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Inference through innovation processes
tested in the authorship attribution task
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Urn models for innovation capture fundamental empirical laws shared by several real-world
processes. The so-called urn model with triggering includes, as particular cases, the urn
representation of the two-parameter Poisson-Dirichlet process and the Dirichlet process, seminal in
Bayesian non-parametric inference. In this work, we leverage this connection to introduce a general
approach for quantifying closeness between symbolic sequences and test it within the framework of
the authorship attribution problem. Themethod demonstrates high accuracywhen compared to other
related methods in different scenarios, featuring a substantial gain in computational efficiency and
theoretical transparency. Beyond the practical convenience, this work demonstrates how the recently
established connection between urn models and non-parametric Bayesian inference can pave the
way for designingmore efficient inferencemethods. In particular, the hybrid approach thatwepropose
allows us to relax the exchangeability hypothesis, which can be particularly relevant for systems
exhibiting complex correlation patterns and non-stationary dynamics.

Innovation enters a wide variety of human activities and natural processes,
from artistic and technological production to the emergence of new beha-
viours or genomic variants. At the same time, the encounter with novelty
permeates our daily lives more extensively than we typically realise. We
continuously meet new people, learn and incorporate new words into our
lexicon, listen to new songs, and embrace new technologies. Although
innovation and novelties (i.e., new elements at the individual or local level)
operate at different scales, we can describe their emergence within the same
framework, at least in certain respects1. Shared statistical features, including
the well-known Heaps’2, Taylor’s3–6 and Zipf’s7,8 laws, suggest a common
underlying principle governing their emergence. In this respect, an intri-
guing concept is the expansion into the adjacent possible9. The adjacent
possible refers to the set of all the potential innovations or novelties
attainable at any given time. When one of these possibilities is realised, the
space of the actual enlarges, making additional possibilities achievable and
thus expanding the adjacent possible. The processes introduced in1 provide
a mathematical formalisation of these concepts, extending Polya’s urn
model10 to accommodate infinitely many colours. They generate sequences
of items exhibiting Heaps’, Zipf’s, and Taylor’s laws. The most general
formulation of themodelling scheme proposed in ref. 1, the urnmodel with
semantic triggering, also captures correlations in the occurrences of
novelties, as observed in real-world systems. Further generalisations have
been explored to capture the empirical phenomenology in diverse contexts:
network growth and evolution11, the varied destinies of different
innovations12, andmutually influencing events13.Additionally, theproposed

modelling scheme can be cast within the framework of random walks on
graphs, offering further intriguing perspectives and broadening its scope of
applications14–17.

We now want to address the question of whether these generative
models can also be successfully used in inference problems. This question is
further motivated by the precise connection that has been established5,6

between the urn models in ref. 1 and seminal processes in Bayesian non-
parametrics. The latter is a powerful tool for inference and prediction in
innovation systems, where possible states or realisations are not predefined
and fixed once and for all. Nonparametric Bayesian inference enables us to
assign probabilities to unseen events and to deal with an ever-increasing
number of new possibilities. Various applications have been proposed in
diverse fields, including (but not limited to) estimation of diversity18–22,
classificationproblems23,24, Bayesianmodelling of complexnetworks25,26 and
they take a considerable role in Natural Language Processing27,28.

The simplest model described in1, the urn model with triggering
(UMT), reproduces, with a specific parameter setting, the conditional
probabilities that define the two-parameter Poisson-Dirichlet process29,
referred to as PD hereafter, that generalises the Dirichlet process30. The PD
and the Dirichlet processes have gained special relevance as priors in
Bayesian nonparametrics due to their generality and manageability31, and
the PD process predicts the Heaps, Zipf and Taylor laws, making its use
more convenient in linguistically motivated problems.

Here, we aim to explore the potential of the outlined connection
between urn models for innovation and priors for Bayesian nonparametric
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inference. As a sample application, we address the authorship attribution
task32.

