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Re-identification of objects from aerial photos
with hybrid siamese neural networks
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Abstract— In this paper, we consider the task of re-
identifying the same object in different photos taken from
separate positions and angles during aerial reconnais-
sance, which is a crucial task for the maintenance and
surveillance of critical large-scale infrastructure. To effec-
tively hybridize deep neural networks with available domain
expertise for a given scenario, we propose a customized
pipeline, wherein a domain-dependent object detector is
trained to extract the assets (i.e., sub-components) present
on the objects, and a siamese neural network learns to re-
identify the objects, exploiting both visual features (i.e., the
image crops corresponding to the assets) and the graphs
describing the relations among their constituting assets.
We describe a real-world application concerning the re-
identification of electric poles in the Italian energy grid,
showing our pipeline to significantly outperform siamese
networks trained from visual information alone. We also
provide a series of ablation studies of our framework to
underline the effect of including topological asset informa-
tion in the pipeline, learnable positional embeddings in the
graphs, and the effect of different types of graph neural
networks on the final accuracy.

Index Terms— Object re-identification, graph neural net-
works, siamese networks, object detection, energy grids

I. INTRODUCTION

THE maintenance of transmission and distribution net-
works is a fundamental problem faced by dozens of

companies around the world, and it is a critical task for
ensuring their constant reliability and performance. However,
maintenance is far from trivial since large-scale power grids
are composed of millions of interacting components, which are
spread over large distances and continuously exposed to wind,
rain, extreme weather events (e.g., earthquakes), and standard
wear of their components. As a representative example, the
Italian energy grid is composed of over 74,000 kilometres of
lines spanning the entire country, alongside thousands of assets
including high-voltage lines and transformer stations.

In this paper, we focus on the task of mapping and sur-
veying electric poles across the grid which, because of their
number (typically thousands) and characteristics, constitute an
immense task requiring careful automation. In order to identify
possible issues, cyclical visual inspections are performed,
which are done by repeatedly mapping out all the poles of the
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Fig. 1: An example of a difficult pair taken from the dataset:
the two poles have a very similar structure and are set against
similar background. However, they can be distinguished by
carefully looking at their assets (in particular, their isolators).

network with planned aerial flights [1], [2], remote sensing
images [3], or even on-foot patrols. However, individual poles
in aerial images are identifiable only up to a certain precision,
due to pictures being taken from different angles and in
different operating conditions (e.g., weathers, occlusions). An
example of this is shown in Fig. 1. Because of this, algorithms
to automatically re-identify the same object from different
pictures are required [4].

In the literature, object re-identification tasks are commonly
solved by the use of deep learning combined with metric
learning algorithms (e.g., siamese networks), wherein different
images are processed via the same convolutional architecture
to obtain a fixed-dimensional embedding, and the networks
are trained so that embeddings belonging to the same object
(e.g., poles) are closer than embeddings belonging to different
objects [5]. However, as we show in the experimental section,
pure re-identification based on raw visual images is insufficient
in our scenario, where the object of interest only occupies
a small part of the full image with large overlaps with its
background (see again Fig. 1).

This paper is motivated by the following observation: elec-
tric poles, like many other components of the energy grids, are
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Fig. 2: Schematic diagram of the feature extraction pipeline. A customized object detection model simultaneously detects the
bounding box of the pole and the bounding boxes of its composing assets (e.g., transformers). Then, a graph is built where each
node corresponds to a detected asset and edges encode their relation (as described in the main text).The image is represented
by combining the embedding from a visual branch (top) and from a graph branch (below). Only a subset of the assets is shown
for clarity.

in themselves complex objects, composed of a variety of assets
including several types of isolators, cabinets, transformers,
and so on (we describe more in-depth the assets we consider
in our work in Section IV-A). These assets provide valuable
information that is crucial for identifying different poles from
similar photos, and which is not considered explicitly in
standard approaches working on the entire image as a whole.
Handling them inside a neural pipeline is the major aim of
this paper.

