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Abstract 

Proteins are crucial in regulating every aspect of RNA life, yet understanding their interactions with coding and noncoding RNAs remains limited. 
Experimental studies are typically restricted to a small number of cell lines and a limited set of RNA-binding proteins (RBPs). Although com- 
putational methods based on ph y sico-chemical principles can predict protein-RNA interactions accurately, they often lack the ability to consider 
cell-type-specific gene expression and the broader context of gene regulatory networks (GRNs). Here, we assess the performance of several 
GRN inference algorithms in predicting protein-RNA interactions from single-cell transcriptomic data, and propose a pipeline, called scRAPID 

(single-cell transcriptomic-based RnA Protein Interaction Detection), that integrates these methods with the cat RAPID algorithm, which can iden- 
tify direct ph y sical interactions betw een RBPs and RNA molecules. Our approach demonstrates that RBP–RNA interactions can be predicted 
from single-cell transcriptomic data, with performances comparable or superior to those achie v ed f or the w ell-est ablished t ask of inferring tran- 
scription factor–target interactions. The incorporation of cat RAPID significantly enhances the accuracy of identifying interactions, particularly 
with long noncoding RNAs, and enables the identification of hub RBPs and RNAs. A dditionally, w e sho w that interactions between RBPs can 
be detected based on their inferred RNA targets. The software is freely available at https:// github.com/ t art aglialabIIT/scRAPID . 
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ntroduction 

NA-binding proteins (RBPs) are key players in post-
ranscriptional regulation of gene expression ( 1 ), being in-
olved in several aspects of RNA processing, including
olyadenylation, splicing, capping and cleavage. They bind
oth coding and noncoding RNAs through RNA-binding do-
ains, although several unconventional modes through which
BPs recognize their targets have been recently characterized

 2 ). Recent advances in high-throughput experimental tech-
iques, such as enhanced crosslinking immunoprecipitation
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(eCLIP) ( 3 ), provided a large catalog of known interactions
of RNA with RBPs ( 4 ). However, current knowledge based
on CLIP-Seq data is limited due to two main reasons: (i) the
experiments were performed in few cell lines, but emerging
evidence indicates that RBP-RNA interactions occur specif-
ically in distinct cell types and at determined time points
( 5 ,6 ); (ii) despite CLIP-Seq data are available for hundreds of
RBPs, thousands of them are known at present and their list
is continuously expanded in multiple species ( 2 ,7 ). Moreover,
the detection efficiency of CLIP-based techniques has several
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limitations, both in terms of sensitivity (e.g. low-abundance
transcripts could be difficult to detect due to low crosslinking
efficiency), specificity ( 8 ,9 ) and reproducibility ( 10 ). 

In parallel, several computational approaches, trained on
the available experimental data, have been developed for the
prediction of protein–RNA interactions ( 11–13 ). We previ-
ously developed the cat RAPID method, which combines in-
formation from the secondary structure, hydrogen bonding
and van der Waals contributions to estimate the interaction
propensity of protein–RNA pairs with an accuracy of 78%
or higher ( 14 ,15 ). The interaction propensity calculated with
cat RAPID correlates with the experimental binding affinities
( 11 , 16 , 17 ) and was successfully exploited to identify the bind-
ing partners of noncoding transcripts such as Xist ( 15 ), HO-
TAIR ( 18 ), HOTAIRM1 ( 19 ) and SAMMSON ( 20 ), as well
as the interactomes of RNA genomes ( 21 ). 

The identification of common targets of RBPs holds sig-
nificant importance, especially considering the involvement
of specific RNAs such as Xist ( 22 ) and Neat1 ( 23 ) in pro-
moting the formation of liquid–liquid phase-separated or-
ganelles. RBPs have been found to assemble in such organelles,
including stress granules (SGs), which play a crucial role
in regulating gene expression ( 24–26 ). In some cases, aber-
rant macromolecular assembly and dysregulation of these or-
ganelles have been associated with neurodegenerative disease
( 27 ). However, the impact of these changes in interaction net-
works on aberrant macromolecular assembly is still an unex-
plored area of research. 

In the last decade, single-cell RNA-sequencing (scRNA-seq)
provided an unprecedented resolution of the cell type com-
position and transcriptional landscape of many organs and
tissues in different organisms, leading to global atlas projects
such as the Human Cell Atlas ( 28 ,29 ) and the Mouse Cell
Atlas ( 30 ). Beyond the identification of new cell types and
subtypes, statistical and machine-learning methods for the in-
ference of Gene Regulatory Networks (GRNs) from scRNA-
seq data have been developed, with the goal of identifying the
complex regulatory interactions between transcription factors
(TFs) and their targets ( 31 ,32 ). 

Despite the centrality of RBPs in the cellular regulatory
machinery, transcriptome-wide experimental identification of
RBP targets at single-cell resolution is still in its infancy ( 6 ).
Notably, the interaction propensity of an RBP with its target
RNA is associated with a correlation between their expres-
sion levels, as shown by computational analyses of RBP-RNA
interactions and bulk RNA-seq data ( 33 ), and RNA and pro-
tein expression levels are highly correlated for RBPs ( 34 ,35 ).
Furthermore, a recent method, called RBPreg, has been pro-
posed to identify RBP regulators through the integration of
scRNA-seq data and RNA-binding motif information ( 36 ). 

In this study, we conducted a systematic evaluation of GRN
inference methods for accurately predicting protein-RNA in-
teractions using single-cell transcriptomic data. We propose a
pipeline, called scRAPID, which integrates these methods with
cat RAPID to enhance the inference performance. 

To assess the behavior of GRN inference methods in com-
parison to the classical task of TF–target inference, we focused
on two cell lines (HepG2 and K562) with publicly available
chromatin immunoprecipitation and sequencing (ChIP-seq),
eCLIP, bulk RNA-seq and scRNA-seq data. 

Initially, we demonstrated that scRNA-seq data can be
effectively used to infer protein–RNA interactions, exhibit-
ing performances comparable to or even surpassing those
achieved for TF-target inference. Subsequently, we improved 

the performance by employing cat RAPID predictions ( 14 ,15 ) 
to filter the returned GRNs from each method. Leverag- 
ing RNA-seq data obtained from experiments involving the 
knockdown of RBPs, specifically pooled short-hairpin RNA 

sequencing (shRNA RNA-seq), we demonstrated the efficacy 
of cat RAPID in filtering out indirect interactions. We also 

show that scRAPID outperforms RBPreg ( 36 ). 
Furthermore, we assessed the performance of the methods 

in predicting interactions between RBPs and long noncod- 
ing RNAs (lncRNAs). Despite the limited availability of ex- 
perimental data for RBP–lncRNA interactions compared to 

mRNA interactions, we consistently achieved superior per- 
formance in inferring RBP–lncRNA interactions, particularly 
with scRNA-seq datasets obtained through the latest full- 
length sequencing protocols such as STORM-seq ( 37 ) and 

Smart-seq3 ( 38 ). 
Additionally, we evaluated the ability of the inference meth- 

ods to identify hub RBPs, hub mRNAs and hub lncRNAs,
which are defined as regulators of a large number of RNAs 
or as RNAs regulated by a large number of RBPs, respectively.
Notably, recent benchmarking studies have demonstrated that 
even when GRN inference methods achieve moderate perfor- 
mance in predicting the edges of the ground truth network,
they often excel in predicting hub genes, which typically serve 
as master regulators in the biological processes under inves- 
tigation ( 39 ). Confirming these findings within the context of 
protein–RNA interactions, we also observed that cat RAPID 

enhanced the performance of the inference methods in identi- 
fying network hubs. 

To validate our methodology across different organisms 
and experimental techniques beyond eCLIP, we analysed a 
mouse cell line that recapitulates myoblasts-to-myotubes dif- 
ferentiation and retinoic acid (RA)-driven differentiation of 
mouse embryonic stem cells (mESCs). Specifically, we evalu- 
ated the inference performance for two RBPs, ADAR1 and 

Caprin1, which play a role in SG formation ( 40 ,41 ) and for 
which RNA targets are available from RNA immunoprecip- 
itation followed by RNA-sequencing (RIP-seq) experiments.
Our results showcased favorable performance across most of 
the methods, with cat RAPID consistently improving the pre- 
dictive accuracy. 

Lastly, we demonstrated the feasibility of predicting direct 
RBP–RBP interactions by leveraging the overlap of RNA tar- 
gets inferred from the scRNA-seq data. 

In summary, our study presents a novel and scientifically 
elegant evaluation of GRN inference methods for predict- 
ing protein–RNA interactions from single-cell transcriptomic 
data. By introducing cat RAPID and conducting extensive val- 
idations, we significantly enhance the inference performance 
and provide valuable insights into RBP–lncRNA interactions,
hub identification, and direct RBP–RBP interactions. 