The PD and Dirichlet processes have already been considered as
underlying models for natural language processing and for authorship
attribution purposes. The proposed procedures interpret the outputs of PD
(or Dirichlet) processes as sequences of identifiers for distributions over
words (i.e., topics)33 andmeasure similarity among texts or authors basedon
topics’ similarity34,35.Webrieflydiscuss topicmodels in theMethods section.
It is worth stressing here that these approaches have led to hierarchical
formulations that require efficient sampling algorithms for solving the
problem of computing posterior probabilities28,33,36,37. Moreover, these
methods strongly rely on exchangeability, mainly due to the property of
conditional independence it implies, through the de Finetti and Kingman
theorems38,39, and for guaranteeing the feasibility of the Gibbs sampling
procedure27,28. Exchangeability refers to the property of the joint probability
of a sequenceof randomvariables being invariant underpermutationsof the
elements.Notwithstanding the powerful tools it provides, this assumption is
often unrealistic when modelling real-world processes.

We take a different perspective by interpreting the outputs of the
underlying stochastic processes directly as sequences of words in texts or,
more generally, tokens. Language serves as a paradigmatic example where
novelty enters at different scales, ranging from true innovation–creation and
diffusionofnewwords ormeanings–towhatwedenoteas novelties–thefirst
time an individual adopts or encounters (or an author uses in their pro-
duction) aword or expression.We thus borrow from information theory40,41

the conceptualisation of a text as an instance of a stochastic process and
consider urn models for innovation processes as underlying generative
models. Specifically, we here consider the UMT model in its exchangeable
version,which is equivalent to thePDprocess.Weopt out of a fullyBayesian
approach and use a heuristic method to determine the base distribution of
the process–that is, the prior distribution of the items expected to appear in
the sequence.

The overall change in perspective we adopt allows us to avoid the
Monte Carlo sampling required in hierarchical methods. Moreover, while
we consider here an exchangeable model, exchangeability is not crucial in
our approach, paving the way for an urn-based inferential method that
considers time-dependent correlations among items.

When comparing our method to various approaches used in author-
ship attribution tasks, we find promising results across different datasets
(ranging from literary texts to blogs and emails), demonstrating that the
method can scale to large, imbalanced datasets and remains robust to lan-
guage variation.

Results
The authorship attribution task
To demonstrate a possible application of the UMT generative model for an
inference problem, we used the probabilities of token sequences derived
from the process to infer the authorship of texts. In the authorship attri-
bution task, one is presented with a set of texts with known attribution – the
reference corpus – along with a textT from an unknown author. The goal is
to attribute T to one of the authors represented in the corpus (closed
attribution task) or more generally, to recognise the author as one of those
represented in the corpus or possibly as a new, unidentified author (open
attribution task)42. Here we explicitly consider the case of the closed attri-
bution task, although several strategies can be adopted to apply the method
in open attribution problems as well.

Following the frameworkof InformationTheory40,41,we can thinkof an
author as a stochastic source generating sequences of characters. In parti-
cular, a written text is regarded as a sequence of symbols, which can
be dictionary words or, more generally, short strings of characters (e.g.,
n-grams if such strings have a fixed length n), with each symbol appearing
multiple times throughout the sequence. Each symbol constitutes a novelty
the first time it is introduced.

We evaluate the similarity between two symbolic sequences by com-
puting the probability that they are part of a single realisation from the same

source.More explicitly, let xn1 and x
m
2 be two symbolic sequenceswith length

n andm respectively. Given their generative process—their source—we can
compute the conditional probabilityPðxn1 jxm2 Þ, that is, the probability thatxn1
is the continuation of xm2 . In the authorship attribution task, the anonymous
text T is represented by a symbolic sequence xT, while an author A by the
symbolic sequence xA obtained by concatenating the texts of A in the
reference corpus. It isworthnoting that anauthorA affects theprobability of
T both by defining the source and through the sequence xA. We will use the
notationP(T∣A)≡ PA(xT∣xA) for the conditional probability ofT to continue
the production ofA. The anonymous textT is attributed to the author ~A that
maximises such conditional probability: ~A ¼ maxAPðTjAÞ. We thus need
to specify the processes generating the texts and the elements xi of the
symbolic sequences, i.e., the tokens.

