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Abstract

Identification of partial sweeps, which include both hard and soft sweeps that have not currently reached fixation,
provides crucial information about ongoing evolutionary responses. To this end, we introduce partialS/HIC, a deep
learning method to discover selective sweeps from population genomic data. partialS/HIC uses a convolutional neural
network for image processing, which is trained with a large suite of summary statistics derived from coalescent simu-
lations incorporating population-specific history, to distinguish between completed versus partial sweeps, hard versus
soft sweeps, and regions directly affected by selection versus those merely linked to nearby selective sweeps. We perform
several simulation experiments under various demographic scenarios to demonstrate partialS/HIC’s performance, which
exhibits excellent resolution for detecting partial sweeps. We also apply our classifier to whole genomes from eight
mosquito populations sampled across sub-Saharan Africa by the Anopheles gambiae 1000 Genomes Consortium, eluci-
dating both continent-wide patterns as well as sweeps unique to specific geographic regions. These populations have
experienced intense insecticide exposure over the past two decades, and we observe a strong overrepresentation of
sweeps at insecticide resistance loci. Our analysis thus provides a list of candidate adaptive loci that may be relevant to
mosquito control efforts. More broadly, our supervised machine learning approach introduces a method to distinguish
between completed and partial sweeps, as well as between hard and soft sweeps, under a variety of demographic
scenarios. As whole-genome data rapidly accumulate for a greater diversity of organisms, partialS/HIC addresses an
increasing demand for useful selection scan tools that can track in-progress evolutionary dynamics.
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Introduction
Malaria represents an enormous burden on human health,
with an estimated 214 million cases and 438,000 deaths in
2015 (WHO 2015). As mosquitos of the Anopheles gambiae
species complex are the major vector for Plasmodium para-
sites, roughly 70% of global malaria relief budgets have been
focused on mosquito control, including insecticide-treated
bed-nets, indoor residual spraying, and larva control through
the direct modification of habitats as well as the application

of larvicide. Although these vector control efforts have suc-
cessfully produced major reductions of malaria transmission
rates over the past 15 years (WHO 2015), there has been an
alarming increase in mosquitos resistant to insecticides, spe-
cifically pyrethroids, observed across nearly all areas of the
world covered by anti-malarial efforts (Hemingway et al.
2016). Pyrethroids are the only class of insecticide used in
long-lasting insecticidal nets and are applied in many indoor
spraying programs, thus the evolutionary innovation of resis-
tance is a well-recognized Achilles heel of anti-malarial efforts.
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The increase in insecticide-resistant mosquitoes is to be
expected from an evolutionary standpoint: anti-malaria con-
trol efforts exert a strong selective pressure to which mos-
quito populations will respond through the differential
survivorship and reproduction of those individuals that can
best cope with the applied insecticides. Pyrethroid resistance
was reported within African malaria vectors first in Sudan
during the 1970s, then later in West Africa during the
1990s, most likely stemming from accidental exposure of
mosquitos to crop applications of pyrethroids (Brown 1986;
Elissa et al. 1993). Subsequent analysis showed this earliest
resistance to be a result of mutations in the knockdown re-
sistance locus kdr, which is known to contribute to pyrethroid
resistance in other insect species (Martinez-Torres et al. 1998).
Mutations conferring resistance at kdr as well as other loci
have since spread throughout Africa, and threaten to nullify
the gains in malaria control achieved over the past decade
(Miles et al. 2017). Although control efforts are now looking
toward nonpyrethroid insecticides (Oxborough et al. 2015;
Hemingway et al. 2016) as well as gene drive technologies
(Hammond et al. 2016), it is anticipated that resistance to
these control modalities will eventually evolve as well
(Unckless et al. 2015, 2017). Hence, an important goal in
the continued fight against malaria is to identify genomic
targets of resistance in Anopheles, especially in such a way
that might inform vector managers in the field.

Alleles that confer resistance to control efforts should rap-
idly increase in frequency within Anopheles populations in a
manner consistent with selective sweeps. When an allele
increases in frequency under selection, its linked genetic back-
ground comes with it in a process known as genetic hitchhik-
ing. Selective sweeps, through this hitchhiking effect, lead to
decreased levels of polymorphism (Smith and Haigh 1974;
Kaplan et al. 1989; Stephan et al. 1992), skewed allele fre-
quency spectra (Tajima 1989; Fay and Wu 2000), and
increases in linkage disequilibrium surrounding the site under
selection (Kim and Nielsen 2004). Classically, methods for
finding sweeps have focused on a particular aspect of genetic
variation, for instance observing the site frequency spectrum
at a locus and comparing it to expectations under neutrality
and selective sweeps (Nielsen et al. 2005). More recently, the
field has made excellent progress in combining signals across
multiple features of genetic variation through supervised ma-
chine learning (SML) (Pavlidis et al. 2010; Lin et al. 2011;
Ronen et al. 2013; Pybus et al. 2015; Schrider and Kern
2016; Sheehan and Song 2016; Kern and Schrider 2018;
Sugden et al. 2018), which has substantially improved power,
accuracy, and robustness in what have been stubbornly dif-
ficult inference problems within population genetics
(Schrider and Kern 2018). Although much attention has
been paid to applying SML for the identification and classifi-
cation of completed selective sweeps in the genome (Schrider
and Kern 2016; Kern and Schrider 2018), less effort has been
made for using SML to identify sweeps that are incomplete
within a population, sometimes called partial sweeps (al-
though see Pybus et al. [2015] and Sugden et al. [2018] for
recent examples). In these cases, the beneficial allele is not
currently fixed within the population, thereby creating a

weaker hitchhiking effect in comparison to a completed
sweep, and accordingly a more subtle perturbation of pat-
terns of genetic variation (Coop and Ralph 2012). Although
difficult to detect, partial sweeps could be implicated in cases
where recently initiated selective forces cause presently on-
going adaptation, directional selection ceases prior to fixation,
or an intermediate allele frequency is favored by balancing,
polygenic, and/or pleiotropic selection. Therefore, it is impor-
tant to address the challenge of capturing such genomic
signatures that represent a significant facet of evolution,
which may also give insight into future dynamics.

New Approaches
Recent successful efforts to reduce malaria transmission are in
danger of collapse due to evolving insecticide resistance (IR)
in the mosquito vector Anopheles gambiae. We aim to un-
derstand the genetic basis of current adaptation to vector
control efforts by deploying a novel method that can classify
multiple categories of selective sweeps, including partial
sweep classes, from population genomic data. To this end,
we extend a recent SML method to partial sweep inference
and apply it to elucidate ongoing selective sweeps from
Anopheles population genomic samples.

