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ABSTRACT

The aim of this work is to propose a novel dynamic resource al-
location strategy for adaptive Federated Learning (FL), in the con-
text of beyond 5G networks endowed with Reconfigurable Intelli-
gent Surfaces (RISs). Due to time-varying wireless channel con-
ditions, communication resources (e.g., set of transmitting devices,
transmit powers, bits), computation parameters (e.g., CPU cycles at
devices and at server) and RISs reflectivity must be optimized in each
communication round, in order to strike the best trade-off between
power, latency, and performance of the FL task. Hinging on Lya-
punov stochastic optimization, we devise an online strategy able to
dynamically allocate these resources, while controlling learning per-
formance in a fully data-driven fashion. Numerical simulations im-
plement distributed training of deep convolutional neural networks,
illustrating the effectiveness of the proposed FL strategy endowed
with multiple reconfigurable intelligent surfaces.

Index Terms— Adaptive federated learning, Lyapunov opti-
mization, resource allocation, Reconfigurable Intelligent Surfaces.

1. INTRODUCTION

The future of wireless communication systems is to accomodate a
plethora of new services for different verticals, on the same network
infrastructure [1]. Therefore, beyond 5G networks will have to be
extremely flexible and dynamically reconfigurable from the applica-
tion layer down to the wireless propagation environment. In partic-
ular, reconfigurability of the wireless environment is a completely
new feature, foreseen to be enabled by the deployment of Reconfig-
urable Intelligent Surfaces (RIS) [2]. RISs are arrays of backscatters,
where each element applies an individual phase-shift (and/or an am-
plitude and/or a polarization rotation) with which it backscatters an
incident wave [3–5], with the aim of creating a controllable reflected
beam. The deployment of such a flexible and complex architecture
will enable Machine Learning (ML) and Artificial Intelligence (AI)
at the edge, a paradigm known as edge machine learning. The chal-
lenge is that edge ML calls for jointly optimizing inference, training,
communication, computation, and control under end-to-end latency,
reliability, and learning performance requirements [6–9]. In this con-
text, the exploitation of RISs in this joint design plays a key role,
since it can strongly mitigate the presence of poor wireless channel
conditions due to mobility, time-varying environment, and blocking
events, especially using millimeter wave communications [2, 10].

Related works. Training ML models at the edge mainly relies
on Federated Learning (FL) [9, 11–15]. In this approach, learning

The work of Di Lorenzo and Barbarossa was funded by the H2020
project RISE-6G no. 101017011.

architectures perform (variants of) parallel stochastic gradient de-
scent (SGD) across multiple edge devices, whose intermediate re-
sults are aggregated by an Edge Server (ES). FL has several benefits
of data privacy, and is empowered by a large amount of device par-
ticipants with modern powerful processors and low-delay mobile-
edge networks. Several works on FL explicitly focus on the opti-
mization of radio resource allocation [16–26]. The authors in [15]
study FL and the problem of joint power and resource allocation
for ultra-reliable low latency communication in vehicular networks.
In [24], the authors propose adapting federated averaging to use a
distributed form of Adam optimization along with a compression
technique. The work in [27] proposes a FL approach with adaptive
and distributed parameter pruning. In [25], the authors propose a
joint device scheduling and resource allocation policy to maximize
the model accuracy within a given total training time budget. Ref-
erence [26] proposes a dynamic user selection scheme to minimize
the FL convergence time. Very recently, some works have proposed
to enhance the performance of FL tasks by exploiting RISs [28, 29].
In [28], the authors investigate the problem of model aggregation in
FL systems aided by multiple RISs, designing the transmit power,
selecting the participants in the model uploading process, and tuning
the phase shift of the available RISs. Similarly, reference [29] formu-
lates a communication-learning design problem to jointly optimize
device selection, over-the-air transceivers, and RIS phase shifts.