Materials and methods 

We used human hepatocellular carcinoma (HepG2) and hu- 
man lymphoblastoma (K562) cell lines in most of the anal- 
yses since, for these cell types, ChIP-seq, eCLIP and shRNA 

RNA-Seq datasets are available from the ENCODE project 
( 42 ,43 ), and multiple scRNA-seq datasets obtained through 

different protocols are available from public repositories. We 
also included the HEK293T cell line, for which several CLIP- 
seq datasets are available from the POSTAR3 database ( 44 ),
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nd scRNA-seq datasets are also publicly available. Finally,
e based the analysis of RBP co-interaction prediction on
EK293T and HCT116, since thousands of RBP–RBP inter-

ctions have been measured experimentally in these cell lines
nd they are available from the Bioplex Interactome Database
 45 ). 

he scRAPID pipeline 

he steps of the scRAPID pipeline are shown in
upplementary Figure S1 . Our approach requires the selection
f a cell population (a specific cell type, a cluster of cells or
ven the full set of cells) from a single-cell RNA-seq experi-
ent, with the associated count data. Focusing on the most

nformative genes (e.g. the 500 most variable genes), different
nference methods can be used to predict a GRN, for which
nly interactions going out of RBPs are kept. Next, cat RAPID
redictions are used to refine the inferred network, filtering
ut the interactions with a maximum interaction propensity
elow a predefined threshold. The predicted GRN is subjected
o analysis to identify hub RBPs, which are RBPs that control
he expression of numerous RNAs, and hub RNAs, which
re RNAs targeted by multiple RBPs. Finally, RBP–RBP
nteractions are predicted based on the overlap between
heir inferred RNA targets. If a ground truth network, built
rom CLIP-Seq, RIP-Seq or similar approaches, is available,
cRAPID performances can be evaluated against it. A tutorial
s provided at https:// github.com/ tartaglialabIIT/ scRAPID . 

ingle-cell RNA-seq datasets 

epG2 

or the HepG2 cell line we selected three scRNA-seq datasets,
btained through the Smart-seq2, DNBelab C series Single-
ell System, a droplet-based system similar to that from 10 ×
enomics in cell throughput and data formatting, and SCAN-

eq2 (a single-cell Nanopore-based sequencing protocol) se-
uencing protocols. 
The Smart-seq2 dataset is available on the Gene Expression
mnibus (GEO) ( 46 ) under accession number GSE150993

 47 ). We selected only the 68 live cells in the dataset. 
The DNBelab dataset is available on GEO under accession

umber GSM5677000 ( 48 ). It contains 1628 cells. 
The SCAN-seq2 dataset is available on GEO under acces-

ion number GSE20356 ( 49 ). We selected the ‘9CL’ library,
hich contains 80 HepG2 cells. 

562 

or the K562 cell line we selected five scRNA-seq datasets,
btained through the CEL-seq, STORM-seq, Smart-seq3 and
CAN-seq2 sequencing protocols. 

The CEL-seq dataset is available on GEO under accession
umber GSM1599500 ( 50 ). It contains 239 cells. 
The STORM-seq dataset is available on GEO under ac-

ession number GSE181544 ( 37 ). It contains 70 cells. The
uthors provided three processed datasets obtained from the
ame cells with different sequencing depth (100 k, 500 k and
M reads). We used the dataset with highest depth (1 M) in
ll the analyses. 

The Smart-seq3 dataset is available on Arrayexpress under
ccession number E-MTAB-11467 ( 38 ,51 ). It contains 231
ells sequenced with different reaction volumes (1, 2, 5 and
0 μl) and with cDNA clean-up or dilution. We performed
 standard pre-processing using the R package Seurat v4.1.0
( 52 ), then we used the function ‘FindMarkers’ to find differen-
tially expressed genes between the reaction volumes of 1 and
10 μl. We found only one gene with adjusted P -value < 0.05.
Instead, we found 32 differentially expressed genes between
the ‘cleanup’ and ‘diluted’ condition. We kept all 231 cells for
downstream analysis, but we removed the 32 identified differ-
entially expressed genes. 

The SCAN-seq2 datasets for the K562 cell line are provided
in the same study mentioned above for HepG2. We selected
two libraries in this case: the ‘9CL’, containing 159 cells, and
the ‘UMI200’, since it is the library with the highest sequenc-
ing depth, containing 96 cells. 

HEK293T 

We selected two scRNA-seq datasets for the HEK293T cell
line. The 10 × dataset is available from the website of
10 × Genomics ( https:// support.10xgenomics.com/ single-cell-
gene-expression/ datasets/ 1.1.0/ 293t ), and it contains 2885
cells. The Smart-seq3 dataset is available on ArrayExpress
with accession E-MTAB-8735 ( 38 ), and the single cell iden-
tifier column in the sample information table is ‘HEK293T
Smart-seq3’; it contains 117 cells. 

Pre-processing and gene selection 

We used Scanpy (version 1.8.2) ( 53 ) for the pre-processing
and gene selection steps of the scRNA-seq datasets analy-
sis. We removed spike-in genes where present. We filtered
out genes expressed in < 10% of the cells (1% for the
HepG2 DNBelab dataset that has 1628 cells) using the func-
tion ‘scanpy.pp.filter_genes’, and we removed mitochondrial
genes. We used the TPM matrices for the HepG2 Smart-
seq2 and the K562 STORM-seq datasets; we log-transformed
them using the function ‘scanpy.pp.log1p’. We normalized
the UMI counts for the HepG2 DNBelab, K562 CEL-seq,
K562 Smart-seq3 and SCAN-seq2 datasets using the function
‘scanpy.pp.normalize_total’, and we log-transformed the nor-
malized counts using the function ‘scanpy.pp.log1p’. 

Two inference algorithms (SINCERITIES and TENET)
require cells ordered in pseudotime. To this end, we com-
puted the top 2000 highly variable genes using the func-
tion ‘scanpy.pp.highly_variable_genes’, and we scaled
the data to zero mean and unit variance using the func-
tion ‘scanpy.pp.scale’, clipping values > 10 (parameter
’max_value = 10’). We performed a principal compo-
nent analysis using the function ‘scanpy.tl.pca’, with
‘svd_solver = arpack’. We computed a k -nearest neigh-
bor graph (‘scanpy.pp.neighbors’) and a UMAP ( 54 )
(‘scanpy.tl.umap’). Next, we computed a diffusion map
( 55 ) (‘scanpy.tl.diffmap’) and the diffusion pseudotime ( 56 )
(‘scanpy.tl.dpt’) choosing the root cell based on the UMAP
coordinates, since in these cell lines there is not an obvious
starting cell for the pseudotime computation. 

For the gene selection step, we followed the BEELINE eval-
uation framework ( 31 ) and selected the top 500 and 1000
highly variable genes in each dataset. We restricted the gene
sets for selection to protein-coding and lncRNAs, according
to the annotation in Gencode V41 ( 57 ). We added to each
dataset the highly variable transcription factors or the RNA
binding proteins present in the eCLIP experiments from the
ENCODE project. We used a list of 1563 transcription fac-
tors provided in ( 31 ). We followed the same pre-processing

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://github.com/tartaglialabIIT/scRAPID
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/293t
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steps for the two scRNA-seq datasets from the HEK293T cell
line. 

Regarding the analyses involving comparisons between
GRN inference on mRNAs and lncRNAs (Figure 3 and
Supplementary Figures reported in the paragraph ‘Predict-
ing protein interactions with long noncoding RNAs’), we se-
lected the top 400 highly variable mRNAs or lncRNAs in each
dataset. We added to each dataset the eCLIP RBPs as shown
before. 

Ground truth networks 

TF-target 
ChIP-seq 

We downloaded ChIP-seq data for the HepG2 ( 58 ) and K562
cell lines from the ENCODE project portal ( https://www.
encodeproject.org/) ( 42 ). Accession codes and metadata ob-
tained from the ENCODE project portal are reported in the
Supplementary Tables linked to section ‘Protein–RNA inter-
actions can be inferred from single-cell RNA-seq data’. Con-
sidering data associated with the GRCh38 assembly and ex-
periments with multiple biological replicates, we selected 589
and 477 BED files with peaks merged using the IDR ap-
proach for HepG2 and K562, respectively. Next, using the
‘window’ module from BEDTools (version 2.30.0) ( 59 ), we
identified the target gene for each peak, defined as the clos-
est gene whose transcription start site (TSS) is < 50 kilobases
away from the peak. TSS information was retrieved from
the ‘upstream1000.fa’ file provided by the UCSC Genome
browser ( 60 ) (available at https://hgdownload.soe.ucsc.edu/
goldenPath/ hg38/ bigZips/ ), which reports the transcription
starts of RefSeq genes ( 61 ) with annotated 5 

′ UTRs. 

RBP–target 
eCLIP 

The BED files relative to the peaks identified in each biologi-
cal replicate of eCLIP experiments conducted for 103 RBPs in
HepG2 cells and 120 RBPs in K562 cells ( 3 ) were downloaded
from the ENCODE project portal, selecting the GRCh38 as-
sembly and ‘BED narrowpeak’ file type. Accession codes and
metadata obtained from the ENCODE project portal are re-
ported in the Supplementary Tables mentioned in paragraph
‘Protein–RNA interactions can be inferred from single-cell
RNA-seq data’. Next, we filtered the files of the single repli-
cates with logFC > 1 and -log10 P -value > 3 and we took
the intersection between the BED files of the single replicates
for each RBP, using the ‘intersect’ module from BEDTools (ver-
sion 2.30.0). The same tool was used to find overlaps between
the consensus peaks and the canonical isoforms of mRNA
and lncRNA obtained from Ensembl 107 ( 62 ) distinguishing
between exonic and intronic peaks. For the analyses in the
manuscript, we employed only the interactions involving ex-
onic regions because the inference of the interaction propen-
sity of unspliced RNA molecules with cat RAPID is a compu-
tationally demanding task that would require an ad hoc frag-
mentation procedure to deal with very long sequences. In ad-
dition, solely relying on the expression of mature RNAs can
pose challenges in accurately inferring interactions between
RBPs and intronic sequences of target genes, which often af-
fect splicing patterns without resulting in gene-level expres-
sion changes. 
CLIP-seq of HEK293 and HEK293T cells 

The peak regions identified via HITS-CLIP , PAR-CLIP , iCLIP 

and 4SU-iCLIP experiments in HEK293 and HEK293T cells 
were downloaded from the POSTAR3 database ( 44 ). For each 

CLIP-Seq experiment, POSTAR3 stores binding sites found 

with various computational tools. Within each experiment,
peaks found in different replicates and with different tools 
were merged using the BEDTools ‘merge’ utility. Merged peaks 
were kept if they were supported by a minimum number of 
replicates, according to the following scheme: 

• 1 for experiments with a single replicate; 
• 2 for experiments with two or three replicates; 
• 3 for experiments with a number of replicates between four 

and eight; 
• 4 for experiments with more than eight replicates. 