Specifically, we introduce here an extension of S/HIC
(Schrider and Kern 2016) and diploS/HIC (Kern and
Schrider 2018), partialS/HIC, which as an SML classifier lever-
ages labeled training examples to learn a mapping from input
data space to associated labels. In the case of partialS/HIC,
data are generated through simulations of genomic segments
and converted into summary statistics, similar to S/HIC and
diploS/HIC, to train a deep convolutional neural network
(CNN) for classification of a genomic window from a set of
selection states that includes both hard and soft partial
sweeps along with their associated linked classes (i.e., regions
adjacent to either a partial hard or soft sweep). Importantly,
this implementation achieves increased inferential power by
utilizing dozens of additional summary statistics, including
summaries for the distribution of integrated haplotype scores
(iHS), a summary statistic developed to detect signatures of
recent positive selection for an individual single nucleotide
polymorphism (SNP) (Voight et al. 2006), as well as deriva-
tives of a recently developed SNP-specific compound statistic
called SAFE (selection of allele favored by evolution) (Akbari
et al. 2018), under a deep learning framework that involves
training CNNs with coalescent simulations that accommo-
date demographic history and are converted into spatially
explicit 2D feature vector images. We validate partialS/HIC’s
performance through extensive simulation-based experi-
ments that were modeled after data from phase I of the
A. gambiae 1000 genomes project (Ag1000G) (Miles et al.
2017), with particular emphasis on discovering sweeps cur-
rently in progress such as what might result from ongoing
vector control efforts (e.g., insecticide spraying). Our findings
demonstrate that our method is effective for detecting partial
sweeps even in the face of complex population size histories
such as those found among the Ag1000G samples.
Furthermore, for binary classification of selective sweeps
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when partial sweeps are included, partialS/HIC has greater
accuracy than iHS or SAFE alone as well as two alternative
approaches to sweep inference based on the same suite of
summary statistics. Subsequently, we apply our method to
the empirical Ag1000G data, revealing many partial sweeps as
well as completed sweeps from standing genetic variation.
Moreover, we find that our sweep candidates are highly
enriched for loci that have been previously identified as con-
tributing to IR.

Results

Coalescent Simulations of Feature Vector Images for
partialS/HIC Training
To train partialS/HIC, we deployed the program discoal (Kern
and Schrider 2016) to perform coalescent simulations of com-
pleted and partial as well as hard and soft selective sweeps,
along with simulations without sweeps, in a manner analo-
gous to Schrider and Kern (2016) (supplementary fig. S1,
Supplementary Material online). Individual simulations were
converted into 2D matrices, or feature vector images, built
from 89 rows corresponding to different summary statistics,
and 11 columns corresponding to adjacent subwindows. The
89 statistics include, along with 14 that were previously imple-
mented in S/HIC and/or diploS/HIC, 3 genomic region variants
of the SNP-specific iHS statistic (Voight et al. 2006) and 72
derivatives of the SAFE score (Akbari et al. 2018). partialS/HIC
is trained to classify genomic segments into one of nine states:
unaffected by selection (i.e., neutral); containing a completed
hard, completed soft, partial hard, or partial soft sweep, re-
spectively; or linked to a completed hard, completed soft,
partial hard, or partial soft sweep, respectively. To this end,
we defined the four completed hard/soft and partial hard/
soft selective sweep states as containing a sweep within the
central, focal subwindow (i.e., the fifth out of the 11 columns
of subwindows). In contrast, the four classification states in-
volving linkage to a selective sweep were defined as having a
sweep of the given type within one of the remaining ten
subwindows. Therefore, every linked selection state was
trained from simulations that vary in genetic distance to
the sweep target site, such that the total set of simulations
all had a sweep occurring in any of the ten nonfocal sub-
windows. This allowed us to accommodate a range of linked
classes that differ in spatial patterns within a genomic win-
dow, as well as assess how linkage distance affects misclassi-
fication bias during our simulation experiments. Simulations
were run for each of eight population size histories corre-
sponding to the empirical Ag1000G population data sets,
which were previously inferred as part of the initial data re-
lease (Miles et al. 2017). These Anopheles population data sets
from Miles et al. (2017) are labeled here as AOM (Anopheles
coluzzii from Angola), BFM (A. coluzzii from Burkina Faso), BFS
(A. gambiae from Burkina Faso), CMS (A. gambiae from
Cameroon), GAS (A. gambiae from Gabon), GNS
(A. gambiae from Guinea), GWA (Anopheles of uncertain
species from Guinea-Bissau), and UGS (A. gambiae from
Uganda).

Heatmaps constructed from median values across simu-
lations reveal expected spatial patterns, such that values im-
mediately flanking a sweep are substantially different than
those further from the focal subwindow, whereas neutral
regions display no discernible pattern among subwindows
(supplementary fig. S2, Supplementary Material online).
Additionally, spatial patterns of statistics differ qualitatively
between selection states. These observations are consistent
regardless of mosquito population history, suggesting that
there is signal within this collection of summary statistics to
isolate the location of a sweep to a specific subwindow as well
as distinguish among neutral regions and types of selective
sweeps.

Deep Learning Excels in Detecting Selective Sweeps,
Including Partial Hard Sweeps
We utilized partialS/HIC to train and test a CNN for nine-
state classification independently on each of the eight demo-
graphic histories associated with the Ag1000G population
samples (supplementary fig. S1, Supplementary Material on-
line and fig. 1). To this end, we produced eight batches of
simulations that were split into separate training, validation,
and testing sets. During the training process, CNN hyperpara-
meters were tuned on the training set whereas the validation
set allowed mitigation of overfitting (supplementary fig. S3,
Supplementary Material online). Each CNN was subsequently
assessed for accuracy with the corresponding held-out testing
set, which was generated under the same specifications as the
training/validation data except linked selection classes were
kept discrete versus being grouped together into the four
linked selection states. Among the eight test sets, there was
moderate overall accuracy for this simulation experiment
(median accuracy ¼ 66.4%; supplementary table S1,
Supplementary Material online). However, confusion matrix
heatmaps provide a more informative view of our classifier’s
performance, which exhibited reliability in identifying neutral
regions, completed hard and soft sweeps, partial hard sweeps,
and individual regions linked to completed hard/completed
soft/partial hard sweeps (fig. 2 and supplementary fig. S4,
Supplementary Material online). In general (i.e., all demo-
graphic scenarios save for AOM), completed hard sweep is
the class that experienced the highest degree of correct as-
signment (median accuracy ¼ 96.0%). We also had high ac-
curacy for identification of linked completed hard regions,
demonstrating a strong ability to localize completed hard
sweeps. The behavior of our partialS/HIC classifier is likewise
favorable for completed soft sweeps (median accuracy ¼
84.2%), with completed soft sweeps rarely detected incor-
rectly as hard sweeps and instead typically mistaken for either
the neutral or partial soft sweep state. Moreover, subwindows
linked to completed soft sweeps beyond one subwindow
away had low levels of misclassification to any of the non-
linked sweep states, again allowing for dependable localiza-
tion of the sweep.