Contribution of the paper: Inspired by recent works on
graph deep learning [6], [7] and object-centric models [8],
[9] (as described more in-depth in Section II), in this paper
we propose and empirically validate a novel framework for
object re-identification in aerial images aided by an object
detection model that is based on what we call a graph of
visual assets. As shown in Fig. 2, we first train a customized
object detection model to extract all the assets belonging to
a single pole. From these, we build a graph where each node
corresponds to an asset, and edges describe the connection
between different assets (in a way which is robust to changes
in orientation and view). Using both types of information, we
train a siamese neural network on the combination of two
different embeddings: one in the original image domain (to
identify poles based on the appearance of the assets), and one
in the graph domain (to identify poles based instead on the
relations between assets), as shown respectively in the upper
and lower parts of Fig. 2 and in Fig. 3. To build the embedding
in the graph domain, we use graph neural networks (GNNs),
a powerful family of neural networks that are equivariant to
permutation of the assets in the image [6], and are flexible
enough to handle a combination of object detection features,

trainable positional features [10], and relational features.
We empirically validate our framework on a realistic use

case collected from the Italian energy grid (described in
Section III), showing that it provides significant increases in
performance if compared to a standard object re-identification
approach working on the visual features alone, even when the
latter is combined with the trained object detector. Although
GNNs have already been shown to provide strong performance
in problems ranging from bio-informatics to social networks,
the framework proposed in this paper, to the best of our
knowledge, shows for the first time that a more sophisticated
composite approach exploiting both the visual features and the
relational information coming from the assets can outperform
both convolutional neural networks (CNNs) and GNNs trained
individually. Since graphs are pervasive in energy grids, we
hypothesize these hybrid approaches can become a significant
component of the next generation of artificial intelligence
algorithms applied to these fields, allowing to inject domain
expertise in a more explicit fashion inside the predictive
models provided by the deep networks.

The rest of the paper is structured as follows. In Section
II we briefly overview recent works related to the proposed
framework. The use case we consider is described in Section
III, while the framework itself is provided in Section IV. We
perform a thorough evaluation in Section V, before describing
some concluding remarks in Section VI.

II. RELATED WORKS

1) Object re-identification: Object re-identification is the
task of recognizing the same object appearing in different
photos, which is a common task for, e.g., security [11] and
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object tracking [12]. In deep learning, a common solution is
to consider a siamese model, where two photos are processed
with the same neural network, and the resulting vectorial
embeddings are trained to provide small distances for the same
objects, and large distances for different objects [4]. This is
achieved by using loss functions designed for metric learning
[13], such as the triplet loss or the InfoNCE loss, as opposed
to classical NN pipelines for classification exploiting cross-
entropy losses [14]. Recently, contrastive learning [8] has
popularized the use of these losses also for unsupervised and
self-supervised learning of models, by using augmentations of
the same image (or sample) to create different views of the
same object.

2) Electric pole maintenance: Maintenance and control of
energy grids (and their assets) has become a widespread
problem over the last decades due to the aging of components,
the heterogeneity of the grids (e.g., multiple types of renewable
sources), and the interlocking of the grids inside smart cities
[15]. In energy grids, deep learning has found widespread use,
ranging from optimal flow analysis [16] to anomaly detection
[17] and energy forecasting [18]. Concerning electric poles in
particular, a lot of attention has gone into ways of mapping
them periodically, including manned [1] and unmanned [2]
aerial flights, and remote sensing pipelines [3] (we refer to
[2] for a more in-depth overview). Concerning deep learning
instead, deep neural networks have been used to predict
possible failures [19], identifying specific poles from images
[20], or finding vegetation or icing on the poles [2]. State-of-
the-art methods are generally framed as an object detection
problem, where the task is to find the proper bounding box
surrounding a pole from an aerial image [20]. In this paper we
consider an intermediate problem, where we assume that poles
have been successfully identified in multiple photos (taken
from successive aerial routes, see Section III), but we need
to re-identify the same pole from different images to plan
potential maintenance activities.