We further refined our selection by retaining only the 
merged peaks that resulted from the overlap of peaks detected 

using all the computational tools employed for binding site 
identification. However, in instances where the number of re- 
tained peaks fell below 300, we relaxed this filtering criterion 

by allowing merged peaks that were supported by all but one 
computational tool. At the end of the selection process, we 
obtained peak sets for 51 RBPs from HEK293 cells and for 
33 proteins from HEK293T cells. The assignment of peaks to 

RNAs was performed as described in the previous paragraph.

shRNA RNA-seq 

We used the metadata from ( 4 ) (file 
‘41586_2020_2077_MOESM4_ESM.xlsx’, sheet name: 
‘KD-RNA-seq’, column ‘RBP knockdown DESeq after batch 

Correction’) to obtain the tsv file names for each RBP. We 
downloaded the tsv files from the ENCODE project, and we 
retained only targets with FDR < 0.05. 

To identify indirect RBP–RNA interactions (Figure 2 C and 

Supplementary Figures reported in paragraph ‘ Removal of in- 
direct interactions using catRAPID ’), for each cell line we con- 
sidered the interactions involving RBPs present in both eCLIP 

and shRNA RNA-Seq datasets (92 RBPs for HepG2 and 110 

for K562), and, for each RBP, we removed the eCLIP-identified 

targets from those detected via shRNA RNA-Seq. After this 
filter, we obtained 25 9327 interactions involving 92 RBPs in 

HepG2 and 17 6843 interactions involving 110 RBPs in K562.

GRN inference methods and implementation 

For the inference of GRNs from scRNA-seq data, we chose 
the three top performing methods from BEELINE ( 31 ) (PIDC,
GRNBOOST2, SINCERITIES). We also added two more re- 
cent methods that have been shown to outperform previous 
ones (TENET and DeePSEM), and a method not specifically 
designed for scRNA-seq, but that has good performance and 

it is widely used (ARACNe). 

PIDC 

Partial Information Decomposition and Context (PIDC) is a 
GRN inference algorithm based on multivariate information 

measures ( 63 ). Specifically, it uses Partial Information Decom- 
position (PID) between triplets of genes to find putative func- 
tional interactions between genes. It outputs an undirected 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://www.encodeproject.org/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
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RNBOOST2 

RNBoost2 uses stochastic gradient boosting regression to
elect the top regulators for each gene in the dataset ( 64 ). It is
ased on GENIE3 ( 65 ), a regression method initially designed
or bulk transcriptomic data, but it is faster, thus it is more
uited for scRNA-seq data. It outputs a directed network. 

INCERITIES 
INgle CEll Regularized Inference using TIme-stamped Ex-
ression profileS (SINCERITIES) requires cells ordered in
seudotime. It computes temporal changes in the expression
f each gene in pseudotime using the Kolmogorov–Smirnov
tatistic ( 66 ). It uses Granger causality to infer connections
etween regulator and target genes. The GRN inference is for-
ulated as a ridge regression problem. It outputs a signed and
irected network; however, in this work we do not take into
ccount the sign information. 

ENET 

ENET computes the transfer entropy, a measure of directed
nformation transfer, between the expression profiles along
seudotime of each pair of genes in the dataset ( 67 ). Poten-
ial indirect interactions are trimmed applying the Data Pro-
essing Inequality (DPI). The False Discovery Rate (FDR) of
he interactions is computed by performing a one-sided z -test
onsidering the trimmed values of transfer entropy as nor-
ally distributed. TENET outputs a directed network. Due

o the indirect interaction trimming, TENET outputs smaller
etworks compared to the other inference methods, making
t more suited to be used on datasets with a larger number of
enes. For this reason, we include TENET networks obtained
n three different ways: 

• TENET: Full network without indirect interaction trim-
ming. 

• TENET_A: Network obtained after indirect interaction
trimming (cutoff = −0.1) and FDR < 0.01. This is the
original usage. 

• TENET_B: Network obtained after indirect interaction
trimming (cutoff = −0.1) and FDR < 0.5. 

For TENET implementation, we follow the installation and
sage instructions provided at https:// github.com/ neocaleb/
ENET . 

eePSEM 

eePSEM is a deep generative model designed for scRNA-
eq data that can simultaneously infer a GRN, embed and
isualize scRNA-seq data and simulate them ( 68 ). DeePSEM
ointly models the GRN and the transcriptome by generat-
ng a Structural Equation Model (SEM) through a beta Vari-
tional Auto-Encoder (beta-VAE). Following the original im-
lementation, we use the ensemble strategy to obtain more
table predictions, namely we train DeePSEM on the same
ataset with ten different random initializations. The final
RN is obtained by averaging the adjacency matrices de-

ived from the ten trained models. Following the implemen-
ation provided in https:// github.com/ HantaoShu/ DeepSEM
GRN_inference_tutorial.ipynb), we used DeePSEM in cell-
ype specific mode (task = celltype_GRN). DeePSEM outputs

 directed network.  
ARACNe 
Algorithm for the Reconstruction of Accurate Cellular Net-
works (ARACNe) is one of the first GRN inference meth-
ods based on information theory, initially designed for mi-
croarray data ( 69 ). It infers putative direct regulatory rela-
tionships between regulator and target genes using mutual
information (MI). In a first filtering step, interactions with
low MI are filtered out based on a threshold computed un-
der the null hypothesis of independence of two genes. Sub-
sequently, the DPI is applied to filter out indirect interac-
tions. ARACNe outputs a directed network. In this work, we
use a faster re-implementation of ARACNe based on Adap-
tive Partitioning (ARACNe-AP) ( 70 ), since it is more suited
to deal with the larger number of samples in scRNA-seq
data. We follow the steps for its implementation provided
in https:// github.com/ califano-lab/ PISCES/ ( 71 ), in the folder
/ tree / master / data. We ran ARACNe-AP on a HPC cluster us-
ing a Singularity container that we built. For datasets with
> 1000 cells, we ran ARACNe-AP on 250 metacells computed
following the instructions in https:// github.com/ califano-lab/
PISCES/ blob/ master/ vignettes/ general-workflow.Rmd . 

Implementation of the GRN inference 
GRN inference is based on BEELINE ( 31 ), whose installa-
tion instructions and documentation are available at https:
// murali-group.github.io/ Beeline/ . PIDC, GRNBOOST2 and
SINCERITIES were already available in BEELINE, thus we
used the Docker containers provided in it. For TENET,
we followed the instructions provided at https://github.com/
neocaleb/TENET , as described before, and we used custom
bash and Python scripts, which we provide in our Github
repository ( https:// github.com/ tartaglialabIIT/ scRAPID ), to
include it in the BEELINE pipeline. DeePSEM instead runs
on a GPU architecture, and it was implemented following
the instructions provided by the authors ( https://github.com/
HantaoShu/DeepSEM ). ARACNe-AP was run on a HPC clus-
ter following the instructions provided by the authors ( https:
// github.com/ califano-lab/ PISCES/ tree/ master/ data ). We pro-
vide the ‘def’ file for building a Singularity image for running
ARACNe-AP and custom bash scripts in our Github repos-
itory . Finally , we used a custom Python script to format the
results of all the GRN inference methods as in BEELINE. 

cat RAPID 

cat RAPID is an algorithm that computes an interaction
propensity score between a protein and a RNA based on their
sequence, using information from the secondary structure, hy-
drogen bonding and van der Waals contributions of both the
protein and the RNA ( 14 ,15 ). Canonical protein sequences
in FASTA format for the RBPs used in this study were ob-
tained from Uniprot ( 72 ). Regarding the RNAs, we used the
sequence of the canonical isoforms retrieved from Ensembl
(version 107). 

For the computation of the interaction propensity scores,
we followed the fragmentation-based approach of the
‘ cat RAPID fragment’ module ( 73 ), also used in cat RAPID
omics v2.0 ( 17 ) and RNact ( 74 ). The final interaction propen-
sity for a protein–RNA pair is defined as the maximum over
the distribution of the interaction propensities of the frag-
ments, as in RNAct ( 74 ). 

To facilitate the usage of scRAPID with new scRNA-seq
datasets in different organisms, we provide a SQL database

https://github.com/neocaleb/TENET
https://github.com/HantaoShu/DeepSEM
https://github.com/califano-lab/PISCES/
https://github.com/califano-lab/PISCES/blob/master/vignettes/general-workflow.Rmd
https://murali-group.github.io/Beeline/
https://github.com/neocaleb/TENET
https://github.com/tartaglialabIIT/scRAPID
https://github.com/HantaoShu/DeepSEM
https://github.com/califano-lab/PISCES/tree/master/data
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containing the maximum interaction propensity scores from
cat RAPID for: (i) 3131 RBPs versus 62055 RNAs (all the
canonical isoforms for the full transcriptome) in human, for a
total of 194.3 millions interactions; (ii) 2900 RBPs and 53087
RNAs (all the canonical isoforms for the full transcriptome)
in mouse, for a total of 154.0 millions interactions. The lists
of human and mouse RBPs were compiled by combining the
RBPs from the RBP2GO database having score > 10 ( 7 ) with
those that make up the cat RAPID omics v2.0 RBP libraries
( 17 ); the latter sets were further expanded by including, for
human and mouse, proteins that are orthologous to the RBPs
identified in mouse and human, respectively. 

The SQL database can be queried via ‘curl’; further details
and example queries are provided in our Github repository
( https:// github.com/ tartaglialabIIT/ scRAPID ). 

Interactions that are missing in our database, for in-
stance involving organisms other than human and mouse
or RNA isoforms other than the canonical one in hu-
man and mouse, can be computed using the cat RAPID
omics v2.0 web server ( http:// service.tartaglialab.com/ page/
catrapid _ omics2 _ group ). 