Importantly, the purpose of partialS/HIC is to extend our
state space to identify ongoing selective sweeps while distin-
guishing these from completed sweeps. We find that our
ability to identify partial hard sweeps was generally strong
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FIG. 1. CNN architecture of neural network layers. Our partialS/HIC classifier utilizes a convolutional neural network whereby the input feature
vector image, composed of 89 summary statistics organized into rows and across 11 contiguous genomic subwindows organized into columns, is
passed to a 2D convolutional layer with 256 filters using a 3� 6 receptive field. Next is a 2D max pooling layer given a 3� 3 receptive field. Then
there is a second 2D convolutional layer of 256 filters based also on a 3� 3 receptive field and ReLU activation. Afterward is a second 2D max
pooling layer with a 3� 1 receptive field. The tensor is then flattened after a dropout layer (P¼ 0.25) and passed to two fully connected layers with
ReLU activation, resulting in 512 and 128 nodes with subsequent dropout (P¼ 0.50), respectively. Finally, a softmax activation layer classifies the
nine responses.

Neutral

Completed Hard Sweep

3Linked -

sub-window(s) to left:

Linked -

sub-window(s) to right:

4
5

2
1

3
2
1

4
5

Completed Soft Sweep

3Linked -

sub-window(s) to left:

Linked -

sub-window(s) to right:

4
5

2
1

3
2
1

4
5

Partial Hard Sweep

3Linked -

sub-window(s) to left:

Linked -

sub-window(s) to right:

4
5

2
1

3
2
1

4
5

Partial Soft Sweep

3Linked -

sub-window(s) to left:

Linked -

sub-window(s) to right:

4
5

2
1

3
2
1

4
5

N
eutr

al

Com
ple

te
d H

ard
 S

w
eep

Linked
 Complet

ed
 Hard Sw

eep

Com
ple

te
d S

oft 
Sw

eep

Linked
 Complet

ed
 Soft S

weep

Part
ia

l H
ard

 S
w

eep

Linked
 Parti

al H
ard Sw

eep

Part
ia

l S
oft 

Sw
eep

Linked
 Parti

al S
oft S

weep

F
ra

ctio
n

 o
f sim

u
la

tio
n

s a
ssig

n
e

d
 to

 sta
te

FIG. 2. Confusion matrix heatmap of partialS/HIC simulation experiment. Given the BFS population history. Each row designates a true simulation
class, which for linked sweeps is differentiated by distance in genomic subwindows to the target selective sweep. In total, there are 45 simulated
scenarios shown, including 11 for each sweep type (i.e., one case whereby the sweep is within the central subwindow, and 10 whereby a linked
sweep is located within one of the flanking subwindows) and neutrality. Each column indicates one of nine inferred states, with the linked
simulation classes collapsed into a single category per selective sweep type for training and classification, allowing partialS/HIC to learn to
distinguish between sweeps located in the focal subwindow and those somewhere nearby. Darker blue cells represent a higher proportion of the
1,000 calls for each true class. Importantly, there is generally high accuracy in discriminating between sweeps within the focal subwindow versus
linked subwindows, especially when linkage is beyond one subwindow away and particularly for completed sweeps. However, discovering partial
soft sweeps is noticeably a challenging task. Moreover, there is greater sensitivity separating full completion from partial completion for hard
sweeps in contrast to soft sweeps.
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across population histories (median accuracy¼ 74.6%) and is
often comparable to that of completed soft sweeps. However,
localization of partial hard sweeps along the chromosome
was more difficult than for completed sweeps, as can be
seen from the moderate levels of confusion between partial
hard sweep and linked partial hard sweep subwindows.
Undoubtedly, this is due to the limited amount of time re-
combination has had to whittle down the haplotype carrying
the beneficial mutation.

Identifying partial soft sweeps was a much more challeng-
ing task (median accuracy ¼ 45.3%), with a high false-
negative rate (median rate of misclassification as neutral ¼
27.6%) as well as a substantial probability of misclassification
as a completed soft sweep (median rate ¼ 14.4%). It is en-
couraging though that partial soft sweeps were almost never
misclassified as a completed nor partial hard sweep.
Additionally, although our accuracy in classifying partial soft
sweeps was poor, false positives were not a major concern
(median rate of misclassifying neutral regions as partial soft
sweep ¼ 3.2%). Although even fairly low false-positive rates
can be problematic when the true number of sweeps is low,
partialS/HIC achieved acceptably low false discovery rates
(FDRs) for partial soft sweeps in our application to the
A. gambiae 1000 Genomes data set, as we show below.
Furthermore, linked partial soft sweeps beyond one sub-
window away from the focal subwindow were rarely mistaken
for a sweep state, and likewise, partial soft sweeps were sel-
dom confused for being linked (median rate of misclassifica-
tion as linked partial soft sweep¼ 4.3%), thus demonstrating
that accurate localization of partial soft sweeps may be
possible.

In summary, partialS/HIC has excellent ability to distin-
guish partial from completed sweeps for de novo mutations,
and lesser yet still substantial power for sweeps from standing
variation. Moreover, we demonstrated very strong perfor-
mance in differentiating between hard and soft sweeps, re-
gardless of whether a sweep was completed or incomplete.
Importantly, this is all while maintaining an acceptable false-
positive rate across each of the population histories tested
(median accuracy for neutral regions¼ 85.1%; median rate of
misclassifying neutral regions as any one of the four nonlinked
sweep states ¼ 4.6%).

