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Prevention and early diagnosis are the best and most effective ways for defeating HIV.
There is still no vaccine, but treatments with antiretroviral drugs are now available which,
in many cases, allow the infection to become chronic. However, research has highlighted
side effects of these drugs and the fact that a flare-up of the infection occurs if the therapy
is stopped. In recent years, the presence of virus reserves located in various parts of the
body, including the brain, has been hypothesized. The possibility of controlling the
infection of healthy cells and of interrupting the proliferation of virions inside the brain has
been studied, proposing optimal control strategies.

© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Despite undeniable progress in tackling Human Immunodeficiency Virus (HIV), many thousands of deaths are still
recorded nowadays, approximately 650.000 in 2021, (WHO).

The HIV is classified into two main types, HIV-1 and HIV-2, with the latter most confined to West Africa and less con-
tagious; in literature and in the following, when referring to HIV generally the most severe one HIV-1 is dealt with.

The comforting aspect is that the number of diagnoses is decreasing, almost halving in the last 25 years; unfortunately,
access to treatment still concerns only 75% of the total number of people with a positive diagnosis. A delayed positive
diagnosis has twomain consequences: the subject could unconsciously infect other people and the start of therapy is delayed.
So, besides an effective vaccination, still not available, at least the virus spread could be interrupted by prevention and early
diagnosis that have still a fundamental role, (Di Giamberardino et al., 2019), (Deeks et al., 2015), (Di Giamberardino and
Iacoviello, 2023), (Di et al., 2020, pp. 197e249). The therapy consists in the treatment with Highly Active Anti-Retroviral
Therapy (HAART); in this way HIV can become a manageable chronic health condition, (Eggleton & Nagalli, 2023), even if
with possible side effects, (Montessori et al., 2004), (Thapa & Shrestha, 2023). At population level, different control actions
can be proposed as strategies for medical intervention at different stages of infection progression (Di et al., 2018a), (Di et al.,
2018b).

By means of these therapeutic approaches, the number of infected patients living with HIV is increasing, due to the in-
hibition of virus replication. Nevertheless, it has been observed that after the suspension of the therapy there is an increase of
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the infection, (Levy, 1995); as recalled in (Huang et al., 2017), one reason could be the capability of the residual viremia (a
common feature among patients treated with HAART) to lead to cycles of viral replication. This hypothesis was rejected for
the lack of new resistance mutations; therefore, it has been argued that HIV is able to persist in viral reservoirs, as the brain,
the liver and the gut, (Huang et al., 2017), (Barker & Vaidya, 2020), (Kruize & Kootstra, 2019), (Chen et al., 2022), (Busman-
et al., 2021), (Astorga-Gamaza & Buzon, 2021). In (Huang et al., 2017) it is proposed a model in which the variations of the
number of CD4þT cells, of the infected and chronically infected cells and the viral load are studied in the tissue, the blood, the
testis and the brain, including the mutual influence. Among the virus reservoirs, the brain plays a central role due to expe-
rience of many patients of neurocognitive disorders (HAND), with dementia and encephalitis, as if the virus is not stuck in the
brain but can move up to the peripheral zones of the body by means of leukocyte. Complicating the fight against HIV is the
phenomenon that in (Osborne et al., 2020) is called the paradox of the blood brain barrier (BBB): it reduces the effectiveness of
medical treatments blocking the crossing inside of drugs, thus representing an obstacle for healing; nevertheless, immune
cells can be infected by HIV becoming able to cross the bloodebrainebarrier and to form a reservoir allowing the replication
of the virus. In (Clifford& Ances, 2013), it has been stressed that themacrophages, cells of the innate immune system, could be
infected themselves; if infected they can damage the central nervous system (leading to death); moreover, they can hide the
virus to treatments and antibodies, acting as trojan horse. Themechanism of themacrophages infection by HIV is still unclear,
as admitted in (Dupont & Sattentau, 2020) where the proposed mechanisms are the phagocytosis, the fusion and nanotubes.
In (Lutgen et al., 2020) it is recalled that HIV infects the brain in acute disease, approximately two weeks from the infections;
the delay with which HIV is detected implies that generally when the first symptoms appear, the brain can be already
involved.

By using compartmental modeling it is possible to study the evolution of the number of healthy cells, of virions and
macrophages; in (Barker& Vaidya, 2020) it is proposed an 8-dimension compartmental model distinguishing healthy CD4þT
cells and macrophages, inside and outside the brain, and the corresponding infected ones; moreover the virions inside and
outside the brain are introduced. The infection occurs by the virions that, what is more dangerous, are fed by the infected
cells; this action is discussed in (Barker & Vaidya, 2020) considering an on-off situation, without the introduction of control
actions.

In this paper, starting from the cited model (Barker & Vaidya, 2020), four control actions are introduced, aiming at
reducing the possibilities of infection and the production of new virions. The control of the infection inside the brain is
considered, being aware that, as already mentioned, some pharmacological treatment could not be totally effective against
the infected cells located inside the brain.