The tokens. We can make several choices for defining the variables—or
tokens—xi. In what follows, we consider two alternatives: first, we con-
sider Overlapping Space-Free N-Gram43 (OSF). These are strings of
characters of fixed lengthN as tokens, including spaces only as the first or
last characters, thereby discarding words shorter than N−2. This choice
has often yielded the best results. Secondly, we explore a hybrid approach
where we exploit the structures captured by the Lempel and Ziv com-
pression algorithm (LZ77)44. We define LZ77 sequence tokens as the
repeated sequences extracted through a modified version of the Lempel
and Ziv algorithm, which has been previously used for attribution
purposes45. For each dataset, we select the token specification that pro-
vides the best performance. In the Supplementary Results, we compare
the achieved accuracy when using the token definitions discussed above
as well as when using simple dictionary words as tokens.

The generative process and the posterior probabilities. We consider
the UMT model in its exchangeable version, which provides an urn
representation of the PD process. The latter is defined by the conditional
probabilities of drawing at time t+ 1 an old (already seen) element y and
a new one (not seen until time t). They are given, respectively, by:

Pðxtþ1 ¼ yjxtÞ ¼ ny;t � α

θ þ t
; if ny;t > 0

Pðxtþ1 ¼ yjxtÞ ¼ θ þ αDt

θ þ t
P0ðyÞ; if ny;t ¼ 0

ð1Þ

where ny,t is the number of elements of type y at time t and Dt is the total
number of distinct types appearing in xt; 0 < α < 1 and θ >− α are two real-
valued parameters and P0(⋅) is a given distribution on the variables’ space,
called the base distribution. The UMTmodel does not explicitly define the
prior probability for the items’ identity, i.e., the base distribution P0. The
latter can be independently defined on top of the process, in the sameway as
for the Chinese restaurant representation of the Dirichlet or PD processes46

(please refer to section UMT and PD processes in the Methods for a
thorough discussion on the urn models for innovation and their relation
with the PD process).

Crucially, Eqs. (1) are only valid when P0 is non-atomic, which implies
that each new token can be drawn from P0 at most once with probability
one. On the contrary, when P0 is a discrete probability distribution (it has
atoms), an already seen value y can be drawn again from it, and the con-
ditional probabilities no longer have the simple form shown in Eq. (1) (as
detailed in the Methods). In a problem of language processing, the tokens
are naturally embedded in a discrete space, which has led to the develop-
ment of hierarchical formulations of the PD process47,48. In these approa-
ches, the P0 is the (almost surely) discrete outcome of another PD process
with a non-atomic base distribution. Here we follow a different approach.
We regard P0 as a prior probability on the space of new possibilities. In this
view, the tokens take values from an uncountable set, and thus the prob-
ability of drawing the same token y from P0 more than once is null. As a
consequence, we can use the simple Eq. (1), where we need to make some
arbitrary choices for the actual definition of the base distribution. In the
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following,we identifyP0(y)with the frequency of y in eachdataset,while still
treating P0 as a non-atomic distribution by ensuring that each item can be
drawn at most once from it. However, this raises a tricky question of nor-
malisation, which strongly depends on the dataset, resulting in the arbitrary
modulation of the relative importance of innovations and repetitions. We
have addressed this problem heuristically by introducing an additional
parameter δ > 0 that multiplies P0: it suppresses (δ < 1) or enhances (δ > 1)
the probability of introducing a novelty in T. In addition, we consider an
author-dependent base distribution by discounting the vocabulary already
appearing in A (details are given in section The strategy of P0 in the
“Methods” section). To summarise, the conditional probabilities P(T∣A) are
derived from Eqs. (1), where the base distribution P0(y) is defined as dis-
cussed above. Different values of α and θ characterise the specific dis-
tribution associatedwith each author.We fix αA and θA for each authorA to
the values that maximise her likelihood (refer to the Supplementary
Methods for details).We denote byDK (withK =A, T) the number of types
(i.e., distinct tokens) inA andT, and byDT∪A−DA the number of types inT
that do not appear in A. The conditional probability of a text T to be the
continuation of the production of an author A reads:

PðTjAÞ ¼
ðθA þ αADAjαAÞDT ∪A�DA

ðθA þmÞn
YDT

j¼1

Qj;

Qj �
ð1� αAÞnTj �1P0ðyjÞ if yj=2A
ðnAj � αAÞnTj otherwise :

8
<

:

ð2Þ

where nKj is the number of occurrences of yj in K (with K =A, T), such thatP
jn

A
j ¼ m and

P
jn

T
j ¼ n. The Pochhammer symbol and the Poch-

hammersymbolwith incrementk are defined respectively by (z)n≡ z(z+ 1)
…(z+ n− 1) = Γ(z+ n)/Γ(z) and ðzjkÞn � zðz þ kÞ . . . z þ ðn� 1Þkð Þ.