Robustness to Demographic Model Misspecification
To assess robustness to demographic misspecification, we
applied a CNN trained on simulations from one population
sample to data generated from an alternate demographic
history. Specifically, we used training data from the GAS pop-
ulation size history, which was fairly stable over time, and
leveraged it against the CMS test data set, which experienced
a dramatic population expansion (overall accuracy ¼ 55.0%;
rate of misclassifying neutral regions as any one of the four
nonlinked sweep states¼ 1.7%). Despite this misspecification,
the confusion matrix (supplementary fig. S5, Supplementary
Material online) strongly resembles the corresponding matrix
that is correctly specified for demography (i.e., for CMS in
supplementary fig. S4, Supplementary Material online). In
particular, accuracies for finding neutral regions, completed

hard sweeps, and partial hard sweeps are roughly equivalent
between the correctly specified model and misspecified
model (supplementary fig. S5, Supplementary Material on-
line). For soft sweeps, confusion between completed and par-
tial sweeps is increased for the misspecified model, the overall
ability to distinguish sweeps from neutrality is largely pre-
served. Moreover, the rates at which examples from the
linked classes were mistaken for sweeps are seemingly
unaffected.

To further examine the impact of increasingly misspecified
demography, we produced five additional full testing data
sets assuming a simple two-epoch instantaneous contraction
model. The five test sets differed only by bottleneck severity,
which increased in even intervals from 20� to 100�. We then
applied the CNN that was trained given the BFS population
history and measured overall accuracies. These accuracy
measurements are generally similar to that of our baseline,
that is, the corresponding original experiment whereby the
testing data were simulated under the inferred demography
for BFS, thus the demography was correctly specified with
respect to the training set underlying this CNN (supplemen-
tary fig. S6, Supplementary Material online). However, perfor-
mance gradually worsens with decreasing bottleneck severity
across the test sets, but this may be largely an effect from the
number of polymorphisms. To address this, we generated
another six test sets that identically replicated the specifica-
tions for the BFS training simulations except with h fixed in
value yet varying between the six data sets. Notably, the range
we utilized here for h exceeded the h prior distribution for the
original BFS training and testing simulations, hence further
evaluating model misspecification. We find no loss in overall
accuracy except in the case with the least genetic diversity
simulated, where there is a moderate decrease (supplemen-
tary fig. S7, Supplementary Material online). This is unsurpris-
ing given that low levels of genetic diversity lead to noisy
estimates of the statistics employed by partialS/HIC. It is en-
couraging, however, that sensitivity is maintained throughout
most of our h prior distribution range and accuracy does not
fall below that of our baseline experiment until h is at a low
value toward the bounds (h< 5,000 for the full genomic
window size of 55,000 bp). To put this into perspective, ge-
netic diversity measures for the corresponding empirical BFS
data set are consistent with simulations generated with
h� 5,000, and likewise are beyond nearly the entirety of
the h ¼ 1,000 simulated values; among the subwindows
that passed our filtering thresholds (supplementary fig. S1,
Supplementary Material online), there is a median value of
hW ¼ 2.633e�2 (central 95% density: 6.484e�3–3.547e�2)
and hH ¼ 6.318e�3 (central 95% density: 2.381e�3–
1.231e�2), compared with a median value of hW ¼
1.218e�2 (central 95% density: 1.116e�3–1.849e�2) and
hH ¼ 3.863e�3 (central 95% density: 8.592e�4–9.696e�3)
across all subwindows generated under the h ¼ 5,000 con-
dition, whereas the simulations given h ¼ 1,000 have a me-
dian value of hW ¼ 2.353e�3 (central 95% density:
9.802e�5–3.861e�3) and hH ¼ 7.043e�4 (central 95% den-
sity: 5.950e�8–2.571e�3).
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Together, these results indicate that sweep discovery and
localization is not strongly impacted by several forms of de-
mographic model misspecification during training.

Partial Sweeps Are Misclassified as Either Completed
Sweeps or Neutral at Unpredictable Rates When Not
Explicitly Considered
Since the previous versions of partialS/HIC (S/HIC and
diploS/HIC) did not allow for partial sweep selection states,
we were interested in how such five-state classifiers would
behave when confronted with partial sweeps. To explore
this, we conducted a simulation experiment that first re-
moved partial hard and soft sweeps as well as their asso-
ciated linked classes from the CNN training process, thus
training on only five states rather than all nine. Next, in an
effort to examine the classification behavior for these five-
state CNNs, we applied the full test set that included the
partial sweep classes. Unsurprisingly, the trend was for par-
tial sweeps to be most often confused for linked selection
(fig. 3 and supplementary fig. S8, Supplementary Material
online). Perhaps more concerning is the false-negative rate

