. We are not aware of any
realistic model realizing such a framework. For this reason, in the remainder of the chapter, we will
consider only the weakly coupled scenario of Eq. (2.4).

2.3.3 Bounds from astrophysics and cosmology

In addition to the bounds presented above, limits from astrophysics and cosmology may be important
for the scenario that we are considering. The constraint which is more relevant for us comes from
BBN. Although in our simplified scenario the dipole operator O5

NB completely governs the N2

decays, the fate of N1 is determined by its mixing with the active sector. Particularly dangerous
is the situation in which the N1 decays could potentially spoil the predictions of the standard
BBN model [163–165]. There are two natural ways to avoid this bound. Either N1 is stable on
cosmological scales, or N1 decays with τN1

≲ 10−2 s. In the first case, N1 would be a dark matter
candidate10. In the second case, it has been shown in [163] that the combination of limits from
BBN and terrestrial experiments exclude mN1 ≲ (0.4 − 0.5) GeV, for N1 mixing dominantly with
νe or νµ, while lighter masses can be allowed for mixing dominantly with ντ . Since in the first case
an important region of parameter space that can be tested by the experiments we consider would
be excluded, we turn to the case of dominant mixing with ντ . Can such mixing be obtained in
a way which is compatible with neutrino mass generation? As shown in [164], in a scenario with

9Notice that in any UV completion of the dipole operator new states with masses around the EFT cut-off scale
will be present, among which there will also be states with non-vanishing electroweak charges. Therefore, if their
masses are small enough, additional bounds, that we are not discussing, could arise from the on-shell production of
these particles.

10The case in which a fermionic dark matter candidate χ interacts via a dipole operator χ̄σµνχFµν has been studied
in Refs. [160, 166]. Our case would correspond to an inelastic dark matter scenario in which the dipole interactions
are of the form χ̄2σµνχ1Fµν . In the δ ≪ 1 limit, we expect the phenomenology generated by O5

NB to be qualitatively
similar to the one studied in [160, 166]. On the other hand, in the opposite limit δ ≳ 1, the phenomenology can be
quite different and will be studied elsewhere.

30



only two RH neutrinos this is possible for mN1
≳ 0.5 (0.1) GeV for normal (inverted) hierarchy.

The situation becomes less constrained considering three RH neutrinos, since in this case we have
explicitly checked that a dominant N1 − ντ mixing can be obtained, in a way compatible with the
generation of neutrino masses, for mN1 ≳ 0.1 GeV, which is the range we consider. This can be
obtained also by assuming a mass hierarchy mN1 ∼ mN2 ≪ mN3 , i.e. in a situation in which
the phenomenology is driven by N1 and N2 as the one we are considering by using the simplified
scenario of Eq. (2.4). In what follows, we will always implicitly suppose this to be the case. For what
concerns N2, in Figs. 2.1, 2.2, 2.3 we show contours of constant N2 lifetime, in order to highlight
the region of the parameter space where N2 decays fast enough to avoid BBN bounds.

Limits derived from supernovæ may also be important. Light particles produced in the interior
of supernovæ, which reach temperatures of several tens of MeV, can escape from the star, therefore
cooling the system. From this argument, masses up to a few hundred MeV can be constrained.
In the δ ≪ 1 limit, we expect our scenario to be qualitatively similar to the one studied in [160],
where the Authors focus on a dipole operator constructed with a single new Dirac fermion playing
the role of the dark matter. They obtain bounds up to masses of ∼ 0.1 GeV. In the mass range
1 − 100 MeV, these limits exclude 2 TeV ≲ Λ ≲ 50 TeV. The constraints disappear for larger Λ
because the production inside the supernovæ is suppressed, while for smaller Λ efficient scattering
processes can partially trap the particles inside the system. For the case δ ≳ 1 we expect the
situation to be qualitatively different from the one above. For small enough values of Λ, N2 decays
quickly, thus leaving a dominant population of N1 inside the supernovæ. The only relevant N1

scattering process is N1 SM → N2 SM, which however might be not kinematically allowed for large
δ, possibly making the bound disappearing at small values of Λ. This scenario has been studied
in the context of inelastic dark matter with a dark photon mediator in [167], albeit by using a
simplified and conservative approach. Given the complexity of performing a detailed analysis of the
supernovæ bounds, and the fact that we expect these limits to affect only a quite limited region of
parameter space, we defer a detailed study of this problem for future work.

2.4 Projected sensitivity of the SHiP and FASER 2 experi-
ments

In this section we study the prospects for detection of long-lived RH neutrinos at the proposed
future experiments SHiP [141] and FASER 2 [137, 138]. These experimental facilities have the
capability to probe long-lived particles in a variety of hidden sector models [138, 168]. SHiP is a
fixed-target experiment, based on a high intensity 400 GeV proton beam dumped on a heavy target.
Instead, FASER 2 is an LHC experiment, which aims at exploiting the proton collisions occurring
at

√
s = 14 TeV during the High-Luminosity LHC (HL-LHC) program. In this kind of experiments,

RH neutrinos can be copiously produced by the decay of mesons generated by the proton collisions.
The decay of long-lived N2 particles can then show up in dedicated detectors located around the IP
of these experiments. The expected number of signal events can be computed as:

Nsignal = Nprod ⟨ fdec ϵdet ⟩ , (2.13)

where Nprod is the total number of N2 produced, fdec corresponds to the probability for N2 to decay
inside the detector volume, and ϵdet accounts both for the efficiency for the reconstruction of the
events, that we simply take as 100%, and selection cuts. Finally, ⟨·⟩ indicates a statistical average,
that we define in the following. We consider the production of RH neutrinos from the decay of the
following mesons: M = ρ, ω, J/Ψ,Υ. The number of N2 produced then reads:

Nprod =
∑
M

NPOTNM BR(M → N1N2), (2.14)
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where NPOT is the total number of collected protons on target, NM is the average number of mesons
M produced per proton interaction, and BR(M → N1N2) is the branching ratio of the decay of
the meson M into RH neutrinos, computed in App. 2.2. Similarly, the number of RH neutrinos
produced by the decay of mesons at the LHC is given by:

NLHC
prod =

∑
M

σine LNM BR(M → N1N2), (2.15)

where L = 3 ab−1 is the integrated luminosity at the HL-LHC, and σine = 79.5 mb is the inelastic
proton-proton cross-section [169]. The quantity fdec is:

fdec = e−Lentry/LN2 − e−Lexit/LN2 , (2.16)

where Lentry (Lexit) is the distance between the IP where theN2 particle is produced, and the point at
which N2 enters (exits) the detector. Finally, LN2 is the decay length of N2 in the laboratory frame,
given by LN2

= βN2
γN2

cτN2
. Our calculations are based on simulations of the production of mesons

performed with PYTHIA 8.3 and EPOS-LHC [170]. More details will be given in the following. From
these simulations we obtain a sample of mesons events, and we compute the associated multiplicities
NM . Then, for each meson event in the sample, we simulate its decay in N1N2 pairs. These data are
used to statistically evaluate Eq. (2.13), averaging (⟨·⟩) Eq. (2.16) over all the possible kinematical
configurations of the N2 particles in our sample. Finally, we impose a minimum energy of the
photon produced in the decay N2 → N1 + γ. We compute the efficiency of this selection cut, ϵdet,
using the N2 events in our sample, simulating the N2 decays, and selecting the events for which the
photon energy in the laboratory frame is larger than a threshold Ecut. The procedure explained in
this section has been used to compute the number of signal events also at the CHARM and NuCal
experiments described in Sec. 2.3.

2.4.1 SHiP

The SHiP fixed-target experiment aims at accumulating NPOT = 2 × 1020 protons on a target
composed by Molybdenum and Tungsten in 5 years of operation. A description of the experiment
can be found in [142]. The decay volume of the detector has a length of 50 m and it is located at ∼45
m from the proton target. A spectrometer and a particle identification system with a rectangular
acceptance of 5 × 10 m2 are placed behind the decay volume. The rectangular face of the decay
volume closer to the IP has a size of 1.5 × 4.3 m2. Following these specifics, we approximate the
detector as a cylinder with an opening angle of 31.8 mrad.

The production of the different mesons at SHiP is based on simulations of proton-proton collisions
performed with PYTHIA 8.3. For the ρ and ω mesons we obtain the production multiplicities
Nρ = 0.58 and Nω = 0.57, in good agreement with previous results present in the literature [146,
166, 171–173]. We assume the same production rate for proton interactions in the target material
of SHiP. In principle a dependence on nuclear target is expected, however detailed simulations or
measurements are needed to fully capture these effects. Instead for the J/Ψ, we normalize our
simulation in order to reproduce the total number of mesons predicted by the SHiP collaboration
in [174]: NJ/Ψ = 2 ×Xc̄c × f(q → J/Ψ) × fcascade. The c̄c production fraction is Xc̄c = 1.7 × 10−3,
the J/Ψ production fraction is f(q → J/Ψ) = 0.01 and the enhancement from cascade events is
fcascade = 2.3. Finally, the production rate of the Υ mesons is directly obtained using PYTHIA 8.3,
as for the case of the ρ and ω, since detailed simulations of the production at SHiP are not available.
We find11 NΥ = 2.2 × 10−9.

11We use the same multiplicities of ρ, ω and Υ for CHARM and SHiP since the energy of the proton beam is the
same and we have neglected medium dependent effects.

32



Currently, there are no studies of the background rates at SHiP for the single photon signature
arising in our scenario. By assuming that the backgrounds can be reduced at a negligible level
as it happens for other searches, see e.g. [174], the 95% CL upper limit on the number of signal
events is Nsignal = 3. For a more conservative approach we follow [175], which estimated ∼ 1000
background events after rescaling the background events observed at the NOMAD detector by the
number of POT in the two experiments. This number will likely be reduced by vetos, as noticed
in [175]. Assuming Poisson likelihood, we set a 95% CL upper limit on the number of signal events
of Nsignal ∼ 63.8. Finally, we impose a minimum energy of the photon Ecut = 1 GeV, which is a
reasonable threshold for SHiP [176]. Summarizing, in Fig. 2.1 we show sensitivity contours for the
two choices of signal events discussed here. This corresponds to a range between an optimistic and
a conservative assumption of the background level.

2.4.2 FASER 2

The FASER collaboration has proposed to build a suite of forward detectors to be placed within the
LHC environment along the beam axis, nearby the ATLAS experiment [138]. These experiments
are dedicated to study several interesting topics, as the properties of neutrinos, QCD in the forward
regime and new physics beyond the SM, including dark sectors. Several small size pilot detectors
have already been constructed, which are FASER [137,177], FASERν [178,179] and SND@LHC [180].
However, to fully exploit the potential of the HL-LHC, a dedicated facility to host larger detectors
is under study. In particular, we focus on the proposed FASER 2 detector, which is dedicated to
the study of long-lived particles. According to current design, it will be placed at 620 m from the
IP, and it will have a cylindrical shape, with a radius of 1 m and a length of 10 m [138].

To simulate the production of the ρ and ω mesons at the LHC, we use EPOS-LHC, which has
been tuned to forward LHC data. For the J/Ψ and Υ mesons we again use PYTHIA 8.3, rescaling
its rates to match the production cross-sections as measured by the LHCb experiment [181,182]. In
addition, following [183], we modify the production rate as a function of the transverse momenta
pT with respect to the default setup of PYTHIA 8.3. Employing this procedure, we obtain a good
agreement with the measured pT distributions [181,182]. The resulting production multiplicities in
one hemisphere are Nρ = 2.3, Nω = 2.2, NJ/Ψ = 5.0 × 10−4 and NΥ = 6.1 × 10−6. In addition
to the production of RH neutrinos from the decay of mesons, we include Drell-Yan processes qq̄ →
γ/Z → N1N2. More details are provided in App. 2.4.3. This production mechanism is however in
most cases subdominant with respect the one from mesons decay.

FASER 2 will be sensitive to photon signals and, at the same time, it will have the capability
to strongly reduce the relevant backgrounds, see the discussion in [184] where single photon signals
have been studied in the context of a model of sterile neutrinos coupled to active neutrinos via a
dipole operator12. Since a thorough simulation of the relevant backgrounds has not been performed
yet, we decide to follow the strategy of [184], presenting our results as isocontours of Nsignal = 3
and Nsignal = 30 events. A cut on the energy of the photon Ecut > 100 GeV has been employed in
our analysis, again inspired by [184].

2.4.3 Results

Our main findings are presented in Fig. 2.1, where we fix the phase to α = π/2 to maximize the
production rate from meson decays, see Sec. 2.2. The results remain qualitatively the same for other
choices. We show two different slices of the parameter space: either we fix the mass splitting δ and
we explore the plane mN1

− Λ or we fix the mass of N1 and we project the results on the δ − Λ
plane. In both cases we consider three benchmark scenarios, namely δ = 0.01, 0.1, 1 in the first case

12See also [185] for an analogous signature in the context of R-parity violating SUSY.
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Figure 2.1: Green and blue lines are the sensitivity reach of the SHiP and FASER 2 experiments.
For SHiP we show isocontours of Nsignal = 3 and Nsignal = 63.8. For FASER 2 we show isocontours
of Nsignal = 3 and Nsignal = 63.8, see Sec. 2.4 for more details. The orange and magenta shaded
regions are excluded by the CHARM and NuCal experiments. The dashed lines are contours of
constant N2 lifetime or proper decay length. We fix α = π/2.

and mN1 = 0.3, 0.6, 1 GeV in the second case. As explained in Sec. 2.4, the sensitivities of SHiP
and FASER 2 are computed for two numbers of signal events, corresponding to different choices of
the background rate at these experiments. The strategy followed to compute the regions excluded
by CHARM and NuCal is detailed in Sec. 2.3. When the line associated to a specific experiment
is missing in our plots, this means that the corresponding experiment has not enough sensitivity to
probe the parameter space.

As evident in Fig. 2.1, for a mass splitting δ = 0.1, both SHiP and FASER 2 will be able to
extend the current limits from CHARM and NuCal, and probe an uncharted region of the parameter
space. In particular the sensitivity of SHiP reaches N1 masses around the kinematical threshold for
production from the decay of the J/Ψ meson, i.e. mN1

∼ 1.5 GeV. A more modest sensitivity is
obtained for FASER 2. It is worth recalling that despite small values of Λ are formally not excluded
in the EFT of Eq. (2.4), weakly coupled UV completions with Λ ≲ 100 GeV are likely already ruled
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Figure 2.2: Isocontours of Nsignal = 3 for SHiP (green lines) and FASER 2 (blue lines). For SHiP
dotted, dashed, solid, dot-dashed and dotted lines are for Ecut = 0.1, 0.5, 1, 2, 10 GeV respectively
while for FASER 2 dotted, dashed, solid and dot-dashed lines are for Ecut = 10, 50, 100, 200 GeV
respectively. The CHARM and NuCal regions and the gray lines are as in Fig. 2.1. We fix α = π/2.

out from direct searches of additional EW charged states. The constraints from BBN on N2 decays
are of the order τN2

= O(10−2−1) s, see Sec. 2.3.3. Looking at the isocontour of τN2
in Fig. 2.1, one

can notice that these bounds are not overlapping with the sensitivities of SHiP and FASER 2. For
a larger mass splitting, δ = 1, the region probed by SHiP tends to shift to larger values of Λ, while
FASER 2 can not probe this slice of the parameter space. This behaviour can be understood by
recalling that increasing δ tends to reduce the lifetime of N2, see Eq. (2.5). This can be compensated
by increasing Λ at the price, however, of reducing the production rate of N1N2 pairs. The correlation
between δ and Λ can be appreciated in the plots with mN1

fixed. The different experiments that
we have studied are probing proper decay length c τN2 ∼ 10−2 − 103 m.

In the case of a smaller mass splitting, as in the case of δ = 0.01, the threshold on the energy
of the photon plays an important role. Small δ reduces the energy of the photon, see Eq. (2.8).
This implies that at FASER 2 most of the events do not satisfy the cut Ecut > 100 GeV and
therefore no sensitivity is obtained. To highlight the role of the energy threshold, in Fig. 2.2 we
show the isocontours of Nsignal = 3 for different values of Ecut, namely Ecut = 0.1, 0.5, 1, 2, 10 GeV
for SHiP and Ecut = 10, 50, 100, 200 GeV for FASER 2. While for δ = 1 the sensitivities are almost
unchanged, for smaller δ the energy threshold has a significant impact. In particular, for Ecut ∼ 10
GeV and provided that background can be kept negligible, FASER 2 will be able to test up to
Λ ∼ 400 GeV for δ = 0.01, to be compared with a zero sensitivity scenario with Ecut ∼ 100 GeV,
shown in Fig. 2.1.

Finally, before concluding, we shall mention that the RH dipole operator might also be tested
by the currently operating e+e− collider experiment Belle II [186], and by the future neutrino
experiment DUNE [187]. Dedicated analyses are in order to investigate their sensitivities.

Projected sensitivity of other future LHC experiments

In addition to FASER, several other LHC detectors dedicated to search for long-lived particles
have been proposed in recent years: MATHUSLA [188, 189], CODEX-b [133–135], AL3X [190],
MAPP [139, 140], ANUBIS [132] and FACET [136]. These facilities, to be placed around the LHC
IP points, could potentially probe the radiative decay of the RH neutrinos that we are considering.
Concretely, we focus on CODEX-b, ANUBIS, MAPP and FACET, that, in principle, can have the
potential to reconstruct photons (for CODEX-b this assumes an extension of the baseline design,
according to [134])13. For the single photon signature under scrutiny, the background rates at these
experiments have not been computed, and a detailed discussion of their capability to reduce the

13We thank members of the MATHUSLA, ANUBIS, MAPP and FACET collaborations for discussions on this
point.
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Figure 2.3: Sensitivity reach of the experiments ANUBIS, CODEX-b, CHARM and NuCal. Solid,
dashed, dotted and dot-dashed lines correspond to Nsignal = 3, Nsignal = 10, Nsignal = 100 and
Nsignal = 1000. The colored regions and the dashed lines are as in Fig. 2.1. We fix α = π/2.

relevant backgrounds is not currently available in the literature. Given this limited information,
the estimate of their sensitivity reach is quite uncertain. We show the region of the parameter
space where the following numbers of signal events at these experiments are obtained: Nsignal =
3, 10, 100, 1000. These results are intended to give an idea of potential sensitivity reach of these
proposals, if the backgrounds are reduced to the appropriate rates.