Contributions. In this paper, we introduce a novel dynamic op-
timization framework for adaptive federated learning empowered by
RISs, jointly encompassing communication, computation, and learn-
ing aspects of the problem. Differently from previous works that
mainly focused on static learning (where FL is carried out up to con-
vergence and then the learning process stops), we consider adaptive
FL strategies, with the aim of endowing wireless networks with con-
tinuous learning and adaptation capabilities. Hinging on Lyapunov
stochastic optimization [30], we develop a dynamic resource allo-
cation strategy working at the same time-scale of the FL algorithm,
while optimizing on the fly radio parameters (e.g., set of transmit-
ting devices, bits and rates), computation resources (e.g., CPU cy-
cles at devices and at ES) and RISs reflectivity parameters, in order
to strike the best trade-off between energy, latency, and performance
of the FL task. The method works in a fully data-driven fashion, esti-
mating online the performance (i.e., accuracy and convergence rate)
from streaming data. Finally, the proposed strategy is customized
to deep convolutional network training, showing the advantages ob-
tained by endowing FL architectures with multiple RISs.

2. SYSTEM MODEL

Let us consider a scenario with N edge devices, K RISs and an AP
equipped with an ES. The devices are cooperatively performing a
training task aimed at learning a weight vector w ∈ Rm. To this
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aim, at each time t ≥ 0, the devices collect batches Bt of labelled
i.i.d. data (i.e., input/output pairs) (xi,t, yi,t) ∈ Rd × R, for all
i = 1, . . . , N . Then, assuming that device i has a local loss function
Ji(w;xi, yi), whose structure depends on the specific learning task,
the goal of FL can be mathematically cast as:

min
w

∑N

i=1
E
{
Ji(w;xi, yi)

}
, (1)

where the expectation is carried out over the data and/or batch distri-
bution. Now, at each time t, letting wt be the instantaneous guess for
w, we proceed by optimizing problem (1) using an adaptive stochas-
tic optimizer (e.g. ADAM, Adagrad, etc.). In particular, let us de-
note gi,t(wt) =

∑
(xi,t,yi,t)∈Bi,t ∇wJi(wt;xi,t, yi,t), for all i, t,

to shorten the notation. Then, a rather general gradient-based opti-
mizer recursion reads as:

wt+1 = wt − µ · f
(∑

i∈St
gi,t(wt)

)
, (2)

where t ≥ 0, µ > 0 is a step-size, and St is the set of nodes that
participate in the optimization at time t; the function f(·) depends
on the specific optimizer and applies to the sum of received gradi-
ents a time t. To implement (2), the devices belonging to St (to be
determined for all t) compute, in parallel, the gradients of the local
cost functions and upload them to the AP. Then, the edge server ag-
gregates the local information to compute the new estimate wt+1,
which is finally fed back to the devices. To explore the trade-off
between power, latency, and performance of FL, following [8], we
act on the source encoder of each transmitting device. In particu-
lar, we assume the devices transmit dithered quantized versions of
gi,t(wt) [31], encoding local gradients into m · bi,t bits, where bi,t
is chosen at each t from a discrete set Ci, i.e., bi,t ∈ Ci.

2.1. RIS-enhanced communications

We consider a system endowed withK passive RISs, each one com-
posed of M reflecting elements. Each element is characterized by a
complex reflection coefficient vk,l,t = θk,l,te

jφk,l,t , where θk,l,t ∈
{0, 1} (i.e., the l-th reflective element of RIS k is active or not at

time t), and φk,l,t ∈
{

2nπ

2br

}2br−1

n=0

(i.e., the phase of each element

is quantized using br bits) [4]. Equivalently, we have

vk,l,t ∈ R =

[
0,
{
e
j 2nπ

2br

}2br−1

n=0

]
, ∀k, l, t. (3)

Let us denote vk,t = [vk,1,t, . . . , vk,M,t]
T and vt = {vk,t}Kk=1.