3) Graph neural networks: Graph neural networks are neural
networks that can process graph-based data, such as road
transportation networks, without embedding them first into
vectors. Research into this class of models increased rapidly
after the original definition of convolutions over graphs [6],
and today multiple architectures exist ranging from graph
convolutional networks (GCNs) [21] to Chebyshev GCNs [22],
graph attention networks [23], and more [6]. Siamese GNNs
have also been proposed, although in most cases the graph is
assumed to be given [24], or the result of a segmentation across
the original image [7]. Interestingly, GNNs have been shown
to be powerful architectures for processing spatio-temporal
data [25], despite begin originally defined for data having no
metric properties. Different methods have been proposed to
encode spatial information about each node inside the GNN
processing [10], which we leverage in our formulation. Finally,
this paper is connected to several recent works that combine
convolutional neural networks and GNNs into hybrid models
that represent images in terms of generic ‘objects’ which are
then processed as a graph [8].

Triplet loss
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Fig. 3: During training, we randomly sample a triplet of
objects, including a positive pair (two photos of the same pole),
and a negative pair (two photos of different poles). The images
are processed according to the pipeline in Fig. 2, on top of
which we train with a proper metric learning loss. The GCN,
CNN, and NN blocks correspond, respectively, to the lower
branch, upper branch, and rightmost block of Fig. 2.

(a) Simple morphology (b) Nested morphology

Fig. 4: A sample of two lines considered when building the
dataset.

III. DATA

Our dataset was captured in 8 different electrical lines in
Italy, where each line contains several dozen poles situated
according to the line’s so-called morphology. Specifically,
images of the poles are taken from a helicopter that flies
back and forth around the line while taking pictures. Photos
are high-resolution, with an acquisition size of 6567 × 4384
pixels, and the bounding boxes occupy from 3% to 11% of
the full picture on average. The eight lines are chosen in order
to deliver a high heterogeneity in terms of morphology, and
consequently high complexity in the dataset, varying from a
straightforward line (seen on the left side of Fig. 4), to a nested
morphology (seen on the right side of Fig. 4). Because of
variability in the helicopter’s flight, weather, etc., the outcome
of the aerial monitoring is a set of photos in which the
background and orientation for the same pole can vary by
a large margin, making their classification a non-trivial issue.

The final dataset consists of 6948 training images and 2121
test images, split such that photos of a certain pole can only
be found either in the training or in the test part. The training
set images are distributed among 713 distinct groups, while
the validation has 268 groups. Each group contains images
of the same pole, taken from different angles. Each cluster in
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TABLE I: Results for the object detection model

Asset Train samples F1-score
BREAKER SWITCH 563 0.98
TRIPOLAR HORIZONTAL SWITCH 2333 0.98
CEILING 5959 0.97
TRANSFORMER 4728 0.97
STEEL CROSS ARM 18282 0.96
TRIPOLAR VERTICAL SWITCH 1648 0.95
RIGID INSULATOR 15928 0.94
SUSPENDED INSULATOR 26983 0.94
CONCRETE CROSS ARM 4098 0.94
BUSHING 4713 0.92
MIXED SURGE ARRESTER 3741 0.90
JUMPER 10009 0.89
UNIPOLAR SWITCH 1114 0.86
STD SURGE ARRESTER 7271 0.83
WIRE TO CABLE TRANSITION 4864 0.76
HORN GAP SURGER ARRESTER 1251 0.76
NEST 2161 0.72
TERMINAL CONNECTOR 5471 0.73
WINDOW 2323 0.70
WALL BUSHING 3876 0.71
ELICORD CROSS ARM 814 0.73

the training and test set contains on average around 9 images
of the pole. In Fig. 1 two photos from different clusters are
shown.

IV. METHODS

In this section, we describe our proposed pipeline for object
re-identification. Given an image x containing a pole, we
first train a customized object detection model to extract its
composing assets, as described in Section IV-A. We then build
two embeddings for each image, a vector xv of visual features,
as described in Section IV-B and shown in the upper part
of Fig. 2, and a vector xg of graph features, as described
in Section IV-C and shown in the lower part of Fig. 2. The
two embeddings are then concatenated and fed to a standard
triplet loss to perform re-identification (Section IV-D and Fig.
3). To simplify reading, we also summarize the main hyper-
parameters of the framework and their empirically chosen
values in Tab. II, and we provide a readable pseudocode of
the feature extraction pipeline in Algorithm 1.