(i.e., rate at which partial sweeps were misclassified as neu-
tral), which was substantial in partial hard sweeps for sev-
eral populations (median¼ 8.8%; max¼ 32.4%; >1% in all
populations) and extreme in partial soft sweeps (>50% in
three populations, >40% in three more populations, and
>24% in all populations). Partial hard sweeps that were
discovered were also often misclassified as a completed soft
sweep (median rate of misclassification as completed soft
sweep ¼ 5.5%). However, when training included partial
sweeps, there is universal and dramatic improvement in
both finding sweeps and correctly identifying the model of
selection (fig. 2 and supplementary fig. S4, Supplementary
Material online). Meanwhile, overall accuracy remains sim-
ilar among the five-state and nine-state classifiers with re-
spect to simulations of neutral, completed sweep, and
linked classes exclusively (fig. 3 and supplementary fig. S8
and table S2, Supplementary Material online). As a result,
accuracy should only stand to benefit from incorporating
partial sweeps into training since ignoring such informa-
tion leads to unacceptably high false-negative rates of par-
tial sweeps being called neutral or linked.
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FIG. 3. Confusion matrix heatmap of simulation experiment with partial sweeps ignored during training. Given the BFS population history.
Structured in the same manner as figure 2, each row designates a true simulation class and darker blue cells represent a higher proportion of the
1,000 calls for each true class. In contrast to figure 2 though, each column indicates one of five inferred states instead of nine, as the two partial
sweep and two linked partial sweep classification states were omitted from training to determine misclassification bias when partial sweeps are
ignored. There is a substantial decrease in discovery of partial sweeps, especially partial hard sweeps (20.5% total sweep discovery compared with
78.2% in fig. 2; 46.3% total sweep discovery of partial soft sweeps compared with 62.3% in fig. 2). Specifically for partial hard sweeps, a large
proportion of the detected sweeps are misclassified as soft sweeps instead of hard sweeps (19.0%; i.e., 3.9% of calls¼ soft sweeps: 16.6% of calls¼
hard sweeps).
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partialS/HIC Binary Classification Outperforms Several
Competing Approaches
To assess whether the collection of summary statistics under
our deep learning method extends inferential resolution be-
yond the signal conferred by iHS or SAFE alone, and to de-
termine if our CNN approach leverages these statistics in a
more informative manner than other aggregation schemes,
we compared receiver operating characteristic (ROC) curves,
which plot true positive against false-positive rates given vary-
ing thresholds, for the binary classification task of broadly
detecting selective sweeps (i.e., any of the four selection states
involving a sweep within the focal subwindow) versus neutral
regions or linked sweeps. We selected for our comparison iHS-
derived statistics (mean, maximum, and proportion of outlier
iHS values within the central subwindow of the testing sim-
ulations) because iHS was explicitly designed for detecting
partial sweeps (Voight et al. 2006), and SAFE-based statistics
(variance and maximum of SAFE scores within the central
subwindow of the testing simulations) since SAFE is a com-
pound of many variables, of which the vast majority of our
training data are summaries (Akbari et al. 2018). Additionally,
we conducted a principal component analysis (PCA) from
the training data, restricted to only the focal subwindow as
well as for the entire data set throughout the full window,
respectively, in two separate PCAs, and projected the testing
data onto the first two principal components (PC1, PC2). We
then produced an ROC curve from each set of principal com-
ponent values transformed from the testing data, respec-
tively, to both PC1 and PC2 as well as the PCA on solely
the central subwindow versus the full-scale window, for a
total of four individual ROC curves. These ROC curves allow
contrast to a simple dimensionality reduction approach.
Lastly, we computed Composite of Multiple Signals scores
from the testing data for both the focal subwindow and
full window, respectively, using the training data to derive
probability distributions. Deploying the Composite of
Multiple Signals metric provides an alternative method that
is intended to exploit multiple summary statistics for infer-
ence of positive selection (Grossman et al. 2010). For a direct
comparison, we altered partialS/HIC slightly to create a CNN
that had two final output responses (i.e., sweep in central
subwindow vs. no sweep in central subwindow) instead of
nine, with the training data set as well as architecture of
network layers (fig. 1) remaining the same. The CNN opti-
mized for binary classification was then applied to the testing
simulations, with the output probability of a selective sweep
utilized as input to generate the ROC curve.

The partialS/HIC binary classifier consistently outper-
forms other methods in identifying selective sweeps to
the focal subwindow when partial sweeps are included
(median AUC ¼ 0.943; fig. 4 and supplementary fig. S9,
Supplementary Material online). Interestingly, we demon-
strate that the Composite of Multiple Signals also has a
strong ability to extract information from our selection of
summary statistics, though it always trails behind partialS/
HIC; in every case, the best performance after partialS/HIC
is for the Composite of Multiple Signals based on all

subwindow statistics (median AUC ¼ 0.876), whereas
the next best ROC curve is from the Composite of
Multiple Signals calculated from only the central sub-
window (median AUC ¼ 0.859). In contrast, with the un-
expected exception of PC2 for central subwindow statistics
(median AUC¼ 0.749), PCA appears to be an unfavorable
approach for combining summary statistics to infer selec-
tive sweeps (e.g., median AUC for PC1 of all subwindow
statistics ¼ 0.500). Furthermore, there is evidence that
SAFE scores capture important signal about selective
sweeps in a manner that is robust to the final frequency
of the selected mutation, particularly the variance of SAFE
scores within the focal subwindow (median AUC¼ 0.787).
Conversely, there seems to be decreased signal in iHS, as all
its focal subwindow variants individually performed quite
poorly (e.g., median AUC for proportion of iHS outliers ¼
0.582).

Soft and Partial Sweeps Are Commonplace among
A. gambiae Populations
Turning our attention to the Ag1000G phase I data, we ap-
plied our nine-state CNNs to the corresponding A. gambiae
population data sets, classifying 5 kb segments using a 55 kb
full sliding window throughout the whole genome (supple-
mentary fig. S1, Supplementary Material online). Each of the
eight mosquito populations contains a large number of sub-
windows identified as completed soft sweeps (median frac-
tion of total calls genome wide ¼ 5.01%) as well as partial
sweeps (median fraction of total calls genome wide for partial
hard sweep ¼ 2.84%; median fraction of total calls genome
wide for partial soft sweep ¼ 7.24%), coupled with only a
handful of completed hard sweep predictions (median frac-
tion of total calls genome wide ¼ 0.03%) (fig. 5 and supple-
mentary table S3, Supplementary Material online). Partial soft
sweeps were typically discovered most often (median propor-
tion of sweep calls ¼ 52.59%), with completed soft sweeps
often following (median proportion of sweep calls¼ 28.80%)
and partial hard sweeps usually being the third most numer-
ous class of detected sweep (median proportion of sweep
calls ¼ 19.75%). Notably, our estimated FDRs are higher for
soft sweeps (median FDR for completed soft sweeps ¼
11.09%; median FDR for partial soft sweeps ¼ 12.20%) com-
pared with hard sweeps (median FDR for completed hard
sweeps ¼ 0.00%; median FDR for partial hard sweeps ¼
0.39%); this implies that individual soft sweep candidates
should be viewed with more caution, though we should be
able to estimate the genome-wide proportion of these classes
well. Specifically, classifications for partial soft sweeps out-
number those for completed soft sweeps in every population
besides GNS, as well as partial hard sweep calls in all popula-
tions but GAS. Importantly, these findings remain the same,
with the exception that calls for partial hard sweeps now
slightly exceed partial soft sweep classifications in GNS, after
false discovery correction (supplementary table S3,
Supplementary Material online). Additionally, had partial
sweeps not been accounted for in the training process, our
results suggest that we would have both underestimated the
total number of sweeps and incorrectly labeled many of our

Xue et al. . doi:10.1093/molbev/msaa259 MBE

1174

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/38/3/1168/5918472 by guest on 19 M
ay 2023



partial sweeps (fig. 3 and supplementary fig. S8,
Supplementary Material online). This would have led to the
conclusion that adaptation from standing variation rather
than de novo mutations dominates selective sweep dynamics

in these A. gambiae populations. Although it is clear that soft
sweeps are indeed more common in these data, our results
suggest that hard sweeps often occur as well, though with few
reaching fixation. Furthermore, the partialS/HIC classifications