In practice, when attributing the unknown text, we adopt the proce-
dure of dividing it into fragments and evaluating their conditional prob-
ability separately.The entire document is thenattributedeither to the author
that maximises the probabilities of most fragments or to the author that
maximises thewhole document probability computed as a joint distribution
over independent fragments (i.e., as a product of the probabilities of its

fragments).We optimise this choice for each specific dataset, as described in
the Supplementary Methods.

Results
We test our approach on literary corpora and informal corpora. To
challenge the generality of our method versus language variation49, we
consider three corpora of literary texts in three different languages, Eng-
lish, Italian, and Polish, belonging to distinct Indoeuropean families and
bearing a diverse degree of inflection (refer to the Supplementary Note 1
for details). We further consider informal corpora mainly composed of
English texts. They are particularly challenging for the attribution task due
to the strong unbalance in the number of samples per author and the texts’
lengths (refer to Fig. 1, panel a). We consider, in particular, an email
corpus and a blog corpus. The first is part of the Enron Email corpus
proposed during the PAN’11 contest50. It is still used as a valuable
benchmark, and we compare the accuracy of our method with those
reported in refs. 34,35. The Blog corpus is one of the largest datasets used
to test methods for authorship attribution51. This is a collection of 678,161
blog posts by 19,320 authors taken from ref. 52. Additionally, in line with
refs. 53,54, we test ourmethod on the subset of 1000most prolific authors
of this corpus. For more details on the corpora, please refer to the Sup-
plementary Note 1.

In Fig. 1b–f, we illustrate the dependencyof the attribution accuracy on
the value of two free parameters of ourmodel, specifically the normalisation
δ and the length of the fragments in which we partition the text to be
attributed. Inparticular,we report the accuracyachievedon eachdataset in a
leave-one-out experiment, where we select each text in turn and attribute it
by training the model on the rest of the corpus (refer to the Supplementary
Methods formore details).We note that, although simply setting δ = 1often
gives the most or nearly the most accurate results, in a few datasets using a
different value of δ significantly improves the accuracy. Indeed an effect of δ
is also to correct for a non-optimal choice of the length of the fragments, as is
evident in the literary English dataset.When attributing an anonymous text,
we optimise these two parameters—as well as the selection of P0, the defi-
nition of the tokens, and the strategy to attribute the whole document from
the likelihood of single fragments—on the training and validation sets, as
detailed in the Supplementary Methods.

Fig. 1 | Corpora sizes and the impact of model parameters on attribution accu-
racy. In panel (a) we offer a pictorial view of various characteristics related to the size
of the considered corpora. The size of the triangles is proportional to the logarithmof
the corpus size, measured as number of documents. In the x and y axes we represent
for each corpus the distribution of the numbers of texts (x axis) and of the numbers of
characters (y axis) per author. Specifically, the continuous line bars represent the

interquartile range of the distributions and the dotted lines show the 95% interval, to
highlight their long tails. Panels (b–f) report the attribution accuracy varying the
length of the fragments and the δ value. The colour scale refers to the difference
relative to the maximum attribution accuracy obtained in each dataset. In the upper
band, the considered length of fragments is of a single token. In the lower band, the
text is not partitioned in fragments (full text).
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In the case of informal corpora, we compare ourmethodwith state-of-
the-artmethods in the family of topicmodels33. Topicmodels are among the
most established applications of nonparametric Bayesian techniques in
natural language processing, and different authors’ attributionmethods rely
on this approach. The underlying idea is to consider each document as a
mixture of topics and to compute the similarity between two documents in
terms of a measure of overlap between them (as detailed in the Methods
section and the SupplementaryMethods). Thosemethodswere proposed to
address challenging situations, particularly in informal corpora with many
reference authors and typically short texts. Moreover, they have a similar
ground to the method we propose. We consider the Latent Dirichlet Allo-
cation plus Hellinger distance (LDA-H)53, the Disjoint Author-Document
Topic model in its Probabilistic version (DADT-P)34 and the Topic Drift
Model (TDM)35 since their performances are available on the informal
corpora. LDA-H is a straightforward application of topic models to the
authorship attribution task. The DADT-P algorithm is a generalisation of
the LDA-H characterising both the topics associated with texts and with
authors. TDM merges topic models with machine learning methods55,56 to
account for dynamical correlations between words.