RBP co-interaction analysis 

We based this analysis on the Bioplex Interactome database
( 45 ), which contains thousands of RBP–RBP interactions mea-
sured via Affinity Purification Mass Spectrometry (AP-MS)
in two human cell lines (HEK293T and HCT116). Conse-
quently, we selected scRNA-seq datasets for the two cell lines
that are publicly available, as described in detail below. 

scRNA-seq datasets 
HEK293T 

We used the two previously described scRNA-seq datasets, ob-
tained with the 10 × and the Smart-seq3 sequencing protocols.

HCT116 

The scRNA-seq dataset for the HCT116 cell line is avail-
able on GEO with accession number GSE149224 ( 75 ). The
dataset includes three different cell lines (RK O , HCT116
and SW480) treated with different doses of 5-fluorouracil
treatment to study the DNA-damage response of the
transcriptome. 

We selected only the 3011 HCT116 cells and we exploited
the presence of treated cells to compute the diffusion pseudo-
time. We followed the pre-processing steps explained above
for the HepG2 and K562 datasets, then we computed a dif-
fusion map of HCT116 cells. We computed the diffusion
pseudotime choosing as the root cell the control cell farthest
from the treated ones. Next, we kept only the 2161 control
cells for downstream analysis, following the analyses done for
the HepG2 and K562 cell lines for gene selection and GRN
inference. 

RBP co-interaction prediction 

RBP co-interactions were predicted based on the overlap of
the RNA targets inferred by each GRN inference algorithm.
We considered as RBPs the intersection between human RBPs
present in the RBP2GO database ( 7 ), with RBP2GO score
> 10, and the proteins present in the BioPlex Interactome
database ( 45 ), which contains protein–protein interactions
measured with Affinity Purification Mass Spectrometry (AP-
MS), for the corresponding cell line (HEK293T or HCT116).
We obtained a list of 1808 and 1509 RBPs for the HEK293T 

and HCT116 cell lines, respectively, including 12 730 and 

9700 BioPlex interactions. 
For HEK293T, 186, 363 and 562 RBPs were included in the 

top 1000, 2000, 3000 HVGs selected from the 10x scRNA-seq 

dataset, respectively; 49, 145 and 247 RBPs were included in 

the top 1000, 2000, 3000 HVGs selected from the Smart-seq3 

scRNA-seq dataset, respectively. 
For HCT116, 164, 341 and 520 RBPs were included in 

the top 1000, 2000, 3000 HVGs selected from the Drop-seq 

scRNA-seq dataset, respectively. 
Next, for the GRN inference methods that output > 5% of 

the possible edges, we cut the ranking to this threshold. For the 
other methods we kept all the edges returned. Then, for each 

pair of RBP, we computed the Jaccard coefficient between their 
sets of targets. 

We ranked the RBP–RBP pairs according to the value of 
the Jaccard coefficient and we ran a Gene Set Enrichment 
Analysis for each GRN inference algorithm and scRNA-seq 

dataset (with 1000, 2000 and 3000 HVGs selected) using 
the R package ‘fgsea’ ( 76 ). The ground truth interactions 
are those obtained from the BioPlex Interactome database 
for each cell line. The code to predict and evaluate RBP 

co-interactions is provided in our Github repository https: 
// github.com/ tartaglialabIIT/ scRAPID . 

Additional information about Materials and methods is in 

the Supplementary Materials . 

Results 

Protein–RNA interactions can be inferred from 

single-cell RNA-seq data 

A recent work provided a framework, called BEELINE, to 

evaluate the performances of algorithms for the prediction 

of GRNs from scRNA-seq data ( 31 ). The main result of the 
study is that, when it comes to predicting ChIP-Seq derived 

cell type-specific TF–target interactions, the performance of 
12 algorithms is generally moderate ( 31 ). 

Thus, to assess the performances of such algorithms in pre- 
dicting RBP–RNA interactions, and to compare them with 

those obtained for the TF–target inference task, we selected 

datasets produced by the ENCODE project from the HepG2 

and K562 cell lines, the only samples for which a substan- 
tial amount of ChIP-seq and eCLIP data is available ( 42 ,43 ).
We used eight publicly available scRNA-seq datasets obtained 

with different sequencing protocols, including both full-length 

and 3 

′ end-based protocols; their characteristics are provided 

in Supplementary Table S1 , while further technical details 
about the datasets and their pre-processing are provided in 

the Materials and methods section. 
Next, we selected six GRN inference algorithms, includ- 

ing the top three performing ones from BEELINE (PIDC 

( 63 ), GRNBOOST2 ( 64 ) and SINCERITIES ( 66 )), two re- 
cent methods that were shown to outperform the methods 
used in BEELINE (TENET ( 67 ) and DeePSEM ( 68 )) and 

ARACNe ( 69 ), a method initially designed for bulk RNA-seq,
but that has been widely used on scRNA-seq data with ap- 
preciable performance ( 71 ). The methods use different sta- 
tistical models and theories to infer regulatory interactions 
from scRNA-seq data; details about their features and imple- 
mentation are provided in the Materials and methods section.
For TENET, we evaluated three different inferred GRN types: 

https://github.com/tartaglialabIIT/scRAPID
http://service.tartaglialab.com/page/catrapid_omics2_group
https://github.com/tartaglialabIIT/scRAPID
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
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he full inferred network without any filtering (indicated as
ENET in the figures) and the networks on which we applied

he DPI for removing indirect interactions, followed by the
pplication of a stringent (TENET_A) or loose (TENET_B)
hreshold on the FDR (see Materials and methods for further
etails). 
Following BEELINE, we selected the top 500 or 1000

ighly variable genes (HVGs) for each dataset, then we added
he highly variable TFs or the RBPs for which an eCLIP ex-
eriment is present in the ENCODE project for the corre-
ponding cell line ( Supplementary Table S2 ). We ran the in-
erence methods on each dataset and we measured the infer-
nce performance on TF–target or RBP–target interactions us-
ng the Early Precision Ratio (EPR) ( 31 ), which is the frac-
ion of true positives in the top k edges of the inferred net-
ork, where k is the number of edges in the ground truth net-
ork, divided by the density of the ground truth network (see

upplementary Materials for details). In Figure 1 A, we show
he probability density of the EPR values for all the datasets
nd algorithms with 500 HVGs selected, for TF–target and
BP–target interactions. The performances for the TF–target

nference task, in which the inferred networks are compared to
ell-type specific ChIP-seq data, are in line with those observed
y previous studies in other single-cell datasets and they are
lightly better than a random prediction (black dashed line)
or all datasets and methods (Figure 1 A). 

By contrast, the overall performance for RBP–target inter-
ctions, evaluated on cell-type specific eCLIP data, is signifi-
antly higher ( P = 4.4 × 10 

−5 , Kolmogorov–Smirnov test, Fig-
re 1 A). The datasets with 1000 HVGs show similar results
 Supplementary Figures S2 and S3 A). Figure 1 B shows the per-
ormances of individual algorithms for the K562 dataset se-
uenced with the CEL-seq protocol, for which, on average,
e obtained the best performances for the RBP–target infer-

nce task. 
The results for the other scRNA-seq datasets are shown

n Supplementary Figures S2 and S3B , for 500 and 1000
VGs, respectively . Interestingly , the EPR of the RBP–target

nferred interactions is larger than the EPR of the TF–target
nes in 73.4% of the cases. The statistics of the ChIP-seq and
CLIP ground truth networks for each dataset are reported
n Supplementary Figure S4 , together with the heatmaps of
PR values. On average, ARACNe is the top performing
ethod for the TF–target inference task, while the dataset in
hich these interactions are best predicted is HepG2 DNBe-

ab, as confirmed also for the datasets with 1000 HVGs
 Supplementary Figures S3 and S4 ). For the inference of RBP–
arget interactions, DeePSEM is the top method in terms of
verage EPR over the datasets when considering 500 HVGs
 Supplementary Figures S2 and S4 ), while it has a drop in per-
ormance for the datasets with 1000 HVGs, in which the best
ethod is TENET_A ( Supplementary Figures S3 and S4 ). The

arge increase in performance of the latter algorithm is likely
ue to the larger number of interactions inferred on datasets
ith 1000 HVGs. Indeed, TENET_A is very strict in consid-

ring significant interactions (see Materials and methods for
etails), leading to the elimination of the majority of inter-
ctions for some datasets in the setting with RBPs and 500
VGs. Regarding the datasets, in the case of 500 HVGs K562
EL-seq is the best for inferring RBP–RNA interactions (Fig-
re 1 B), while with 1000 HVGs the top dataset becomes K562
TORM-seq ( Supplementary Figure S3 ), in particular thanks
o the performance of TENET_A, which was not present for
this dataset with 500 HVGs due to the small number of inter-
actions returned by this method. 

Our evaluation shows systematically that RBP–RNA inter-
actions can be inferred from scRNA-seq data, with perfor-
mance (in terms of EPR) similar to or better than the ones
obtained for the ‘classical’ TF–target inference task. However,
we highlight the presence of possible biases in the compari-
son between the two tasks, given the intrinsic differences be-
tween the eCLIP and ChIP-seq experimental techniques. In-
deed, ground truth networks built from ChIP-seq data might
lead to a higher presence of false negatives, due to the fact that
TF targets are estimated based on proximity. 

Moreover, it should be noticed that the percentages of
true positives for RBP–RNA interactions reach a maximum
of ∼35% at the top of the ranking of inferred interactions
( Supplementary Figures S5 and S6 ). This is likely due to the
confounding presence of direct protein–protein and RNA–
RNA interactions, and of indirect interactions, which might
be hard to disentangle from each other just looking at the
interdependence of RNA expression levels. Another reason
for the slightly low true positive rate is the incompleteness of
the ground truth eCLIP network, especially due to detection
limits. 