For the calculation of the signal rate we follow the same procedure described in Sec. 2.4. The
geometry of the different experiments and the cut on the photon energy Ecut are the same adopted
in [191]. We consider two mechanisms for the production of the RH neutrinos: meson decays, see
Sec. 2.4.2 for details, and Drell-Yan processes. For the latter, we employ MadGraph5 aMCNLO for our
simulations. A couple of comments are in order. As discussed in Sec. 2.3, we should require that
the energy scale of this process is smaller than the cut-off of the EFT. Assuming a weakly coupled
extension of the SM and couplings of O(1), we impose

√
ŝ < Λ, where ŝ is the Mandelstam variable

associated to the process qq̄ → γ/Z → N1N2. In practice, from our MadGraph5 aMCNLO simulations,
we select only the events satisfying this condition. In addition, we impose

√
ŝ > 2 GeV, in order to

work in the regime of perturbative QCD.
The results are shown in Fig. 2.3 for two different slices of the parameter space: fixing the

mass splitting to δ = 0.1 or fixing the mass of the lightest RH neutrino to mN1 = 0.3 GeV. For
some experiments, FACET and ANUBIS, Nsignal > 102 − 103 can be obtained in some parts of the
parameter space, while more modest signal rates are obtained in other cases, as for CODEX-b and
MAPP.
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Experiments POT(1020) ϵeff Cuts References

SHiP 2 ∼ 1 ER ∈ [1, 20] GeV, θR ∈ [10, 20] mrad [141,192]

CHARM II 0.25 ∼ 1 ER ∈ [3, 24] GeV,ERθ
2
R ≤ 3 MeV [193,194]

DUNE (10 yr) 11/yr 0.5 ER ∈ [0.6, 15] GeV,ERθ
2
R ≤ 1 MeV [195,196]

Table 2.1: Summary of the main characteristics of the experiments that we considered. Here ER
and θR are the recoil energy and the recoil angle with respect to the incoming neutrino’s momentum
of the scattered electrons, while ϵeff is the detection efficiency of the signal.

In general, we find that for the forward detector FACET and FASER 2, the production from
meson decays is more relevant than the one from Drell-Yan processes. The opposite situation
happens for the off-axis detectors ANUBIS and CODEX-b. In some cases the sensitivity disappears
at small Λ, see the bottom left panel of Fig. 2.3 or the flattening of the curves in the other panels.
This is due to the requirement

√
ŝ < Λ that we impose in our simulation: for small enough Λ most

of the events in the simulation are rejected.

Electron recoil searches

The dipole operator of Eq. (2.4) induces an inelastic scattering processes between RH neutrinos and
electrons, namely

N2 e
− → N1 e

− (2.17)

and
N1e

− → N2e
− . (2.18)

Note that the latter process is kinematically open only if the center of mass energy is sufficiently
large, given that mN2

≥ mN1
. Such processes can give rise to a signal in experiments sensitive to

e-recoils. We have considered experimental searches at SHiP, CHARM II and DUNE and estimated
present and future constraints. These are fixed-target experiments, whose number of POT, detection
efficiencies and cuts enforced in the analysis are recollected in Tab. 2.1. The expected number of
signal events is the sum of three contributions

Nsig = N12 +N21 +N212, (2.19)

which are

• N12: an N1 particle produced by mesons decays produces an e-recoil signal in the detector
through N1e

− → N2e
− scattering;

• N21: an N2 particle produced by mesons decays produces an e-recoil signal in the detector
through N2e

− → N1e
− scattering;

• N212: an N1 particle produced by N2 decay produces an e-recoil signal in the detector through
N1e

− → N2e
− scattering.

Each term has been evaluated through a Montecarlo simulation of the process. The N1,2 neutrinos
have been assumed to be produced from meson decays, and the fluxes of mesons have been simulated
with PYTHIA 8.3, as explained in the main text. The electron number density of the detectors has
been obtained from the weight and the material of each experimental apparatus.
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We have computed the differential cross section with respect to the recoil energy of the inelastic
scattering processes, assuming initial electrons at rest. Explicitly

dσ

dER
(N2e

− → N1e
−) =

me

2π

(
e2

16π2me PN2Λ

)2

f(m2
e +m2

N2
+ 2meEN2

,−2meER), (2.20)

dσ

dER
(N1e

− → N2e
−) =

me

2π

(
e2

16π2me PN1
Λ

)2

f(m2
e +m2

N1
+ 2meEN1

,−2meER), (2.21)

where PN1,2
are the moduli of the RH neutrino spacial momenta, EN1,2

their energy, the recoil
energy ER is the kinetic energy of the final electron and

f(s, t) =
1

t2
{

4(mN1mN2me)
2 − 2m4

et+ (t2 + 2st)(m2
N1

+m2
N2

+ 2m2
e)

− (t+ 2m2
e)(m

4
N1

+m4
N2

) − 2st(s+ t) − 2mN1
mN2

t(t+ 2m2
e) cos(2α)

} (2.22)

with λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx.
We find the number of recoil events to be negligible for values of Λ above 1 GeV, independently

of the values of mN1 and δ. We then conclude that searches through electron recoils do not impose
relevant constraint on the νSMEFT parameter space. In the limiting case δ = 0, we reproduce
existing results available in the literature, which have focused on the case of elastic scattering
processes [166].

2.5 Summary

In this chapter we have studied the phenomenological consequences of a dipole operator between
RH neutrino fields. This is described by the νSMEFT d = 5 operator N̄2σ

µνN1Bµν and triggers
the decay N2 → N1γ, which is the subject of our study. Motivated by the current experimental
and theoretical interest, we have focused on RH neutrino masses in the GeV range and considered
the regime in which N2 is long-lived, with a proper decay length of O(10−2 − 103 m), while N1 is
considered to be stable on these length scales.

More in details, we have firstly considered the existing bounds on this scenario, arising from
terrestrial experiments like CHARM, NuCal and colliders, as well as constraints from cosmological
considerations, in particular in relation to the Big Bang Nucleosynthesis epoch.

We have subsequently investigated the sensitivity of the future proposed experiments FASER
2 and SHiP. In these facilities the RH neutrinos are produced in N1N2 pairs through the dipole
operator, either via meson decay or via direct production. Then, RH neutrinos give rise to single−γ
events through N2 → N1γ decays, which can be detected by these experiments in a background
controlled environment.

Our main results are summarized in Fig. 2.1 where we show that SHiP will be able to probe
ample regions of the parameter space not yet excluded by current data, testing Wilson coefficients
up to Λ ∼ 105 GeV, while the sensitivity of FASER 2 is more limited. Given the early design
stage at which these experiments are, and the preliminary nature of the background estimates for
the scenario under consideration, we have then studied how different cuts on the photon energy
enforced at the analysis level affect the sensitivity reach. Our results are shown in Fig. 2.2. We
found that relaxing the cut on the photon energy has a limited impact on the sensitivities predicted
for SHiP, while for FASER 2 ampler regions of parameter space can be reached, provided that the
background can be maintained at a negligible level.

To summarize, our work provides a first realistic estimate on the reach of experiments targeting
long-lived particles on the lowest dimensional effective dipole operator that appears in the minimal
see-saw extension of the Standard Model.
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Chapter 3

An updated view on the ATOMKI
nuclear anomalies

3.1 Introduction

The possibility that New Physics will manifest itself in the form of light and weakly coupled new
states is nowadays raising more and more interest. This is mainly due to the null results from the
LHC in searching for signs of TeV scale BSM physics motivated by, e.g., the standard paradigms
of compositeness or supersymmetry. While high−pT searches will continue to investigate these
scenarios and, in the case of no discovery, further constrain them, it is of paramount importance to
exploit any other experiment that can test the validity of the SM and ultimately falsify it. In this
respect low energy and/or high intensity experiments provide an important probe.

Among the various processes that can be investigated, rare nuclear transition can provide a
good handle to observe NP appearing at the MeV scale, since they can significantly be affected
by BSM physics even if this is very weakly coupled. A nuclear transition occurs when an excited
nucleus decays into a lower energy level of the same nucleus. Within the SM only electromagnetic
(EM) interactions can mediated nuclear transition, which can mainly proceed through the following
channels

• γ−emission, where the nucleus decays emitting a real photon,

• Internal Pair Creation (IPC), where the nucleus emits a virtual photon which then decays to
an e+e− pair.

In recent years the ATOMKI collaborations has reported various anomalous measurements in the
IPC decays of excited 8Be [22,197], 4He [23,198] and, more recently, 12C [24] nuclei. These anomalies
appear as bumps for both the invariant mass and the angular opening of the e+e− pairs and have a
high statistical significance, well above 5σ. The ATOMKI collaboration has proposed to interpret
them as due to the on-shell emission of a new boson X from the excited nuclei, subsequently decaying
to an e+e− pair. The best fit mass for the hypothetical new particles is estimated to be ∼ 17 MeV.
Although to this day no independent confirmation of these results has arrived, given the multitude
of processes in which these anomalies have been observed the ATOMKI results have attracted a
considerable attention from the particle physics community. Many theoretical interpretation of
the X boson in terms of a new scalar or vector degree of freedom have been put forward, possibly
unaccounted SM effects have been investigated and experimental searches have been proposed and/or
are taking data with the goal of further investigating this anomaly.
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In view of the latest experimental results recently released by the ATOMKI collaboration, we
critically re-examine the possible theoretical interpretation of the anomaly in terms of a new BSM
state. To this end we employ a multipole expansion method and give an estimate for the range of
values of the nucleon couplings to the new light state in order to match the experimental observations.
We will focus on the 8Be and 4He anomalies and comment on how the measurement of the anomalous
signal in 12C transitions impact our results. Our conclusions identify the axial vector state as the
most promising candidate, while other spin/parity assignments seems disfavored for a combined
explanation. However the axial nuclear matrix element of the 12C transition is currently unknown
and, as we will show, our findings regarding the compatibility of an axial vector candidate with
the 12C anomalous transition are based upon an order of magnitude estimate. Before being able to
draw a definite and solid conclusion, the relevant matrix element must be evaluated. Intriguingly,
an axial vector state can also simultaneously accommodate other experimental anomalies, i.e. the
KTeV anomaly in π0 → e+e− decay while being compatible with the conflicting measurements
of the anomalous magnetic moment of the electron (g − 2)e and other constraints on the electron
couplings of the X boson. The PADME experiment will completely cover the relevant region of the
parameter space, thus allowing for a strong test of the existence of the X particle.

The chapter is structured as the following. In Sec. 3.2 we review the anomalous measurement
of the ATOMKI experiment and the theoretical interpretation proposed so far. In Sec. 3.3 we
describe the multipole expansion formalism and in Sec. 3.4 we apply the multipole formalism to
the electromagnetic case of real γ emission and IPC while in Sec. 3.5 we present the results of the
decay rates of the 8Be, 4He and 12C resonances for the various spin-parity assignment of the X
boson. In Sec. 3.6 we collect the experimental bounds for the spin-1 case relevant for our study.
We present our results in Sec. 3.7 and we then conclude in Sec. 2.5. We also add some appendices
with more technical details. In App. B we derive the effective nuclear couplings from the X boson
couplings to quarks. In App. C we present how our results change by considering also the 8Be(17.64)
excited state. Finally in App. D we report useful formulæ for the cross section of nuclear resonance
production.

3.2 The ATOMKI anomaly

The ATOMKI experiment [199] consists in a proton beam colliding a target nucleus A at rest, with
the aim of producing an excited nucleus N∗ and measure its IPC transition to a ground state N ,
i.e.

p+A→ N∗ → N + e+e− . (3.1)

The list of nuclei used by ATOMKI and their main properties are reported in Tab. 3.2 and Tab. 3.3.
In 2015 the ATOMKI group studied the IPC decay channel from the 8Be(18.15) and 8Be(17.64)
excited energy levels of Beryllium nuclei [22]. To populate the two states, a beam of protons was
prepared in order to collider with target 7Li nuclei at rest. By varying the energy of the incident
proton beam, the collaboration was able to scan across the 8Be resonances. As a results they
observed an anomalous peak corresponding to an opening angle for the e+e− pairs of ∼ 140◦ for the
IPC correlation distribution, in striking contrast with the QED prediction of a rapidly falling one.
This has been interpreted as due to the decay of a short-lived neutral particles decaying into an
e+e− pair, which would produce the observed peak at large angles. The observed deviation had a
significance of 6.8σ. In order to confirm the anomalous origin of the signal, the collaboration repeated
the measurement varying the energy of the incident proton beam. They found that the anomaly
disappeared off the resonance peak, leading to the conclusion that it was probably originated by
the decay of the 8Be excited energy level. The best fit mass for the hypothetical X neutral boson
has been estimated to be mX = 16.70 ± 0.35 ± 0.5 MeV, where the former uncertainty corresponds
to the statistical error, while the latter to the systematic one. In 2018 the ATOMKI collaboration
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N N∗ Sπ I Γ(keV) Γγ(eV)

8Be 0+ 0 5.57 ± 0.25

8Be(18.15) 1+ 0∗ 138 ± 6 1.9 ± 0.4

8Be(17.64) 1+ 1∗ 10.7 ± 0.5 15.0 ± 1.8

4He 0+ 0 Stable

4He(21.01) 0− 0 0.84 0

4He(20.21) 0+ 0 0.50 0

12C 0+ 0 Stable

12C(17.23) 1− 1 1150 44

Table 3.1: Spin-parity Jπ and isospin I quantum numbers, total decay widths Γ and γ-decay widths
Γγ = Γ(N∗ → N γ) for the nuclei used in the ATOMKI experiment: 8Be [200], 4He [201, 202] and
12C [203,204] nuclei. Asterisks on isospin assignments indicate states with significant isospin mixing.

repeated the experiment with an improved setup [197], which confirmed both the presence of the
anomaly and the compatibility with the previous measurement.

Later in 2019 the ATOMKI group replicated the experiment using 4He nuclei [23], with the aim
of searching for the anomalous signal in a difference source. The excitation energy was chosen to
lie between two different resonances: the 4He(20.21) state, with Jπ = 0+, and the 4He(21.01) state,
with Jπ = 0−. In this case the decay widths of the two excited states are large enough so that they
can substantially overlap, so in the experiment both the excited states were populated, although off
the resonance peak. In this case the IPC process was only possible for the 4He(20.21) states, while
it’s forbidden for the 4He(21.01), because of parity conservation in electromagnetic interactions.
The group again found a rather sharp bump in the e+e− angular opening analogously to what has
been observed in the 8Be case, with a significance equal to 7.2σ. Interestingly, the peak was found
to be located at an angle of ∼ 115◦ which is compatible with the kinematics arising from the decay
of the hypothetical X boson with a best fit mass of mX = 16.98±0.16±0.2 MeV. Also the anomaly
in the 4He channel was later confirmed by a second measurement, at different energies of the proton
beam [198]. More recently, the group has released a new analysis, where the experiment has been
replicated using now 12C nuclei [24]. Also in this case an anomalous signal has been observed,
with a peak at a larger value of the e+e− opening angle ∼ 150◦ − 160◦, again compatible with the
kinematic of the X particle, with a best fit mass of mX = 17.03 ± 0.11 ± 0.20 MeV. In Tab. 3.1 we
list all the ground and excited states considered in the ATOMKI analyses, together with their main
properties: spin-parity assignment Sπ, isospin I, total decay width Γ and γ-decay transition width
Γγ .

Clearly, new and independent measurements are needed in order to confirm, or disproof, the re-
sults of the ATOMKI collaboration and test the consistency of the X particle hypothesis. The MEG
II experiment [205] at PSI has the possibility to repeat the ATOMKI measurement on 8Be nucleus.
At present time, the first dedicated data taking has recently been completed and data analysis is
ongoing [206]. A similar experiment is also being set up at the Montreal Tandem accelerator [207]
with data taking that should take place in early 2023, and at the Van-de-Graaff laboratory [208].
Finally, also the PADME experiment [209, 210] in Frascati is in its data taking phase, and dedi-
cated analyses will completely test the available parameter space for the coupling of the X boson
to electrons relevant for the explanation of the ATOMKI anomalies [211,212].
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These results and the interpretation given by the ATOMKI collaboration in terms of a new BSM
particle comprehensibly attracted the attention of the theory community. However there also exist
the possibility that the anomalous signal is due to unknown and/or underestimated SM effects. In
this respect, after the publication of the 8Be measurements, an attempt has been made in order to
explain the anomaly with effects arising from known nuclear physics. In [213] it has been proposed
an improved nuclear physics model of the experiment, inspired by the so-called Halo Effective Field
Theory (EFT) framework [214], showing that the nuclear form factor needed to explain the anomaly
suggests an unrealistic large length scale on the order of 10 fm for the 8Be nucleus. Other Authors
investigated the possibility of new exotic bound states [215–217] as possible SM explanation of the
ATOMKI anomaly while, on less exotic lines, it has been claimed in [218] that the experimental
results can be reproduced within the SM by carefully considering the full set of next-to-leading-
order corrections and the interference terms to the Born-level decay amplitudes, also proposing
experimental improvements in order to test this hypothesis. All together it is fair to say that no
firm explanation of the ATOMKI measurements in terms of SM effects has been established.