For the literary corpora, there is no direct comparison available in the
literature. In the family of topic models, we considered the LDA-H
approach, whose implementation is available with the need for minor
intervention (please refer to the Supplementary Methods for details on our
implementation). In addition, we consider a cross-entropy (CE)
approach57,58 in the implementation used in previous research45.
Compression-based methods are general and powerful tools to assess
similarity between symbolic sequences and have been at the forefront of
authorship attribution for considerable time59.

When comparing the aforementioned methods and ours, we optimise
the free parameters of our model (i.e., δ, length of fragments, attribution
criterion, type of tokens, and P0) on the training set, as detailed in
the Supplementary Methods. The email corpus already provides training,
validation, and test sets. For the remaining corpora,weuse ten-fold stratified
cross-validation34,53,54: in turn, one-tenth of the dataset is treated as a test set
and the other nine-tenths as training, and the number of samples per author
is kept constant across the different folds. In Fig. 2, we report the accuracy

obtained on eachof the ten partitions, aswell as the average value over them.
We show the results obtainedby either switchingoff theparameter δ (that is,
by fixing it to 1) or optimising it on each specific corpus. Thefirst scenario is
denoted by CP2D (Constrained Probability 2-parameters Poisson-Dirich-
let), the latter by δ-CP2D. The second procedure yields better performances
in all the datasets except for the Polish literary dataset, where the number of
texts per author is too low to prevent overfitting in this simple training
setting. In the literary corpora, the attribution accuracy is overall high, and
that of our method consistently higher than that of the other techniques. In
the informal corpora, our method achieves an accuracy slightly lower than
the best-performing algorithm on the email corpus, while it is the most
accurate on the blog corpus. This latter corpus presents a very large number
of candidate authors, and our approach appeared more robust in these
extreme conditions. In Table 1, we present the numerical value of the
average accuracy over the ten partitions, as shown in Fig. 2 (additional
evaluationmetrics can be found in the SupplementaryResults).We also add
the attribution accuracy on the training set. We observe that in the literary
corpora, only in thePolishdataset, the accuracyon the test set is significantly
lower than that in the training set, pointing tooverfitting, as discussed above.
For the informal corpora, we conversely notice an increase in attribution
rate from the training to the test corpora. For the email corpus, also other
methods exhibit a similar behaviour34,54. This is probably related to the
particular partition considered. For theBlog corpus, the attributionaccuracy
on the test set is not available for the other methods. Ourmethod features a
slightly greater accuracy on the test set than on the training, suggesting that,
on theonehand, the corpus is sufficiently large toprevent overfitting.On the
other hand, themethod increases accuracywhen increasing the length of the
reference authors’ sequences.

Conclusion
We present a method for authorship attribution based on urn models for
innovationprocesses.We interpret texts as instances of stochastic processes,
where the generative stochastic process represents the author. The attri-
bution relies on the posterior probability of the anonymous text being
generated by a particular author and continuing their production. We
consider theUMTmodel1 in its exchangeable version5,6, which is equivalent
to the two-parameter Poisson-Dirichlet process. While the latter process is
widely used in Bayesian nonparametric inference, it is often employed in a
hierarchical formulation. In the case of attribution tasks, this approach has
led to topicmodels, where the output of the stochastic process is a sequence
of topics, i.e., distribution over words. Here, we follow a more direct
approach, where the stochastic process directly generates words. By relying
on a heuristic approach, we can explicitly write posterior probabilities that

Fig. 2 | Attribution accuracy. For each of the considered datasets and attribution
methods, thick lines show the average accuracy in the ten-fold stratified cross-
validation experiment, while shaded circles refer to the attribution accuracy on each
of the ten test sets separately. An exception is the E-mail dataset, where a unique test
set is considered (see main text). We compare the accuracy achieved by our method
(the Constrained Probability 2-parameters Poisson-Dirichlet, in both its versions
with and without including the parameter δ: the CP2D and δ-CP2D) with the Cross-
Entropy based approach (CE), the Latent Dirichlet Allocation plus Hellinger dis-
tance (LDA-H), the Disjoint Author-Document Topic model in its Probabilistic
formulation (DADT-P), and the Topic Drift Model (TDM). On the literary corpora,
the LDA-H accuracy is computed using our implementation; please refer to Sup-
plementary Methods for details. For the informal corpora, the results are are
available from a previous study [ref. 54, Table 1]. Results for the DADT-P and the
TDM algorithms were available in the works by Seroussi et al.34 [Tables 4 and 5] and
Yang et al.35 [Table 1], respectively.