The paper is organized as follows. In Subsection 2.1 the model proposed in (Barker& Vaidya, 2020) is recalled introducing
the control actions; after assessing existence results of the solution, the model is analysed determining the disease free
equilibrium. Its stability analysis, discussed in Subsection 3.3, yields the condition for the asymptotic stability of the disease
free conditions; moreover, the basic reproduction number is determined. The optimal choice for the control actions, aiming at
reducing the number of infected cells avoiding the production of new ones, is introduced in Section 4. Numerical results are
proposed and discussed in Section 5; conclusions and further developments are outlined in Section 6.
2. Materials and methods

Themathematical model used in this study is proposed in a recentwork (Barker& Vaidya, 2020), inwhich data fromHIV-1
infected macaques were examined. The modelling is implemented at cellular level with a partition of the population dis-
tinguishing among the cells outside and inside the brain (the latter indicated with subscript B), and the cells uninfected and
infected (the latter identified with superscript *); moreover, the virions inside and outside the brain are introduced, V and VB,
respectively. Therefore, the population has 8 categories of cells interacting, as will be described in the next Subsection 2.1.
2.1. Mathematical modeling

To describe the HIV-1 infection in the brain as proposed in (Barker& Vaidya, 2020), the population of cells is partitioned as
follows:

C T(t) is the concentration of the uninfected CD4þ T cells at time t;
C T*(t) is the concentration of the infected CD4þ T cells at time t;
C M(t) is the concentration of the uninfected macrophages in the plasma at time t;
C M*(t) is the concentration of the infected macrophages in the plasma at time t;
C MB(t) is the concentration of the uninfected macrophages inside the brain at time t;
C M*

BðtÞ is the concentration of the infected macrophages inside the brain at time t;
C V(t) is the concentration of free HIV-1 virions at time t;
C VB(t) is the concentration of free HIV-1 virions in the brain at time t.

Where concentrations are measured as cells per ml.
11
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Themechanism of the infection is complex. A virion V can infect the CD4þTcells and themacrophagesM outside the brain,
yielding T* andM* respectively; the latter can enter the brain thus increasingM*

B. Infected T*,M* andM*
B can feed the virions

inside and outside the brain in a vicious circle. The rates at which virions V infect T and M cells are b and bM respectively.
Similar dynamics occurs inside the brain, involving the macrophages MB that could be infected by the virions VB, with the
same rate bM, thus becomingM*

B. Only macrophages can cross the brain border; healthy cells M flow into the brain at the rate
4 and vice versa, from MB to M, at the rate j; the same holds for the infected cells, with M* that can transfer from outside to
inside the brain M*

B at the same rate 4, and vice versa, with the rate j. Actually, the brain border cross is possible only for
macrophages cells at immature growth status, (Kumar et al., 2014), (Prinz & Priller, 2014), but in the present paper, following
also (Barker & Vaidya, 2020), the natural cell growth dynamics is not considered. In a more detailed model, with the
introduction of these characterization, additional time constants and delays would appear, mainly changing the times but
affecting the amplitudes only marginally.

The infected T* and macrophages cells M* produce free virions V at the rate p and pM respectively, as well as, in the brain,
the M*

B cells produce virions VB at the rate pM.
Death rates d and d are defined for the T and T* cells respectively; dM is the death rate of the uninfected macrophages

outside and inside the brain, as well as the infected macrophages M* and M*
B that die at rate dM. For the virions V and VB the

death rate is indicated by c. The uninfected T cells and macrophagesM are generated at a constant rate of t and tM cells/mL per
day respectively.

In (Barker & Vaidya, 2020), it is proposed the introduction of the highly active antiretroviral therapy, simulating that the
viral production could be completely removed outside the brain but not effective at all inside. In this paper, a higher number
of control actions are introduced aiming at limiting the infection outside (with a control u1) and inside the brain (with a
control u2), reducing the contact rate b and bM. Moreover, also the possibility of generation of virions V from the infected cells
T* and M* is reduced by means of a control u3 and the generations of virions VB from cells M*

B is controlled by limiting the
generation rate pM by means of the control u4.

Therefore, the infection evolution with control actions can be represented by the following equations:

_T ¼ t� bð1� u1ÞVT � dT

_T
* ¼ bð1� u1ÞVT � dT*

_M ¼ tM þ jMB � bMð1� u1ÞVM � 4M � dMM

_M
* ¼ bMð1� u1ÞVM þ jM*

B � 4M* � dMM*

_M B ¼ 4M � jMB � bMð1� u2ÞVBMB � dMMB

_M
*
B ¼ bMð1� u2ÞVBMB � jM*

B þ 4M* � dMM*
B

_V ¼ pð1� u3ÞT* þ pMð1� u3ÞM* � cV

_V B ¼ pMð1� u4ÞM*
B � cVB

(1)

whose scheme is shown in Fig. 1.
The amplitude of the controls ui, i ¼ 1, …, 4 can be interpreted as the intensity of efficacy of a treatment and are assumed

between 0, meaning no action/effectiveness, and 1, the maximum of the possible effectiveness with a total inhibition of virus
propagation.
Fig. 1. Block diagram of the controlled proposed model.

12
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The controls have been introduced modelling the known medical actions which aim at reducing the infection as well as
the virus replication. A biological description of the mechanisms at the bases of the infection progression and the pharma-
cological ways of interrupt it are beyond the scope of the present discussion. However, their introduction follows the main
lines of actions of the available mechanisms infection inhibition.

Without referring to specific drugs or active principles, according to literature, as in (Zephyr et al., 2021), (Ahemd et al.,
2021) and (Agosto et al., 2014), there are different mechanisms known to the authors for the virus fight and the infection
containment. One is represented by the Reverse Transcriptase Inhibitors, antiretroviral drugs that inhibit activity of viral DNA
polymerase required for retrovirus replication, acting on the DNA chain construction and then limiting the virus replication.
Such an effect can be produced by nucleoside or nucleotide analog reverse transcriptase inhibitors: this process is called also
as chain termination since the nucleosides or nucleotides used have the same structure of the normal ones but they terminate
in such a way that no more nucleotides can be added to the DNA chain: the enzyme reverse transcriptase recognizes them as
regular and inserts them into the newly synthesized DNA chain which then becomes inactive. Also non-nucleoside reverse
transcriptase inhibitors can be used, always leading to damages in the DNA chain construction but through a distortion of the
position of the DNA binding sites in the enzyme. Another action is represented by the Protease Inhibitors, a class of medi-
cations that act by interfering with enzymes that cleave proteins, blocking the development of protein precursors for the
production of infectious viral particles.