The scRAPID approach improves prediction 

performance 

We reasoned that an improvement in the performance of
the GRN inference methods for predicting protein–RNA in-
teractions could be achieved by integrating the results ob-
tained from scRNA-seq data with complementary informa-
tion independent of the expression of the RBP and its puta-
tive targets. For this reason, we used cat RAPID ( 14 ,15 ) to cal-
culate the interaction propensity of the inferred RBP–RNA
pairs and we employed this score to filter out those which
are not likely to represent direct interactions; this approach
is referred to as scRAPID (see Materials and methods and
Supplementary Figure S1 for details). 

To find the optimal threshold for the cat RAPID score, we
tried several cutoff values and recalculated the EPR after re-
moving the inferred interactions whose interaction propensity
was lower than the employed cutoff. For most of the datasets
and inference algorithms, the EPR increases with the threshold
on cat RAPID interaction propensity ( Supplementary Figure 
S7 ). We selected 30 as the optimal cutoff for downstream anal-
yses, since for larger values the EPR starts decreasing for some
algorithms and datasets. We report the number of RNAs in-
teracting with each RBP and the number of RBPs controlling
each RNA, at several cutoff values of the cat RAPID score, in
Supplementary Tables S3 –S6 . Figure 2 A shows the EPR ob-
tained after filtering the inferred GRNs with cat RAPID for
each algorithm and dataset, together with the percentual rela-
tive difference with the original EPR value, i.e. the one ob-
tained before cat RAPID filtering. Notably, cat RAPID leads
to an increase of the EPR for all datasets and methods, ex-
cept for SINCERITIES for the two K562 SCAN-seq2 datasets
and DeePSEM for the K562 CEL-seq dataset, providing a
relative improvement of the EPR of 17.6%, on average. We
notice that ARACNe and TENET_A are among the meth-
ods with the largest relative improvement in EPR after fil-
tering based on cat RAPID (Figure 2 A and Supplementary 
Figure S8 A), despite both algorithms making use of the DPI to
eliminate indirect interactions. DeePSEM and SINCERITIES

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
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Figure 1. Performances obtained for the prediction of TF–target and RBP–target interactions from scRNA-seq data. ( A ) Probability densities of the EPR 

measured across methods and datasets for the TF–target and RBP–target datasets. The ground truth network is given by cell-type specific ChIP-seq and 
eCLIP interactions for TF–target and RBP–target interactions, respectively ( P -value = 4.4 × 10 −5 , Kolmogorov–Smirnov test). ( B ) Bar plots showing the 
EPR obtained for TF–target and RBP–target interactions by each GRN inference method, for the K562 CEL-seq scRNA-seq dataset. Both panels refer to 
the analyses performed using the top 500 HVGs. The black dashed line shows the EPR of a random predictor. 
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instead show the least enhancement. Regarding the datasets,
the HepG2 Smart-seq2 dataset benefits more than the oth-
ers from cat RAPID, while the K562 CEL-seq and SCAN-seq2
(UMI200) datasets improve less. We also highlight the im-
provement in the percentage of true positive interactions given
by cat RAPID ( Supplementary Figures S5 and S6 ). Finally, we
show that the cat RAPID-based filtering does not significantly
affect the specificity of the inferred interactions. Indeed, when
increasing the cutoff value of the cat RAPID score, the over-
lap between the sets of inferred RNA targets for each pair of
RBPs and vice versa remains peaked at values of the Jaccard
coefficient < 0.2, on average over datasets with 1000 HVGs
and inference methods ( Supplementary Figures S9 , S10 and
Supplementary Materials ). 

Additionally, we compared scRAPID performance with
RBPreg, a method designed to infer RBP regulators from
scRNA-seq data by integrating a GRN inferred by GENIE3
with binding motifs available for a set of 160 human RBPs
( 36 ). We ran scRAPID on three scRNA-seq datasets for the
K562 cell line, selecting the top 500 or 1000 HVGs and
only the RBPs belonging to the set considered by RBPreg
and for which eCLIP data are available (see Supplementary 
Materials for further details), and we ran RBPreg using the
web server provided by the authors. The outcomes, reported
in Supplementary Figure S11 , indicate that for the 500 HVG
dataset, RBPreg’s performance aligns with that of other meth-
ods. However, when extended to datasets with 1000 HVGs,
RBPreg’s efficacy appears to diminish, yielding the least fa-
vorable performance metrics. Additionally, the networks gen-
erated by RBPreg represent < 2% of the established ground
truth interactions, as documented in Supplementary Table S7 .

To further validate scRAPID on experimental datasets dif-
ferent from eCLIP and in different cell lines, we selected two
scRNA-seq datasets for the HEK293T cell line and we used
as a ground truth publicly available CLIP-seq data, relative
to 33 RBPs in HEK293T and 51 RBPs in HEK293, which
are the cell lines with the highest number of experiments in 

the POSTAR3 database ( 44 ) (see Materials and methods). We 
ran scRAPID and we evaluated the algorithms’ performance 
as before, on the HEK293T specific CLIP-seq data or taking 
the union with the HEK293 CLIP-seq data. We observe sim- 
ilar trends as those obtained for the HepG2 and K562 cell 
lines, with even higher improvement of the EPR, especially for 
TENET ( Supplementary Figure S12 ). 

Finally, we considered that combination of methods to pre- 
dict interactions among genes may lead to higher accuracy 
at the expense of a reduced coverage of the reference in- 
teractions ( 77 ). Indeed, there is a tradeoff between the cov- 
erage of eCLIP ground truth interactions and the increase 
in performance provided by the cat RAPID-based filtering of 
the interactions ( Supplementary Figure S13 ). At the opti- 
mal cutoff that we selected, the coverage is approximately 
halved, and there is a large variability between algorithms,
with ARACNe, TENET_A and TENET_B showing the least 
coverage. We summarize the relationship between coverage 
and inference performance for the GRN inference algorithms 
in Supplementary Figure S13 C. TENET_A, ARACNe and 

DeePSEM reach the highest performance when filtering the 
interactions with cat RAPID, but DeePSEM provides a larger 
coverage of ground truth interactions. The tradeoff between 

coverage and inference performance does not change signifi- 
cantly upon varying the number of HVGs for most algorithms,
except for DeePSEM that performs better for smaller datasets 
( Supplementary Figure S13 C). 

In addition to the EPR, which is the preferred performance 
measure when dealing with experimental scRNA-seq data 
( 31 ), we also computed the False Positive Rate (FPR), the 
False Negative Rate (FNR) and the Precision at various thresh- 
olds of the cat RAPID score ( Supplementary Figures S14 , S15 

and Supplementary Materials ). The selection of FPR, FNR 

and Precision as metrics in this context is not ideal, primar- 
ily due to the large negative set and the nature of some of 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
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https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
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Figure 2. Performances obtained after filtering the inferred RBP–RNA interactions using the ca tRAPID algorithm. ( A ) Heatmap showing the EPR 

measured for each scRNA-seq dataset and GRN inference method after the cat RAPID-based filter of the inferred networks. The number in brackets in 
each cell indicates the relative percentage difference in EPR between the rankings filtered using cat RAPID and the original ones. A black box indicates 
EPR smaller than the one of a random predictor. The colors in the heatmap are scaled between 0 and 1 by row, ignoring values less than that of a 
random predictor. The table on the left shows the statistics of the eCLIP ground truth networks for each dataset. ( B ) Probability densities of the EPR 

across methods and datasets for the original rankings and those filtered using cat RAPID. The ground truth network is given by eCLIP interactions 
( P -value = 6.8 × 10 −5 , K olmogoro v–Smirno v test). T he black dashed line sho ws the EPR f or a random predictor. ( C ) Same as B, but for indirect RBP–RNA 

interactions obtained by removing eCLIP interactions from shRNA RNA-seq ones ( P -value = 7.3 × 10 −4 , Kolmogorov–Smirnov test). In all panels we 
used scRNA-seq datasets with RBPs included in the eCLIP data and the top 500 HVGs. 

t  

t  

t  

g  

i  

s  

t  

a  

v  

c

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkae076/7607879 by guest on 20 February 2024
he inference methods, which focus on ranking only posi-
ively predicted interactions. Despite this, we observed that
he FPR decreases with an increase in the threshold, sug-
esting that cat RAPID is successful in filtering out false pos-
tives. On the other hand, the FNR is more linked to the
pecific inference methods employed. However, it is impor-
ant to note that the Precision shows a consistent increase
cross all methods and datasets, which is a significant obser-
ation even considering the limitations of these metrics in our

ontext. 

 

Removal of indirect interactions using cat RAPID 

Previous work highlighted that the poor performance of infer-
ence methods, when evaluated against cell type-specific ChIP-
seq data, is due to the presence of indirect interactions, as
witnessed by the better performance achieved when using the
STRING database as ground truth ( 31 ). With the two cell lines
under study, we have the possibility of testing this hypothesis
for RBP–RNA interactions using shRNA RNA-seq data for
the same cell lines, available from the ENCODE project (see
Materials and methods for details) ( 4 ). To evaluate whether
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inference methods are also predicting indirect interactions, we
tested their ability to infer the interactions of RBP with the
RNAs deregulated upon their knock-down, from which we re-
moved eCLIP-derived targets to obtain only putative indirect
interactions (see Materials and methods). While cat RAPID
causes a shift toward higher EPR values in the case of direct
(eCLIP) interactions (Figure 2 B, Kolmogorov–Smirnov test’s
P -value = 6.8 × 10 

−5 ), for indirect interactions (shRNA RNA-
seq), it produces the opposite trend (Figure 2 C, Kolmogorov–
Smirnov test’s P -value = 7.3 × 10 

−4 ), meaning that it effec-
tively removes indirect interactions. Overall, GRNBOOST2
and ARACNe are the inference methods most prone to de-
tect indirect interactions, while TENET_A infers the least indi-
rect interactions, since it applies the DPI downstream of GRN
inference to trim them out ( Supplementary Figures S16 and
S17 ). Interestingly, also ARACNe applies the DPI but it does
not work as effectively as TENET_A, possibly indicating that
transfer entropy is more suited than mutual information for
the prediction of gene interactions, since the latter does not
quantify a directional information flow. 