As regarding possible BSM interpretation, the observation of the 8Be and 4He transitions restrict
the X boson to be either a vector, an axial vector or a pseudoscalar state, under the assumption
of definite parity. These options have been all investigated in recent literature both from a model
independent and/or effective parametrization and from a more ultraviolet (UV) completed perspec-
tive. Among all the possibilities the one of a spin-1 boson stands out as an appealing one, since it
could be related to a new symmetry of Nature. This scenario has been deeply analyzed in [219–221],
where, by working within an EFT framework, it has been found that a combined explanation of
the 8Be and 4He anomalies in terms of a new vector states is possible, with the main constraint on
this explanation coming from the search for a dark photon γD in π0 → γ γD decay by the NA48/2
collaboration [222], whose non observation requires the X boson to be protophobic. Subsequently
in [223] it has been pointed out that the contribution from a protophobic vector boson with mass
around 17 MeV to direct proton capture processes, i.e. to processes which do not proceed through
an intermediate resonance, would be dominant with respect to the contribution from the resonant
8Be(18.15) state, in sharp contradiction with the experimental observation that the anomaly disap-
pears off the nuclear resonance [22]. However a new experimental result from ATOMKI [224] claims
to have observed the anomaly at different energies of the proton beams, opposite to their previous
results. The group explains that this difference is due to a wrong estimate of the background in the
previous analyses and then reopens the window for a protophobic vector scenario. The case of a pure
axial vector has been investigated in [225] where the authors applied a multipole expansion method
to the anomalous nuclear decay rates and evaluated the related nuclear matrix elements by ab-initio
calculation using realistic nuclear forces. Their estimation concludes that the X axial coupling to
quark should be order O(10−4−10−5) to explain the anomalous signal in the 8Be transition. Vector
with mixed parity have also attracted attention, especially in the case of more specific BSM UV
construction, see e.g. [226–228]. Lastly, the possibility of a light pseudoscalar has been considered
in [229], where the authors made a rough estimation of the range of the values of the Yukawa cou-
plings, assuming a nuclear shell model for the 8Be nucleus. The strongest constraints they reported
come from flavor changing neutral current interactions as K → πX, which however can be satisfied
simultaneously explaining the ATOMKI 8Be results. The interesting possibility of the QCD ax-
ion being responsible for the ATOMKI anomalies has been entertained in [230, 231], see also [232].
Here the Authors focus on a axion candidate with dominant coupling to the first generation of SM
fermions and piophobic, e.g. with suppressed isovector coupling. It has subsequently however been
pointed out in [233] that for such a scenario a large pion decay rate for π → 3X → 3e+3e− of
O(10−3) is expected, exceeding the SM double-Dalitz decay by a factor of thirty. There has been
no direct measurement of this process so far, although it is reasonable to assume that such a large
decay rate would have been noticed.
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3.2.1 Process kinematics

The ATOMKI anomalies show simple but well defined features, which are:

• the excesses are resonant bumps located at the same e+e− invariant mass for all the 8Be and
4He transitions,

• the e+e− opening angles of the anomalous peaks are around 140◦, 115◦ and 155◦ − 160◦,
respectively, for the 8Be, 4He and 12C,

• the anomalous signal in the 8Be transition have been observed only inside the kinematic region
given by |y| < 0.5, where y is the energy asymmetry of the lepton pair, i.e. the ratio between
the difference and the sum of their energies.

As we review below, closely following earlier results appeared in [220,221], these features are natu-
rally explained by the hypothesis of resonant production of a new particle.

In the experimental setup the target nucleus A is at rest in the laboratory frame, while the proton
beam energy Eb is of the order of MeV, so that the colliding protons are mostly non relativistic.
The Center of Mass (CM) energy ECM is then given by

ECM =
√

(mp +mA)2 + 2mAEb ≃ mp +mA +
mpA

mp
Eb , (3.2)

where mpA = (m−1
A + m−1

p )−1 is the reduce mass of the proton-target system. The experiment
calibrates the beam energy in order to populate the N∗ state, which is produced almost at rest in
the CM frame, and then measure its IPC transition to the ground state N . We show in Table 3.2
the numerical values of the proton kinetic energy Eb, mass of the target and of the excited nucleus,
reduced proton-target mass and velocity of the excited nucleus produced by the collision in the lab
frame at the resonance peak (ECM = mN∗) for all the measured N∗ states.

Eb [MeV] A mA [MeV] mpA/mp N∗ mN∗ [MeV] vN∗ / c

1.03 7Li 6533.83 0.87 8Be(18.15) 7473.01 0.0059

0.45 7Li 6533.83 0.87 8Be(17.64) 7472.50 0.0039

1.59 3H 2808.92 0.75 4He(21.01) 3748.39 0.0146

0.52 3H 2808.92 0.75 4He(20.21) 3747.59 0.0084

1.40 11B 10252.54 0.92 12C(17.23) 11192.09 0.0046

Table 3.2: Proton kinetic energy Eb, mass of the target and of the excited nucleus, reduced proton-
target mass and velocity of the excited nucleus produced by the collision in the lab frame at the
resonance peak (ECM = mN∗) for all the measured N∗ states.

Regardless on whether the resonance is (fully) populated, the collision between the proton and
the target leads to the production of the N nucleus via the emission of a boson of mass m, which
could be a real or virtual photon or an hypothetical BSM particle. In the CM frame the boson
energy ω is given by

ω =
E2

CM +m2 −m2
N

2ECM
≃ Eth +

mpA

mp
Eb , (3.3)

where the threshold energy Eth = mp + mA −mN is the energy gap between the N nucleus and
the proton-target system. Note that the boson energy roughly only depends on the beam energy.
Once produced the (real or virtual) boson decays into an e+e− pair, whose angular correlation is
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the main observable measured by the ATOMKI experiment. In the CM frame the total energy of
the leptons is given by ω = E+ + E−, where E+(E−) is the positron (electron) energy, while we
label the opening angle between the leptons with θ±. The decay of the boson into the e+e− pair is
controlled by the energy asymmetry

y =
E+ − E−

E+ + E−
, (3.4)

while the opening angle is given by

θ± = cos−1

(
−1 − y2 + δ2 + 2v2√
(1 − δ2 + y2)2 − 4y2

)
, (3.5)

where δ = 2me/ω (0 < δ < 1) and

v =

√
1 −

(m
ω

)2
(3.6)

is the boson velocity. We show in Table 3.3 the numerical values of the threshold energy Eth, boson
energy ω in the CM frame the velocity vX of an hypothetical boson of mass mX ≃ 17 MeV emitted
in the CM frame at the resonance peak (ECM = mN∗) for all the measured N∗ states.

N∗ mN [MeV] Eth [MeV] ω [MeV] vX
8Be(18.15) 7454.86 17.24 18.15 0.350

8Be(17.64) 7454.86 17.24 17.64 0.267

4He(21.01) 3727.38 19.81 21.01 0.588

4He(20.21) 3727.38 19.81 20.21 0.541

12C(17.23) 11174.86 15.95 17.23 0.163

Table 3.3: N mass, threshold energy Eth, boson energy ω in the CM frame the velocity vX of
an hypothetical boson of mass mX ≃ 17 MeV emitted in the CM frame at the resonance peak
(ECM = mN∗) for all the measured N∗ states.

For an hypothetical X boson with mass mX = 17 MeV, the maximum value of the energy
asymmetry and the minimal value of the opening angle are respectively

ymax ≃ vX and θmin
± ≃ cos−1(2v2X − 1) . (3.7)

In Fig. 3.1 we plot the opening angle as a function of the energy asymmetry for different values of
the X boson mass around 17 MeV for all the transitions studied by ATOMKI. Note that the signal
region for the 8Be case is all contained in |y| ≤ 0.5 in agreement with the ATOMKI experiment.
We then show in Fig. 3.2 the normalized distribution of θ±, integrated over the asymmetry y, for
the three nuclei considered by ATOMKI in the spin-0 boson hypotheses case, where the distribution
only depends on phase space quantities. In the spin-1 case there is a dynamical dependence due to
the polarization state of the X boson which can modify this distribution, which is however expected
to be qualitatively similar to the spin-0 case. As we see the opening angle distributions peak at the
lowest end with peak values compatible with the ones reported by the experiments. We show in
Table ?? the numerical values of the maximum energy asymmetry ymax and minimal opening angle
θmin± for an hypothetical boson of mass mX = 17 MeV emitted in the CM frame.

Lastly, from Eq. (3.5) the invariant mass of the lepton pair reads

m2
ee =

ω2

2

[
1 − y2 + δ2 − cos θ±

√
(1 − δ2 + y2)2 − 4y2

]
, (3.8)

where here cos θ± is now a free parameter independent on the energy asymmetry.
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Figure 3.1: Values of the e+e− opening angle θ± as a function of the energy asymmetry y for
three values of the boson mass: mX = 16.8 MeV (dot-dashed line), mX = 17 MeV (solid line) and
mX = 17.2 MeV (dotted line) for the cases of the 8Be, 4He and 12C transitions.

N∗ δ ymax θmin
± [◦]

8Be(18.15) 0.056 0.351 139.0

8Be(17.64) 0.058 0.267 149.0

4He(21.01) 0.049 0.589 107.9

4He(20.49) 0.050 0.559 112.1

4He(20.21) 0.051 0.542 114.4

12C(17.23) 0.059 0.163 161.2

Table 3.4: δ parameter, maximum energy asymmetry ymax and minimal opening angle θmin± for an
hypothetical boson of mass mX = 17 MeV emitted in the CM frame.

3.3 Signal computation: overview

In this section we describe the multipole expansion formalism used in order to estimate the anoma-
lous nuclear decay rates relevant for the ATOMKI experiment, see also [225].

3.3.1 Nuclear states and processes

We describe the interaction of a spin s X boson to nuclear matter through the Hamiltonian

Hs
int =

{∫
d3r⃗ S(r⃗)X(r⃗) if s = 0 ,∫
d3r⃗Jµ(r⃗)Xµ(r⃗) if s = 1 ,

(3.9)

where the nuclear scalar density S and the nuclear current J µ = (J 0, J⃗ ) are quantum operators
containing all the information of the matter fields. In the case of electromagnetic interaction the
nuclear current Jµ is replaced by the electromagnetic current J γ

µ , which allows for γ−emission and
IPC processes. At the lowest order in the interaction picture, the nuclear matrix element for the X
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Figure 3.2: Normalized distributions of the e+e− opening angles from the 8Be (blue), 4He (orange)
and 12C (purple) nuclear transitions.

Figure 3.3: Real γ-emission (left), IPC (center) and real X-emission (right) processes for the excited
N∗ decay.

emission is given by

T s
fi = ⟨f,X|Hs

int |i⟩ =

{
⟨f |
∫
d3r⃗ S(r⃗)e−ik⃗·r⃗ |i⟩ if s = 0 ,

⟨f |
∫
d3r⃗ [ϵµa(k⃗)]∗Jµ(r⃗)e−ik⃗·r⃗ |i⟩ if s = 1 ,

(3.10)

where k⃗ is the boson momentum, the index a = 0,±1 labels the polarization of the vector boson
and |i⟩ and |f⟩ indicate the nuclear matter initial and final states which are |f⟩ = |N ; JfMf ⟩
and |i⟩ = |p+A; JpMp; JAMA; p⃗CM⟩, where p⃗CM is the proton momentum in the CM frame. We
employ the narrow width approximation and factorize the excited resonance production from its
decay, thereby assuming that the initial state is described by |i∗⟩ = |N∗; J∗M∗⟩. In the following
we want to compute the decay widths of the excited N∗ states for real X emission in order to
compare to the experimental results on this quantity reported by the ATOMKI collaboration. To
make the calculation, it will turn out to be useful to expand the nuclear matrix elements in terms
of spherical tensor operators, which will allow to also compute the electromagnetic real γ-emission
and IPC processes, which we report in App. 3.4. The diagrams for these three processes are shown
in Fig. 3.3. To perform the calculation we will expand the nuclear matrix elements in terms of
spherical tensor operators through a multipole expansion.
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3.3.2 Multipole expansion

Spherical operators OJM are irreducible tensor operators which satisfy the Wigner-Eckart theorem
[234]

⟨JfMf |OJ,−M |JiMi⟩ =
(−1)Ji−Mi

√
2J + 1

⟨JfMf ; Ji,−Mi|JfJi; J,−M⟩ ⟨Jf ||OJ ||Ji⟩ . (3.11)

The reduced matrix element ⟨Jf ||OJ ||Ji⟩ contains all the physical information of the operator while
its behavior under rotation is completely set by the Clebsh-Gordan coefficient CJ−MJfMfJi−Mi

. We

define the spherical operators1

GJM =

∫
d3r⃗ jJ(kr)YJM (r̂)S(r⃗) , (3.12)

MJM =

∫
d3r⃗ jJ(kr)YJM (r̂)J 0(r⃗) , (3.13)

LJM =
i

k

∫
d3r⃗ ∇⃗[jJ(kr)YJM (r̂)] · J⃗ (r⃗) , (3.14)

T el
JM =

1

k

∫
d3r⃗ ∇⃗ × [jJ(kr)YJJM (r̂)] · J⃗ (r⃗) , (3.15)

T mag
JM =

∫
d3r⃗ [jJ(kr)YJJM (r̂)] · J⃗ (r⃗) , (3.16)

where r = |r⃗| and expand the nuclear matrix elements as a sum of reduced matrix elements of
spherical operators. In the case of interest of the emission of the X boson in the process N∗ → N+X
one finds

T s=0
fi∗ =

∑
J≥0,
|M |≤J

(−i)J
√

4πCJ−MJfMfJ∗−M∗
⟨f ||GJ ||i∗⟩D(J)

−M,0(ϕ, θ, β) , (3.17)

T s=1
fi∗ =

∑
J≥0,
|M |≤J

(−i)J
√

4πδa0C
J−M
JfMfJ∗−M∗

⟨f ||
[
k

m
MJ − ω

m
LJ
]
||i∗⟩D(J)

−M,−a(ϕ, θ, β)+

−
∑
J≥1,

|M |≤J,
λ=±1

(−i)J
√

2πδaλC
J−M
JfMfJ∗−M∗

⟨f ||
[
T el
J + λT mag

J

]
||i∗⟩D(J)

−M,−a(ϕ, θ, β) , (3.18)

where here the indices J and M denote the total angular momentum of the emitted boson (sum
of its spin and relative angular momentum with the N nucleus) and its projection. The rotation
D matrices play the role of the wave function2, whose moduli squared give the probability for the
X boson to be emitted in the (ϕ, θ) direction with β defining a rotation along this direction3. An

1YJM , jJ (x) and YJℓM (r̂) are respectively the spherical harmonics, the vector Bessel functions and the vector
spherical harmonics, see [234].

2See [234] for the definition of the the D functions.
3For the emission of a real boson, the angle β is unphysical since it vanishes once the amplitudes are squared. It

become physical in the IPC process.
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explicit calculation for the unpolarized decays gives

Γs=0
X =

2k

2J∗ + 1

{∑
J≥0

|⟨f ||GJ ||i∗⟩|2
}
, (3.19)

Γs=1
X =

2k

2J∗ + 1

{∑
J≥0

∣∣∣∣⟨f || [ kmMJ − ω

m
LJ
]
||i∗⟩

∣∣∣∣2 +
∑
J≥1

[∣∣⟨f ||T el
J ||i∗⟩

∣∣2 + |⟨f ||T mag
J ||i∗⟩|

2
]}

.

(3.20)

In the case where the vector boson is coupled to a conserved current, i.e. ∂µJµ = 0, a simplification
occurs. By assuming the nuclear initial and final state to be eigenstates of the nuclear Hamiltonian

the continuity equation ∇⃗ · J⃗ = −∂J 0

∂t yields

ω ⟨f ||MJ ||i∗⟩ = k ⟨f ||LJ ||i∗⟩ , (3.21)

and the partial width for the emission of a vector X boson then reduces to

Γs=1
X =

2k

2J∗ + 1

{(m
k

)2∑
J≥0

|⟨f ||MJ ||i∗⟩|2 +
∑
J≥1

[∣∣⟨f ||T el
J ||i∗⟩

∣∣2 + |⟨f ||T mag
J ||i∗⟩|

2
]}

. (3.22)

The above results are equally useful for the electromagnetic processes once we substitute the elec-
tromagnetic current in the spherical operators and put mγ = 0, i.e. k = ω.

Selection rules

The angular momentum conservation law, encoded in the Clebsh-Gordan coefficient of Eq. (3.11),
states that the matrix element of the spherical operators vanishes unless the following conditions
are satisfied

|Jf − J∗| ≤ J ≤ Jf + J∗ ,

M = M∗ −Mf . (3.23)

Moreover, if the X boson has a definite parity πX , additional constraints on the matrix elements
come from the requirement of parity conservation. By denoting the relative angular momentum
between the boson and N as L, one has

π∗ = πfπX(−1)L . (3.24)

We report in Tab. 3.5 the relative angular momentum between the X boson and N in the various
decay processes, based on the Sπ spin-parity assignments. One sees that a pure scalar solution to
the 8Be anomaly is excluded, while a pseudoscalar state can explain only the 8Be and 4He anomaly,
if the latter is dominated by the 4He(21.01) excited state transition, but not the 12C one. On the
other side a vector or axial-vector candidate can simultaneously explain all the three anomalies, but
again only one of the two 4He resonant states can contribute to the signal process.

3.3.3 Long wavelength approximation

The nuclear radius is approximately given by R ≃ R0A
1
3 ≃ 6.1×10−3A

1
3 MeV−1 [235], which implies

that in all the cases of interest the nucleus size is significantly smaller than the boson wavelength
k−1 ∼ (10 MeV)−1. We can thus expand the spherical Bessel function for small kr as

jJ(kr) ≃ (kr)J

(2J + 1)!!
, (3.25)
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Process X boson spin parity
N∗ → N Sπ = 1− Sπ = 1+ Sπ = 0− Sπ = 0+

8Be(18.15) → 8Be 1 0, 2 1 /

8Be(17.64) → 8Be 1 0, 2 1 /

4He(21.01) → 4He / 1 0 /

4He(20.21) → 4He 1 / / 0

12C(17.23) → 12C 0, 2 1 / 1

Table 3.5: Relative angular momentum between the X boson and N in the various decays, based on
its possible parity-spin assignments. Note that parity conservation prohibits a pure scalar solution
to the Beryllium anomaly.

with higher order corrections giving a contribution of order (kr)2 ≃ 1% with respect to the leading
one for the cases of interest, which can therefore be neglected. For the spherical operators MJM ,
LJM and GJM the expressions of Eq. (3.12), Eq. (3.13) and Eq. (3.14) then read

GJM ≃ kJ

(2J + 1)!!

∫
d3r⃗ rJYJMS(r⃗) , (3.26)

MJM ≃ kJ

(2J + 1)!!

∫
d3r⃗ rJYJMJ 0(r⃗), (3.27)

LJM ≃ 1

i

kJ−1

(2J + 1)!!