A different type of intervention is represented by the Fusion Inhibitors, able to suppress HIV in the body; HIV needs to enter
human host cells to replicate and this is performed binding to their surface and then fusing itself with cell to get inside: fusion
inhibitors block this step in the process, preventing HIV from infecting the cells and, then, from replicating. Finally, there are
the Integrase Inhibitors, a class of antiretroviral drug designed to block the action of integrase, a viral enzyme that inserts the
viral genome into the DNA of the host cell so blocking the retroviral replication.

It is clear that, with different mechanisms, there are two levels in which medications can interrupt the virus spread: the
reduction of the virus replication and the healthy cells infection. Accordingly to these observation, the controls u1 and u2
denotes all the interventions devoted to the new infection reduction, in the plasma and in the brain respectively, thus
emptying the T*,M* andM*

B compartments; at the same time, u3 for the plasma and u4 for the brain act to limit the production
of new virions, so “starving” the V and VB compartments.

The model (1) can be rewritten in a compact form after the introduction of the state

X ¼ ðT T* M M* MB M*
B V VBÞ

T
(2)

with components xi, i ¼ 1, …, 8, of the control:

U ¼ ðu1 u2 u3 u4ÞT (3)

and of the vector fields

f ðXÞ ¼

0
BBBBBBBBBB@

t� bx7x1 � dx1
bx7x1 � dx2

tM þ jx5 � bMx7x3 � 4x3 � dMx3
bMx7x3 þ jx6 � 4x4 � dMx4
4x3 � jx5 � bMx8x5 � dMx5
bMx8x5 � jx6 þ 4x4 � dMx6

px2 þ pMx4 � cx7
pMx6 � cx8

1
CCCCCCCCCCA

(4)

gðX;UÞ ¼

0
BBBBBBBBBB@

bx1x7u1
�bx1x7u1
bMx3x7u1
�bMx3x7u1
bMx5x8u2
�bMx5x8u2

�px2u3 � pMx4u3
�pMx6u4

1
CCCCCCCCCCA

(5)

with g(X, 0) ¼ 0, thus writing (1) as

_XðtÞ ¼ f ðXÞ þ gðX;UÞ (6)

with given initial conditions X(t0).
13
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2.2. Existence result

The existence of the solution of the dynamical system (6)may be assessed by using the same arguments as in (Zaman et al.,
2008), (Birkhoff & Rota, 1989) and (Iacoviello & Stasio, 2013). In fact, the system (6) may be rewritten as:

_X ¼ A,X þ BðXÞ (7)

with:
A ¼

0
BBBBBBBBBB@

�d 0 0 0 0 0 0 0
0 �d 0 0 0 0 0 0
0 0 �r1 0 j 0 0 0
0 0 0 �r2 0 j 0 0
0 0 4 0 �r3 0 0 0
0 0 0 4 0 �r4 0 0
0 pð1� u3Þ 0 pMð1� u3Þ 0 0 �c 0
0 0 0 0 0 pMð1� u4Þ 0 �c

1
CCCCCCCCCCA

(8)

where the following notations are introduced:
r1 ¼ 4þ dM r2 ¼ 4þ dM
r3 ¼ jþ dM r4 ¼ jþ dM

(9)

and:
BðXÞ ¼

0
BBBBBBBBBB@

t� bð1� u1ÞVT
bð1� u1ÞVT

tM � bMð1� u1ÞVM
bMð1� u1ÞVM

�bMð1� u2ÞVBMB
bMð1� u2ÞVBMB

0
0

1
CCCCCCCCCCA

(10)
From the Holder inequality, it results:

jBðX1Þ � BðX2Þj � C1,ðjV1 � V2j þ jT1 � T2j þ jM1 �M2j þ jVB1 � VB2j þ jMB1 �MB2jÞ
(11)

where X1 and X2 denote two different states:

Xi ¼ ðTi T*
i Mi M*

i MiB M*
iB Vi ViBÞ

T
; i ¼ 1;2 (12)

and the constant C1 does not depend on the state variables. Therefore, it results, setting H(X) ¼ A , X þ B(X):

jHðX1Þ � HðX2Þj � C2,jX1 � X2j (13)

being C2 ¼max{C1, kAk}. The inequality (13) implies that function H is uniformly Lipschitz continuous. Therefore, considering
the limitations in the controls ui, i ¼ 1,…, 4, as well as the positiveness of the state variables, it can be stated the existence of
the solution of the system (6).

3. Model analysis

In this section, it will be first analysed the system by determining the disease free equilibrium point and studying its
stability characteristics; successively, the expression of the reproduction number will be determined, an important parameter
that yields information on the spread of epidemic without the application of any containment measures and which is related
to the stability conditions of the dynamics.