A. Object detection model

The object detection step consists of two main phases. In
both phases the object detection model is an EfficientDet-
D2 [26], trained ad-hoc on a separate object detection dataset
customized for our application and labeled by several domain
experts, whose size is listed in Tab. I. We keep the object
detection dataset separate from the main dataset described in
Section III to avoid data leakage and to ensure generalization
to unseen poles. With the help of the domain experts, we
identify 21 assets, comprising all visible assets in the majority
of the poles, listed in Table I.

Firstly, an image is analyzed by an EfficientDet-D2 that
identifies the presence and the type of the pole in the image
with close to 100% accuracy. Secondly, we crop the pole from
the image and run a second object detection model to identify
every asset of interest among the full list of 21 assets. The
number of samples listed in Tab. I refers to the number of

crops extracted from the original pole images and used to train
the object detector. We fine-tune the original EfficientDet-D2
model [26] for 50 epochs, achieving an F1-score ranging from
70 % to 98 % for the different assets, shown again in Tab. I.
A sample of the output for the object detector is shown in Fig.
5. Because the focus of the paper is on the proposed pipeline,
we consider the object detection model as given in Algorithm
1, where we denote with ci the i-th asset cropped from the
original image.

B. Visual features
We now describe the pipeline for extracting the vector of

visual features xv , as shown on the upper part of Fig. 2.
Given the output of the object detector, we first extract all
crops of x corresponding to a detected asset. As described in
Section IV-A, one of the crops always corresponds to the entire
pole, which is crucial to process the background of the pole
and its surrounding environment. Each crop ci is then passed
to a standard ResNet-34 model pre-trained on the ImageNet
dataset [27] to provide a 1000-dimensional embedding of
the asset c̃i = ResNet(ci). The weights of the ResNet-34
model are fixed during the training of the re-identification
framework. To regularize training, we also perform simple
data augmentation directly on the crops, by random rotations
and flipping, in order to make the network more robust to
changes in the orientation of the images. Finally, we perform
min-pooling and max-pooling on the set of embeddings, and
the resulting two 1000-dimensional vectors for each image
are concatenated to obtain the visual embedding vector xv

(denoted as MinMaxPool({c̃i}) in line 5 of Algorithm 1). We
also experimented with taking the embeddings from additional
intermediate layers of the ResNet-34 network, as long as
with different pooling strategies, and we empirically found
the approach described here to be the more robust in our
experiments.

C. Graph features
The visual pipeline described in Section IV-B exploits a pre-

trained CNN model, which is common when performing object
re-identification (see also the discussion in Section II). In fact,
pre-trained CNN features have been shown to perform well in
a number of computer vision scenarios and have become a
standard baseline for many tasks. However, some information
about the assets is lost in this pre-processing step, including the
class of each asset (which is recognized by the object detection
model), but also the relative positioning of the assets on the
image which, as we discussed in Section I, can provide useful
information to distinguish different poles. Since GNNs are
powerful models to perform reasoning on sets of objects [8],
we introduce a second pipeline in the framework by building
a graph describing the assets, and applying a trainable GNN
on top of it, as described next.

1) Construction of the graph: We represent the assets of the
image as a graph G = (V, E), where V is the set of nodes (each
node representing an asset) and E the set of edges (wherein we
connect two assets depending on their relative distance on the
image, as described below). First, to each asset i of the image
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Fig. 5: Example of output from the object detection model.
Note how the entire pole itself is always included as an asset
in the output.

we associate a vector of node features xi by concatenating the
following four sets of features:

1) A scalar value describing the relative size (in percent-
age) of the bounding box containing the asset, varying
between 0 and 1;

2) The confidence (in [0, 1]) of the object detection model;
3) A trainable 8-dimensional embedding representing the

category of the asset;
4) A positional embedding describing the position of the

node inside the overall graph.
For point (4), we experimented with using the coordinates of
the bounding boxes as positional features, but we found it
to provide no gain in accuracy, possibly because the absolute
coordinates do not provide enough invariance to a change in
perspective. For this reason, we adapt the trainable positional
embedding strategy introduced in [10], as described later in
Section IV-C.3. We also experimented with larger embedding
sizes in point (3), with no significant changes.