Then, assuming a Single Input Single Output (SISO) communication
system, and denoting by pi,t the transmission power of user i, the
RIS-aided uplink transmission rate between user i and the AP is

Ri,t = Bi log2

(
1 +

hi,t(vt)pi,t
N0Bi

)
, (4)

where Bi is the bandwidth assigned to user i, N0 is the noise power
spectral density, and hi,t(vt) is the RIS-dependent channel coeffi-
cient given by [32]:

hi,t(vt) =
∣∣∣hai,t +

∑K

k=1
hTi,k,t diag(vk,t)z

a
i,k,t

∣∣∣2 , (5)

where hai,t represents the direct channel coefficient between user i
and the AP; whereas, hi,k,t ∈ CM×1 and zai,k,t ∈ CM×1 are vec-
tors containing all the channel coefficients between user i and RIS k
elements, and between RIS k elements and the AP, respectively.

2.2. Latency and power consumption

In this paragraph, we evaluate the latency and the power consump-
tion needed to implement one iteration of the algorithm in (2). In
particular, there are four main components to be taken into account.

(i) Local processing: At the i-th device, the latency and the
power necessary to compute the local gradient gi,t(wt) are given by
Lloci,t = BtJi

fi,t
and pci,t = γi(fi,t)

3, respectively, where Ji denotes
the number of CPU cycles needed to compute the local gradient from
one data unit, Bt = |Bt|, fi, t is the CPU frequency of device i, and
γi is the effective switched capacitance of the i-th processor [33].

(ii) Uplink communication: Denoting by Ri,t the uplink data
rate, the latency needed to upload the local gradients to the ES reads
as Lui,t =

m·bi,t
Ri,t

. Then, inverting (4), the transmit power consump-

tion is given by: pi,t = BiN0
hi,t(vt)

[
exp

(
Ri,t ln 2

Bi

)
− 1
]
.

(iii) Edge server processing: At the ES, the latency necessary to
produce the global estimate in (2) is given by Lst = C|St|

fst
, where C

is the number of CPU cycles necessary to perform the single step of
the gradient-based algorithm for each device, and fst is the CPU fre-
quency of the server. This operation entails a power pst = γs(f

s
t )3,

with γs denoting the effective switched capacitance of the ES.
(iv) Downlink communication: It is necessary to send the global

estimate back to the agents. For simplicity, it is assumed to be given
and not optimized in this work.

To have synchronous training updates, we need to consider the
maximum among communication delays of all transmitting devices
in the overall latency that, at a given time t, reads as:

Lt = max
i∈St

{
Lloci,t + Lui,t

}
+ Lrt . (6)

Similarly, the overall power consumption for the FL task at time t is:

ptot
t =

∑
i∈St

(
pi,t + pci,t

)
+ pst . (7)

3. RIS-AIDED ADAPTIVE FEDERATED LEARNING

The aim of this paper is to jointly allocate radio (i.e., set of transmit-
ting devices, powers, quantization bits and RISs reflectivity parame-
ters) and computation (i.e., CPU cycles at devices and at server) re-
sources to minimize the long-term average system power consump-
tion in (7), with constraints on the average learning performance and
the average latency in (6). LetGt and αt be task-dependent learning
performance and convergence rate metrics, respectively, which will
be explained in the sequel (see, e.g., (9)). Then, the problem can be
cast as:

min
Ψt

lim
t→∞

1

t

∑t−1

τ=0
E
{
ptot
τ

}
subject to (a) lim

t→∞

1

t

t−1∑
τ=0

E {Lτ} ≤ L; (8)

(b) lim
t→∞

1

t

t−1∑
τ=0

E{Gτ} ≥ G; (c) lim
t→∞

1

t

t−1∑
τ=0

E{ατ} = α,

bi,t ∈ Ci, ∀i ∈ St, t; Rmin
i ≤ Ri,t ≤ Rmax

i,t , ∀i ∈ St, t;

fmin
i ≤ fi,t ≤ fmax

i , ∀i ∈ St, t; vk,l,t ∈ R, ∀k, l, t;

Bt ∈ B, ∀t; fs,min ≤ fst ≤ fs,max, ∀t;