3.1. Epidemic free equilibrium condition

To obtain the equilibrium points it has to be solved the system:
14
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_XðtÞ ¼ 0 (14)
The disease free equilibrium point is always present in epidemic spread dynamics; it corresponds to the case T* ¼ M* ¼
M*

B ¼ 0 (that is with compartments of infected elements void) andwith no virions V¼ VB¼ 0, that is x2¼ x4¼ x6¼ x7¼ x8¼ 0.
In absence of control, the values for the other compartments can be obtained solving the reduced system

t� dxe1 ¼ 0 (15)

tM þ jxe5 � 4xe3 � dMxe3 ¼ 0 (16)
4xe3 � jxe5 � dMxe5 ¼ 0 (17)
One gets

xe1 ¼ t

d
(18)

ð4þdMÞxe3 � jxe5 ¼ tM
4xe3 � ðjþdMÞxe5 ¼ 0
thus obtaining:

xe3 ¼ tMðjþ dMÞ
D0

xe5 ¼ tM4

D0
with xe3 >0 and xe5 >0 since

D0 ¼ ðjþ dMÞð4þ dMÞ � j4 ¼ ðjþ4þdMÞdM >0 (19)
Then, the epidemic free equilibrium point has the full expression

PDFE ¼
�
t

d
0

tMðjþ dMÞ
D0

0
tM4

D0
0 0 0

�T

(20)

clearly with the presence of healthy cells only.

3.2. Partial infected cells

It is worth noting that it is not possible to have equilibrium conditions with a partial presence of infected cells.

C If no virions inside the brain are present, xe8 ¼ 0, from the system (14) it is obtained directly:

xe6 ¼ xe4 ¼ 0; xe3,x
e
7 ¼ 0 (21)
For xe7 ¼ 0 PDFE is easily obtained while, if xe3 ¼ 0, no solution is possible, coherently with real biological conditions: in fact
xe3 ¼ 0 implies, for the equilibrium computations, both xe5 ¼ 0 and xe5 ¼ � tM

j .

C If no virions outside the brain are present, so that xe7 ¼ 0, the point PDFE is deduced immediately once again.
C If no infected macrophages inside the brain are present, xe6 ¼ 0, from the last equation in (1) it is deduced xe8 ¼ 0 and

therefore, again, the point PDFE is obtained.
C The same results are easily obtained assuming no infected macrophages outside the brain, xe4 ¼ 0.
C If no infected CD4þ T cells are present, so that xe2 ¼ 0, it follows easily that xe1,x

e
7 ¼ 0, that, being xe1s0, implies xe7 ¼ 0,

yielding again PDFE.
15
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3.3. Stability analysis

The local stability characteristics of the disease free equilibrium condition can be analysed computing the local lineari-
zation by means of the Jacobian J evaluated in PDFE:

Where the following notations are used for sake of compactness:

h1 ¼ bTef ¼
bt

d

h2 ¼ bMMef ¼
bMtMðjþ dMÞ

D0

h3 ¼ bMMBef ¼
bMtM4

D0

(23)
The real values of the 8 eigenvalues of J(PDEF) yield information on the stability of PDFE; besides the eigenvalue �d,
obviously negative, explicit expressions of the other 7 eigenvalues are not computable.

A different approach, which easily yields sufficient conditions on the allocation of the eigenvalues of matrix (22) makes use
of the Gershgorin circles. Based on this result, the eigenvalues of a square matrix of dimension n � n are contained in the
subset of the complex plane constituted by the union of n circles centred in each point of the diagonal andwith radius equal to
the sum of the modulus of the elements of relating column, without taking the considered diagonal point. The same result
holds if each radius is computed by the sum of the modulus of the element of the relating row, again without taking the
considered diagonal point. Since all the entries on the diagonal are real and negative, a sufficient condition for having all the
eigenvalues with negative real part is that each radius is smaller than the modulus of the diagonal element, so having all the
circles confined in the negative half complex plane. The non trivial sufficient conditions obtained by applying the Gershgorin
circles column-wise, are, for i ¼ 2, …, n

p< d (24)

pM < dM (25)
bt bMtMðjþ dMÞ

2
d

þ 2 ðjþ dMÞð4þ dMÞ � 4j
< c (26)

bMtM4

2 ðjþ dMÞð4þ dMÞ � 4j

< c (27)
The result is intuitive: asymptotic stability is guaranteed if the rate of death of infected cells is greater than that of
generation.

3.4. The reproduction number

The virus spread can be measured making use of the basic reproduction number, R0, an indicator of the diffusivity of the
virus at the beginning of the infection, in absence of containmentmeasures; it can be evaluated from themathematical model
computing the next generation matrix, (Van Den Driessche, 2017).

According to this approach, from dynamics (6) only the states directly involved by the infection must be considered

ZðtÞ ¼ ð x2ðtÞ x4ðtÞ x6ðtÞ x7ðtÞ x8ðtÞ ÞT (28)
so describing the first infection, and assuming the absence of control. The corresponding dynamical equations are split
separating the contagion phase F and the illness evolution V
16
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_Z ¼

0
BBBBBBBBBBBB@

_X2

_X4

_X6

_X7

_X8

1
CCCCCCCCCCCCA

¼

0
BBBBBBBBBBBB@

bx1x7

bMx3x7

bMx5x8

0

0

1
CCCCCCCCCCCCA

�

0
BBBBBBBBBBBB@

dx2

�jx6 þ 4x4 þ dMx4

jx6 � 4x4 þ dMx6

�px2 � pMx4 þ cx7

�pMx6 þ cx8

1
CCCCCCCCCCCCA

¼ F � V
(29)

e e e e e e T
By linearization in a neighbourhood of the disease free equilibrium point Z ¼ ðx2 x4 x6 x7 x8Þ of the two terms F
and V, one gets.

And.