For each pair of assets i and j, we compute their distance
dij as the minimum distance between their corresponding
bounding boxes, and we add the edge (i, j) in E if the distance
is contained in a pre-specified range [dmin, dmax], where we
empirically set dmin = 0.01 and dmax = 0.06. We use the
relative distance with respect to the original image size. For
example, dij = 0.05 means that the two bounding boxes are
separated by 5% the maximum possible distance in the image.
We remove edges when the assets are either too far away or
too close, as we found those in this range to provide the most
interesting information to the GNN.

2) Graph neural network: GNNs have become a standard
tool to analyze graph-based data in a trainable fashion. A
generic GNN is composed by a number of message-passing
layers [6] defined by a node-wise operation, followed by an
aggregator over each neighborhood of the node:

hi = ϕ

∑
j∈Ni

η(i, j)π(xj)

 (1)

where hi is the new embedding for node i, ϕ is an activation
function (e.g., a ReLU ϕ(s) = max(0, s)), π(·) is a generic
fully-connected network applied to each node embedding,
Ni = i

⋃
{j|(i, j) ∈ E} is the neighborhood of node i,

and η(·, ·) is a symmetric weighting function. In particular,

Algorithm 1 Pseudocode of the feature extraction pipeline

Input: Image x, pre-trained object detection model (ObjDet)
and backbone model (ResNet)

Output: Feature embedding to be used for re-identification
1: {ci} = ObjDet(x) ▷ Object detection, Sec. IV-A
2: for each asset ci do
3: c̃i = ResNet(ci) ▷ Visual features, Sec. IV-B
4: end for
5: xv = MinMaxPool({c̃i})
6: X,A = BuildGraph(x) ▷ Graph extraction, Sec. IV-C.1
7: xg = GNN(X,A) ▷ Graph network, Sec. IV-C.2
8: return V [xv ∥ xg]

graph convolutional networks (GCN, [21]) are a common
instantiation of (1) using a single fully connected layer for
π and fixed weights for η:

hi = ϕ

∑
j∈Ni

AijWxj

 (2)

where W is a trainable matrix, and A is a generic matrix
satisfying Aij = 0 if (i, j) ̸∈ E . In our experimental com-
parison, we compare a standard GCN to more sophisticated
choices, including graph attention layers [23] and Chebyshev
convolutional layers [22]. We build our complete GNN by
stacking two layers of the form (1), both of size 100, each
followed by a batch normalization operation. The outputs of
the two convolutional layer for each node are then stacked,
and the node embeddings are processed in a similar way as
in Section IV-B: we perform min-pooling and max-pooling
with respect to all nodes, and stack the two representations to
obtain the graph vector embedding xg of size 200. To obtain
the final representation for the image, we concatenate xv and
xg , and perform a final trainable projection with output size
2000. In Algorithm 1, we denote by X the stack of all node
features xi, and we summarize the output of the GNN block
in line 7. The final linear projection is denoted by V [xv ∥ xg],
where V is a trainable matrix.

3) Positional embeddings: In their standard form, GNNs do
not encode any positional information on the nodes, since their
output is equivariant to any permutation of their ordering [6].
While in our case it would be possible to encode positional
information by using the coordinates of the assets as node
features, we found this to provide poor empirical performance,
possibly because the coordinates vary too much depending on
the orientation of the aerial photo, and they are not invariant
to a change of pose. To improve the GNN model, instead, we
consider trainable positional embeddings following the work
on spectral attention from [10]. For brevity, we only briefly
describe the technique here, and we refer the interested reader
to [10] for a more in-depth explanation.