Table 1 | Attribution results

Eng Ita Pol Email Blog1K Blog

LDA-H 0.877a 0.830a 0.769a 0.426 0.216 0.079

CE 0.853 0.900 0.870 — — —

DADT-P — — — 0.594 0.437 0.286

TDM — — — 0.542 — 0.308

CP2D 0.913 0.929 0.899 0.521 0.494 0.369

δ-CP2D 0.918 0.935 0.838 0.558 0.495 0.393

CP2DTR 0.924 0.927 0.949 0.497 0.489 0.358

δ-CP2DTR 0.926 0.929 0.956 0.518 0.490 0.386
aOur implementation.
Numerical values of the average accuracy, depicted in Fig. 2, are here listed for all considered
methods: our Constrained Probability 2-parameters Poisson-Dirichlet, in both its versions with and
without including the parameter δ (theCP2Dand δ-CP2D), theCross-Entropy based approach (CE),
the Latent Dirichlet Allocation plus Hellinger distance (LDA-H), the Disjoint Author-Document Topic
model in its Probabilistic formulation (DADT-P), and the Topic Drift Model (TDM). In addition, we
report the average accuracy obtained on the training sets (TR) by our method, as discussed in the
text. We highlight in bold the best performance on each dataset.
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can be computed exactly. Besides its computational convenience, the
method we propose is easily adaptable to incorporate more realistic models
for innovation processes.

For instance, one avenue we intend to explore in future research is
leveraging the urn model with semantic triggering1.

We evaluate the performance of our approach by employing the simple
UMT exchangeable model against various related approaches in the field.
Specifically,we compare itwith information theory-basedmethods45,57,58 and
probabilistic methods based on topic models34,35. Our method achieves
overall better or comparable performance in datasets with diverse char-
acteristics, ranging from literary texts indifferent languages to informal texts.

We acknowledge that our method may not compete with deep
learning-based models (DL) when large pre-training datasets are
available60,61. Nonetheless, it exhibits robustness in challenging situations for
DL, for example, when only a few texts are available formany authors61 or in
languages where pre-training is less extensive62. A deeper comparison with
deep learning-based approaches, perhaps by concurrently exploring more
sophisticated urn models in our approach, is in order but beyond the scope
of the present work (refer to the Supplementary Results for a more detailed
discussion and a preliminary analysis).

As a final remark, we also note that we have here considered the so-
called closed-set attribution32, where the training set contains part of the
production of the author of the anonymous text. In open-set attribution63,64,
the anonymous text may be of an author for which no other samples are
available in the dataset. Despite the conceptual differences and nuances
between the two tasks, approaches based on closed-set attribution64 are
sometimesused also in open-setproblems, for instance, by assigning the text
to an unknown author if a measure of confidence falls below a given
threshold. Similar strategies canbe employedwithourmethodby leveraging
the conditional probabilities of documents.

We finally note that the method presented here is highly general and
can be valuable beyond authorship attribution tasks. Although we expect it
to be particularly suitable when elements take values from an open set and
follow an empirical distribution close to that produced by the model, it can
be applied to assess the similarity between any class of symbolic sequences.