FIG. 4. ROC curves for binary classification of selective sweeps, including partial sweeps, versus regions neutrally evolving or under linked selection.
Given the BFS population history. Each curve is labeled with a number that is indexed in the legend. The partialS/HIC deep learning classifier
outcompetes two other approaches for managing the same suite of summary statistics: Composite of Multiple Signals and PCA. Furthermore,
partialS/HIC excels in performance over several subwindow derivatives of two summary statistics, SAFE and iHS, which were all included within our
set of summary statistics used for training. Notably, Composite of Multiple Signals, SAFE, and iHS were all designed to uncover selective sweeps.
Additionally, the SAFE score is itself a compound statistic that captures signal from several constituent statistics, and the majority of our training
data is derived from either the SAFE score or one of its components.
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FIG. 5. Genome-wide partialS/HIC sweep calls across empirical mosquito population data sets. For all eight data sets, there is a minimal number of
calls for completed hard sweeps, represented here on the Y-axis as the relative proportion to the total set of empirical calls across every genomic
window per population data set. However, there is indeed a substantial proportion of sweep calls for hard sweeps, yet are incomplete or in progress.
In most cases, the number of both completed and partial soft sweeps further exceeds that of partial hard sweeps. Furthermore, the majority of
sweeps have not reach fixation across these Anopheles populations.
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indicate that most selective sweeps in these population sam-
ples are incomplete, suggesting that we are capturing a view
of selection in progress. Notably, these results are conditioned
on training simulations that assumed each population as in-
dependent with no admixture, which may have in fact been
significant in certain cases. However, since our simulation
experiments demonstrate that partialS/HIC is robust to de-
mographic misspecification, we believe this may be a minor
concern.

Selective Sweeps Are Significantly Enriched in
Functional Regions of the A. gambiae Genome
To elucidate broad characteristics underlying the genomic
targets of selection, we used permutation tests of sweep
call locations to discover enrichment patterns in the following
DNA regions of interest: gene, mRNA, exon, coding sequences
(CDS), five-prime UTR, and three-prime UTR. Permutation
tests were based on the total number of calls for the four

partial soft − 3' UTR

partial soft − 5' UTR

partial soft − CDS

partial soft − exon

partial soft − mRNA

partial soft − gene

partial hard − 3' UTR

partial hard − 5' UTR
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partial hard − mRNA

partial hard − gene

completed soft − 3' UTR
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completed soft − gene

completed hard − 3' UTR

completed hard − 5' UTR
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completed hard − mRNA
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FIG. 6. Enrichments of partialS/HIC empirical selective sweep calls within DNA regions. For the BFS population empirical data set. The vertical
dotted line represents the threshold for enrichment (i.e., values exactly along the dotted line indicate single-fold enrichment) based on the
permuted calls, with rows that are statistically significant (P< 0.05) in green. Completed soft sweeps are enriched within all six DNA regions that
experienced permutation tests. Similarly, all of these DNA regions are enriched with partial sweeps, either both hard and soft or only one of the two
cases (though this is not true for all populations; supplementary fig. S10, Supplementary Material online). In contrast, there is no significant
enrichment of completed hard sweeps for any of the DNA regions.
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selection states with sweeps occurring within the focal sub-
window, as well as the individual number of calls for each of
these states, respectively. Across all eight population data sets
and for all six DNA regions under investigation, there is a
statistically significant enrichment of total sweep calls along
with completed soft sweeps calls in particular, whereas com-
pleted hard sweep calls are not significantly enriched in any
single case (fig. 6 and supplementary fig. S10 and table S4,

Supplementary Material online). Conversely, partial sweep
enrichment varies among populations as well as individual
DNA regions. Specifically, partial hard sweeps are significantly
enriched in five of the six DNA regions for BFS and CMS, and
four of the DNA regions for UGS; whereas partial soft sweeps
are significantly enriched in all six DNA regions for UGS, five of
the DNA regions for BFM, and four of the DNA regions for
BFS.
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FIG. 7. Enrichments of partialS/HIC empirical selective sweep calls within groupings of IR genes. For the BFS population empirical data set. The
vertical dotted line represents the threshold for enrichment (i.e., values exactly along the dotted line indicate single-fold enrichment) based on the
permuted calls, with rows that are statistically significant (P< 0.05) in green and rows without a plotted point resulting from the IR gene group not
having any calls of that sweep type (e.g., there are no completed hard sweeps called within target site genes). In this mosquito population, there is
evidence for several mechanisms through which IR evolved, both in sweep types (i.e., completed hard as well as completed soft sweeps) and
categories of genes under selection (i.e., metabolism and behavior). Notably, partial sweeps are not inferred to be enriched during the evolution of
IR genes here, though they are for other populations (supplementary fig. S11, Supplementary Material online).
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IR Loci, Especially Related to Metabolism, Are
Significantly Enriched for Selective Sweeps
We performed a similar permutation analysis for four sets of
genes known to confer IR, finding at least one set of IR genes
to be statistically significant for every population data set in
enrichment of total sweep calls (i.e., aggregate of all four
sweep classes) and completed soft sweeps, respectively
(fig. 7 and supplementary fig. S11 and table S5,
Supplementary Material online). In particular, metabolism-
related IR genes are significantly enriched for each of these
cases. Furthermore, IR genes corresponding to well-
characterized resistance loci (i.e., target sites) are significantly
enriched for AOM and BFM total sweep calls as well as com-
pleted soft sweeps in AOM, BFM, and GNS; IR genes associ-
ated with behavior are significantly enriched for BFM and
GNS total sweep calls as well as completed soft sweeps in
AOM, CMS, and GAS; and IR genes affiliated with cuticular
activity are significantly enriched for completed soft sweeps in
GWA and UGS. In contrast, completed hard sweeps are only
significantly enriched in BFS, GNS, GWA, and UGS for IR
genes connected to behavior (as well as metabolism for
BFS). For partial sweeps, significant enrichment only occurs
within BFM (partial soft sweeps in metabolism as well as
behavior IR genes), CMS (partial hard sweeps in metabolism
as well as target site IR genes), and UGS (partial hard sweeps
in metabolism IR genes).