Next, we assessed the effect of filtering out protein–protein
interactions from the GRNs returned by the inference algo-
rithms, as compared to the scRAPID approach. Utilizing each
single-cell RNA-seq dataset and GRN inference algorithm, we
systematically excluded physical protein–protein interactions
reported in BioGRID ( 78 ) from the inferred rankings and sub-
sequently computed the EPR. Surprisingly, we observed a re-
duction in EPR across all datasets and algorithms, as shown
in Supplementary Figure S18 , a consequence likely attributed
to the potential exclusion of protein–RNA interactions ( 34 ),
as witnessed by the strongly significant overlap between Bi-
oGRID interactions involving RBPs and eCLIP interactions
(hypergeometric test P -value < 10 

−16 for HepG2 and K562;
see Supplementary Materials ). To delve deeper into this ef-
fect, we considered the coverage of true edges in the rank-
ings after the exclusion of protein–protein interactions. We
compared these results to a cat RAPID-based filtering strat-
egy with a threshold on the interaction propensity value cal-
ibrated to retain a commensurate percentage of true edges in
the rankings (threshold = 15). Our analysis revealed an en-
hancement in EPR with cat RAPID-based filtering compared
to the BioGRID-based filter, which increases with the interac-
tion propensity value set in scRAPID (threshold = 30). In sum-
mary, our findings underscore that filtering known protein–
protein interactions does not augment scRAPID’s aptitude for
selectively identifying protein–RNA interactions. 

Predicting protein interactions with long noncoding
RNAs 

So far we focused on HVGs, which are mostly composed of
protein-coding genes. Consequently, the inferred RBP–RNA
networks can be confounded by the presence of protein–
protein interactions, as mentioned above, while they would
not be present when considering only lncRNAs in the datasets.
For this reason, for each scRNA-seq experiment, we com-
pared the EPR of the RBP–RNA interactions inferred from
two different datasets, built using the top 400 highly vari-
able mRNAs and the top 400 highly variable lncRNAs, re-
spectively. We chose a smaller set of genes compared to the
previous analyses since lncRNAs are less represented in the
scRNA-seq datasets, due to their smaller absolute number in
the transcriptome compared to mRNAs and to their lower ex-
pression. In agreement with our expectations, in most of the 
cases (60%, which becomes 87.5% upon using the cat RAPID 

filter) the performance of the inference algorithms is higher 
for the lncRNA datasets than for the mRNA ones (Figure 3 

and Supplementary Figure S19 ). While for the mRNAs the top 

performing method is DeePSEM and the best dataset is K562 

CEL-seq, as already discussed for the datasets including both 

types of HV Gs, ARA CNe emerges as the best method for the 
inference of RBP–lncRNA interactions. However, we highlight 
that the smaller number of ground truth eCLIP interactions 
for lncRNAs might penalize the performance of TENET_A 

in some datasets, which instead performs very well for the 
K562 STORM-seq and Smart-seq3 datasets, the newest full 
length protocols that provide a more precise measurement of 
lncRNAs expression levels compared to the others. We also 

evaluated the performances after the cat RAPID-based filter 
(Figure 3 ) and observed that the predictive ability further in- 
creases for lncRNAs, even more than for mRNAs. Specifi- 
cally, the curves of the EPR as a function of the cat RAPID 

interaction propensity threshold ( Supplementary Figure S20 ) 
show that higher values of the EPR are reached for lncR- 
NAs than for mRNAs; the mean EPR over datasets and in- 
ference methods is 1.22 for mRNAs and 1.47 for lncRNAs 
in the original rankings, while it becomes 1.39 for mRNAs 
and 2.61 for lncRNAs after the cat RAPID-based filter with 

threshold on the interaction propensity set at 30 as in previ- 
ous analyses. Moreover, for every inference method almost all 
the datasets with lncRNAs show a monotonic increase of the 
EPR as a function of the threshold on cat RAPID score, espe- 
cially for the STORM-seq and Smart-seq3 sequencing proto- 
cols ( Supplementary Figure S20 ). 

Given the large difference in ground truth network size 
and density between mRNAs and lncRNAs ( Supplementary 
Figure S19 ), for each scRNA-seq dataset we performed 100 

random samplings of the eCLIP ground truth networks for 
mRNAs, to match the statistics obtained for lncRNAs in 

the same dataset. Next, we compared the EPR values of the 
lncRNAs with the distribution of EPR values obtained from 

the samplings of the mRNA ground truth networks, com- 
puting an empirical P -value (see Supplementary Materials ).
In Supplementary Figure S21 we show that, for most of the 
inference methods and datasets, the EPR values for RBP–
lncRNA interactions are significantly higher than those ob- 
tained for the downsampled RBP–mRNA interactions. More- 
over, cat RAPID increases the number of statistically signif- 
icant comparisons, confirming its usefulness in supporting 
the prediction of RBP–lncRNAs interactions from scRNA-seq 

data. Finally, we note that the percentage of true positives is 
generally smaller in datasets with lncRNAs compared to mR- 
NAs, due to the small size and sparsity of the eCLIP RBP–
lncRNA ground truth network, but it gets a large boost after 
the cat RAPID-based filter, especially for the K562 STORM- 
seq dataset ( Supplementary Figures S22 and S23 ). 

Identification of hub genes in protein–RNA 

networks 

One common application of GRN inference from scRNA-seq 

data is the identification of hub genes ( 67 ,79 ), intended as 
genes that regulate a large number of targets, with the goal 
of discovering novel master regulators (in particular TFs) of 
the biological process under study. A recent systematic eval- 
uation of GRN inference methods in terms of topological 
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Figure 3. Comparing the inference of RBP–mRNA and RBP–lncRNA interactions. Bar plots showing the EPR measured for datasets with eCLIP RBPs 
and 400 HVmRNAs or 400 HVlncRNAs, for each GRN inference method (columns) and scRNA-seq dataset (rows). A filled box for an inference method 
or a dataset indicates that it has the highest EPR (on a v erage), with the color corresponding to mRNAs or lncRNAs, as indicated in the legend. In each 
bar plot we show the comparison between the performances obtained for mRNA and lncRNAs before (‘original’) and after (‘ cat RAPID’) the 
cat RAPID-based filter. The dashed black line indicates the EPR of a random predictor. 
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etwork properties showed that, despite the moderate perfor-
ance of the algorithms in predicting the correct TF–target

dges, the identification of hub genes is generally more reli-
ble ( 39 ). Thus, we tested the capability of the methods in
redicting hub RBPs and, in addition to previous studies, we
lso considered ‘hub RNAs’, defined as RNAs that are regu-
ated by a large number of RBPs. Examples of such RNAs in-
lude mRNAs, some of which encode for important regulators
f cellular functions like Cyclin D1, c-Fos and Bcl-2, whose
 

′ UTR contain AU-rich elements recognized by multiple pro-
eins ( 80 ), and very lncRNAs, such as MALA T1, NEA T1 and
ORAD, whose sequence provides a platform for the bind-

ng of multiple factors that are relevant for phase separation
 81–83 ). 

Hub RBPs and RNAs were defined according to the out-
r in-degree centrality , respectively , computed on the nodes of
he ground truth network (see Supplementary Materials ). Fol-
owing a previous work ( 39 ), we tested the performance of the
nference methods using the Jaccard coefficient ratio (JCR),
hich is the ratio between the Jaccard coefficient of the hubs
f the inferred and ground truth networks and the Jaccard
oefficient that a random predictor would achieve ( 84 ). 

In Figure 4 , we show the results for the datasets that
chieve, on average over the inference algorithms, the best per-
formances in terms of JCR in identifying hub RBPs (HepG2
Smart-seq2) and hub mRNAs or lncRNAs (K562 CEL-seq). 

For the prediction of hub RBPs, the filter with cat RAPID
preserves or increases the value of the JCR in 95% of the cases
for the datasets with 500 HVGs and 94% of the cases for the
datasets with 1000 HVGs ( Supplementary Figures S24 and
S25 ). The K562 SCAN-seq2 (UMI200) and HepG2 SCAN-
seq2 (9CL) datasets achieve the best performance before the
filter with cat RAPID, for datasets with 500 and 1000 HVGs,
respectively, while the HepG2 Smart-seq2 dataset benefits
most from the filter, becoming the dataset with highest JCR,
on average, in both cases (Figure 4 and Supplementary Figures 
S24 and S25 ). Regarding the inference methods, TENET
and TENET_B, followed by SINCERITIES and DeePSEM,
are the top methods in finding hub RBPs in datasets with
500 HVGs (Figure 4 and Supplementary Figure S24 ) before
the cat RAPID-based filter. SINCERITIES becomes the top
performing method after the cat RAPID filter, followed by
DeePSEM and PIDC. For datasets with 1000 HVGs PIDC is
the best method, followed by DeePSEM and ARACNe, both
before and after cat RAPID ( Supplementary Figure S25 ). 