∫
d3r⃗ rJYJM ∇⃗ · J⃗ (r⃗) . (3.28)

An exception occurs for the monopole case L00, since it identically vanish at this order. The first
contribution thus arises at the next order in the kr expansion and is given by

L00 ≃ ik

6

∫
d3r⃗ r2Y00∇⃗ · J⃗ (r⃗) . (3.29)

The second order expansion is also needed for the M00 monopole expression in the case of a conserved
current. This is due to the fact that in this case the integral over space of J 0(r⃗) defines the
generator Q of the symmetry associated with it. Then, with |i⟩ and |f⟩ orthogonal eigenstates of
the Hamiltonian, one as ⟨f |Q|i⟩ ∝ ⟨f |i⟩ = 0. It follows that the first contribution to the operator
M00 is given by

M00 ≃ −k
2

6

∫
d3r⃗ r2Y00J 0(r⃗) . (3.30)

Let’s now consider the operators T el
JM and T mag

JM of Eq. (3.15) and Eq. (3.16). By using the identity

LYJM = −i(r⃗ × ∇⃗)YJM =
√
J(J + 1)YJJM , (3.31)

they can be rewritten at the first order in the kr expansion as [235]

T mag
JM ≃ ikJ

(2J + 1)!!

√
J + 1

J

∫
d3r⃗

{
µ⃗(r⃗) +

1

J + 1
r⃗ × J⃗irr(r⃗)

}
· ∇⃗(rJYJM ), (3.32)

T el
JM ≃ 1

i

kJ−1

(2J + 1)!!

√
J + 1

J

∫
d3r⃗

{
∇⃗ · J⃗irr(r⃗) +

k2

J + 1
∇⃗ · [r⃗ × µ⃗(r⃗)]

}
rJYJM , (3.33)
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Spin-1 case

J 0(r⃗) J⃗irr(r⃗) µ⃗(r⃗)

Cpp̄γ
µp+ Cnn̄γ

µn
∑A
j=1 Cjδr⃗,r⃗j

∑A
j=1

Cj

2mj
{p⃗j , δr⃗,r⃗j}

∑A
j=1

Cj

2mj
σ⃗jδr⃗,r⃗j

app̄γ
µγ5p+ ann̄γ

µγ5n
∑A
j=1

aj
2mj

{σ⃗j · p⃗j , δr⃗,r⃗j}
∑A
j=1 aj σ⃗jδr⃗,r⃗j /

κp

2mp
∂ν(p̄σµνp) + κn

2mn
∂ν(n̄σµνn) / /

∑A
j=1

κj

2mj
σ⃗jδr⃗,r⃗j

Spin-0 case

S(r⃗)

zpp̄p+ znn̄n
∑A
j=1 zjδr⃗,r⃗j

hpip̄γ
5p+ hnin̄γ

5n
∑A
j=1

hj

2mj
σ⃗j · ∇⃗[δr⃗,r⃗j ]

Table 3.6: Leading term of the non relativistic expansion for the relativistic vector current, the
relativistic axial current and the anomalous magnetic moment terms (upper table) and for the
scalar and pseudoscalar density (lower table). δr⃗,r⃗j = δ(r⃗ − r⃗j).

where the vector current has been split into an irrotational field J⃗irr and a solenoidal field ∇⃗ × µ⃗ as
J⃗ = J⃗irr + ∇⃗× µ⃗ in virtue of the Helmholtz’s theorem. For a conserved current, the matrix element
expression of T el

J can be simplified to

⟨f |T el
JM |i∗⟩ ≃ ⟨f | kJ

(2J + 1)!!

√
J + 1

J

∫
d3r⃗

{
ω

k
rJYJMJ 0(r⃗) − ik

J + 1
µ⃗(r⃗) · [r⃗ × ∇⃗(rJYJM )]

}
|i∗⟩ ,

(3.34)
by again using the continuity equation.

3.3.4 Non relativistic expansion for nuclear operators

Through statistical considerations [236], the maximal kinetic energy Ec per nucleon in the nucleus
is estimated to be around 30 MeV, implying that a nucleus can be then modeled as a quantum
mechanical system of non relativistic point-like nucleons [235]. One can then take the non relativistic
limit of the nuclear operator and write it in first quantization formalism. The nuclear operator is
given by

O(r⃗) =

A∑
i=1

Ô(1)
i (r⃗ − r⃗i) , (3.35)

with the single particle operator Ô(1)
i (r⃗ − r⃗i) ∝ δ(r⃗ − r⃗i) in the nucleon point-like approximation.

We want to match the expression of Eq. (3.35) with its relativistic counterpart, where the nucleons
are described in terms of quantum fields p(x) and n(x) and the nucleon operators are bilinears
in p(x) and n(x). We report in Tab. 3.6 the leading terms of the non relativistic expansion for
the vector current, axial current, anomalous magnetic moment, scalar and pseudoscalar densities.
For operators which are even or odd under parity, as it is in our case, higher order terms in the

expansions are of order of
p2N
m2

N
∼ 6 × 10−2 with respect to the leading one, and can then be safely

neglected. For the specific case of the pseudoscalar density one also has that

lim
p′→p

ū(p′)γ5u(p) = 0 , (3.36)
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where u are the spinors which enter the quantum field expression. Hence the non relativistic ex-
pansion of the pseudoscalar current only contains terms proportional to k⃗ = p⃗ − p⃗′. Since for the
effective non relativistic operator it holds the substitution [235]

i∇⃗ → k⃗ (3.37)

the non relativistic expansion of the pseudoscalar density only contains operators given by a total
divergence, meaning that the pseudoscalar density is a derivative coupling. The monopole operator
G00 then vanishes at first order in the long-wavelength expansion and the leading contribution is
then given by

G00 ≃ −k
2

6

∫
d3r⃗ r2Y00S(r⃗) . (3.38)

The techniques introduced in this section will be implemented in the next to derive the theoretical
decay rates of the nuclear transitions.

3.4 Electromagnetic dynamics

With the formalism described in Sec. 3.3 we can describe the dynamics for the SM processes pictured
in Fig. 3.3 of real γ emission and IPC. The nuclear electromagnetic current, including the anomalous
magnetic moments, is given by

J (γ)
µ = eQpp̄γµp+ eQnn̄γµn+

eκγp
2mp

∂ν(p̄σµνp) +
eκγn
2mn

∂ν(n̄σµνn), (3.39)

where κp = +1.792847351(28), κn = −1.9130427(5) [235] and Qp,n indicates the electric charge of
the nucleon in units of the absolute electron charge. The magnetic momenta of the nucleons are

µp,n = (Qp,n + κγp,n)µN , (3.40)

where µN = e/2mN is the nuclear magneton. The conservation of the electromagnetic current
implies that only three independent spherical operators have to be considered, c.f.r. Eq. (3.21). In
the non relativistic and long wavelength approximation the spherical operators with J = 0, 1 are
given by

M(γ)
00 ≃ −ek

2

6
ρ(γ) , (3.41)

M(γ)
1M ≃ ek

3
d
(γ)
M , (3.42)

T el(γ)
1M ≃

√
2eω

3
d
(γ)
M , (3.43)

T mag(γ)
1M ≃ i

√
2kµN

3
µ
(γ)
M , (3.44)
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where we have defined the electromagnetic monopole ρ(γ), the electric dipole d
(γ)
M and the magnetic

moment µ
(γ)
M operators as

ρ(γ) =
1√
4π

A∑
s=1

Qsr
2
s , (3.45)

d
(γ)
M =

√
3

4π

A∑
s=1

Qsr⃗s · êM , (3.46)

µ
(γ)
M =

√
3

4π

A∑
s=1

[Qs(r⃗s × p⃗s) + (Qs + κγs )σ⃗s] · êM . (3.47)

3.4.1 Real γ emission

The rate for the process with a real γ emission can be readily computed from Eq. (3.22) by fixing
mγ = 0. In this case, due to the transversality of the photon, only processes with J = 0 are allowed
which are

• electric type transitions EJ from the contribution of T el
J with parity π(EJ) = (−1)J ,

• magnetic type transitions MJ from the contribution of T mag
J with parity π(MJ) = (−1)J+1 .

The E1 and M1 decay rates are equal to

ΓE1
γ =

16παω3

9(2J∗ + 1)
| ⟨f ||d(γ)||i∗⟩ |2, (3.48)

ΓM1
γ =

4µ2
Nω

3

9(2J∗ + 1)
| ⟨f ||µ(γ)||i∗⟩ |2. (3.49)

3.4.2 Internal pair creation

At lowest order the IPC process involves the emission of a virtual photon decaying into an e+e−

pair. The differential decay rate with respect to the energy asymmetry y and the opening angle θ±
is given by

d2Γ±

dy d cos θ±
=

2ω

2J∗ + 1

α

4π

{
fM(y, cos θ±, δ)

∑
J≥0

|⟨f ||MJ ||i∗⟩|2

+ fT (y, cos θ±, δ)
∑
J≥1

[∣∣⟨f ||T el
J ||i∗⟩

∣∣2 + |⟨f ||T mag
J ||i∗⟩|

2
]}

,

(3.50)
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where the fM,T (y, cos θ±, δ) functions are

fM(y, c, δ) =

√
(1 − δ2 + y2)2 − 4y2

[
1 − y2 − δ2 + c

√
(1 − δ2 + y2)2 − 4y2

]
[
1 + y2 − δ2 + c

√
(1 − δ2 + y2)2 − 4y2

]2 , (3.51)

fT (y, c, δ) =
1

2

√
(1 − δ2 + y2)2 − 4y2[

1 + y2 − δ2 + c
√

(1 − δ2 + y2)2 − 4y2
]×

×

[(
1 − 3y2 + 3δ2 − c

√
(1 − δ2 + y2)2 − 4y2

)(
1 + y2 − δ2 + c

√
(1 − δ2 + y2)2 − 4y2

)
+ 4y2

]
[
1 − y2 + δ2 − c

√
(1 − δ2 + y2)2 − 4y2

]2 .

(3.52)

Note that IPC processes acquire a contribution also from the longitudinal modes, absent in the real
γ emission case. Hence, processes of pair production are of three types:

• longitudinal type transition LJ from the contribution of MJ with parity π(LJ) = (−1)J ,

• electric transition EJ from the contribution of T el
J with parity π(EJ) = (−1)J ,

• magnetic transition MJ from the contribution of T mag
J with parity π(MJ) = (−1)J+1 ,

with differential decay rates4

d2ΓL0±
dy d cos θ±

=
α2ω5

72(2J∗ + 1)
ζ2(y, δ, cos θ±)fM(y, cos θ±, δ)| ⟨f ||ρ(γ)||i∗⟩ |2 , (3.53)

d2ΓL1±
dy d cos θ±

=
α

16π
ζ(y, δ, cos θ±)fM(y, cos θ±, δ)Γ

E1
γ , (3.54)

d2ΓE1
±

dy d cos θ±
=

α

4π
fT (y, cos θ±, δ)Γ

E1
γ , (3.55)

d2ΓM1
±

dy d cos θ±
=

α

8π
ζ(y, δ, cos θ±)fT (y, cos θ±, δ)Γ

M1
γ . (3.56)

We show in Fig. 3.4 the theoretical distributions of the angular correlation, obtained after integrating
the above expressions over the asymmetry y.

The reduced invariant mass of the lepton pair is a function of the energy asymmetry and opening
angle. Given the (normalized) distribution function f(y, cos θ±, δ) of the pairs over the plane defined
by y and cos θ±, the (normalized) distribution function g(s, δ) of the reduced invariant mass is given
by

g(s, δ) =

∫ 1−δ

−1+δ

dy

∫ 1

−1

d cos θ± δ
(
s− 1 + y2 − δ2 + cos θ±

√
(1 − δ2 + y2)2 − 4y2

)
f(y, cos θ±, δ)

=

∫ √
(2−s)(s−2δ2)/2s

−
√

(2−s)(s−2δ2)/2s

dy
1√

(1 − δ2 + y2)2 − 4y2
f

(
y,

1 − y2 + δ2 − s√
(1 − δ2 + y2)2 − 4y2

, δ

)
,

(3.57)

where s =
2m2

ee

ω2 (2δ2 ≤ s ≤ 2) is the reduced invariant mass. For the J = 0, 1 multipoles we
calculated, the integration over the energy asymmetry is easily performed since the integrand turns

4ζ(y, δ, cos θ±) = 1 + y2 − δ2 + cos θ±
√

(1− δ2 + y2)2 − 4y2
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Figure 3.4: Normalized angular correlation distributions of the e+e− pair from the various multipole
contribution to the IPC process: L0 (blue), L1 (orange), E1 (green), E1 + L1 (red), M1 (purple).

out to be polynomial in y. Hence, one finds

gL0(s, δ) = NL0(δ) (2 − s)3/2s−3/2(s− 2δ2)1/2(s+ δ2)

with N−1
L0 (δ) =

∫ 2

2δ2
dx (2 − x)3/2x−3/2(x− 2δ2)1/2(x+ δ2) , (3.58)

gL1(s, δ) = NL1(δ) (2 − s)1/2s−3/2(s− 2δ2)1/2(s+ δ2)

with N−1
L1 (δ) =

∫ 2

2δ2
dx (2 − x)1/2x−3/2(x− 2δ2)1/2(x+ δ2) , (3.59)

gE1(s, δ) = NE1(δ) (2 − s)1/2s−5/2(s− 2δ2)1/2(s+ δ2)

with N−1
E1 (δ) =

∫ 2

2δ2
dx (2 − x)1/2x−5/2(x− 2δ2)1/2(x+ δ2) , (3.60)

gE1+L1(s, δ) = NE1+L1(δ) (2 − s)1/2s−5/2(s− 2δ2)1/2(s+ δ2)(s+ 4)

with N−1
E1+L1(δ) =

∫ 2

2δ2
dx (2 − x)1/2x−5/2(x− 2δ2)1/2(x+ δ2)(x+ 4) , (3.61)

gM1(s, δ) = NM1(δ) (2 − s)3/2s−5/2(s− 2δ2)1/2(s+ δ2)

with N−1
M1(δ) =

∫ 2

2δ2
dx (2 − x)3/2x−5/2(x− 2δ2)1/2(x+ δ2) . (3.62)

We show in Fig. 3.5 their theoretical distributions.

3.4.3 Isospin mixing and electromagnetic nuclear matrix elements

The 8Be(18.15) and 8Be(17.64) states, close in energy and with same spin-parity assignment, presents
a significant isospin mixing. In general, given a doublet of nuclear energy levels of spin J with mixed
isospin, the physical states (denoted with a and b) are given by a linear combination of states with
fixed isospin

ΨJ
a = αJΨJ

I=0 + βJΨJ
I=1, ΨJ

b = −αJΨJ
I=1 + βJΨJ

I=0 (3.63)

where a labels the lowest energy level between them. The coefficients αJ and βJ are real and satisfy
α2
J +β2

J = 1. For the 8Be nucleus, the values of the mixing coefficients have been evaluated through
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Quantum Monte Carlo simulation [237]. The result for the J = 1 doublet is

α1 = 0.21(3), β1 = 0.98(1). (3.64)

According to this, we define the isospin magnetic strength M1γI=0,1 by

⟨8Be||µ(γ)||8Be(17.64)⟩ = α1M1γI=0 + β1M1γI=1,

⟨8Be||µ(γ)||8Be(18.15)⟩ = −α1M1γI=1 + β1M1γI=0.
(3.65)

whose values has been estimated to be [237]

M1γI=0 = 0.014(1), M1γI=1 = 0.767(9). (3.66)

At this level, a direct comparison with the experimental values of the decay lengths shows a signif-
icant discrepancies with the theoretical prediction. Following [220], we’ll consider the deficiency as
due to isospin breaking effects we neglected in the first attempt. The inclusion of them is obtained
trough the introduction of a ∆I = 1 spurion, whose effective result is to shift the nuclear matrix
elements as

⟨8Be||µ(γ)||8Be(17.64)⟩ = α1M1γI=0 + β1M1γI=1 + α1ξM1γI=1,

⟨8Be||µ(γ)||8Be(18.15)⟩ = −α1M1γI=1 + β1M1γI=0 + β1ξM1γI=1.
(3.67)

The parameter ξ characterizes the strength of the spurion and its size is controlled by non-perturbative
effects. One finds ξ = 0.549 by requiring that the resulting decay width Γ(8Be(17.64) → 8Be + γ)
reproduces its experimental value. For ξ = 0 the isospin breaking effects are simply neglected.
Parity conservation prohibits electromagnetic interaction in the 4He(21.01) transition to the ground
state, thus the nuclear matrix element relative to this decay is equal to zero.
Due to the massless nature of the photon, the γ-emission decay width of the 4He(20.21) transition
to the ground state also vanishes but the IPC process is still possible. Pair production is mediated
by the monopole operator ρ(γ), whose matrix element has been measured to be [202]

√
4π ⟨4He||ρ(γ)||4He(20.21)⟩ = (1.10 ± 0.16) fm2, (3.68)
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with corresponding decay length, after integrating (3.53), equal to Γ± = (3.3 ± 1.0) × 10−4 eV.

The γ-emission decay length of the 12C(17.23) transition to the ground state has been measured to
be Γγ = 44 eV [204]. Hence, from (3.48), one finds

⟨12C||d(γ)||12C(17.23)⟩ = 0.157 fm . (3.69)

3.5 Signal computation: X dynamics

With the formalism described in the previous section we are now ready to describe the BSM dynamics
of e+e− emission from the X boson, illustrated in Fig. 3.3. We refer to App. 3.4 for the details of
the SM processes of real γ emission and IPC. We parametrize the interaction of the X boson with
the scalar density S for the spin-0 case and the nuclear current J µ for the spin-1 cases in terms of
effective couplings as5,6

LSπ=0+ = zpp̄pX + znn̄nX , (3.70)

LSπ=0− = ihpp̄γ
5pX + ihnn̄γ

5nX , (3.71)

LSπ=1− = Cpp̄γ
µpXµ + Cnn̄γ

µnXµ +
κp

2mp
∂ν(p̄σµνp)Xµ +

κn
2mn

∂ν(n̄σµνn)Xµ , (3.72)

LSπ=1+ = app̄γ
µγ5pXµ + ann̄γ

µγ5nXµ , (3.73)

see App. B. Although the pure scalar hypothesis is not able to explain the anomaly observed in the
8Be decay, we’ll present for completeness explicit expressions also in this case, since it can anyway
affect the 4He and 12C decays, see Tab. 3.5 and it can be relevant in the mixed parity hypothesis.
The effective matching between these effective interactions and the UV interactions of the X boson
with quark and gluons are reported in App. B. Once the X boson is produced from the nuclear
collision, it decays to an e+e− pair with a branching ratio which depends on the size of the X
coupling to electrons.