Completed Soft Sweeps Are Significantly Enriched
within the Same Gene Ontology Term Annotations
across Populations
Beyond IR, we were interested in asking what sorts of func-
tional annotations, if any, were enriched in our sweep candi-
dates. Toward this end, we again used a permutation
approach, asking for evidence of individual gene ontology
(GO) term enrichment. We used the same protocol as with
the IR loci, except with an FDR correction appropriate for the
GO sites. We found that partial soft sweeps are not signifi-
cantly enriched for any GO terms among populations,
whereas completed hard sweeps and partial hard sweeps
are each enriched only in UGS for a single GO term.
However, for completed soft sweeps, we inferred many sta-
tistically significant enrichments, several of which were widely
shared across populations (supplementary table S6,
Supplementary Material online). Specifically, there are six
cases of the same GO term in all eight populations; three
of these are related to cellular components (“nucleus,”
“membrane,” and “integral component of membrane”), and
the other three are connected to molecular function, specif-
ically binding (“nucleic acid binding,” “protein binding,” and
“ATP binding”). Notably, one of these GO terms
(“membrane”) is likewise the single example for which com-
pleted hard sweeps are enriched, within UGS. Other cases
involving the same GO term significantly enriched for com-
pleted soft sweeps in over half of the populations include:
“binding,” “cytoplasm,” and “zinc ion binding” in seven pop-
ulations; “RNA binding” in six populations; and “mRNA splic-
ing, via spliceosome” and “ATPase activity” in five

populations. These results suggest that beyond IR, selection
on standing variants may have occurred in parallel across
regions and/or with widespread geographic impact so as to
affect multiple populations simultaneously.

Discussion

partialS/HIC Elucidates Both Species-Wide and
Population-Specific Sweep Dynamics within
A. gambiae
The Ag1000G data provided the opportunity to investigate
selection at both the continental scale, where wide-reaching
impact across the whole species complex could be uncovered,
and the regional level, revealing population-specific sweep
dynamics. For the former, we observed that A. gambiae pop-
ulations consistently experienced very few completed hard
sweeps, with nearly all sweeps being partial and/or soft. In
fact, the impact of completed hard sweeps on the adaptive
process within mosquitos appears to be even more limited
than what was observed previously in humans (Schrider and
Kern 2017). This is likely a result of the much larger popula-
tion sizes and concordant levels of genetic variation that are
maintained within Anopheles populations. Importantly, we
find a large number of ongoing selective sweeps within these
populations, particularly in comparison to the number of
completed sweeps. There are multiple reasons why this might
be the case. A trivial explanation may simply be that we only
have power to detect sweeps that have completed in the past
few hundred generations, though this seems unlikely. More
plausibly, a large number of ongoing sweeps might be
expected given the recent change in environment induced
by vector control efforts. Another possible explanation is that
the frequency dynamics of beneficial alleles within a popula-
tion is often more complex than assumed and may indeed
contain an overdominant component (Sellis et al. 2011). This
would mean that some portion of the partial sweeps that we
are observing in Anopheles is actually balanced, or transiently
balanced, polymorphisms. A fourth class of explanation is
that beneficial mutations may not be able to fix in popula-
tions due to competition with beneficial mutations on other
genes that have originated in different parts of the species
range (Ralph and Coop 2010). Indeed, each of these factors
may play some role in our reported abundance of partial
sweeps.

Although such genome-wide sweep patterns occur
species-wide, enrichment behavior seems much more
population-specific. For instance, although every population
possesses significant enrichment of completed soft sweeps
coupled with no completed hard sweep significant enrich-
ments for the six functional DNA regions studied here, partial
sweep enrichments vary widely among data sets. Sweep be-
havior is even more idiosyncratic for IR genes, as the only
constant between populations is that metabolism is a recur-
ring target of selection, especially for completed soft sweeps.

These findings from the Ag1000G data provide important
genomic resources that could inform continental-wide ma-
laria control strategies for the entire A. gambiae species com-
plex, as well as have relevance to management efforts

Xue et al. . doi:10.1093/molbev/msaa259 MBE

1178

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/38/3/1168/5918472 by guest on 19 M
ay 2023



specialized to certain populations and localities. Such insight
into mosquito vector evolution may also help curb future IR
adaptation, and in turn prevent impending crises of vector
control failure. However, it is important to consider that our
partial sweep calls could be capturing more complex selective
dynamics at play, for example, polygenic and quantitative
trait adaptation (Pritchard et al. 2010; Booker et al. 2017),
balancing selection (Connallon and Clark 2013), and intro-
gression of beneficial alleles. These could lead to different
modes of adaptation for the same genomic region across
populations, for instance, a favorable SNP undergoing a soft
sweep at its origin and then carried to neighboring popula-
tions (as was suggested in Miles et al. [2017]) may appear to
be experiencing a partial hard sweep in those recipient pop-
ulations. Such complicated interactions merit further investi-
gation on the Ag1000G data, which would not only continue
advancing methodological development for population ge-
netics, but also address interesting questions for a widespread
and ecologically important organism that has crucial ramifi-
cations on wildlife management and public health.

partialS/HIC Offers Unprecedented Detection of
Partial Sweeps
SML approaches are rapidly gaining traction among popula-
tion geneticists, with deep learning in particular beginning to
experience increased attention and methodological develop-
ment due to its exciting potential to unlock classic population
genetics problems. Examples of successful SML implementa-
tion in population genomics include demographic model
choice (Smith et al. 2017), demographic parameter inference
(Pudlo et al. 2016), comparative analysis of independent
single-population size changes (Xue and Hickerson 2017),
identification of introgressed regions (Schrider et al. 2018),
recombination rate estimation (Lin et al. 2013; Adrian et al.
2016; Gao et al. 2016), and genomic scans of selective sweeps
(Schrider and Kern 2016); deep learning specifically has been
employed for joint inference of demography and selection
(Sheehan and Song 2016), discovery of recombination hot-
spots (Chan et al. 2018), estimation of demographic and re-
combination parameters (Flagel et al. 2019; Adrion et al.
2020), discovery of functional variants (Zhou and
Troyanskaya 2015), prediction of geographic origin (Battey
et al. 2020), and differentiating between hard and soft sweeps
from neutral regions (Kern and Schrider 2018). These appli-
cations especially benefit from the ability to handle high-
dimensional input data and bypassing the need of a likelihood
function, which is due to SML uncovering data patterns from
leveraging a priori information through a training algorithm
(Sheehan and Song 2016,Schrider and Kern 2018). CNNs ex-
pand this utility to image processing, which has been dem-
onstrated with diploS/HIC to be a powerful tool for exploiting
the genomic spatial distribution of multiple population-level
summary statistics to detect selective sweeps (Kern and
Schrider 2018).