Regarding the identification of hub mRNAs and lncRNAs,
the K562 CEL-seq dataset achieves, on average, the highest
JCR, both before and after the cat RAPID-based filter, apart
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Figure 4. Identification of hub RBPs and hub RNAs in protein–RNA networks. Bar plots showing the JCR for hub RBPs, hub mRNAs and hub lncRNAs 
before (‘original’) and after (‘ cat RAPID’) the cat RAPID-based filter, for the HepG2 Smart-seq2 and K562 CEL-seq datasets, that, on average, achieve the 
best performance in identifying hub RBPs and hub RNAs, respectively. The dashed black line indicates the JCR of a random predictor. 
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from the datasets with 1000 HVGs, in which the top dataset
after such filter becomes the K562 SCAN-seq2 (9CL) (Figure 4
and Supplementary Figures S24 , S25 and S26 ). The filter with
cat RAPID preserves or improves the value of the JCR in 83%
of the cases for datasets with 500 HVGs, 75% for datasets
with 1000 HVGs and 85% for datasets with 400 lncRNAs.
The best method for identifying hub mRNAs is DeePSEM, fol-
lowed by PIDC, for datasets with 500 HVGs, while it is the
opposite for datasets with 1000 HVGs, and this stands both
before and after the cat RAPID-based filter. Finally, DeePSEM,
followed by GRNBOOST2 and ARACNe, is the top perform-
ing method in identifying hub lncRNAs. 

Cross-validation of scRAPID using RIP-seq data 

from murine cells 

Subsequently, we assessed the efficacy of scRAPID in predict-
ing RBP–RNA interactions detected through another experi-
mental technique in differentiating cells originating from a dis-
tinct organism. To this end, we first considered the C2C12, an
immortalized mouse cell line that recapitulates myoblasts to
myotube differentiation, for which Split Pool Ligation-based
Transcriptome sequencing (SPLiT-seq) scRNA-seq and single-
nuclei RNA-seq (snRNA-seq) datasets at 0 (myoblasts) and
72 h (myotubes) of differentiation are available ( 85 ). We in-
ferred the differentiation trajectory from myoblasts to my-
otubes, selected the top 500 and 1000 HVGs for each dataset
and ran the GRN inference (see Supplementary Materials ;
Supplementary Figure S27 ). We focused the evaluation on the
ADAR1 deaminase, which plays a prominent role in skele-
tal myogenesis, suppressing apoptosis at the myoblast stage
and facilitating the myoblast to myotube fate transition ( 86 ).
ADAR1 target RNAs have been identified in C2C12 cells at
0 and 72 h through RNA immunoprecipitation followed by
RNA-sequencing (RIP-seq) ( 86 ); we highlight that these tar-
gets are specific of each time point, thus they represent a re-
stricted list. The results for the myoblasts snRNA-seq dataset
are shown in Figure 5 A. We notice that the performance
in terms of EPR is quite robust across algorithms and that
cat RAPID increases the EPR for all of them except ARACNe,
producing, on average, a relative improvement in EPR of 54% 

for the datasets with 500 HVGs and 24% for those with 

1000 HVGs. However, we stress that in this case, in which 

performances are tested for the interactions of a single RBP,
TENET_A, TENET_B and ARACNe are penalized due to the 
smaller number of interactions that they output compared to 

the other methods. In Figure 5, we show only algorithms for 
which at least two experimental interactions are present in the 
inferred network, before the cat RAPID-based filter. 

We show the results for a scRNA-seq of myoblasts and 

snRNA-seq of myotubes, obtained from the same study, in 

Supplementary Figure S28 A,B. The results for the myoblasts 
scRNA-seq ( Supplementary Figure S28 A) are in line with 

those observed for the snRNA-seq, except for a worse per- 
formance of DeePSEM and the increase in EPR after the 
cat RAPID-based filter for ARACNe. Instead, the myotubes 
dataset ( Supplementary Figure S28 B) shows less consistent 
results: the filter with cat RAPID tends to preserve the EPR 

values and DeePSEM has higher EPR compared to the other 
methods, especially for the dataset with 500 HVGs. We hy- 
pothesize that the less robust performance obtained for the 
myotubes dataset is due to the smaller number of ADAR1 

targets in myotubes (401 targets versus 3263 targets in my- 
oblasts). We report ADAR1 target RNAs predicted by each 

algorithm, after the cat RAPID-based filter and at each time 
point, in Supplementary Table S8 and Supplementary Figure 
S29 A. A GO-term enrichment analysis ( 87 ) on the pre- 
dicted targets showed that, at the myoblasts stage, the pre- 
dicted targets are associated to terms related to developmen- 
tal processes, while at the myotubes stage more specific en- 
riched terms, such as ‘Muscle cell differentiation’, emerge 
( Supplementary Table S8 and Supplementary Figure S29 B),
although they are less significant due to the smaller number 
of targets in myotubes (see Supplementary Materials ). A com- 
parison with the GO terms obtained from the ADAR1 targets 
obtained via the RIP-seq experiments showed a strongly sig- 
nificant overlap ( Supplementary Table S8 ), witnessing the bi- 
ological significance of the targets predicted using scRAPID. 
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A

B

Figure 5. Validation of the method using RIP-seq experiments in mouse cell systems. ( A ) EPR measured for the inference made on the SPLiT-seq 
dataset of the C2C12 murine cell line recapitulating m y oblasts to m y otubes differentiation. Performances are tested on the ADAR1 RIP-seq experiments 
at 0h (m y oblasts; here snRNA-seq, see Supplementary Figure S28 A for scRNA-seq) and 72 h (myotubes; see Supplementary Figure S28 B) of C2C12 
differentiation. ( B ) EPR for the SCRB-seq dataset of mESCs differentiation driven by RA. Performances are tested on the Caprin1 RIP-seq experiments at 
0 h (undifferentiated mESCs; see Supplementary Figure S28 C) and 96 h (RA-differentiated cells). In both panels, we show only algorithms for which at 
least two experimental interactions are present in the inferred network, before the cat RAPID-based filter. 
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As a second validation system, we considered mESCs dif-
erentiation driven by RA. We ran the GRN inference on a
ingle-cell RNA barcoding and sequencing (SCRB-seq) dataset
n which mESCs were sequenced at nine time points ranging
rom 0 to 96 h of RA-induced differentiation ( 88 ). We eval-
ated the performance on the RNA targets of the cell-cycle-
ssociated protein 1 (Caprin1), which were obtained at 0 and
6 h of RA-induced mESCs differentiation through RIP-seq
 89 ). This protein plays a crucial role during mESC differentia-
ion, regulating an RNA degradation pathway, and its knock-
ut was shown to have a little effect in mESCs while it sig-
ificantly altered cell differentiation pathways ( 89 ). We show
he results for the 96 h time point in Figure 5 B. TENET_B
nd ARACNe outperform the other inference algorithms, es-
ecially after filtering the interactions with cat RAPID. In this
ase the EPR of all the methods increases after the cat RAPID-
ased filter. Instead, for the dataset at 0 h ( Supplementary 
igure S28 C) cat RAPID causes a decrease in EPR for some
lgorithms; this might be explained by the non-essential func-
ion of Caprin1 in mESCs ( 89 ) and by the smaller number of
nteractions measured at 0 h compared to 96 h (1178 Caprin1
argets at 0 h versus 2116 at 96 h). 
As in the case of ADAR1, we tested the biologi-
cal significance of predicted Caprin1 targets, reported in
Supplementary Table S9 , performing a GO-term enrichment
analysis at the two time points (see Supplementary Materials ).
In mESCs, we obtained enriched GO terms related to chro-
matin organization and metabolic processes, while in cells
treated with RA for 4 days we obtained several enriched terms
related to development and morphogenesis ( Supplementary 
Table S9 and Supplementary Figure S29 D). Moreover, we ob-
tained a strongly significant overlap with the enriched GO
terms obtained from Caprin1 RNA targets measured via RIP-
seq ( Supplementary Table S9 ). 

Prediction of RBP co-interactions based on the 

overlap of inferred targets 

The interaction between proteins that bind to common
RNA targets can extend beyond their RNA associations and
may encompass protein–protein interactions as well ( 90 ). In-
deed, by binding to shared RNA molecules, the RBPs form
a functional partnership that enables coordinated regula-
tion of RNA metabolism and cellular activities ( 91 ). The
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interplay between RBPs at the protein–protein level con-
tributes to the assembly and stabilization of ribonucleopro-
tein complexes, facilitating RNA processing, transport and
translation ( 92 ). These protein–protein interactions can oc-
cur through direct physical associations or indirect interac-
tions mediated by bridging factors such as intermediate pro-
teins. Through their interactions, RBPs create dynamic macro-
molecular complexes that influence RNA localization, sta-
bility and function. Elucidating the protein–protein interac-
tions among RBPs is essential for comprehending the in-
tricate regulatory mechanisms underlying RNA biology and
its impact on cellular homeostasis. Therefore, we predicted
RBP co-interactions based on their shared RNA targets from
the inferred GRNs (see Materials and methods for details).
To validate the predicted interactions, we considered the
two cell lines (HEK293T and HCT116), for which RBP co-
interactions, experimentally determined through Affinity Pu-
rification Mass Spectrometry (AP-MS), are provided in the
BioPlex Interactome database ( 45 ). 

We considered two scRNA-seq datasets for the
HEK293T cell line, obtained with two different protocols
(10 × ( https:// support.10xgenomics.com/ single- cell- gene- 
expression/ datasets/ 1.1.0/ 293t ) and Smart-seq3 ( 38 )), and a
scRNA-seq dataset from the HCT116 cell line obtained with
the Drop-seq protocol ( 75 ). For each dataset and inference
method, we ranked RBP–RBP pairs based on the fraction of
shared targets (see Materials and methods). Next, we ran a
Gene Set Enrichment Analysis (GSEA) to test the enrichment
for experimental RBP co-interactions in the rankings (see
Materials and methods). In Figure 6 A–C, we show the Nor-
malized Enrichment Score (NES) and the P -value obtained
from the GSEA for datasets with 1000, 2000 and 3000 HVGs.
We observe that most of the inference methods achieve a
significant enrichment, especially for datasets with a higher
number of HVGs. In particular, GRNBOOST2 is the best
method for the prediction of RBP co-interactions, suggesting
that the presence of shared indirect targets can be informative
for RBP–RBP interactions, but also DeePSEM, PIDC and
ARACNe achieve good performances. The importance of
the shared indirect targets for the prediction of RBP–RBP
interactions is confirmed by the overall decrease of the NES
when the interactions are predicted from the inferred rankings
after the cat RAPID-based filter ( Supplementary Figure S30 ).
In Figure 6 D, we show the enrichment plots for the top
performing inference methods for each dataset. 