Where positions (23) are used once again. The reproduction number is given by the spectral radius of the matrix FG�1, that is,
thanks to the structures of the two matrices F and G, by the spectral radius of the matrix � F1;2G

�1
2;2G2;1G

�1
1;1:

�F1;2G
�1
2;2G2;1G

�1
1;1 ¼

0
@h1m2 r4h1pMm1 jh1pMm1

h2m2 r4h2pMm1 jh2pMm1
0 4h3pMm1 r2h3pMm1

1
A (32)

with
m1 ¼ 1
cðr2r4 � j4Þ m2 ¼ p

cd
(33)

It can be easily deduced that one of the eigenvalues of (32) is null; therefore the reproduction number R is given by the
0
largest solution in modulus of the second order equation

y2 � ayþ b ¼ 0 (34)

with
a ¼ h1m2 þ r4h2pMm1 þ r2h3pMm1 (35)

b ¼ h3pMm1ðh1m2r2 þh2pMm1r2r4 � h2pMm1j4Þ (36)
4. Optimal control strategy

The introduced controls ui(t), i ¼ 1, …, 4 are defined as the result of pharmacological actions devoted to reduce the
proliferation of infected cells by limiting the presence of virions and limiting the virions generation. The mathematical model
discussed in Section 3 shows that the presence of just one cell of virions or of infected cells is able of activating the infection;
this is due to themacrophages able to go across the brain barrier, also if infected, and to the feeding action of infected cells that
improve the number of virions, both inside and outside the brain. These two actions are governed, respectively by the co-
efficients b, bM, driving the growth of the infected cells, and by p, pM, forcing the growth of the virions.

Then, the controls act as reducing factors for the containment, or the full elimination, of the proliferation of ðV ;VB; T*;M*;

M*
BÞ cells: a reduction of the infection of T cells, as well as of the macrophages cellsM andMB, along with the limitation of the

production of new virions V and VB from the infected cells.
17
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In (Barker & Vaidya, 2020), the main goal is to study the impact of the virus produced in the brain, both suppressing the
viral production outside the brain (and therefore choosing p ¼ pM ¼ 0), and allowing the viral production inside (therefore
pM > 0 inside the brain). These controls correspond to a boundary constant action over some inputs, showing that with the
application of control inside the brain the influence on the persistence of virus can be significant.

With the model and the controls adopted, it is possible to study all the mutual aspects of interactions for disease
containment, being possible 1) to extend the results in (Barker & Vaidya, 2020) allowing a control modulation over time (not
only corresponding to no action or maximum efficacy), 2) to introduce a cost in the control application (cost of the drug and
physical side effects), 3) to evaluate the advantage of different infected cells reductions, separately or in suitable
combinations.

The limitations of the efficacy and availability of each control make the problemmore intriguing, requiring suitable choices
and timing.

To this aim, optimal control design represents a suitable framework to determine the strategies satisfying the previously
chosen requirements; the Pontryagin principle is therefore applied checking the satisfaction of the necessary conditions.

The general approach starts from the definition of the cost index to be minimised, J(X(t), U(t)), in which each state and
control variables contribute according to their relevance in the desired solution to be computed. Its general expression is
given by

JðXðtÞ;UðtÞÞ ¼
Ztf

t0

LðXðtÞ;UðtÞÞdt (37)
When there are not physical reasons or particular constraints, the general expression L(t, X(t), U(t)) in (37) is usually
simplified mainly for facilitating the computations and giving a more effective solution. A most adopted approach is rep-
resented by a quadratic function

LðXðtÞ;UðtÞÞ ¼ XT ðtÞQðtÞXðtÞ þ UT ðtÞRðtÞUðtÞ (38)

with Q(t) � 0 and R(t) > 0.
In this work, the same choice is adoptedwith further simplifications, taking theweightmatrices Q and R diagonal andwith

no time dependency; this choice is sufficient since the time interval considered is already a small transient time and any
further diversification of weights within that short time period seemed not relevant. However, if it were done, the formulas in
the sequel do not change but for the time dependency. So,

LðXðtÞ;UðtÞÞ ¼
X8
i¼1

qix
2
i þ

X4
i¼1

riu
2
i (39)
With this general expression it is possible both to minimize the number of infected cells and of virions and, also, to
maximize the number of healthy cells (by choosing negative weights for the corresponding weights). In this paper it will be
considered the former goal, thus assuming: q1 ¼ q3 ¼ q5 ¼ 0.

Before applying the Pontryagin principle and determining the necessary conditions for optimal control, it is possible to
state the existence of the optimal control itself by using the arguments in (Fleming & Rishel, 1975):

C The set of controls and state variables is non-empty: this condition is satisfied by the results in (Lukes, 1982).
C The control space is closed and convex: this is due by the box constraints chosen for the control.
C The right hand side of the state system is bounded by a linear function in the state and control: this condition has

already been discussed in the previous subsection 2.2.
C The integrand in the cost index is convex with respect to the controls ui, i¼ 1,…, 4: this is guaranteed by the choice of a

positive defined quadratic lagrangian.
C There exists a constant h larger than 1 and two positive constants o1, o2 such that:

Jðu1;u2;u3;u4Þ � o2ðju1j2 þ ju2j2 þ ju3j2 þ ju4j2Þ � o1 (40)
This condition is verified once it is considered that the state variables are limited.
Under these arguments, the existence of the optimal control of the considered problem is stated. To determine the

necessary optimality conditions it is required the definition of the Hamiltonian:
18
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HðXðtÞ;UðtÞ; lðtÞÞ ¼
X8
i¼1

qix
2
i þ

X4
i¼1

riu
2
i þ lT ðtÞðf ðXðtÞÞ þ gðXðtÞ;UðtÞÞ (41)
The costate equations become:

_liðtÞ ¼ �2qixi � lT ðtÞ vf ðXðtÞÞ þ gðXðtÞ;UðtÞ
vxi

i ¼ 1;…;8 (42)

that is, recalling the notation X ¼ ðT T* M M* MB M*
B V VBÞT :
_l1ðtÞ ¼ l1ðtÞd1� ðl2ðtÞ � l1ðtÞÞð1� u1ðtÞÞbVðtÞ
_l2ðtÞ ¼ �2q2T

*ðtÞ þ l2ðtÞd� l7ðtÞð1� u3ðtÞÞp
_l3ðtÞ ¼ �ðl4ðtÞ � l3ðtÞÞð1� u1ðtÞÞbMVðtÞ þ l3ðtÞð4þ dMÞ � l5ðtÞ4
_l4ðtÞ ¼ �2q4M

*ðtÞ � l4ðtÞðj� 4� dMÞ � l6ðtÞ4� l7ðtÞð1� u3ðtÞÞpM
_l5ðtÞ ¼ �l5ðtÞð � j� dMÞ � ðl6ðtÞ � l5ðtÞÞð1� u2ðtÞÞbMVBðtÞ
_l6ðtÞ ¼ �2q6M

*
BðtÞ � l4ðtÞj� l6ðtÞð � j� dMÞ � l8ðtÞð1� u4ðtÞÞpM

_l7ðtÞ ¼ �2q7VðtÞ � ðl2ðtÞ � l1ðtÞÞbTðtÞ � ðl4ðtÞ � l3ðtÞÞð1� u1ðtÞÞbMMðtÞ
_l8ðtÞ ¼ �2q8VBðtÞ þ l5ðtÞð1� u2ðtÞÞbMMB þ cl8ðtÞ
Since in the present analysis the final state values are assumed not constrained, in equation (42) the final conditions
li(tf) ¼ 0, i ¼ 1, …, 8 must be introduced.

As far as the variables involved in the Lagrangian function, each component of the control vector is assumed nonnegative
and bounded by 1; the zero value corresponds to the absence of control, whereas the maximum one is the ideal case of a
totally effective therapeutic actionwhich inhibits, where applied, any virus replication. So, bounds of the form 0� ui� 1, i¼ 1,
…, 4, are introduced.

In aminimization procedure as the one here adopted, it is clear that the quantities to beminimised are the infected and the
infective cells, T*, M*, M*

B, V and V* while the healthy ones, T, M and MB, must be left unchanged. Then, in the choice of the
coefficients qi, only the ones multiplying the state variables to be minimised must be set greater than zero. For the remaining
ones, or the coefficients are set to zero, or, thanks to relative weight of the variables in L(,), they can be set lower than zero, so
realising a maximization effect or, in other words, improving the difference between healthy and dangerous cells.

With the general approach described, the Pontryagin principle yields the optimal control as the solution of the inequality:

UoðtÞ ¼ minðHðX;U; lÞÞ; U2½0; 1� (43)

thus yielding
uoi ðtÞ ¼ min
�
1;max

�
u
̄
iðtÞ
2ri

;0
��

(44)

where
u1ðtÞ ¼ ðl2ðtÞ � l1ðtÞbVðtÞTðtÞ þ l4ðtÞ � l3ðtÞÞbMVðtÞMðtÞ
u2ðtÞ ¼ ðl6ðtÞ � l5ðtÞÞbMVBðtÞMBðtÞ
u3ðtÞ ¼ l7ðtÞðpMM*ðtÞ � pT*ðtÞÞ
u4ðtÞ ¼ l8ðtÞpMM*

BðtÞ
5. Numerical results

In this section numerical simulations are performed to describe all the previously discussed considerations on the
mathematical model (1), and to compute optimal control strategies that correspond to different choices in the pharmaco-
logical intervention, comparing them in terms of effectiveness in the infection reduction or eradication along with the
evaluation of the optimality of the intensity of the drugs administered.
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In all the simulations, the values of the parameters are assumed as in (Barker& Vaidya, 2020), based on experiments with
real data, and are here reported in Table 1.

With such parameters, the epidemic free equilibrium point is given by

PDFE ¼ �
38700 0 1:4766,106 0 6:3614,103 0 0 0

�T (45)

The Jacobian (22) is:
JðPDEF Þ ¼

0
BBBBBBBBBB@

�10�2 0 0 0 0 0 �1:4,10�3 0
0 �1:4 0 0 0 0 1:4,10�3 0
0 0 �4,10�2 0 8:9 0 �1:3,10�3 0
0 0 0 �0:24 0 8:9 1:3,10�3 0
0 0 3:8,10�2 0 �8:9 0 0 �5:5,10�6

0 0 0 3:8,10�2 0 �9:2 0 5:5,10�6

0 5,104 0 103 0 0 �23 0
0 0 0 0 0 103 0 �23

1
CCCCCCCCCCA

whose eigenvalues are
a1 ¼ �0:0100 a2 ¼ �25:8875 a3 ¼ �23:0004 a4 ¼ 1:4691
a5 ¼ �0:2429 a6 ¼ �0:0018 a7 ¼ �9:2394 a8 ¼ �9:0359
Therefore the disease free equilibrium point is unstable as could be hypothesized directly checking the conditions
(24)e(27), being the first two not verified. The instability of the disease free equilibrium point is connected with the basic
reproduction number R0, that can be determined by solving (34), once a and b are calculated resulting equal to 2.34 and 7.07 ,
10�5 respectively. In this case R0 ¼ 2.26 > 1, meaning that without control actions the spread increases.