Xt
where Ψt = [vt, {bi,t}i∈St , {Ri,t}i∈St , {fi,t}i∈St , fst , Bt], and
the expectations are taken with respect to the random channel states,
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whose statistics are supposed to be unknown. The constraints of
(8) have the following meaning: (a) the average latency of training
iterations does not exceed a predefined value L; (b) the average per-
formance metric Gt has to be greater or equal to predefined value
G; (c) the average convergence rate is constrained to be equal to
α. Also, some constraints in Xt impose that the batch size Bt can
take values only from the discrete set B, the number of quantiza-
tion bits {bi,t}i∈St can take values only from a finite set Ci, and
the phase shifts vk,l,t of the RISs obey to (3). Finally, the last con-
straints in Xt impose instantaneous bounds on the resource variables
{Ri,t}i∈St , {fi,t}i∈St , fst .

In several practical cases (e.g., neural network training), we do
not have a closed-form expression for Gt and αt. Therefore, we
propose to exploit an online mechanism that estimates the learning
performance and the convergence rate in a totally data-driven fash-
ion. We assume that either the ES is provided with a validation set
T or, in the absence of a validation set, the agents can sense an addi-
tional batch T of data at each time-slot, compute their local learning
perfomance and send it (one scalar) to the server for the computa-
tion of the overall learning perfomance. Then, two task-dependent
functions Ĝt and α̂t are introduced to measure online the unknown
Gt and αt, respectively. As an example, if we consider a classifica-
tion task, the validation (or batch) accuracy and its moving average
with length 2κ can be used to estimate learning performance and
convergence rate as:

Ĝt =
1

|T |
∑

y∈T
I(ŷt = y), α̂t =

1

κ

κ−1∑
τ=t−κ

(Ĝτ − Ĝτ−1) (9)

where ŷt is the prediction for data unit y at time-slot t.

3.1. Algorithmic design via stochastic optimization

We now introduce a method to transform Problem (8) into a stability
problem, building on the tools of stochastic Lyapunov optimization
[30].In particular, to deal with the long-term constraints (a)-(c), we
introduce three virtual queues, respectively associated with them:

Zt+1 = max
{

0, Zt + εz
(
Lt − L

)}
, (10)

Qt+1 = max
{

0, Qt + εq
(

G− Ĝt
)}

(11)

Yt+1 = [Yt + εy,t (α̂t − α)] · I
(
Ĝt ≥ G

)
, (12)

where εz > 0, εq > 0 and εy,t > 0 are step-sizes used to speed-
up the convergence of the algorithm. The queue evolution defined
in (12), including the adaptive step-size εy,t, is motivated by the
fact that, if the distribution of the data is stationary, there is no need
to overshoot the convergence rate after the target level of learning
performance is reached. At the same time, non-stationary behav-
iors can be detected observing sharp changes in Ĝt, which reac-
tivate the virtual queue Yt. Interestingly, ensuring the mean-rate
stability of the virtual queues in (10)-(12) is equivalent to satisfy
the three corresponding constraints [30]. To this aim, letting Ut =
1
2
(Z2

t + Q2
t + Y 2

t ), we introduce the following drif-plus-penalty
function [30], which reads as:

∆p
t = E{Ut+1 − Ut + V · ptot

t

∣∣ Φt}, (13)

which also incorporates a penalty factor that weights the objective
function of (8), with a weighting parameter V . Now, it is possible to
prove that minimizing ∆p

t , if (13) is lower than a finite constant for

all t, the virtual queues are mean rate stable, and the optimal solution
of (8) is asymptotically reached as V increases [30, Th. 4.8].