Denoting by A the adjacency matrix of the graph (as built
in Section IV-C), by D the diagonal degree matrix Dii =∑

j Aij , and by L = D − A the Laplacian matrix of the
graph, consider the eigendecomposition:

L = UVU⊤ , (3)
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where U is a square matrix containing the eigenvectors over
the columns, and V is a diagonal matrix of eigenvalues. (3)
can be understood as a Fourier transform over the graph [6],
with the difference that different graphs cannot be compared
directly in terms of eigenvalues because they do not share
the same eigenvectors. To solve this issue, similar to [10],
we select the m lowest eigenvectors (with m = 3 in the
experiments), where the eigenvectors are normalized to unity
norm, and padding is applied is the graph has less than m
nodes. The output is then processed with a trainable neural
network as described in [10], except that we use a simple
sum-pooling operation instead of the final Transformer block.
The positional embeddings for each asset are concatenated to
the other features as described in the previous section.

D. Training details

Given the feature encoding steps, we train the framework
using a classic metric learning formulation, shown in Fig.
3. Given a triplet (xa, xp, xn), with xa an image of a pole
(the anchor), xp another image of the same pole (positive),
and xn an image of a different pole (negative), we apply the
feature extraction step described earlier to obtain embeddings
(ha,hp,hn). Denoting by dap and dan the Euclidean distance
between anchor and positive, and anchor and negative, respec-
tively, we minimize the triplet loss:

l(xa, xp, xn) = max(dap − dan + 0.05, 0) ,

which encourages the distance to be small for images of the
same pole, and vice versa. To sample the triplets when training,
for each iteration, we choose up to 8 images from each
pole. Then, we build 64 triplets (the batch size) by randomly
sampling an anchor, and then selecting the easy positive pair
and the semi-hard negative pair according to the strategies
described in [28]. To stabilize training, we also add the center
invariant regularization from [29]. We keep the ResNet-34
model from Section IV-B fixed, while we train the categorical
embeddings from Section IV-A, the final projection layer from
Section IV-B, and the graph neural network from Section IV-
C, including the block to extract node positional embeddings.
We train with the Adam optimization algorithm with default
hyper-parameters using the train/test split described in Section
III. The models leverage PyTorch Geometric1 for the GNN
component and PyTorch Metric Learning2 for the training. All
hyper-parameters are summarized in Tab. II.

V. EXPERIMENTAL RESULTS

A. Experimental setup

We evaluate the proposed framework using a classical met-
ric learning setup. We first compute the embeddings generated
by the trained model for all the images inside the test set
(see Section III). Next, for each image, we compute the k
closest embeddings in the set (with k = 30), and we evaluate
the ranking using the mean average precision (MAP), and the

1https://github.com/pyg-team/pytorch_geometric
2https://github.com/KevinMusgrave/

pytorch-metric-learning

TABLE II: Main hyper-parameters of the framework, and the
values used in our experimental evaluation.

Hyperparameters Values

Object detection model EfficientDet-D2
Backbone model ResNet-34
Data augmentation Random crop and flip
Embedding size for the asset type 8
Thresholds on asset distance > 0.01 and < 0.06

Graph neural network 2 Chebyshev layers
Size of the GNN layers 100
Graph positional embeddings 3 lowest eigenvectors
Batch size 64
Optimizer Adam
Learning rate 1e− 3

Epochs 80

cumulative matching curve (CMC) computed at 1, 3, 5, and 10
[30], which we denote as CMC@1, CMC@3, CMC@5, and
CMC@10 [30]. The MAP approximates the average precision
of the ranking, while CMC@p describes the probability that at
least one image from the same pole was ranked among the top
p positions. We average the values for the entire test dataset
to compute the final metrics.