The framework considered in this paper to face the infection is the optimal control; for the initial conditions the values
adopted are: Ti ¼ 38700, Mi ¼ 1463000, MBi ¼ 200; for the infected cells null values: T*

i ¼ M* ¼ M*
Bi ¼ 0, with Vi ¼ 0 and

VBi ¼ 100, therefore, assuming that the infection is originated by the presence of virions Vb only.
As far as the lagrangian (39) is concerned, the choice is to minimize the infected cells T*, M*, M*

B and the virions, both
outside and inside the brain V and VB respectively, without aiming at increasing the number of healthy cells, q1 ¼ q3 ¼ q5 ¼ 0.

As a possible choice of the weights q2, q4, q6, q7, q8 and ri, i ¼ 1, …, 4, it is proposed to assume them in order to have the
terms of the cost index comparable in the control time interval, considering the order of magnitude of the values of the states
in a simulation up to 100 days in absence of control and the square applied in the cost index, thus having:

q2 ¼ q4 ¼ q6 ¼ q8 ¼ 10�9 q7 ¼ 10�12 (46)

and, for the weights of the control
ri ¼ 10�2 i ¼ 1;2; 3;4 (47)

To appreciate the effects of the introduction of optimal controls, two situations are simulated, comparing what would

happen if no actions were applied for the entire control period of 60 days, and if the optimal control is applied starting at the
16th day (indicated in the following as simulation 1) and if the optimal control is applied from the 20th day (indicated in the
following as simulation 2). The first choice, starting from the 16th day, corresponds to the beginning of the sensible increase of
the number of virions V cells; the second, from the 20th day, corresponds to starting the action at the peak of the number of
virions V.

The optimal controls uoi , i¼ 1,…, 4 are shown in Fig. 2;more precisely, in Fig. 2 panel a the controls uo1 and uo3 acting outside
the brain are shown in the two simulated cases (control action starting at day 16 and starting at day 20). It can be noted that, if
the controls are applied only starting at day 20, the effort to be applied, both for uo1 and uo3, is stronger with respect to an
earlier application. In particular uo1 in simulation 1 has an almost constant value around 0.4, whereas it is decreasing from a
Table 1
Numerical values of the model parameters.

Parameter Value Parameter Value

t 387 [ml�1d�1] tM 2743.55 [ml�1d�1]
b 3.583 , 10�8 [ml d�1] bM 8.65 , 10�10 [ml d�1]
d 0.01 [d�1] dM 0.00185 [d�1)
d 1.4551 [d�1] dM 0.2060 [d�1]
4 0.03876 [d�1] j 8.995 [d�1]
p 50000 [d�1] pM 1000 [d�1]
c 23 [d�1]
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Fig. 2. Evolution of the optimal controls; a) optimal control uo1 (blu curve) and uo3 (red curve) when all the actions are applied at day 16 from the beginning of the
infection (continuous lines) or at day 20 (dotted lines); b) optimal control uo2 (blu curve) and uo4 (red curve) when all the actions are applied at day 16 from the
beginning of the infection (continuous lines) or at day 20 (dotted lines).
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value of about 0.9 reaching the value of 0.5. Analogously, also uo3, in the two cases, reaches the same values, with larger values
in simulation 2. In Fig. 2 panel b the controls uo2 and uo4 are shown for the two simulations; it can be noted a stronger difference
in the values in the two simulations with almost constant values in simulation 1 and for uo2 for simulation 2. In both cases it
can be noted that the controls uo3 and uo4 required tominimize the cost indexmust be stronger than uo1 and uo2, thus suggesting
the importance of limiting the feeding actions of T*, M* and M*

b on V and Vb.
Figs. 3e6 show the behaviours of the 8 state variables with the evident advantages of early action (simulation 1); also the

introduction of optimal control starting at day 20 provides advantages in a lower number of infected cells, limiting the
decrease of the number of healthy cells. In all the evolutions, in particular the ones of T*, V and Vb, the effects of the controls
avoid to reach the highest values in simulation 1, and allow to reduce rapidly the high values of infected cells and virions in
simulation 2.

These effects can be appreciated in Fig. 7 and 9 where the blue lines represent the consequences of the application of the
optimal control starting at day 16, and 20, respectively, considering the total healthy cells T þ M þ Mb (panel a) and infected
cells T* þM* þM*

b (panel b). In both cases, and mostly for simulation 1, the benefits of the control actions are evident
decreasing the infection effects. To stress the role of the controls inside and outside the brain, two further optimization
problems are studied; one assuming in the model, and consequently in the optimal control problem, only the optimal actions
inside the brain, thus obtaining new uo2 and uo4, and the other, solving an optimal control problem inwhich only uo1 and uo3 are
found, assuming equal to zero u2 and u4. It can be noted in Figs. 7 and 9 that in absence of the controls uo1 and uo3 the two
Fig. 3. Evolution of the concentration of the T (a) and T* cells (b) in three conditions: i) no control action applied (red dotted line), ii) assuming no control action
up to day 20 and successively with the application of the corresponding optimal controls of Fig. 2 (green line), iii) assuming no control action up to day 16 and
successively the application of the corresponding optimal controls of Fig. 2 (blue lines).
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Fig. 4. Evolution of the concentration of theM (a) andM* cells (b) in three conditions: i) no control action applied (red dotted line), ii) assuming no control action
up to day 20 and successively with the application of the corresponding optimal controls of Fig. 2 (green line), iii) assuming no control action up to day 16 and
successively the application of the corresponding optimal controls of Fig. 2 (blue line).

Fig. 5. Evolution of the concentration of the Mb (a) and M*
b cells (b) in three conditions: i) no control action applied (red dotted line), ii) assuming no control

action up to day 20 and successively with the application of the corresponding optimal controls of Fig. 2 (green line), iii) assuming no control action up to day 16
and successively the application of the corresponding optimal controls of Fig. 2 (blue line).
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actions uo2 and uo4 do not provide a sensible reduction of the infection, whereas the uo1 and uo3 do yield advantages in facing the
infection, even alone.