Using stochastic optimization arguments [30], we proceed by
optimizing a suitable upper-bound of (13), while removing the ex-
pectation per each time-slot t. However, the estimates Ĝt and α̂t
appearing in (10)-(12) (and, thus, in (13)) are not explicitly related
to the number of quantization bits {bi,t}i∈St and to the batch size
Bt, which must be optimized and adapted to drive the learning per-
formance and the convergence rate. Then, we propose to exploit
two surrogate functions, say G̃t({bi,t}i∈St) and α̃t({bi,t}i∈St , Bt).
The rationale for the selection of the surrogates comes from the
assumption that the true performance metrics Gt and αt typically
show a non-increasing behavior with respect to the quantization bits
{bi,t}i∈St and the batch size Bt (examples will be given in the se-
quel). In other words, a finer representation of the data typically
leads to better learning performance [8, 9].Thus, G̃t and α̃t have
only to be non-increasing functions of the quantization bits and the
batch size. After some algebra manipulations (omitted due to the
lack of space), the method requires to solve the following determin-
istic problem at each time-slot t:

min
Ψt∈Xt

ZtL̃t − Q̂tG̃t − Ŷtα̃t + V · ptot
t (14)

where Ψt is the dynamic set of variables in (8), and L̃t is an up-
perbound of (6) where the maxi∈St operator is substituted with the
summation over all i ∈ St. Because of the structure of the variable
set Ψt, (14) is a mixed-integer nonlinear optimization problem.
However, for any given {bi,t}Ni=1, Bt, and vt at time t, it is easy to
see that (14) is separable into three sub-problems that admit closed
form solution for the optimal uplink data rates, the optimal CPU
clock frequency of devices, and the optimal CPU clock frequency
of the edge server. The expressions, for the optimal parameters are
given by (derivations are omitted due to the lack of space):

Ri,t =

[
2Bi
ln(2)

W

(
ln(2)

Bi

√
Ztm · bi,t hi,t(vt)

2V N0

)]Rmax
i,t

Rmin
i

(15)

fi,t =

[(
ZtBtJi
3γiV

) 1
4

]fmax
i

fmin
i

frt =

[(
ZtC |St|

3γsV

) 1
4

]fr,max

fr,min

(16)
for all i ∈ St, where W (·) is the principal branch of the Lambert
function. In principle, to find the optimal solution of (14) at each
time-slot t, one should compute the optimal allocation of edge re-
sources for all possible combinations of vt, {bi,t}Ni=1 and Bt, eval-
uate the corresponding objective function using (15) and (16) in (14),
and then select the one that yields the lowest value. This approach
has a complexity that grows exponentially with N , maxi |Ci|, |B|,
K, M and |R|. Therefore, to find a manageable implementation,
in the next paragraph we propose a two-stages greedy method that
first optimizes the reflectivity parameters of the RISs {vk,t}Kk=1 and
then, given the RISs configuration, proceeds selecting the batch size
Bt and the number of quantization bits {bi,t}Ni=1.

3.2. Two-stage greedy algorithm for resource optimization

In the first stage, the method greedily selects the RISs coefficients
{vk,t}Kk=1 in order to maximize the following objective:

∆R({vk,t}Kk=1) =
N∑
i=1

δi,t

∣∣∣∣∣hai,t +
K∑
k=1

hTi,k,t diag(vk,t)z
a
i,k,t

∣∣∣∣∣
2
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Fig. 1: (a) Accuracy vs t. (b) Latency vs t.

where δi,t =
1/|hai,t|2∑N
i=1 1/|hai,t|2

is a weighting factor aiming at as-

signing more importance to devices that, without the aid of the RISs,
experience worse instantaneous channel conditions. The rationale
of this lies on the fact that, having more devices with good channel
conditions, increases the degree of freedom in selecting the set of
transmitting devices, thus improving the overall performance of the
FL task. This greedy procedure experiences a polynomial complex-
ity with respect to K, M and |R|.

In the second stage, for each possible batch size Bt ∈ B (the
number of selectable batch sizes is assumed to be small, e.g., 3 or
4), the method starts from the empty set of transmitting nodes and
iteratively adds the most convenient devices, selecting jointly the
best number of quantization bits {bi,t}Ni=1 and the associated edge
resources in (15) and (16). The method keeps adding devices until
the resulting value of the objective in (14) decreases, and stops when
there is no more incentive in letting other nodes to transmit any bit of
information. Finally, the batch size and the associated transmitting
set and edge resources that raise the lowest value of the objective
function are chosen. Such greedy method hugely reduces the com-
plexity, which becomes polynomial in N , max

i
{|Ci|}, |B|.