3.5.1 Spherical operators

In the non relativistic and long wavelength approximation the spherical operators with J = 0, 1 for
the various Sπ assignment for the X boson are given by

Scalar case Sπ = 0+

For the J = 0 term we go here beyond the leading order in the long wavelength and non relativis-
tic expansion since leading order term proportional to the identity gives an identically vanishing

5Effective nucleon operators are in principle also function of form factors F (q2). In all practical cases however
the transferred momentum is much smaller than the hadron scale ΛQCD, so that we approximate the form factors as
constants.

6We neglect electric dipole moment (EDM) operators since, by naive counting analysis, they would contribute
at a higher order than the axial current ψ̄γµγ5ψ. Moreover, they can only be generated by EDM effective quark
operators, so that they will generally be suppressed by loop effects.
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contribution. One has7

G00 ≃ 1√
4π

A∑
s=1

zs

[
1 − p2s

2m2
N

− k2r2s
6

]
, (3.74)

G1M ≃ k

3

√
3

4π

A∑
s=1

zsr⃗s · êM , (3.75)

where zs = zp (zs = zp) if the s-th nucleon is a proton (neutron). A similar notation is adopted for
the rest of the section.

Pseudoscalar case Sπ = 0−

For the pseudoscalar case the relevant spherical operators are

G00 ≃ k2

6mN

1√
4π

A∑
s=1

hs(r⃗s · σ⃗s) ≡
k2

12mN

1√
4π

[(hp + hn)d̂σ0 + (hp − hn)d̂σ3 ] , (3.76)

G1M ≃ − k

6mN

√
3

4π

A∑
s=1

hsσ⃗s · êM ≡ − k

6mN

√
3

4π
[hpσ̂

(p)
M + hnσ̂

(n)
M ] , (3.77)

where for G00 we have split the expression among the isoscalar and isovector contributions.

Vector case Sπ = 1−

In this case conservation of the vector current implies a relation between the operator LJM and
MJM , c.f.r. Eq. (3.21), and one has

M00 ≃ −k
2

6

1√
4π

A∑
s=1

Csr
2
s ≡ −ek

2

6
ρ(X) , (3.78)

M1M ≃ k

3

√
3

4π

A∑
s=1

Csr⃗s · êM ≡ ek

3
d
(X)
M , (3.79)

T el
1M ≃

√
2ω

3

√
3

4π

A∑
s=1

Csr⃗s · êM ≡
√

2eω

3
d
(X)
M , (3.80)

T mag
1M ≃ i

√
2k

3

1

2mN

√
3

4π

A∑
s=1

[Cs(r⃗s × p⃗s) + (Cs + κs)σ⃗s] · êM ≡ i
√

2kµN

3
µ
(X)
M . (3.81)

7êM =
√
4πY1M ( r⃗

r
).
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8Be 4He 12C

0+ /
4He(20.21) 2k3

27 (zp − zn)2| ⟨||d(γ)||⟩ |2
2k(zp + zn)2

∣∣∣k26e ⟨ρ(γ)⟩ + 1
2mN

⟨K̂⟩
∣∣∣2

0− k3

72πm2
N
| ⟨hpσ̂(p) + hnσ̂

(n)⟩ |2
4He(21.01)

/
k5

228πm2
N

(hp + hn)2| ⟨d̂σ0 ⟩ |2

1− 4µ2
Nk

3

27 | ⟨µ(X)⟩ |2
4He(20.21) 16παkω2

27

(
1 + m2

2ω2

)
| ⟨d(X)⟩ |2

m2k3α
18 | ⟨ρ(X)⟩ |2

1+ k
18π

(
2 + ω2

m2

)
| ⟨apσ̂(p) + anσ̂

(n)⟩ |2
4He(21.01) k3

144π (ap − an)2| ⟨D̂σ
3 ⟩ |2ω2k3

72πm2 (ap + an)2| ⟨d̂σ0 ⟩ |2

Table 3.7: Decay rates for the 8Be, 4He and 12C nuclear processes for the various spin assignment
of the X boson. In the case of the Helium transition for each spin-parity possibility we indicate
the 4He excited state involved. In the expressions ⟨O⟩ represents the matrix element between the
ground state and the excited nucleus of the corresponding operator, e.g. for the 12C transition in
the 0+ case ⟨||d(γ)||⟩ = ⟨12C||d(γ)||12C(17.23)⟩. For the 4He and 12C cases we only report the non
vanishing isoscalar and isovector contributions respectively.

Axial vector case Sπ = 1+

Finally the spherical operators for the axial vector case read

M00 ≃ M1M ≃ 0 , (3.82)

L00 ≃ − ik
3

1√
4π

A∑
s=1

as(r⃗s · σ⃗s) ≡ − ik
6

1√
4π

[(ap + an)d̂σ0 + (ap − an)d̂σ3 ] , (3.83)

L1M ≃ i

3

√
3

4π

A∑
s=1

asσ⃗s · êM ≡ i

3

√
3

4π
[apσ̂

(p)
M + anσ̂

(n)
M ] , (3.84)

T el
1M ≃ i

√
2

3

√
3

4π

A∑
s=1

asσ⃗s · êM ≡ i
√

2

3

√
3

4π
[apσ̂

(p)
M + anσ̂

(n)
M ] , (3.85)

T mag
1M ≃ ik

3
√

2

√
3

4π

A∑
s=1

as(r⃗s × σ⃗s) · êM ≡ ik

6
√

2

√
3

4π
[(ap + an)D̂σ

0M + (ap − an)D̂σ
3M ] . (3.86)

3.5.2 Decay rates

We can now express the decay rates for the various spin-parity assignment of the X boson in the
case of the 8Be, 4He and 12C transitions. We report them Tab. 3.7, expressed in function of nuclear
matrix element of the relevant operators involved in the transition. Symmetry consideration allow
to express these matrix elements in function of known ones. We list here the relevant relations

Beryllium matrix elements

Assuming the static quark model κp ≃ −κn ≃ 2(Cp−Cn), see App. B for the details. From isospin
symmetry then one has

⟨8Be||µ(X)||8Be(17.64)⟩ = α1

(
Cp + Cn

e

)
M1γI=0 + (β1 + α1ξ)

(
Cp − Cn

e

)
M1γI=1 , (3.87)

⟨8Be||µ(X)||8Be(18.15)⟩ = (−α1 + β1ξ)

(
Cp − Cn

e

)
M1γI=1 + β1

(
Cp + Cn

e

)
M1γI=0 , (3.88)
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where the corresponding values are reported in App. 3.4.3, while we take from [225]

⟨Be||σ̂(p)||8Be(18.15)⟩ = −0.047(29) , ⟨Be||σ̂(n)||8Be(18.15)⟩ = −0.132(33) ,

⟨Be||σ̂(p)||8Be(17.64)⟩ = 0.102(28) , ⟨Be||σ̂(n)||8Be(17.64)⟩ = −0.073(29) . (3.89)

Helium matrix elements

Isospin symmetry allows to relate

⟨4He||ρ(X)||4He(20.21)⟩ =

(
Cp + Cn

e

)
⟨4He||ρ(γ)||4He(20.21)⟩ , (3.90)

where again the electromagnetic matrix element is reported in App. 3.4.3 while we take from [238]

| ⟨4He||d̂σ0 ||4He(21.01)⟩ |2 ≃ 15.5 fm2 ≃ 4 × 10−4 MeV−2 (3.91)

but no uncertainty has been given. We will arbitrarily assume a 10% error on the matrix element
in our calculation. Finally, to the best of our knowledge, the matrix element of the operator
K̂ =

∑
s p

2
s/2ms has never been evaluated so far.

Carbon matrix elements

Isospin symmetry allows to relate

⟨12C||d(X)||12C(17.23)⟩ =

(
Cp − Cn

e

)
⟨12C||d(γ)||12C(17.23)⟩ , (3.92)

whose values is reported in App. 3.4.3, while the axial matrix element D̂σ
3 has not been evaluated,

to the best of our knowledge.

3.6 Experimental constraints on a spin-1 boson

A light boson coupled to first generation quarks and leptons is subject to a large variety of experi-
mental constraints. In this section we recap the most relevant ones that affects a possible explanation
of the ATOMKI anomaly through a BSM degree of freedom with mass ∼ 17 MeV for the spin-1
case. We parametrize the effective UV interactions of a spin-1 state Xµ with leptons and quarks as

L =Xµ

∑
f=q,l...

ψ̄f (CfV + γ5CfA)ψf = Xµ

∑
f=q,l...

(
CfL,Rψ̄

f
L,Rγ

µψfL,R

)
, (3.93)

where CfV,A = 1
2 (CfR ± CfL) and we assume diagonal couplings in flavor space. The connection

between the quark and nucleon couplings can be found in App. B. We list in the following the most
relevant constraints for the spin-1 case coupling to the first generation of quarks and leptons.

3.6.1 e+e− → γX scattering

By neglecting kinematic differences with respect to the pure dark photon case, we can recast the
bound from the KLOE experiment at the DAΦNE collider [239] from which we obtain a bound√

(CeV )2 + (CeA)2 ≲
6.1 × 10−4√

BR(X → e+e−)
. (3.94)
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3.6.2 Parity violation

Parity violation in Møller scattering constraints the product of the vector and axial couplings. The
most sensitive measurement arises from SLAC E158 [240] at Q2 = 160 MeV2. The measurement
in [240] has been recast in [241] and the obtained bound reads

|CeV × CeA| ≲ 10−8 . (3.95)

3.6.3 Beam dump experiments

Beam dump experiments look for X production via bremsstrahlung from electrons scattering off
target nuclei. For the X particle not to be seen in these experiments there are two possibilities:
either the particle is not produced at all, or its decay products are caught in the dump, thus setting
both an upper and lower limit for the couplings of the X boson. In the first case the stronger limit
comes from the E137 experiment [242], see also [243], which is independent on the X decay rate
and gives √

(CeV )2 + (CeA)2 ≲ 1.1 × 10−8 , (3.96)

while in the second case the stronger limit comes from the NA64 experiment [244,245] for which we
have √

(CeV )2 + (CeA)2 ≳ 3.6 × 10−5 ×
√

BR(X → e+e−) . (3.97)

3.6.4 Prompt decay in ATOMKI detector

The requirement of a prompt decay into the ATOMKI detector imposes now the constraint√
(CeV )2 + (CeA)2 ≳ 3 × 10−7 ×

√
BR(X → e+e−) , (3.98)

which is weaker than the bound from NA64.

3.6.5 Atomic parity violation

In atomic system, parity violation can be observed in the case, e.g , of and electric dipole transition
between two atomic states with the same parity. The Xµ gives additional contributions to these
transitions due to the interaction between atomic electrons and the nucleus. In the effective operator

L ⊃ − 1

m2
X

[
CuV C

e
A(ūγµu)(ēγµγ

5e) + CuAC
e
V (ūγµγ5u)(ēγµe) + u↔ d

]
, (3.99)

where only the V ×A part have been kept, only the Ae × Vu,d interaction give a relevant effect for
parity violation observables. This is due to the fact this part of the interaction between the electron
and the nucleus is coherent, and thus proportional to the total weak charge of the nucleus itself,
while the Aq × Ve interaction adds incoherently. This effect is thus suppressed for heavy enough
nuclei [246]. The BSM contribution to Ae × Vu,d can be expressed as a modification to the weak
nuclear charge QW [247]

δQW = −2
√

2

GF
3(Z +N)

CeAC
q,eff
V

m2
X

, Cq,effV =
CuV (2Z +N) + CdV (Z + 2N)

3(Z +N)
. (3.100)

The most accurate prediction comes from transition of 133
55 Cs [248] which, combined with the SM

theoretical prediction [249], yields [250] |δQW | ≲ 0.6 hence the bound reads

|CeA|
∣∣∣∣188

399
CuV +

211

399
CdV

∣∣∣∣ ≲ 1.8 × 10−12 . (3.101)
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3.7 Results

We present in this section our main results, deriving the possible range of the nucleon couplings
to the X particle that can explain both the 8Be and 4He anomalies, further commenting on the
possibility of simultaneously explain the 12C one. We analyze all the scenarios where the X boson
has a definite parity, which implies that the pure scalar boson case is ruled out since it cannot
explain the 8Be anomaly. The best fit value for the anomalous decay rate for the 8Be transition
is [197]

Γ(8Be(18.15) → 8Be + X)

Γ(8Be(18.15) → 8Be + γ)
BR(X → e+e−) = (6 ± 1) × 10−6. (3.102)

The ATOMKI collaboration observed no anomalous signal in the 8Be(17.64) transition in the first
experiment [22] but later they reported a non vanishing best fit for this anomalous decay rate in a
contribution to the proceedings of International Symposium Advances in Dark Matter and Particle
Physics 2016 [251]. In the following we will consider only the 8Be(18.15) anomalous decay and we
present the results with both the 8Be transitions in App. C. For the case of the 4He transition the
total cross section is given by the sum of the two states populated in the experiment

σX
σE0

=
Γ(4He(20.21) → 4He + X)

Γ(4He(20.21) → 4He + e+e−)
+
σ−Γ+

σ+Γ−

Γ(4He(21.01) → 4He + X)

Γ(4He(20.21) → 4He + e+e−)
, (3.103)

where Γ± is the total width of the 0± excited state of Helium nucleus and

σ+ = σ(p+ 3H → 4He(20.21)), σ− = σ(p+ 3H → 4He(21.01)) . (3.104)

The ratio σ−/σ+ can be evaluate by the relation of Eq. (D.6) in App. D in the narrow width
approximation. The ATOMKI collaboration reported σX = 0.2 σE0

8, while no uncertainty is
associated with this measurement. We then arbitrarily associate a relative error to the Helium best
fit equal to the one from Beryllium measurement of Eq. (3.102). Different spin parity assignments
contribute to the rates of the two 4He excited states, see Tab. 3.5. If the X boson is a vector or a
scalar state one has

Γ(4He(20.21) → 4He + X)

Γ(4He(20.21) → 4He + e+e−)
BR(X → e+e−) = 0.20 ± 0.03 , (3.105)

while if it’s a pseudoscalar or an axial vector the best fit is

Γ(4He(21.01) → 4He + X)

Γ(4He(20.21) → 4He + e+e−)
BR(X → e+e−) = 0.87 ± 0.14 , (3.106)

with Γ(4He(20.21) → 4He + e+e−) = (3.3± 1.0)× 10−4 eV [202]. For the case of the 12C transition
the recent results [24] find the derived branching ratio for X emission with respect to the γ one to
be ∼ 3.6(3) × 10−6, i.e.

Γ(12C(17.23) → 12C +X)

Γ(12C(17.23) → 12C + γ)
BR(X → e+e−) = 3.6(3) × 10−6. (3.107)

We now present our findings for the regions in the effective nucleon couplings parameter space
for the various spin-parity assignments for the X boson. In presenting our results we assume, for
simplicity, BR(X → e+e−) = 1. For different BR assumptions the derived allowed space in the
nucleon effective couplings will be rescaled according to Eq. (3.102), Eq. (3.105) and Eq. (3.106).
We stress that our analysis relies on various assumptions, as the hypothesis of narrow width ap-
proximation for the nuclear production of the excited states. Other potential contribution, as for
example direct capture processes, could potentially change the conclusions of our analysis.

8Differently from this work, the Authors of [221] took as experimental input the ratio of decay rates calculated in
the experimental paper [23].
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3.7.1 Pseudoscalar and mixed parity scenario

We summarize the results for the pure pseudoscalar scenario in Fig. 3.6, where the shaded blue and
orange areas represent the 1σ and 2σ compatibility regions with the ATOMKI 8Be and 4He anomalies
respectively. We also overlay in red the region of parameter space satisfying the SINDRUM bound
from π+ → e+νeX decay [230, 252]. This is given in term of the pseudoscalar-pion mixing angle,
linked to the isovector nucleon coupling as

θXπ =
fπ(hp − hn)

2gAmp,n
, (3.108)

where gA ∼ 1.27 is axial nucleon factor and fπ ∼ 93 MeV is the pion decay constant, and reads

|θXπ| ≲
10−4√

BR(X → e+e−)
. (3.109)

All together we see that the 8Be and 4He anomalies can be simultaneously satisfied for a range
of effective nuclear coupling hn,p of O(10−2). However, the recent observation of an anomalous
signal in the 12C transition would, if confirmed, exclude by itself the pure pseudoscalar scenario,
see again Tab. 3.5. It’s then interesting to entertain the possibility that the scalar X boson has
both scalar and pseudoscalar couplings. As already mentioned, because of parity conservation the
scalar contribution to the 8Be transitions vanishes, so the latter processes only set a constraint on
the range of the pseudoscalar couplings, which as we have shown in Fig. 3.6 are required to be of
order of O(10−2). On the other side the 4He decays acquire a contribution from both the spin-parity
state, although related to different nuclear resonances, see Tab. 3.5. As discussed in Sec. 3.5.2 the
value of the matrix element ⟨4He||K̂||4He(20.21)⟩ is unknown. By neglecting its contribution one
finds that the pure scalar contribution is dominant over the pseudoscalar one with a similar value
for nucleon couplings zp,n hp,n ≃ 10−2, i.e.

Γ(4He(20.21) → 4He +X) ≃ 6 × 10−4eV

(
zp + zn
10−2

)2

, (3.110)

Γ(4He(21.01) → 4He +X) ≃ 9.7 × 10−6eV

(
hp + hn

10−2

)2

, (3.111)

so that the theoretical predictions for the 4He transition is too large to match the ATOMKI results.
We expect that this assertion holds even once ⟨4He||K̂||4He(20.21)⟩ is also included. Hence, one
is forced to conclude that the scalar isoscalar coupling zp + zn is suppressed, at least respect the
pseudoscalar one, leaving us with almost the same configurations as the pure pseudoscalar one of
Fig. 3.6. This conclusion is in agreement with earlier results [221]. On the other side for the 12C
transition, the scalar isovector coupling would give

Γ(12C(17.23) → 12C +X)

Γ(12C(17.23) → 12C + γ)
≃ 2.4 × 10−6

(
zp − zn
10−2

)2

, (3.112)

in agreement with the order of magnitude of the ATOMKI fit (3.107) if zp − zn ≃ hp,n ≃ O(10−2)
and all the three anomalous measurements can be simultaneously satisfied.