B. Benchmark comparison
We start by comparing the proposed pipeline to two bench-

mark models, which are all trained using the same data and
losses described in Section IV-D. The first benchmark is a
standard siamese ResNet-34 model trained with a triplet loss
on the crop of the entire electric pole. Second, we consider a
model where we combine the information of the trained object
detection model with the CNN, which is obtained by removing
the lower branch of Fig. 2. For the proposed framework,
we use Chebyshev convolutional layers (for brevity, Cheb)
because of their good empirical performance, although we
compare other alternatives in the next section.

We report the results of the experiments in Tab. III. There
are several interesting observations to make from the results.
First, the inclusion of the graph information significantly
improves all metrics, in some cases by a very large margin
(e.g., CMC@1 has a relative improvement of 6 percentage
points over a standard CNN, and similar improvements are
found across the other metrics). Second, simply including the
information of all the assets inside the CNN is not enough
to improve performance, and in fact may even hurt certain
metrics (e.g., CMC@5 drops of 1 percentage point in the
second row of Tab. III). Overall, the results show that including
the domain expertise provided by the object detection model is
essential to obtaining good results, but so is the need to process
this information with a model that can efficiently reason on
the relations between the assets, as provided by the GNN. As
an additional performance metric, we train a standard DBScan
clustering algorithm on the obtained vectorial embeddings, and
we compute the v-measure score [31] using the ID of the
poles as ground truth. In this case, the baseline Siamese CNN
obtains a v-measure of 82%, which increases to 85% with the
proposed framework.
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TABLE III: Comparison of the proposed framework to state-of-the-art models

Model CMC@1 CMC@3 CMC@5 CMC@10 MAP
Proposed framework 0.9306 0.9658 0.9753 0.9829 0.788
Siamese CNN (all assets) 0.885 0.926 0.935 0.952 0.753
Siamese CNN (pole) 0.876 0.926 0.943 0.958 0.776
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Fig. 6: Comparison of MAP and CMC@1 using different
types of graph neural layers.

C. Ablation studies

We now perform several ablation studies to validate all the
components of the pipeline. Firstly, the results in the previous
section show that the visual branch alone is insufficient to
achieve optimal results. We now train the graph branch alone
to isolate its effects, and also evaluate different types of graph
neural layers. The results shown in Fig. 6 are obtained by using
a Chebyshev graph neural network [22], which is a second-
order polynomial graph layer. We experiment here also with
simpler GCN layers [21] and graph attention layers (GATs)
[6]. We provide a comparison of the results in Tab. IV, and a
visual evaluation in Fig. 6. As expected, the graph information
alone is insufficient to achieve a good accuracy, and the best
performing model obtains a CMC@1 of 61%, vastly inferior
also to a simple CNN siamese network. More interestingly,
the result is highly dependent on the type of message passing
operation, with the Cheb layer being 22% better than the GCN
and the GAT layer. We conjecture that the larger expressive
power afforded by the Cheb layer is especially suited to our
scenario, where graphs are composed of only a few nodes.
We leave however a more comprehensive evaluation of graph
neural network variants for a future work.

Secondly, we evaluate the impact of the procedure for
constructing edges described in Section IV-C, and of the
positional embeddings described in Section IV-C.3. To this
end, we train two variants of our framework. In the first, we
remove all edges by setting the adjacency matrix to the identity
A = I. In this case, the graph component of the pipeline
becomes a set-based model that reasons only on the list of
assets. For the second ablation, we train a model but we do
not concatenate positional embeddings to the features of the
nodes. Results for this second study are shown in Tab. V.
Interestingly, performances vastly deteriorates in both cases,

showing that it is essential for the graph component to be
able to reason on the relative positioning of the assets using a
suitably rich representation.

D. Further results

We also evaluated the results of the models visually, by
comparing the hardest triplets after training. For example, in
Fig. 7 we show a triplet which is mistaken by all models
except the proposed one, where the two poles can only be
distinguished by carefully looking at the relative orientation
of the insulators (a similar example is given in Fig. 1). A
small number of triplets are mistaken by all models (e.g., Fig.
8), although these are almost-impossible to distinguish also for
a human operator, leaving room for possible improvements to
the pipeline.