Methods
UMT and PD processes
In1, a family of urn models with infinitely many colours was proposed to
reproduce shared statistical properties observed in real-world systems fea-
turing innovations. In this context, a realisation of the process is a sequence
xt = x1,…, xt of extractions of coloured balls, where xt is the colour of the
element drawn at time t, and the space of colours available at a given time –
the urn – represents the adjacent possible space. The urn model with trig-
gering (UMT)1 (and in amore general setting in refs. 5,6) operates as follows:
the system evolves by drawing items from an urn initially containing afinite
numberN0 of balls of distinct colours. At each time step t, a ball is randomly
selected fromtheurn, its colour registered into the sequence, and returned to
the urn. If the colour of the drawnball is not in the sequence xt ;~ρ balls of the
same colour and ν+ 1balls of entirely newcolours, i.e., not yet present in the
urn, are added to the urn. Thus, the occurrence of new events facilitates
others by enlarging the set of potential novelties. Conversely, if the colour of
the drawn ball already exists in xt, ρ balls of the same colour are added to the
urn. Given the history of extractions xt, the probabilities bt and qc,t that the
drawing at time t results in a new colour or yields a colour c already present
in xt are easily specified for this model:

bt ¼
N0 þ νDt

N0 þ ρt þ aDt

qc;t ¼
ρnc;t þ a� ν

N0 þ ρt þ aDt

ð3Þ

where Dt and nc,t are the number of distinct colours and the number of
extractions of colour c in the sequence xt, respectively, and
a ¼ ~ρ� ρþ ν þ 1. Different choices of the parameters ðρ;~ρ; νÞ lead to

different scenarios, enabling the UMT model to capture the empirical
properties summarised by Heap’s, Zipf’s and Taylor’s laws. In the original
formulation1, only two values for the parameter ~ρ were discussed: ~ρ ¼ ρ or
~ρ ¼ 0; the special setting ~ρ ¼ ρ� ðν þ 1Þ, which makes the model
exchangeable, was later pointed out5.We remind that exchangeability refers
to the property that the probability of drawing any sequence xt≡ x1,…, xt of
anyfinite length tdoesnot dependon the order inwhich the elements occur:
P(x1,…, xt) = P(xπ(1),…, xπ(t)) for each permutation π and each sequence
length t. In this case, upon a proper redefinition of the parameters, namely
ν/ρ≡ α and N0/ρ≡ θ, the UMT model reproduces the conditional prob-
abilities associatedwith thePDprocess (expressed inEqs. (1)).Wenote here
that such probabilities include the Dirichlet process as a special case, where
α = 0 andDt grows logarithmically with t. In the framework of urn models,
the Dirichlet process finds its counterpart in the Hoppe model65 and in the
exchangeable version of the UMT model with the additional choice ν = 0.
The PD process is defined by 0 < α < 1 and predicts the asymptotic beha-
viour Dt ~ tα 46. We note that the probabilities in Eqs. (3) coincide, when
renaming the parameters as stated above, with those in Eq. (1).

The strategy for P0

When P0 is a discrete probability distribution (it has atoms), an already seen
value y can be drawn again from it, and the conditional probabilities no
longer have the simple form as in Eq. (1). In this case, the conditional
probabilities depend not only on the sequence xt of observable values but
also on latent variables indicating, for each element in xt, whether it has been
drawn from P0 or arose from the reinforcement process66. In particular, we
candefine, for each type yi (i = 1,…,Dt) in x

t, a latent variable λi,t that counts
the number of times yi is drawn from the base distribution P0. The prob-
abilities conditioned on the observable sequence xt and on the latent vari-
ables sequence λDt read:

Pðxtþ1 ¼ yjxt ; λDt Þ ¼ ny;t � λi;tα

θ þ t
þ θ þ αΛt

θ þ t
P0ð yÞ if ny;t>0

Pðxtþ1 ¼ yjxt ; λDt Þ ¼ θ þ αΛt

θ þ t
P0ð yÞ if ny;t ¼ 0

ð4Þ

WhereΛt �
PDt

i λi;t is the total numberof extractions fromP0 till time t. To
compute the probabilities conditioned to the observable sequence xt, we
must integrate out the latent variables. This is an exponentially hard pro-
blem and efficient sampling algorithms33,36,37 have been developed for an
approximate solution.

By taking the perspective of the urn model, we investigate the possi-
bility of bypassing the problem by imposing that each element can be
extracted only once from P0(⋅), which is equivalent to fixing all the latent
variables λi,t = 1 and set to zero the last term in the first equation in Eq. (4).