3.7.2 Vector and axial vector scenarios

We summarize the results for the spin-1 cases in Fig. 3.7, with the same color code as Fig. 3.6 for
the regions satisfying the ATOMKI anomalies. In the upper panels we show the results for the
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Figure 3.6: Regions of the hn,p effective nuclear couplings of a pure pseudoscalar states where the
8Be (blue) and 4He (orange) anomalous ATOMKI transition can be explained at 1σ or 2σ. Inside
the red region the SINDRUM bound is satisfied.

Sπ = 1− assignment for the X boson. Here in the left and right plot we assume ξ = 0 and ξ = 0.549
respectively, where ξ represents non perturbative contribution to isospin breaking effects in the 8Be
case, see [220] and App. 3.4.3 for details. For the vector case the strongest bound comes from the
non observation from the NA48 experiment of the π0 → γX decay in dark photon searches [253].
This process receives two different contributions. One from the axial anomaly and a non anomalous
one. The non anomalous contributions is proportional to the small quark masses [254,255] and can
be neglected, while the anomalous one is proportional to the anomaly trace factor. One gets the
bound

|Cp| ×
√

BR(X → e+e−) ≲ 2.5 × 10−4 , (3.113)

which implies a protophobic nature for the X boson. We show in Fig. 3.7 in red the region of
parameter space where the protophobia constraint is satisfied. Another relevant bound comes from
observations of the angular dependence of neutron-lead scattering. The exchange of new, weakly-
coupled boson produces a Yukawa potential9 acting on the neutron, whose contribution has been
constrained for the 208Pb-n scattering as [256]

|Cn|
∣∣∣∣126

208
Cn +

82

208
Cp

∣∣∣∣ ≲ 3.6 × 10−5 . (3.114)

We show in Fig. 3.7 in gray the region of parameter space where the 208Pb-n scattering constraint
is satisfied. As it can be seen for the ξ = 0.549 assignment, a combined explanation of the 8Be, blue
region, and 4He, orange region, anomalies at 1σ is in tension with the NA48 constraint, while it is
possible at the 2σ level. Regarding the 12C ATOMKI anomaly in the case of a Sπ = 1− state the

9The non-relativistic limit of the vector bilinears is spin independent, see Tab. 3.6, so the nucleon contributions
of a nuclear state are added coherently, while they are spin dependent and are added incoherently for the axial and
pseudoscalar cases. We then expect negligible contributions for the Sπ = 0−, 1+ cases, especially when considering a
nucleus with null spin like 208Pb.
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Figure 3.7: Upper panels: Regions of the Cn,p effective nuclear couplings of a pure vector state where
the 8Be (blue), 4He (orange) and 12C (purple) anomalous ATOMKI transition can be explained at
1σ or 2σ. Inside the red and the gray region, respectively, the NA48 and the 208Pb-n scattering
bound are satisfied. In the left and right panel we assume ξ = 0 and ξ = 0.549 respectively, see
App. 3.4.3 for details. Lower panels: Regions of the an,p effective nuclear couplings of a pure axial
vector state where the 8Be (blue) and 4He (orange) anomalous ATOMKI transition can be explained
at 1σ or 2σ. In the green region the KTeV anomaly in π → e+e− decay can be satisfied, by assuming
a positive (left panel) and negative (right panel) value for the CeA axial coupling of the X boson to
electrons that can explain the anomalous (g − 2)e, see main text for more details.

relevant matrix element is known. In this case one then gets

Γ(12C(17.23) → 12C +X)

Γ(12C(17.23) → 12C + γ)
≃ 2.64 × 10−6

(
Cp − Cn

10−3

)2

, (3.115)

in agreement with the order of magnitude of the ATOMKI fit (3.107) if Cp − Cn ≃ O(10−3). The
1σ and 2σ bands related to the 12C transition are shown in purple in the upper panels of Fig. 3.7.
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Note that, if confirmed, the 12C ATOMKI anomaly is in tension with a combined explanation of
the 8Be and 4He anomalies and the protophobia constraint. In addition, a recent work [257] pointed
out that the SINDRUM bound for a vector spin-1 X would be so strong that if combined with our
results, it exclude the vector explanation.

On the other side an axial vector Sπ = 1+ state can explain both the 8Be and 4He ATOMKI
anomalies, as shown in the lower panels of Fig. 3.7, with axial couplings to the nucleon of O(10−4).
Within the green shaded area the KTeV anomaly in π0 → e+e− decay can be explained for positive
and negative values for the axial X coupling to electrons CeA, see Sec. 3.7.2 for details. If one includes
the SINDRUM bound for a axial spin-1 X as done by [257], the axial solution still works but with
a smaller allowed region. As regarding the possibility of also explaining the 12C ATOMKI anomaly
the relevant nuclear matrix element, see Tab. 3.7, is currently unknown. While no definite claim can
be made until it becomes available, we can make an order of magnitude estimate on the size of the
D̂σ

3 and speculate on the possibility of a combined explanation of all the three ATOMKI anomalies
with an axial vector state. We can expect that the isovector spin dipole would be of the order of
the nuclear radius times the number of nucleons inside the nucleus. We can then estimate

⟨12C||D̂σ
3 ||12C(17.23)⟩ ≃ A×R ≃ 12 × 2.75 fm ≃ 1.7 × 10−1 MeV−1. (3.116)

For a range of nucleon parameters ap,n ≃ O(10−4), as suggested by Fig. 3.7, one get an estimate for
the anomalous 12C transition mediated by an axial X boson of

Γ(12C(17.23) → 12C + X)

Γ(12C(17.23) → 12C + γ)
≃ O(10−6) , (3.117)

which is in order of magnitude accord with the ATOMKI result which predicts a value of 3.6(3) ×
10−6 for this rate [24]. We stress again that this conclusion strongly depends on our order of
magnitude estimate of the D̂σ

3 matrix element, which seems to indicate that an axial vector state
might be favored for a combined explanation. However to properly test its consistency with the 12C
anomalous transition, the relevant matrix element must be properly computed. Until then no definite
conclusions can be drawn. In a general scenario where both vector and axial couplings to nucleons
are present, the decay width for the real X emission is the direct sum of the two contributions.
Assuming vector and axial couplings of the same order of magnitude, the axial contribution would
typically dominate over the vector one.

Intriguingly, for the case a pure axial boson Sπ = 1+, in the parameter space where the 4He
and 8Be anomalies can be explained, other experimental anomalies can be simultaneously satisfied,
while being compatible with current constraints on the electron couplings of the X boson. This is
the case of the KTeV anomaly in π0 → e+e− decay [258], inside the green region in Fig. 3.7, and
the anomalous magnetic moment of the electron (g − 2)e, as we will explain in the following.

KTeV anomaly and anomalous (g − 2)e

The lowest SM contribution to this decay is a one loop process with two photons as intermediate
states. The KTeV-E779 Collaboration reports the measured value [259]

BR(π0 → e+e−)exp = (7.48 ± 0.29 ± 0.25) × 10−8, (3.118)

where they extrapolated from a selected kinematic region to the entire one. The most recent
calculation of SM prediction is [260]

BR(π0 → e+e−)SM = (6.25 ± 0.03) × 10−8. (3.119)
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Figure 3.8: Upper panels: Values of the isovector nucleon axial coupling ap − an able to explain the
KTeV anomaly at 1σ varying the ratio of vector and axial electron coupling for the two distinct
cases CeA > 0 and CeA < 0. Lower panel: Bounds on the vector and axial couplings of the electron
to a spin-1 boson with mass mX ∼ 17 MeV. The gray regions are excluded by NA64 and KLOE
searches, while the region inside the red contour is excluded by Møller scattering. Here we assume
BR(X → e+e−) = 1.

The discrepancy of 3.2σ10 could be explained assuming a BSM contribution from a light axial
boson [263]. The actual best fit from the data reads as [260]

(ap − an)CeA
gAm2

X

= 2.60+1.50
−1.60 × 10−10 MeV−2 , (3.120)

10Using the latest radiative corrections from [261, 262], the full branching ratio extrapolated from the KTeV mea-
surement is BR(π0 → e+e−)exp = (6.85± 0.27± 0.23)× 10−8, thus reducing the discrepancy to 1.8σ.
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where CeA is the axial coupling of the X boson to the electron, see Eq. (3.93). A light vector
contributes to the anomalous magnetic moment of the electron. The SM prediction from the mea-
surement of the fine structure constant α from Cs atoms [264] and the more recent prediction based
on the measurement of α from Rb atoms [265] are in contradiction among themselves. By asking
that the BSM contribution from the X boson given by [266]

δaBSM
l =

C2
V

4π2

m2
ℓ

m2
X

1

2

∫ 1

0

dz
2m2

Xz
2(z − 1)

m2
X(z − 1) −m2

ℓz
2

+
C2
A

4π2

m2
ℓ

m2
X

1

2

∫ 1

0

dz
4z3m2

ℓ + 2zm2
X(4 − 5z + z2)

m2
X(z − 1) −m2

ℓz
2

,

(3.121)
doesn’t overshoot the discrepancy between the central values of the SM prediction and the experi-
mental measurement [267] one obtains two different constraints, depending on the choice of the SM
prediction

δaBSM
e (Rb) ≃ 7.6 × 10−6CeV

2 − 3.80 × 10−5CeA
2 ∈ [0 − 0.48 × 10−12] , (3.122)

δaBSM
e (Cs) ≃ 7.6 × 10−6CeV

2 − 3.80 × 10−5CeA
2 ∈ [−0.88 × 10−12 − 0] . (3.123)

The Cs atoms SM prediction naturally suggests a pure axial boson and the discrepancy observed
in the electron anomalous magnetic moment would be resolved at 1σ with an electron coupling

CeA = ±(1.52 ± 0.31) × 10−4 . (3.124)

By fixing this value for CeA, we have shown in Fig. 3.7 the parameter space of the nucleon couplings
which can explain the KTeV anomaly see Eq. (3.120), for the two distinct cases CeA > 0 and CeA < 0.

Allowing instead for both a vector and axial contribution to the electron coupling, in the upper
panel of Fig 3.8 we show the values of the isovector nucleon axial coupling ap−an able to explain the
KTeV anomaly at 1σ and assuming the discrepancy observed in the electron anomalous magnetic
moment to be resolved for the Cs atoms (blue) and Rb atoms (orange) SM prediction for the two
distinct cases CeA > 0 and CeA < 0. In the lower panel of the same figure we show instead the most
relevant bounds on this scenario with generic X vector couplings to electrons, again for BR(X →
e+e−) = 1, which arise from the measurement of e+e− scattering from the KLOE experiment at
DAΦNe collider [239], measurements on parity violation in Møller scattering at SLAC [240] and beam
dump experiment at NA64 [244,245], see App. 3.6 for details. Interestingly, the PADME experiment
will completely cover the region between the NA64 and the KLOE exclusions thus allowing for a
strong test of the existence of the X boson [211,212].

3.7.3 Minimal SM extension with a new U(1) gauge symmetry

A common proposal in order to include a light vector X in a SM extension is by enlarging its gauge
group GSM = SU(3)c × SU(2)W × U(1)Y with a new abelian symmetry U(1)X

11. In a minimal
scenario, it is natural to assume that the SM Lagrangian is symmetric under U(1)X . It follows that
the U(1)X charges are a linear combination of the hypercharge Y and all the accidental symmetries
of the SM: the baryon number B and the three lepton family numbers Le,µ,τ . When the gauge
group GSM × U(1)X is broken to SU(3)c × U(1)Q, the X field mixes with the other neutral gauge
bosons in order to compose the physical states: the photon γ, the Z0 boson and the light boson
X. Moreover, once the symmetry is broken, the X charges acquire a contribution from the diagonal
weak isospin TW3

. In the quark sector, the X couplings are then a linear combination of three
independent charge assignments: B, Y = Q−TW3

and TW3
. The baryon number B and the electric

11The resulting model is typically not anomaly free, leading at low energy to stringent constraints for a light vector
boson [14,15]. A possible way out has been described in [1].
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Figure 3.9: Regions of the Cp − CA couplings for the minimal SM extension with a new U(1)X
symmetry where the 8Be (blue) and 4He (orange) anomalous ATOMKI transition can be explained
at 1σ. Inside the red region the NA48 bound is satisfied. In the left and right panel we assume
ξ = 0 and ξ = 0.549 respectively, see App. 3.4.3 for details.

charge Q are vector symmetries so only the weak isospin TW3
induces an axial coupling. Thus, the

axial couplings of the light quarks satisfy

CuA = −CdA = −CsA = −CeA ≡ CA (3.125)

while the vector coupling for up and down quarks are independent. The nucleon couplings are
obtained from the quark ones by Eq. (B.3) and Eq. (B.11). However, the results from atomic parity
violation experiments [248], see App. 3.6, strongly constrain these couplings, and require for them
(product of) values so small that the ATOMKI anomalies cannot be explained, see Eq. (3.101). A
way to avoid this bound is to assume somehow a magical cancellation between the up and down
vector couplings, which is

CdV = −188

211
CuV , (3.126)

thus

Cn = −55

78
Cp ≃ −0.7Cp . (3.127)

Hence, we are left with two independent couplings, Cp and CA. However, as we show in Fig. 3.9,
there is no possible simultaneously explanation of the 8Be and 4He anomalies in the minimal BSM
scenario considered here for both choices of the isospin breaking parameter ξ, which produce almost
indistinguishable results.
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Conclusion

Differently from new physics at the TeV scale or above, weakly-interacting light new physics could
be found at the “low-energy frontier”. Experiments that use intense beams of photons, charged par-
ticles, and/or sensitive detectors may be used to directly produce and study new, feebly-interacting
particles that lie well below the Weak scale. Existing facilities and technologies and small-size exper-
iments enable the exploration of dark sectors. A rich, diverse, and low-cost experimental program is
already underway that has the potential for one or more game-changing discoveries. Current ideas
for extending the searches to smaller couplings and higher masses increase this potential markedly. In
the previous chapters, we explore different scenarios of the rich phenomenology of weakly-interacting
light new physics. To do so, we investigate a SM + X scenario in a EFT framework where X is a
light new state which can range from a gauge boson to RHNs with masses at the GeV scale.

For the first case, we have revisited the case of light vector bosons coupled to anomalous cur-
rents which are UV completed by new anomaly-canceling heavy fermions (anomalons). After the
latter have been integrated out, WZ terms of the type in Eq. (1.21) are generated. On the one
hand, they take care of anomaly cancellation in the IR and, on the other, they source the energy-
enhanced emission of longitudinally polarized vectors, X , which typically results in very strong
bounds on gX/mX ∝ 1/vX whenever the decay channels Z → γX , B → KX , K → πX , etc, are
kinematically open [14,15]. Here, we have studied the model-dependence of such bounds, consider-
ing as a paradigmatic framework the gauging of the most general (anomalous) linear combination
of SM global symmetries, U(1)X , with the generator X given in Eq. (1.1). To this end, we pro-
vided a UV completion including electroweak anomalons L + E + N (cf. Table 1.1) and conclude
(cf. e.g. Eq. (1.39)) that the bounds mentioned above on light X can be evaded in the limit where
the mass of the electroweak anomalons comes mostly from the Higgs VEV. We show that such
anomalon fields predict a h → Zγ rate in agreement with the recent measurement of ATLAS and
CMS but the updated direct search for non-decoupling charged leptons push the model beyond the
edge of perturbativity.

For the second case, we have studied the phenomenological consequences of a dipole operator
between RH neutrino fields. This is described by the νSMEFT d = 5 operator N̄2σ

µνN1Bµν
and triggers the decay N2 → N1γ, which is the subject of our study. Motivated by the current
experimental and theoretical interest, we have focused on RH neutrino masses in the GeV range
and considered the regime in which N2 is long-lived, with a proper decay length of O(10−2−103 m),
while N1 is considered to be stable on these length scales. In the facilities at intensity-frontier the
RH neutrinos are produced in N1N2 pairs through the dipole operator, either via meson decay or
via direct production. Then, RH neutrinos give rise to single−γ events through N2 → N1γ decays,
which can be detected by these experiments in a background controlled environment. Our main
results are summarized in Fig. 2.1 where we show that SHiP will be able to probe ample regions
of the parameter space not yet excluded by current data, testing Wilson coefficients up to Λ ∼ 105

GeV, while the sensitivity of FASER 2 is more limited.
Finally in the last part of the thesis, motivated by the latest experimental results recently released
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by the ATOMKI collaboration, we have critically re-examined the possible theoretical interpretation
of the observed anomalies in 8Be, 4He and 12C anomalies in terms of a BSM boson X with mass
∼ 17 MeV. After having reviewed the current status of the ATOMKI results and the kinematic of
the observed excesses we have employed a multipole expansion formalism to compute the anoma-
lous decay rate for the decay of the excited nuclei into an e+e− pair via an intermediate on-shell
BSM state. Our results identify an axial vector state as the most promising candidate to simul-
taneously explain all the three anomalous nuclear decay, while the other spin/parity assignments
seems disfavored for a combined explanation. However, the axial nuclear matrix element of the 12C
transition is currently unknown and our conclusions are based on an order of magnitude estimate
for its value. Before being able to make a definite claim regarding the possibility of combined ex-
planation of the ATOMKI anomalies with an axial vector state, this matrix elements need to be
evaluated. Intriguingly, the hypothesis of an axial vector state can also simultaneously accommodate
other experimental anomalies, as the one observed by the KTeV experiment in π0 → e+e− decay,
while being compatible with the conflicting measurements of the anomalous magnetic moment of
the electron (g− 2)e and other experimental constraints. The independent experiments that will be
performed by the MEG II experiment [205] at PSI and the by the Montreal Tandem accelerator [207]
will definitely probe the ATOMKI anomalies and also the PADME experiment [209,210] in Frascati
will test the available parameter space for the coupling of the X boson to electrons relevant for the
explanation of the ATOMKI anomalies [211, 212]. Thus it will be soon understood whether these
anomalies are merely due to unaccounted SM and/or experimental effects or else are the first signs
of the long sought new physics beyond the Standard Model.
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Appendix A

Calculation of the Wess-Zumino
terms

In this Appendix we present the calculation of the effective WZ terms involving gauge and Goldstone
bosons that arise after integrating out heavy fermionic degrees of freedom. In particular, we focus
on the 3-point vertices involving the epsilon tensor ϵαβµν (with ϵ0123 = 1) which are related to
anomaly cancellation in the EFT when the heavy fermions are integrated out.