VI. FUTURE WORKS

In this paper, we proposed a new framework to perform
image re-identification in the presence of complex objects
composed of multiple assets, which is a common scenario
in industrial applications. The proposed framework exploits
a customized object detection model to extract the assets,
and then feeds this information to a siamese architecture
composed of a visual branch (a standard convolutional neural
network) and a relational branch (a graph neural network). We
experimentally evaluated our method on a challenging problem
of electric pole re-identification, showing significant gains in
performance thanks to the combined pipeline. Overall, our
framework provides a viable method to incorporate multiple
types of domain expertise (in this case, the assets) inside
a standard deep learning solution, thus creating a hybrid
pipeline that simultaneously exploits raw visual imagery and
relational information. Future work will consider extending
this framework to other use cases, as long as evaluating the
interpretability of the pipeline, the robustness with respect
to the performance of the object detection model, and more
refined solutions to build the graph of assets, possibly with a
joint training of the entire architecture.
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A. Jaakkola, A. Kukko, and T. Heinonen, “Remote sensing methods for
power line corridor surveys,” ISPRS Journal of Photogrammetry and
Remote sensing, vol. 119, pp. 10–31, 2016.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3184407

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on February 23,2023 at 09:30:05 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX 2021

TABLE IV: Performance evaluation of the proposed framework when changing the type of graph convolutional layer.

Layer CMC@1 CMC@3 CMC@5 CMC@10 MAP
CHEB 0.61 ±0.008 0.72 ±0.007 0.78 ±0.006 0.84 ±0.005 0.53 ±0.005
GCN 0.50 ±0.1 0.63 ±0.11 0.68 ±0.09 0.79 ±0.03 0.45 ±0.09
GAT 0.50 ±0.05 0.65 ±0.06 0.72 ±0.01 0.80 ±0.01 0.46 ±0.01

Fig. 7: A hard triplet which is recognized by the framework. Photos are anchor, positive, and negative respectively, from left
to right.

Fig. 8: A hard triplet which is not recognized by the framework. Photos are anchor, positive and negative respectively, from
left to right.

TABLE V: Ablation studies with respect to the positional
embeddings (PEs) and the presence of the edges.

PEs Edges PEs Edges
✗ ✓ ✗ ✗

CMC@1 0.848 ±0.05 0.85 ±0.02
CMC@3 0.92 ±0.02 0.91 ±0.02
CMC@5 0.94 ±0.01 0.94 ±0.02
CMC@10 0.96 ±0.01 0.96 ±0.02
MAP 0.72 ±0.04 0.72 ±0.02

[4] H. Zhang, Z. Tang, Y. Xie, H. Yuan, Q. Chen, and W. Gui, “Siamese
time series and difference networks for performance monitoring in the
froth flotation process,” IEEE Transactions on Industrial Informatics,
2021.

[5] M. Zheng, S. Karanam, Z. Wu, and R. J. Radke, “Re-identification
with consistent attentive siamese networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5735–5744, 2019.

[6] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[7] U. Chaudhuri, B. Banerjee, and A. Bhattacharya, “Siamese graph
convolutional network for content based remote sensing image retrieval,”
Computer Vision and Image Understanding, vol. 184, pp. 22–30, 2019.

[8] T. Kipf, E. van der Pol, and M. Welling, “Contrastive learning of

structured world models,” in International Conference on Learning
Representations (ICLR), 2020.

[9] F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold,
J. Uszkoreit, A. Dosovitskiy, and T. Kipf, “Object-centric learning with
slot attention,” vol. 33, pp. 11525–11538, 2020.

[10] D. Kreuzer, D. Beaini, W. L. Hamilton, V. Létourneau, and P. Tossou,
“Rethinking graph transformers with spectral attention,” Advances in
Neural Information Processing Systems, 2021.

[11] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable
person re-identification: A benchmark,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pp. 1116–1124,
2015.

[12] X. Li and C. C. Loy, “Video object segmentation with joint re-
identification and attention-aware mask propagation,” in Proceedings
of the European Conference on Computer Vision (ECCV), pp. 90–105,
2018.
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