The latterprocedure effectively replacesP0(y)with ahistory-dependent
probability, normalised at each time over all the elements y not already
appeared in xt. It reads:

Pt
0ðyÞ � P0ðyjy =2 xtÞ ¼

P0ðyÞ
1�
P

~y2xt P0ð~yÞ
if y =2 xt

0 otherwise

8
<

: ð5Þ

where the sum is over all the elements already drawn at time t. Note that this
choice breaks the exchangeability of the process with respect to the order in
which novel elements are introduced. In the implementation of our algo-
rithm, we follow an even simpler and fast procedure, which yielded
equivalent results. We simply introduce an author-dependent base
distribution by considering, for each author A, the frequency of the tokens
that do not appear inA. Such procedure translates into replacing P0(y) with

PðAÞ
0 ðyÞ ¼ P0ðyÞ

PðACÞ, where A
C denotes the set of all distinct tokens that do not

appear in A. This author-dependent base distribution proved to be
preferable to simply using the original frequency, especially in datasets with
short texts and few samples for each author.
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LDA and topic models
LDA is a generative probabilistic model67, which generates corpora of
documents. A document is a finite sequence of wordsw1,w2, . . . ,wN and it
is represented as a random mixture over latent topics. Each topic corre-
sponds to a categorical probability distribution over the set of all possible
words. Topics can be shared by different documents. The total number k of
topics is fixed a priori and to each topic i in each document d is associated a
probability θi,d, extracted independently for each document from a k-
dimensional Dirichlet distribution D(α1,…, αk). Each document d is gen-
erated as follows: first, its length Nd is extracted from a Poissonian dis-
tribution with a given mean. Then, the document is populated with words
using the followingprocedure: a topic i is extractedwithprobabilityθi,d anda
wordw is extracted from iwith the probability associated to it in topic i. The
probabilities pi(w) of a word w in the topic i is in turn extracted indepen-
dently fromaW-dimensionalDirichlet distributionD(β1,…, βW), whereW
is the total number of wordsW in the corpus.

As in Eqs. (4), we can introduce latent variables67, now with a different
meaning. To each word wi,d in document d, i = 1,…,Nd, we associate a
latent variable λi,d that is the identifier of the topic j fromwhich thewordwi,d

is extracted. The joint distribution of the sequence of words wNd �
w1;d; . . . ;wNd ;d

and latent variables λNd � λ1;d; . . . ; λNd ;d
in a document d

thus read:

PðwNd ; λNd Þ ¼
YNd

n¼1

pðwi;djλ1;dÞpðλi;dÞ ð6Þ

where p(λi,d)≡ θi,d. To compute the posterior probability of the observable
sequence wNd we must integrate out the latent variables. This is an expo-
nentially hard problem and is solved with methods for numerical approx-
imation by using, for instance, Markov Chain Monte Carlo algorithms. A
more flexible approach is to use the Dirichlet or PD processes instead of the
Dirichlet distributions over topics. This allows the number of topics k to
remain unspecified a priori.

The probabilities θi,d are the elements of a sequence generated by a
Dirichlet or PD process, for each document d. The processes characterising
each document share the same discrete base distribution, which is, in turn,
generatedby aDirichlet orPDprocesswith anon-atomicP0.Again, efficient
sampling algorithms for computing the posterior distributions33,36,37 have
been developed in this framework.

In the framework of authorship attribution, methods relying on LDA
aremore widely adopted than those based on theDirichlet or PD processes,
primarily due to their simplicity and comparable accuracy34.

The procedure followedby the LDA-Halgorithm to address the author
attribution task is described in the Supplementary Methods.

Data availability
The corpora used to validate our approach, with the exception of the Italian
literature, are available online at the following addresses: Blog corpus
(https://u.cs.biu.ac.il/~koppel/BlogCorpus.htm), PAN’11 email corpus
(https://doi.org/10.5281/zenodo.3713246), Polish literature (https://github.
com/computationalstylistics/100_polish_novels), English literature (https://
github.com/GiulioTani/InnovationProcessesInference/tree/main/sample_
data/English_literature). The Italian literature corpus is currently covered by
copyright, we make accessible the list of included titles (https://github.com/
GiulioTani/InnovationProcessesInference/tree/main/sample_data/Italian_
literature). Please refer to the Supplementary Note 1 for details about which
parts of the public datasets where used in this study.

Code availability
All the codeweused to compute all the attributionswith theCP2Dapproach
is publicly available under the GNUGPL v3.0 license at https://github.com/
GiulioTani/InnovationProcessesInference68.
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