4. NUMERICAL RESULTS

In this section, we assess the performance of the proposed method,
considering a federated learning task aiming at a training a deep
convolutional neural network (CNN) classifier. We exploit a CNN
architecture made of four convolutional layers with 32, 32, 10 and
10 filters, respectively, with final flatten and dense layers. The loss
is the well-known cross-entropy, and the model is trained using a
federated ADAM optimizer over the MNIST dataset. We consider a
scenario with one AP equipped with an edge server, N = 9 devices,
6 of whom having their direct path to the AP attenuated by an obsta-
cle (with an additive pathloss of 5 dB), and one RIS equipped with
1-bit discrete phase shifters. Wireless channels are generated with
the tool presented in [32]. We set the radio and computation param-
eters as follows: N0 = −174 dBm/Hz, A = 25, fmax

s = 3.3 GHz,
fmax
i = 2.5 GHz, Rmax

i,t = Bi log2(1 + hi,tP
max
i /(N0Bi)) where

Pmax
i = 150 mW for all i; Bi is assigned equally splitting the overall

bandwidth equal to 100 MHz among the devices transmitting at time
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Fig. 2: Total avg. comm. power vs L vs for different G.

t. Furthermore, the set of quantization bits is Ci = [2, 4, 8], for all
i = 1, . . . , N . The ADAM step-size is set to 0.001, with forget-
ting factors β1 = 0.9, and β2 = 0.99. For this experiment, we use
the performance estimate Ĝt and α̂t as in (9) with K = 10. Also,
as a surrogate function for the accuracy metric, we exploit: G̃t =∑
i∈St σ(bi,t − Median{Ci}), where σ(·) is the logistic sigmoid

function, and Median{·} represents the median value. Regarding the
convergence rate, we use instead the surrogate α̃t = Bt

∑
i∈St bi,t.

Finally, the set of batch sizes is B = [1, 3, 7]. As a first result, in Fig.
1 (a), we illustrate the temporal behavior of the estimated accuracy
of the FL algorithm, obtained for different values of the learning rate
α, fixing the accuracy to G = 0.8; also, at time slot 210, we change
the accuracy requirement from G = 0.8 to G = 0.9 for the curve
with α = 0.1, introducing a level of non-stationarity. Then, in Fig. 1
(b), we show the instantaneous latency required by the proposed FL
strategy to perform one iteration, together with the latency constraint
L = 50 ms. As we can notice from Fig. 1, the proposed method is
able to obtain the desired learning performance, while controlling
the convergence rate, and satisfying the required latency constraint.
Furthermore, the method is able to react promptly to changes in the
accuracy requirement, exhibiting powerful learning and adaptation
capabilities in a fully data-driven fashion. Finally, in Fig. 2, we show
the total average uplink transmission power expenditure versus the
average latency L, for different values of average accuracy G, com-
paring the cases where RISs are exploited or not and a baseline given
by an equal-rate (chosen to respect the latency and the accuracy con-
straints) policy with all the agents always transmitting. As expected,
from Fig. 2, the trade-off gets worse imposing a stricter requirement
on the accuracy, due to the larger power (and number of bits) nec-
essary to obtain the target performance. Also, we can see the gain
obtained thanks to the presence of the RIS in the FL task, and the
superior performance of the proposed method w.r.t. the baseline.

5. CONCLUSIONS

In this paper, we proposed an online strategy for adaptive federated
learning empowered by reconfigurable intelligent surfaces. The
method dynamically minimizes the power expenditure of the sys-
tem, while guaranteeing target learning performance and latency
constraints. The approach builds on stochastic Lyapunov optimiza-
tion, dynamically and jointly optimizing radio and computation
resources, learning parameters, and RISs phase shits. Numerical
results illustrate the advantages obtained by the proposed strategy.
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