In Fig. 8, panel a, it can be noted that the absence of control uo2 and uo4 does not basically change the required effort for uo1
and uo3 with respect to the original simulation 1, whereas the case in which it is assumed u1 ¼ u3 ¼ 0 the optimal controls uo2
and uo4 try to face the infection with values significantly higher with respect to the application of the control of simulation 1.

In Fig. 10 panel a the optimal controls uo1 and uo3 (continuous lines blue and red) of simulation 2 are shown along with the
same controls obtained solving the optimization problemwith uo2 ¼ uo4 (dotted blue and red lines respectively). Analogously,
in panel b the optimal controls uo2 and uo4 of simulation 2 are shown along with the same control obtained solving the
optimization problemwith uo1 ¼ uo3. In both cases it can be noted that the obtained dotted controls have lower values than the
corresponding ones of simulations 1 and 2. The reason is that when applying the controls starting at day 20, that is when the
number of infected cells is already decreasing, the best strategy to minimize the chosen cost index (being the sum of the
square of infected cells plus the square of the controls) is to apply a lower level of controls.

Finally, in Fig. 11 the effects of simulation 1 (panel a) and simulation 2 (panel b) are shown on the total number of virions
V þ Vb and compared with the absence of controls, along with the application of the control obtained solving the optimal
control problemwith u1¼ u3¼ 0 and the problemwith u2¼ u4¼ 0. The predominant role of the controls outside the brain, uo1
and uo3, is evident also on the total number of virions, both for simulations 1 and 2. This is comforting, since, up to now, most of
themore common ART therapies have limited capabilities to cross the blood brain barrier. One of the goal of recent research is
22



Fig. 6. Evolution of the concentration of the V (a) and Vb cells (b) in three conditions: i) no control action applied (red dotted line), ii) assuming no control action
up to day 20 and successively with the application of the corresponding optimal controls of Fig. 2 (green line), iii) assuming no control action up to day 16 and
successively the application of the corresponding optimal controls of Fig. 2 (blue line).

Fig. 7. Evolution of the concentration of the healthy cells T þ M þ Mb (panel a) and of the infected cells T* þM* þM*
b (panel b) when all the optimal controls

starting at day 16 of Fig. 2 are applied (blue solid line), when only controls u2 and u4 are used (green line), when only controls u1 and u3 are used (dotted line), and
without any action (red line).
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to provide drugs based on nanoparticles with acceptable biocompatibility with red blood cells and macrophages able to
penetrate the BBB; in (Gong et al., 2020), in particular, it is assessed the 50% ability of penetration of PLGA-based EVG
nanoparticles in the microglia, important central nervous system HIV-1 reservoir. Nowadays, recent studies, (Mathews et al.,
2019), (Anesten et al., 2021) refer to in vitro research and on mice showing promising developments with reference to the
possibility of obtaining therapies capable of penetrating the brain and limiting the infection.

6. Conclusions and future developments

The macrophages are the cells able to cross the blood brain barrier from outside to inside the brain and vice versa. HIV can
fool these cells that can contribute to the increase of the number of virions. This mechanismmakes the brain and other organs
a sort of reservoir of HIV thus making difficult to interrupt their proliferation. The description of this phenomenon is herein
based on a model already experimentally validated on real data; one basic assumption regards the non inclusion of the cell
growth rate, that regards the immature macrophages infected and able to cross the brain barrier. Nevertheless, the simpli-
fication does not affect the overall modeling that seems to adequately get the cell dynamics. The control actions introduced,
following the possible medical intervention available, discussed in Subsection 2.1, aim at interrupting the infection of healthy
cells and the proliferation of virions, outside and inside the brain. In all the analysis it is evident the deeper influence of the
control outside the brain with respect to the one inside; this is comforting, at least referring to the most recent available
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Fig. 9. Evolution of the concentration of the healthy cells T þ M þ Mb (panel a) and of the infected cells T* þM* þM*
b (panel b) when all the optimal controls

starting at day 20 of Fig. 2 are applied (blue solid line), when only controls u2 and u4 are used (green line), when only controls u1 and u3 are used (dotted line), and
without any action (red line).

Fig. 8. Evolution of the control actions uo1 (blu line)and uo3 (red line) (panel a) and uo2 (blue line) and uo4 (red line) (panel b) when all the optimal controls starting
at day 16 (solid line), when only controls u1 and u3 are used (dotted yellow and red lines respectively) keeping u2 ¼ u4 ¼ 0, when only controls u2 and u4 are used
(dotted yellow and red lines respectively), keeping u1 ¼ u3 ¼ 0.

Fig. 10. Evolution of the control actions uo1 (blu line)and uo3 (red line) (panel a) and uo2 (blue line) and uo4 (red line) (panel b) when all the optimal controls starting
at day 20 (solid line) are applied, when only controls uo1 and uo3 are used (dotted line) keeping u2 ¼ u4 ¼ 0, when only controls uo2 and uo4 are used (dotted line),
keeping u1 ¼ u3 ¼ 0.
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Fig. 11. Evolution of the concentration of the virion cells V þ Vbwhen, in panel a, the control action start at day 16 and when, panel b, it starts at day 20 (blue solid
line), when only controls u2 and u4 are used (green line), when only controls u1 and u3 are used (dotted line), and without any action (red line).
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medications. Moreover, it can be stressed the importance of a combination of early treatments, both inside and outside the
brain. Ongoing work aims at studying relations among brain and other virus reservoir and the most efficient way of medical
treatment.
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