Toy model

We assume a toy model with a set of gauge bosons GAµ related to the generators QA of the gauge
symmetry group G (that can be in general semi-simple). The model contains a fermionic sector,
whose fields are labeled as ψi, that acquire a mass term Mij after a spontaneously symmetry
breaking (SSB) mechanism. The ( 1

2 , 0) and (0, 12 ) Lorentz components of the ψ field are separately
(reducible) representations of G and the generators act on them as

QAψi =
∑
j

(QAL)ijψjL +
∑
j

(QAR)ijψjR , (A.1)

where (QAL,R)ij are the matrix representation of the gauge multiplets ψL,R ≡ PL,Rψ. We restrict
ourselves to models with a U(1)ψ symmetry corresponding to the fermionic number of the ψ fields
(ψi → eiϕψi). The real scalar Higgs fields, responsible for the SSB mechanism, are labeled as
Ha = (Ha)∗ and belong to a (reducible) representation of the gauge group G. By performing an
infinitesimal transformation of angle αA along the QA generator, the Ha fields transform like

δHa =
∑
b

gAαA(iQAH)abHb , (A.2)

where (iQAH)ab is a real and antisymmetric matrix. Hence,

Ltoymodel ⊃
∑
i

ψ̄ii/∂ψi −
∑
a,i,j

Ha(ψ̄iLYaijψjR + h.c.) −
∑
A

gAG
A
µJ

µA , (A.3)

with
JµA =

∑
i,j

[
ψ̄iLγ

µ(QAL)ijψjL + ψ̄iRγ
µ(QAR)ijψjR

]
. (A.4)
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The Yukawa couplings must preserve gauge invariance and hence they satisfy∑
k

Yaik(QAR)kj −
∑
k

(QAL)ikYakj +
∑
b

Ybij(QAH)ba = 0 . (A.5)

The Higgs fields acquire the VEVs ⟨Ha⟩ = va which break the gauge group, leaving an unbroken
subgroup G0. Then, the mass matrix of the ψ fields is given by

Mij =
∑
a

Yaijva , (A.6)

leading to

Ltoymodel ⊃
∑
i

ψ̄ii/∂ψi −
∑
i,j

(ψ̄iLMijψjR + h.c.)

−
∑
a,i,j

H̃a(ψ̄iLYaijψjR + h.c.) −
∑
A

gAG
A
µJ

µA ,
(A.7)

where H̃a = Ha−va are the Higgs fluctuations around the vacuum.
In order to go in the mass basis, the mass matrix M is diagonalized via the bi-unitary transfor-

mations ψR → UR ψR and ψL → UL ψL, which by construction satisfy U†
LMUR = diag(m1,m2, ...).

This yields

Ltoymodel ⊃
∑
i

ψ̄i(i/∂ −mi)ψi −
∑
A

gAG
A
µJ

µA
U −

∑
a,i,j

H̃aψ̄i(ŶaRPR + ŶaLPL)ijψj , (A.8)

where ŶaR = U†
LYaUR = (ŶaL)†, while the gauge currents in the mass basis are equal to

JµAU =
∑
i,j

[
ψ̄iLγ

µ(U†
LQ

A
LUL)ijψjL + ψ̄iRγ

µ(U†
RQ

A
RUR)ijψjR

]
. (A.9)

After integrating out the heavy fermion fields, we get EFT operators of the type

Ltoymodel ⊃
∑
A,B,C

gAgBgC
48π2

CABCϵαµνβGAαG
B
µ ∂βG

C
ν

−
∑
a,B,C

gBgC
48π2

DaBCϵµναβH̃a∂αG
B
µ ∂βG

C
ν ,

(A.10)

in terms of the EFT coefficients CABC = −CBAC and DaBC = DaCB that we want to compute.
Moreover, integrating by parts the term on the first line of Eq. (A.10), one also obtains

CABC + CCAB + CBCA = 0 . (A.11)

γ5 in dimensional regularization

Dimensional regularization allows to regularize the divergences arising from loop calculations in 4 di-
mensions, while explicitly preserving Lorentz covariance and gauge invariance. In the d-dimensional
spacetime, the mass dimensions of the quantum fields are equal to

[ψ] =
d− 1

2
, [H] = [Gµ] =

d− 2

2
. (A.12)
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Hence, in order to keep the gauge couplings dimensionless, one introduces the renormalization scale
µ by the substitution

g → µ
4−d
2 g (A.13)

in the Lagrangian. The use of dimensional regularization poses some potential problems in calcula-
tions where the γ5 matrix is involved. In fact, γ5 (or equivalently the antisymmetric tensor ϵαβµν)
is a quantity whose definition is strictly connected to the fact that space-time is four dimensional,
and a definition in d dimensions requires special care. Here, we adopt the Breitenlohner-Maison-’t
Hooft-Veltman (BMHV) scheme, which is able to reproduce the chiral anomaly (see [268] for a
recent review).

We decompose all matrices into a four-dimensional (denoted by bars) and an extra-dimensional
(also called “evanescent”, denoted by hats) component:

γµ = γ̄µ + γ̂µ , (A.14)

where γ̄µ is non-zero only when µ takes the ordinary values 0, 1, 2, 3 and γ̂µ vanishes for µ = 0, 1, 2, 3.
Correspondingly, the matrix tensor gµν has a four-dimensional and an extra-dimensional part,

gµν = ḡµν + ĝµν , (A.15)

while mixed components vanish. The gamma matrices satisfy

{γ̄µ, γ̄ν} = 2ḡµν , {γ̂µ, γ̂ν} = 2ĝµν , {γ̄µ, γ̂ν} = 0 . (A.16)

Then, we simply define γ5 as in four dimensions, that is

γ5 = iγ̄0γ̄1γ̄2γ̄3 . (A.17)

It is easy to check that the definition in Eq. (A.17) implies

{γ5, γ̄µ} = 0 , [γ5, γ̂µ] = 0 , (A.18)

Tr γ5γαγβγµγν = Tr γ5γ̄αγ̄β γ̄µγ̄ν = 4iϵαβµν , (A.19)

which is the correct four-dimensional result.
In a general chiral gauge theory, the fermion fields are introduced as Weyl spinors whose for-

malism is intrinsically tied to 4-dimensional space. In d dimensions, we replace the Weyl spinors
by projections of Dirac spinors, which can be generalized to arbitrary dimensions. The right and
left projections are PR,L = 1

2 (1 ± γ5), as in the 4-dimensional space. Then, there are three possible
inequivalent choices for the d-dimensional extension of the right-handed chiral current ψ̄iRγ

µψjR
coupled to gauge bosons, which are

ψ̄iPLγ
µψj , ψ̄iγ

µPRψj , ψ̄iPLγ
µPRψj . (A.20)

They are different because PLγ
µ ̸= γµPR in d dimensions. Each of these does lead to valid d-

dimensional extensions of the model that are perfectly renormalizable using dimensional regular-
ization and the BMHV scheme. However, the intermediate calculations and the final d-dimensional
results will differ, depending on the choice for this interaction term. Our choice for this work is to
use the third option, that is

ψ̄iPLγ
µPRψj = ψ̄iRγ̄

µψjR , (A.21)

is the most symmetric one, and leads to the simplest expressions. Similar considerations hold for the
left-handed chiral current ψ̄iLγ

µψjL. A different choice has to be taken instead for the kinetic terms
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ψ̄iRi/∂ψiR and ψ̄iLi/∂ψiL. Indeed, in order to properly regularize the theory, we need to consider the
full Dirac fermion kinetic term ψ̄ii/∂ψi, including the evanescent terms.

Once the regulated amplitude is well-defined, we can perform all the necessary subtractions of
the divergences of its sub-diagrams and the resulting finite expression is interpreted in the physical
4-dimensional space by setting all quantities to their 4-dimensional values, i.e. first taking the d→ 4
limit and then, setting all remaining evanescent terms to zero.

1-loop matching

The epsilon tensor structure occurs in the 3-point functions ΓαµνABC(x, y, z) and ΓµνaBC(x, y, z) at 1-
loop through fermionic triangle diagrams (see Fig. A.1). The amplitudes in momentum space are
defined via∫

d4xd4y d4z ei(xq1+yq2+zq3) ΓαµνABC(x, y, z)|1-loop = (2π)4δ(4)(q1 + q2 + q3)µ
4−d
2 iMαµν

ABC(q1, q2, q3) ,

(A.22)
and∫

d4xd4y d4z ei(xq1+yq2+zq3) ΓµνaBC(x, y, z)|1-loop = (2π)4δ(4)(q1 + q2 + q3)µ
4−d
2 iMµν

aBC(q1, q2, q3) ,

(A.23)
which yield

Figure A.1: Feynman diagrams relative to the 3-point functions in Eqs. (A.22)–(A.23).

75



Mαµν
ABC =

∑
i,j,k

χ1,χ2,χ3

gAgBgC(U†
χ1
QAχ1

Uχ1)jk(U†
χ2
QBχ2

Uχ2)ki(U
†
χ3
QCχ3

Uχ3)ij

× iµ4−d
∫

ddk

(2π)d
TrD[γ̄µPχ2(/k +mi)γ̄

νPχ3(/k + /q3 +mj)γ̄
αPχ1(/k − /q2 +mk)]

[k2 −m2
i ] [(k + q3)2 −m2

j ] [(k − q2)2 −m2
k]

+
∑
i,j,k

χ1,χ2,χ3

gAgCgB(U†
χ1
QAχ1

Uχ1
)kj(U

†
χ3
QCχ3

Uχ3
)ji(U

†
χ2
QBχ2

Uχ2
)ik

× iµ4−d
∫

ddk

(2π)d
TrD[γ̄νPχ3

(/k +mi)γ̄
µPχ2

(/k + /q2 +mk)γ̄αPχ1
(/k − /q3 +mj)]

[k2 −m2
i ] [(k + q2)2 −m2

k] [(k − q3)2 −m2
j ]

,

(A.24)

and

Mµν
aBC =

∑
i,j,k

χ1,χ2,χ3

gBgC(Ŷaχ1
)jk(U†

χ2
QBχ2

Uχ2)ki(U
†
χ3
QCχ3

Uχ3)ij

× iµ4−d
∫

ddk

(2π)d
TrD[γ̄µPχ2(/k +mi)γ̄

νPχ3(/k + /q3 +mj)Pχ1(/k − /q2 +mk)]

[k2 −m2
i ] [(k + q3)2 −m2

j ] [(k − q2)2 −m2
k]

+
∑
i,j,k

χ1,χ2,χ3

gBgC(Ŷaχ1
)kj(U

†
χ3
QCχ3

Uχ3
)ji(U

†
χ2
QBχ2

Uχ2
)ik

× iµ4−d
∫

ddk

(2π)d
TrD[γ̄νPχ3

(/k +mi)γ̄
µPχ2

(/k + /q2 +mk)Pχ1
(/k − /q3 +mj)]

[k2 −m2
i ] [(k + q2)2 −m2

k] [(k − q3)2 −m2
j ]

.

(A.25)

Since we have regularized the theory, the loop integrals over momentum k are convergent and can
be evaluated with the usual well-known techniques. Next, we perform the traces over the Dirac
indices to extract the terms involving the epsilon tensor structure we are interested on. One finds
that such terms are finite, i.e. they do not contain 1/(d−4) poles, and are independent from the
renormalization scale µ. Hence, we can send d→ 4 and set the evanescent components to zero.

In order to obtain the EFT coefficients in Eq. (A.10), we have to match the expressions that we
have calculated above to the EFT matrix elements in the limit of heavy fermion masses, i.e.

lim
m2

i,j,k≫
q22 ,q

2
3 ,q2·q3

Mαµν
ABC |ϵ−tensor =

gAgBgC
24π2

ϵαµνβ(CABCiq3 + CCABiq2 + CBCAiq1)β , (A.26)

and
lim

m2
i,j,k≫

q22 ,q
2
3 ,q2·q3

Mµν
aBC |ϵ−tensor =

gBgC
24π2

DaBCϵµναβq2αq3β . (A.27)
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Thus we get

CABC =

∫ +∞

0

ds

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz 2 δ(1−x−y−z)×

×Re

{
3yTr

[
e−syM

†MQARM†e−szMM†
QBL e

−sxMM†
QCLM

]
−3yTr

[
e−syM

†MQBRM†e−szMM†
QALe

−sxMM†
QCLM

]
+3yTr

[
e−syMM†

QBLMe−szM
†MQARe

−sxM†MQCRM†
]

−3yTr
[
e−syMM†

QALMe−szM
†MQBRe

−sxM†MQCRM†
]

+yTr
[
e−syM

†MM†MQARe
−szM†MQBRe

−sxM†MQCR

]
−xTr

[
e−syM

†MQARe
−szM†MQBRe

−sxM†MM†MQCR

]
+xTr

[
e−syMM†

QALe
−szMM†

QBL e
−sxMM†

MM†QCL

]
−yTr

[
e−syMM†

MM†QALe
−szMM†

QBL e
−sxMM†

QCL

]}
,

(A.28)

and

DaBC =

∫ +∞

0

ds

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz 6 δ(1−x−y−z)×

× Im

{
xTr

[
e−szM

†MQBRM†e−sxMM†
QCLe

−syMM†
Ya
]

+xTr
[
e−szM

†MQCRM†e−sxMM†
QBL e

−syMM†
Ya
]

+yTr
[
e−syM

†MM†QCLe
−sxMM†

QBL e
−szMM†

Ya
]

+yTr
[
e−syM

†MM†QBL e
−sxMM†

QCLe
−szMM†

Ya
]

+yTr
[
e−szM

†MQBRe
−sxM†MQCRM†e−syMM†

Ya
]

+yTr
[
e−szM

†MQCRe
−sxM†MQBRM†e−syMM†

Ya
]}

.

(A.29)

Reproducing the chiral anomaly in the EFT

A consistent gauge theory must be anomaly free and hence the chiral anomaly needs to cancel when
we sum over all the fermion fields of the theory. If we integrate out a heavy fermionic sector of the
complete UV model, the corresponding chiral anomaly is reproduced in the EFT action Seff thanks
to the WZ effective operators in Eq. (A.10). To show this, we make an infinitesimal transformation
of angle αA along the QA generator. The gauge fields GBµ and the Higgs fields H̃a transform like

δH̃a =
∑
b

αA(iQAH)abvb + linear terms , (A.30)

δGBµ = −δAB (∂µαB)/gB + linear terms , (A.31)
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which, from the variation of the effective Lagrangian in Eq. (A.10), yields

δSeff =
∑
BC

gBgC
48π2

[
CABC + CACB +DaBC(iQAH)abvb

] ∫
d4xαA∂αG

B
µ ∂βG

C
ν ϵ

µναβ

=
∑
BC

gBgC
48π2

[
TrQAR{QBR , QCR} − TrQAL{QBL , QCL}

] ∫
d4xαA∂αG

B
µ ∂βG

C
ν ϵ

αµβν .

(A.32)

WZ terms for massive vector bosons and Goldstone bosons

The VEVs of the Higgs fields contribute to the mass matrix M2
gauge for the gauge bosons GAµ with

elements
(M2

gauge)AB =
∑
a,b,c

gA(iQAH)cavagB(iQBH)cbvb . (A.33)

Since the matrix is real and symmetric, we can diagonalize it through an orthogonal matrix OAB
such that ∑

A,B

ODBOCA(M2
gauge)AB = m2

CδCD . (A.34)

The massive eigenstates are then defined by

ZAµ =
∑
B

OAB G
B
µ , (A.35)

with corresponding symmetry generator

g̃AT
A =

∑
B

OAB gBQ
B . (A.36)

There are two scenarios for each generator TA:

• (iTAH )abvb = 0, if TA belongs to the unbroken subgroup G0, such that the corresponding vector
boson ZAµ is then massless, i.e. mA = 0;

• (iTAH )abvb ̸= 0, if TA is spontaneously broken by the Higgs VEVs. The corresponding Nambu-
Goldstone boson ηA is given by

ηA =
∑
a

tAa H̃a , (A.37)

where tAa = g̃A(iTAH )abvb/mA are a (incomplete) set of orthogonal vectors in the Higgs space,
i.e.
∑
a t
A
a t
B
a = δAB . The Goldstone field is then eaten by the vector boson ZAµ which acquires

a mass mA.

The H̃a contains the Goldstone modes along the tAa directions while the remaining modes, orthogonal
to the Goldstones, are all physical, i.e.

H̃a =
∑

NGmodes

tAa η
A + . . . . (A.38)

The interaction terms between the ψ fields and the Goldstone bosons are given by∑
a

YaijtAa =
ig̃A
mA

∑
k

[
(TAL )ikMkj −Mik(TAR )kj

]
, (A.39)
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because of the gauge invariance of the Yukawa couplings. Upon an infinitesimal transformation of
angle αA along a broken TA generator, the Goldstone field ηA transform like

δηA = αAmA + linear terms . (A.40)

Finally, the effective operators in Eq. (A.10) written in terms of the ZAµ and ηA fields are

∑
A,B,C

g̃Ag̃B g̃C
48π2

CABCZ ϵαµνβZAαZ
B
µ ∂βZ

C
ν −

∑
A,B,C

g̃Ag̃B g̃C
48π2

DABC
η ϵµναβ

ηA

mA
∂αZ

B
µ ∂βZ

C
ν + . . . , (A.41)

where the dots contain the interaction terms with the Higgs physical modes. The rotated EFT
coefficients are equal to

CABCZ =

∫ +∞

0

ds

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz 2 δ(1−x−y−z)×

×Re

{
3yTr

[
e−syM

†MTARM†e−szMM†
TBL e

−sxMM†
TCL M

]
−3yTr

[
e−syM

†MTBRM†e−szMM†
TAL e

−sxMM†
TCL M

]
+3yTr

[
e−syMM†

TBL Me−szM
†MTAR e

−sxM†MTCRM†
]

−3yTr
[
e−syMM†

TALMe−szM
†MTBR e

−sxM†MTCRM†
]

+yTr
[
e−syM

†MM†MTAR e
−szM†MTBR e

−sxM†MTCR

]
−xTr

[
e−syM

†MTAR e
−szM†MTBR e

−sxM†MM†MTCR

]
+xTr

[
e−syMM†

TAL e
−szMM†

TBL e
−sxMM†

MM†TCL

]
−yTr

[
e−syMM†

MM†TAL e
−szMM†

TBL e
−sxMM†

TCL

]}
,

(A.42)

and

DABC
η =

∫ +∞

0

ds

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz 6 δ(1−x−y−z)×

×Re

{
xTr

[
e−szM

†MTBRM†e−sxMM†
TCL e

−syMM†
(TALM−MTAR )

]
+xTr

[
e−szM

†MTCRM†e−sxMM†
TBL e

−syMM†
(TALM−MTAR )

]
+yTr

[
e−syM

†MM†TCL e
−sxMM†

TBL e
−szMM†

(TALM−MTAR )
]

+yTr
[
e−syM

†MM†TBL e
−sxMM†

TCL e
−szMM†

(TALM−MTAR )
]

+yTr
[
e−szM

†MTBR e
−sxM†MTCRM†e−syMM†

(TALM−MTAR )
]

+yTr
[
e−szM

†MTCR e
−sxM†MTBRM†e−syMM†

(TALM−MTAR )
]}

.