Discussion 

In this study, we present scRAPID, a computational pipeline
for inferring protein–RNA interactions from single-cell tran-
scriptomic data. We conducted a comprehensive evaluation
of the inferred GRNs using various state-of-the-art inference
methods across diverse scRNA-seq datasets of different sizes
and obtained through different protocols. Importantly, our
pipeline is applicable downstream of any inference method,
offering flexibility in its usage, and is available at https://
github.com/ tartaglialabIIT/ scRAPID . 

We successfully demonstrated the effectiveness of our
pipeline in inferring RBP–RNA interactions. Notably, we
achieved similar or even superior performance compared to
the inference of TF–target interactions. Furthermore, our ob-
servations revealed that the integration of inferred GRNs with
cat RAPID predictions not only enhanced the inference perfor-
mance but also effectively filtered out indirect interactions to 

a significant extent. Notably, when focusing on RBP–lncRNA 

interactions, we found even greater improvement, although 

the task is limited at present by the detection limits of scRNA- 
seq and eCLIP data used for validation. We speculate that 
this enhancement might be due to the absence of confound- 
ing protein–protein interactions in the case of RBP–lncRNA 

interactions, which are instead present for mRNAs. 
We highlight that the most recent full-length scRNA-seq 

protocols, such as Smart-seq3 and STORM-seq, with higher 
sequencing depth and thus supposed to measure the level of 
lowly expressed RNAs more precisely, yielded the best re- 
sults in predicting RBP–lncRNA interactions. The widespread 

adoption of these protocols, along with improved lncRNA an- 
notation in scRNA-seq ( 93 ), is expected to further enhance the 
prediction of RBP–lncRNA interactions. This development 
holds great relevance for the identification of functional path- 
ways involving lncRNAs and for the discovery of the underly- 
ing mechanisms through which they serve as scaffolds for the 
formation of protein complexes. By exploring RBP–lncRNA 

interactions, we could gain insights into the intricate regula- 
tory networks and molecular interactions that contribute to 

various biological processes. This knowledge is crucial for un- 
derstanding the roles of lncRNAs and their implications in 

complex cellular processes, ultimately advancing our compre- 
hension of gene regulation and cellular function. 

Moreover, we expanded our investigation beyond binary in- 
teractions and demonstrated the ability of the inference meth- 
ods to predict hub RBPs, hub mRNAs and lncRNAs. The 
pipeline’s validation encompassed different organisms and ex- 
perimental techniques used to obtain protein–RNA interac- 
tions. Additionally, we showed the feasibility of predicting 
RBP–RBP interactions based on their shared targets in the in- 
ferred GRNs. 

A computational method, called RBPreg, that combines a 
GRN inferred from scRNA-seq data with information from 

the RBP binding motifs, has been recently introduced ( 36 ).
We demonstrated the superior performance of scRAPID com- 
pared to RBPreg on several scRNA-seq datasets. Moreover,
we highlight that RBPreg is limited to the known RBP-binding 
motifs, while our pipeline can be used on any protein, even not 
necessarily a known RBP, and it is based on GENIE3 for GRN 

inference, while we implemented scRAPID using a variety of 
GRN inference methods. 

To better select an appropriate inference method based on 

the specific task, we conducted a systematic analysis. Our find- 
ings indicated that DeePSEM and TENET are the best meth- 
ods for inferring binary RBP–RNA interactions. DeePSEM 

was particularly effective for small datasets, while TENET_A 

was more suitable for larger datasets due to its strict filter on 

indirect interactions. For inferring RBP–lncRNA interactions,
ARACNe and DeePSEM performed well. All inference meth- 
ods demonstrated proficiency in identifying hub RBPs and 

RNAs. Notably, PIDC and DeePSEM excelled in hub predic- 
tion, while GRNBOOST2 was the top-performing method for 
predicting RBP co-interactions, despite its tendency to predict 
more indirect interactions. DeePSEM, PIDC and ARACNe 
also achieved good performance in this context. 

The evaluation of our pipeline on various prediction tasks 
allowed us to uncover the strengths and weaknesses of dif- 
ferent GRN inference algorithms. Methods quantifying the 
statistical dependence of gene pairs, such as TENET, per- 
formed well in inferring binary RBP–RNA interactions but 

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/293t
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae076#supplementary-data
https://github.com/tartaglialabIIT/scRAPID
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D

Figure 6. Gene Set Enrichment Analysis of inferred RBP co-interactions. ( A –C ) Bar plots showing the -log10( P -value) (left) and NES obtained from the 
GSEA on the inferred RBP–RBP pairs ranked according to the fraction of shared RNA targets, for each GRN inference method. (A) scRNA-seq of the 
HEK293T cell line obtained with the 10 × protocol. (B) scRNA-seq of the HEK293T cell line obtained with the Smart-seq3 protocol. (C) scRNA-seq of the 
HCT116 cell line obtained with the Drop-seq protocol. P -values capped to 10 −16 are indicated by a star. ( D ) GSEA enrichment plots for the most 
significant inference method for each scRNA-seq dataset (3000 HVGs). 
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truggled in ‘global’ tasks such as hub detection and RBP co-
nteractions. In contrast, PIDC, which employs a multivariate
nformation measure between gene triplets, was not effective
n identifying RBP–RNA interactions but excelled in hub pre-
iction. Regarding indirect interactions, the application of the
PI effectively filtered them out in TENET_A and TENET_B
ut not in ARACNe, which was prone to inferring indirect
nteractions, possibly indicating that transfer entropy should
e preferred to mutual information for the prediction of di-
ect regulatory genetic interactions. DeePSEM emerged as the
ost flexible method, exhibiting good performance in both

local’ and ‘global’ prediction tasks. Indeed, its deep neural
etwork based on the SEM learns features from the scRNA-
eq data that enable data embedding, simulation and GRN
nference with the same model. 

The ability to predict common targets of RBPs is fundamen-
al to identify elements that co-assemble in phase-separated
ssemblies such as SGs ( 94 ). Indeed, RNA is a key compo-
ent of SGs and it has been proposed that rising levels of
ibosome-free mRNAs drive SG formation during stress ( 95 ).
he molecular composition and the function of proteins in
the compartmentalization and the dynamics of assembly and
disassembly of phase-separated assemblies is being studied
in detail, but the role of RNA in these structures still re-
mains largely unknown ( 96 ). RNA can function as molecular
scaffolds recruiting multivalent RBPs and their interactors to
form higher-order structures ( 96 ). Following our approach,
we showed that beyond predicting the RNA interactors of
proteins that mediate SG condensation, like Caprin1, common
RNA targets of RBPs can be inferred to a remarkable extent,
which could be in the future exploited to identify transcripts
favoring the assembly of protein complexes and their phase
separation. 

The combination of the predictions of binary RBP–RNA
interactions with RBP co-interactions might lead to the de-
velopment of methods for predicting cell-type specific ribonu-
cleoprotein complexes. By integrating the cell-type resolution
of GRN inference from single-cell transcriptomic data with
the structural and physico-chemical information encoded by
cat RAPID, our pipeline enables cell-type-specific prediction of
new protein–RNA interactions – an exceptionally challenging
task from an experimental point of view ( 6 ). 
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A promising future application of our strategy consists in
the integration of other single-cell omics data to predict GRNs
at multiple layers of gene expression regulation. In parallel, the
advancement in the resolution and throughput of experimen-
tal techniques for the detection of protein–RNA interactions
will provide more accurate data to test the computational
methods. Indeed, massively multiplexed methods for the si-
multaneous measurement of protein–RNA interactions from
tens to hundreds of RBPs, such as antibody barcode eCLIP
( 97 ) and Split and Pool Identification of RBP targets (SPIDR)
( 98 ), have been recently developed, and they are expected to
produce massive interaction datasets in the near future ( 10 ). 

Data availability 

The code to reproduce the analysis and figures in the
manuscript is available in Zenodo at https:// doi.org/ 10.5281/
zenodo.10210488 . It is also provided at the Github reposi-
tory https:// github.com/ tartaglialabIIT/ scRAPID . We also in-
clude a tutorial to run scRAPID on GRNs inferred on new
single-cell transcriptomic datasets, for which the ground truth
is not known. The code for GRN inference, evaluation of
the performance and plotting is compatible with BEELINE
( 31 ) and STREAMLINE ( 39 ). The scRNA-seq datasets used
in this study are available from public repositories, listed
in Supplementary Table S1 and discussed in depth in the
Materials and methods section. The eCLIP, ChIP-seq and
shRNA RNA-seq data for the HepG2 and K562 cell lines
are publicly available in the ENCODE project portal ( https:
// www.encodeproject.org/ ) ( 42 ); the CLIP-seq datasets for the
HEK293T and HEK293 cell lines are available from the
POST AR3 database ( 44 ). W e report all the eCLIP, ChIP-seq
and CLIP-seq datasets used in this study in Supplementary 
Table S2 . Refer to the Materials and methods section for their
processing. 

The RIP-seq data for ADAR1 in C2C12 cells and for
Caprin1 in RA-differentiated mESCs used for method vali-
dation are available as supplementary tables from the stud-
ies ( 86 ) and ( 89 ), respectively. We provide a database with
cat RAPID scores for human and mouse RBP–RNA interac-
tions that can be queried via ‘curl’; see the Github repos-
itory https:// github.com/ tartaglialabIIT/ scRAPID for details
and example queries. 

Supplementary data 

Supplementary Data are available at NAR Online. 
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