(A.43)
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Properties of the WZ coefficients

In general, the expressions (A.42) and (A.43) involve non-trivial integrations which are difficult to
compute. Special simplifications occur if the fermion mass term ψ̄LiMijψRj is invariant under any
of the symmetry generators TA. If so, the mass matrix M satisfies∑

k

Mik(TAR )kj −
∑
k

(TAL )ikMkj = 0 . (A.44)

Alternatively, the invariance of the mass term reads∑
a,b

Yaij(TAH )abvb = 0 , (A.45)

which could occur if TA belongs to G0 or some Yukawa coupling vanishes. Then, one finds

CABCZ =


TrTAR {TBR , TCR } − TrTAL {TBL , TCL } if

∑
a,b Yaij(T

B,C
H )abvb = 0 ,

TrTAL {TBL , TCL } − TrTAR {TBR , TCR } if
∑
a,b Yaij(T

A,C
H )abvb = 0 ,

0 if
∑
a,b Yaij(T

A,B
H )abvb = 0 .

(A.46)

and

DABC
η = 3

[
TrTAL {TBL , TCL } − TrTAR {TBR , TCR }

]
if

∑
a,b

Yaij(T
B,C
H )abvb = 0 . (A.47)

Note that DABC
η vanishes if ∑

a,b

Yaij(TAH )abvb = 0 , (A.48)

i.e. if the fermion mass term is invariant under symmetry generator TA.

Consider now an unbroken generator Q ∈ G0, hence satisfying∑
k

Mik(QR)kj −
∑
k

(QL)ikMkj = 0 , (A.49)

with the commutation rules
[Q,TA] =

∑
B

qABT
B . (A.50)

Thanks to (A.49) and the cyclic property of the trace, the expression

CABCZ |TA→[Q,TA] + CABCZ |TB→[Q,TB ] + CABCZ |TC→[Q,TC ] = 0 (A.51)

is identically zero. Then, we find that the EFT coefficients satisfy∑
D

(qADC
DBC
Z + qBDC

ADC
Z + qCDC

ABD
Z ) = 0 . (A.52)

The same argument yields∑
D

(qADD
DBC
η + qBDD

ADC
η + qCDD

ABD
η ) = 0 . (A.53)
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Appendix B

Nucleon effective couplings

We report in this section the matching between the effective interaction of the X boson with the
nuclear matter and its interactions with the fundamental SM degrees of freedom, quark and gluons.
Since nucleons are spin 1/2 particles, for an operator O composed by quark fields one has

⟨N, p′|O|N, p⟩ = ūp′Γ(p′, p)up , (B.1)

where Γ is a matrix with spinor indices and up is the solution of the free Dirac equation1. Lorentz
invariance as well C, P and CPT symmetries impose further constraints on this matrix element.
As mentioned in the main text, since the transferred momentum in the considered processes is
generally much smaller than ΛQCD we approximated the form factors that are in general present in
these expressions as constants.

Vector interaction

In the UV an X vector boson interacts with a quark current of the form CqV q̄γ
µq, which gives an

effective interaction

L = CN N̄γ
µNXµ +

κN
2mN

∂ν(N̄σµνN)Xµ +
gN
mN

∂µ(N̄N)Xµ . (B.2)

Conservation of the vector current implies gN = 0, while symmetry considerations fix

Cp = 2CuV + CdV , Cn = CuV + 2CdV . (B.3)

Symmetry considerations don’t allow to simplify the expression for the magnetic moments of the
nucleons

µ
(X)
N =

(CN + κN )

e
µN , (B.4)

where µN is the Bohr magneton, since even the sea quarks can give a contribution to these quantities.
However by using the static quark model one can make an estimation [269]. Working under the
assumption that the valence quarks of the nucleons have mass equal to mu ≃ md ≃ mN /3

2, at
lowest order the magnetic moment of each quark is given only by its charge and effective mass, i.e.

µq =
CqV
2mq

. (B.5)

1This leaves the matrix element unchanged upon the substitution Γ(p′, p) → /p
′+m

2m
Γ(p′, p) /

p+m

2m
.

2Here we are considering the effective mass of the quarks when they are bounded together by gluons, not their
real mass.
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In the static quark model one thus finds

µ(X)
p = ⟨p|µ|p⟩ =

4

3
µ(X)
u − 1

3
µ
(X)
d ≃ 4CuV − CdV

e
µN =

3Cp − 2Cn
e

µN , (B.6)

µ(X)
n = ⟨n|µ|n⟩ = −1

3
µ(X)
u +

4

3
µ
(X)
d ≃ −CuV + 4CdV

e
µN =

−2Cp + 3Cn
e

µN . (B.7)

For the electromagnetic couplings, Cp = +e and Cn = 0, one obtains values close to the experimental
ones, µem

p |exp ≃ +2.792µN and µem
n |exp ≃ −1.913µN , within a 10%. The interaction between

quarks and the X particle might also come from an effective magnetic moment interaction L =
κq

Λ ∂ν(q̄σµνq)Xµ generated, e.g., at loop level by integrating out some heavy particle in the low
energy limit. This effective operator contributes to the magnetic moment of the nucleons through
the substitution

∂ν(q̄σµνq) → δ(N)
q ∂ν(N̄σµνN) (B.8)

where N = p, n, which shifts κN → κN + 2mN

Λ δ
(N)
q for each q. By lattice computation [270, 271], it

has been estimated

δ(p)u = δ
(n)
d = 0.84 , δ

(p)
d = δ(n)u = −0.23 , δ(p)s = δ(n)s = −0.046 (B.9)

for the light quarks contributions.

Axial interaction

In the UV an X axial vector boson interacts with a quark current of the form CqV q̄γ
µγ5q which

brings to an effective nucleon current

L = aN N̄γ
µγ5NXµ +

bN
mN

∂µ(iN̄γ5N)Xµ +
dN

2mN
∂ν(iN̄σµνγ5N)Xµ . (B.10)

CP conservation in QCD interactions forces dN = 0, while the term proportional to bN doesn’t
contribute to the considered processes when one has on-shell X3. The nucleon axial couplings aN
are given by the sum of quark coupling aq weight by the fraction of the spin of the nucleon ∆

(N)
q ,

aN =
∑
q

∆(N)
q CqA . (B.11)

These fractions are given by integrals of helicity-dependent parton distributions and can be measured
in lepton nucleon scattering. Their values are equal to [225,272]

∆(p)
u = ∆

(n)
d = 0.897(27) , ∆

(p)
d = ∆(n)

u = −0.367(27) , ∆(p)
s = ∆(n)

s = −0.026(4) , (B.12)

while the contributions from heavy quark are small and can be neglected. As for the vector case, it’s
possible that the interaction between quarks and the X boson comes from an effective interaction
like L =

dq
Λ ∂ν(iq̄σµνγ5q)Xµ. This effective operator generates an electric dipole for the nucleons

through the substitution

∂ν(iq̄σµνγ5q) → δ
(N)
q5 ∂ν(iN̄σµνγ5N) (B.13)

where N = p, n, which again shifts the dN value as before. Unfortunately the values of δ
(N)
q5 are

difficult to be measured and are poor known. Only recently [273] it has been measured the light
quark contribution to the proton at Q2 = 0.8 GeV2

δ
(p)
u5 = 0.54+0.09

−0.22 , δ
(p)
d5 = −0.23+0.09

−0.16 . (B.14)
3This can be seen by performing and integration by parts.
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Scalar interaction

The scalar interaction between quarks and a spin 0 particle is given by the scalar density operator q̄q.
The matching with the nucleon effective coupling is linked to the generation of nucleon masses [274].
From trace anomaly, the mass of the nucleons is given by

mN = ⟨N |

[∑
q

mq q̄q +
β

4αs
GµνG

µν

]
|N⟩ (B.15)

where the β function at lowest order is β = −α2
s/2π(11 − 2nf/3) and αs is the strong coupling

constant. The heavy quark fields Q = c, b, t can be integrated out trough the expansion [275]

mQQ̄Q→ −2

3

αs
8π
GµνG

µν , (B.16)

so that

mN = ⟨N |

 ∑
q=u,d,s

mq q̄q − 9αs
8π

GµνG
µν

 |N⟩ . (B.17)

We can now define the fractions of nucleon mass as

f
(N)
Tq =

⟨N |mq q̄q|N⟩
mN

,

f
(N)
TG = 1 −

∑
q=u,d,s

f
(N)
Tq .

(B.18)

We consider a scalar interaction term with the X particle defined by

L = X
∑
q

CqS
mq

v
q̄q + CgS

αs
8πv

XGµνG
µν , (B.19)

where v = 246 GeV is the Higgs vacuum expectation value. The last one is an effective interaction
term that can be generated at loop level by massive particles in the low energy limit. The nucleon
effective interaction reads

L = X
∑
N=p,n

zN N̄N (B.20)

where

zN =
mN

v

 ∑
q=u,d,s

CqSf
(N)
Tq − 1

9
f
(N)
TG

CgS − 2

3

∑
q=c,b,t

CqS

 (B.21)

are the effective scalar couplings of the nucleons. The values of the fractions of nucleon mass are
given by [276]

f
(p)
Tu = 0.020 ± 0.004, f

(p)
Td = 0.026 ± 0.005, f

(p)
Ts = 0.118 ± 0.062 ,

f
(n)
Tu = 0.014 ± 0.003, f

(n)
Td = 0.036 ± 0.008, f

(n)
Ts = 0.118 ± 0.062 . (B.22)

Pseudoscalar interaction

The pseudoscalar density iq̄γ5q is proportional to the divergence of the axial current q̄γµγ5q. The

matching with the nucleon effective operator is then done with the same ∆
(N)
q parameters already

used. For the light quark contribution, we have

⟨N |mqiq̄γ
5q|N⟩ = mN∆(N)

q − ⟨N |αs
8π
GµνG̃

µν |N⟩ , (B.23)
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while for the heavy quark fields it’s enough to expand them as [275]

mQiQ̄γ
5Q→ −αs

8π
GµνG̃

µν . (B.24)

The nucleon matrix element for the pseudoscalar gluon operator is given by [277]

⟨N |αs
8π
GµνG̃

µν |N⟩ = mNm̄

(
∆

(N)
u

mu
+

∆
(N)
d

md
+

∆
(N)
s

ms

)
, (B.25)

where m̄−1 = m−1
u + m−1

d + m−1
s . By considering an interaction term for quarks and gluons given

by

L = X
∑
q

CqP
mq

v
iq̄γ5q − CgP

αs
8πv

XGµνG̃
µν , (B.26)

which is equivalent to

L = −∂µX
2v

∑
q

CqP q̄γ
µγ5q − CggP

αs
8πv

XGµνG̃
µν , (B.27)

with CggP = CgP +
∑
q C

q
P , the effective nucleon interaction then reads

L = X
∑
N=p,n

hN iN̄γ
5N , (B.28)

where

hN =
mN

v

∑
q=u,d,s

∆(N)
q

(
CqP − m̄

mq
CggP

)
(B.29)

are the effective pseudoscalar couplings of the nucleons.
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Appendix C

Combined analysis with both
8Be(18.15) and 8Be(17.64) energy
levels

As discussed in Sec. 3.7 in a later publication [251] the ATOMKI collaboration reported the ob-
servation of the anomalous signal also in the 8Be(17.64) transition, which was absent in their first
analysis [22, 197]. In this section we show how our results are modified by considering both the
the8Be(18.15) and 8Be(17.64) excited states. The best fit value for the anomalous decay rate for
the 8Be(17.64) transition is [251]

Γ(8Be(17.64) → 8Be + X)

Γ(8Be(17.64) → 8Be + γ)
BR(X → e+e−) = 4.0 × 10−6 . (C.1)

We will associate a relative error to this best fit, not provided by ATOMKI collaboration, equal to
the one from the 8Be(18.15) measurement of Eq. (3.102).

Pseudoscalar scenario

We summarize the results for the pure pseudoscalar scenario in Fig. C.1, where the shaded blue and
orange areas represent the 1σ and 2σ compatibility regions with the ATOMKI 8Be and 4He anomalies
respectively, where the former is a combination arising from both the 8Be energy levels. We also
overlay in red the region of parameter space satisfying the SINDRUM bound from π+ → e+νeX
decay [230, 252]. Note that a combined explanation of the 8Be and 4He anomalies is not anymore
possible, once we include the constraint from the 8Be(17.64) transition.

Vector and axial scenarios

We summarize the results for the spin-1 cases in Fig. C.2, with the same color code as Fig. C.1
for the regions satisfying the ATOMKI anomalies. In the upper panels we show the results for
the Sπ = 1− assignment for the X boson. As it can be seen for both ξ assignments, a combined
explanation of the 8Be, blue region, and 4He, orange region, anomalies at 1σ is in tension with
the NA48 constraint, while it is possible at the 2σ level. The 1σ and 2σ bands related to the 12C
transition are shown in purple in the upper panels of Fig. 3.7. Note that, if confirmed, the 12C
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Figure C.1: Regions of the hn,p effective nuclear couplings of a pure pseudoscalar states where the
8Be (blue) and 4He (orange) anomalous ATOMKI transition can be explained at 1σ or 2σ. Inside
the red region the SINDRUM bound is satisfied. Here both the 8Be(18.15) and the 8Be(17.64)
transitions are considered.

ATOMKI anomaly is in tension with a combined explanation of the 8Be and 4He anomalies and the
protophobia constraint. On the other side an axial vector Sπ = 1+ state can explain both the 8Be
and 4He ATOMKI anomalies at 2σ, as shown in the lower panels of Fig. C.2, with axial couplings to
the nucleon of O(10−4). Thus the inclusion of the 8Be(17.64) transition does not change drastically
the conclusion for the spin-1 cases.
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Figure C.2: Upper panels: Regions of the Cn,p effective nuclear couplings of a pure vector state where
the 8Be (blue), 4He (orange) and 12C (purple) anomalous ATOMKI transition can be explained at
1σ or 2σ. Inside the red and the gray region, respectively, the NA48 and the 208Pb-n scattering
bound are satisfied. In the left and right panel we assume ξ = 0 and ξ = 0.549 respectively, see
App. 3.4.3 for details. Lower panels: Regions of the an,p effective nuclear couplings of a pure axial
vector state where the 8Be (blue) and 4He (orange) anomalous ATOMKI transition can be explained
at 1σ or 2σ. In the green region the KTeV anomaly in π → e+e− decay can be satisfied, by assuming
a positive (left panel) and negative (right panel) value for the CeA axial coupling of the X boson to
electrons that can explain the anomalous (g − 2)e. In all figures both the 8Be(18.15) and the the
8Be(17.64) transitions are considered, see main text for more details.
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Appendix D

Cross section for resonance
production

For resonance production p+A→ N∗, the unpolarized cross section expression is given by

σ(p+A→ N∗) =

=
1

(2Jp + 1)(2JA + 1)

1

4mAEpvp

∫
d3p∗

(2π)32E∗
(2π)4δ(p∗ − pA − pp)

∑
pol.

|M(p+A→ N∗)|2 =

=
1

(2Jp + 1)(2JA + 1)

(2π)δ(E2
CM −m2

∗)

4mAEpvp

∑
pol.

|M(p+A→ N∗)|2 , (D.1)

where E2
CM = (pA + pp)

2. Here we have treated the excited state N∗ as a bound states of p and A
with mass m∗ and spin J∗. The reverse process defines the decay width

Γ(N∗ → p+A) =

=
1

(2J∗ + 1)

1

2m∗

∫
d3pp

(2π)32Ep

∫
d3pA

(2π)32EA
(2π)4δ(p∗ − pA − pp)

∑
pol.

|M(N∗ → p+A)|2 =

=
1

(2J∗ + 1)

√
λ(m2

∗,m
2
A,m

2
p)

16πm3
∗

∑
pol.

|M(N∗ → p+A)|2 (D.2)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz. The angular integration is trivial because the
unpolarized squared matrix element of three momentum is just a function of the masses. Since the
nuclear force, which mediate the interaction, is invariant under time reversal, it follows that

M(N∗ → p+A) = M(p+A→ N∗) . (D.3)

By that, one has

σ(p+A→ N∗) =
(2J∗ + 1)

(2Jp + 1)(2JA + 1)

8π2m3
∗

mAEpvp

Γ(N∗ → p+A)√
λ(m2

∗,m
2
A,m

2
p)
δ(E2

CM −m2
∗) . (D.4)

For an off-shell state, since the excited nucleus is unstable, one should broaden the δ-function into
a resonance peak by taking the narrow width approximation

δ(E2
CM −m2

∗) → 1

π

m∗Γ∗

(E2
CM −m2

∗)2 +m2
∗Γ2

∗
, (D.5)
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finally obtaining

σ(p+A→ N∗) =
(2J∗ + 1)

(2Jp + 1)(2JA + 1)

8πm3
∗

mAEpvp

Γ(N∗ → p+A)√
λ(m2

∗,m
2
A,m

2
p)

m∗Γ∗

(E2
CM −m2

∗)2 +m2
∗Γ2

∗
. (D.6)
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[97] A. M. Gago, P. Hernández, J. Jones-Pérez, M. Losada, and A. Moreno Briceño, Eur. Phys.
J. C75, 470 (2015), 1505.05880.

[98] S. Antusch, E. Cazzato, and O. Fischer, JHEP 12, 007 (2016), 1604.02420.

[99] V. De Romeri, M. J. Herrero, X. Marcano, and F. Scarcella, Phys. Rev. D 95, 075028 (2017),
1607.05257.
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[171] B. Döbrich, J. Jaeckel, and T. Spadaro, JHEP 05, 213 (2019), 1904.02091, [Erratum: JHEP
10, 046 (2020)].
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