Here, we demonstrated with partialS/HIC that deep learn-
ing can be extended to partial sweeps, especially partial hard
sweeps, yielding greater accuracy and robustness than has
been previously attained. We also showcased consistent

performance in the face of several underlying demographic
backgrounds, including when the demography is drastically
misspecified. Specifically, partialS/HIC is capable of discover-
ing selective sweeps when partial sweeps are considered, si-
multaneous disambiguation between partial and completed
sweeps as well as between hard and soft sweeps, and spatial
localization of selection targets in the genome. Moreover, we
have shown that partial sweeps remain mostly undetected if
ignored from the training process, even though such selection
may be commonplace throughout a genome as with the
Ag1000G data. As a result, many previous studies scanning
for either complete or ongoing selective sweeps solely (i.e., not
jointly inferring both types of selection) may have overlooked
an important subset of evolutionary events (Ralph and Coop
2010). Researchers may then be interested in re-examining
data sets with partialS/HIC to elucidate the relative contribu-
tions of fixed versus incomplete sweeps to adaptive evolution.

Importantly, the efficacy of partialS/HIC relies on several
factors that are unexplored here, including simulation prior
specifications, CNN architecture with respect to construction
and parameterization of neural network layers, and data
structure. Hence, it is prudent for future implementations
to validate performance by testing a range of configurations,
given a project’s individual intricacies, to assess robustness
and inherent assumptions. In particular, future exploration
of alternate image constructions could be potentially of great
methodological benefit. Such images could be derived from
different ordering schemes and/or suites of summary statis-
tics, as well as without summary statistics entirely, instead
directly exploiting sequence alignments (Chan et al. 2018;
Battey et al. 2020; Adrion et al. 2020) or even raw reads.
More broadly, CNNs can be further extended to address other
long-standing efforts in evolutionary biology, such as param-
eter inference under complex isolation-migration models or
phylogenetic reconstruction (Suvorov et al. 2020).

Materials and Methods

Simulations for Training and Testing CNN Classifier
We used discoal (Kern and Schrider, 2016) to simulate train-
ing and test data sets corresponding to each A. gambiae pop-
ulation under nine different selection states: neutrally
evolving, completed hard sweep, completed soft sweep, par-
tial hard sweep, partial soft sweep, and linked region for every
one of the four sweep classes (supplementary fig. S1 and table
S7, Supplementary Material online). For the four sweep types,
the target SNP was located in the exact middle position
within the central, or sixth in sequence, subwindow of 11 in
total; the selected SNP was placed in the middle within one of
the other ten subwindows for linked sweeps. There were
2,000 training examples per selection state (with the specific
subwindow under selection, i.e., one of ten possible simula-
tion classes, randomized for linked sweeps) and 1,000 test
examples per class (including for each of the ten linked sweep
locations), resulting in a training data set of 18,000 simula-
tions and a test data set of 45,000 simulations given each
demographic history, thus totaling 144,000 training and
360,000 test simulations (as well as 495,000 additional test
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simulations from 11 test data sets all under the BFS popula-
tion history to explore demographic misspecification; see be-
low). To conduct single-population simulations with discoal,
we used the stairway plot (Liu and Fu 2015) point estimates
from Miles et al. (2017) for size change parameters as well as
N0 (present-day effective population size), assumed a muta-
tion rate (l) of 3.5� 10�9 mutations per base pair per gen-
eration, and performed random draws for locus-wide
mutation and recombination rates from the following distri-
butions for each independent replicate: h � U(2 � E½h�

11:0 ,
2 � E½h�

1:1 ), whereby E[h] ¼ 4 N0lL and L is the length of the
simulated sequence with L¼ 55,000 bp; q� TEXP(2� E[h], 6
� E[h]), where q ¼ 4 N0rL, r is the recombination rate per
base pair, and TEXP(b, maximum value) is a truncated expo-
nential distribution with mean b; s � U(1.0� 10�4,
1.0� 10�2); end time of sweep � U(0, 2,000) generations
ago, which represents fixation for completed sweeps and
the transition back to neutral evolution for partial
sweeps; selected SNP allele frequency at onset of soft sweep
�U( 1

N0
, 0.2); and selected SNP allele frequency at end of partial

sweep � U(0.20, 0.99).

Constructing 2D Feature Vector Images of Summary
Statistics
The eight training and test data sets (including an additional
11 BFS data sets for testing demographic misspecification), as
well as empirical data sets, were converted into 2D feature
vector matrices for downstream deep learning (supplemen-
tary fig. S1, Supplementary Material online); this was per-
formed within the Python environment and required usage
of the module numpy. Prior to this 2D transformation, the
simulated data were modified to better account for uncer-
tainty within the empirical data, specifically: 1) sites that were
missing any individual calls or could not be polarized against
the outgroup were excluded; and 2) incorrect identification of
the derived allele. For the former, each simulation randomly
drew from a distribution of 1,552 masking profiles (with test
simulations drawing without replacement per selection class
of 1,000 simulations), which determined the exact sites to be
omitted from further analysis; a masking profile consisted of
the site positions within a single full 55 kb window on the
A. gambiae genome that had absent at least one sample
throughout the entirety of the Ag1000G data and/or ances-
tral state information, and the total set represented all 1,552
sequential, nonoverlapping windows (e.g., 2 L: 1–55,000; 2 L:
55,001–110,000; 2 L: 110,001–165,000, etc.) where the propor-
tion of masked sites did not exceed 75% in any of the con-
stituent subwindows (i.e., 1,250 sites). To account for
mispolarization, estimated rates were obtained from Miles
et al. (2017) and exploited via a binomial distribution to
mispolarize a random subset of SNPs to the other allele per
simulation.

The empirical data similarly underwent processing for
compatibility with the simulated data. First, chromosomes
were delineated into sequential 5 kb subwindows (e.g.,
positions 1–5,000 formed the first subwindow, positions
5,001–10,000 formed the second subwindow, etc.), with the
aforementioned masking criteria applied across sites and

remaining SNPs polarized. Within each population data set,
all polymorphic positions composed of more than two alleles
were further removed from analysis, such that only polarized
monomorphic and biallelic sites comprising a full data matrix
of no missing data were left. Subwindows containing no SNPs
or less than 25% of the original sites were subsequently dis-
carded, and every configuration of 11 contiguous 5 kb sub-
windows of those remaining formed a single full window,
which would be classified into one of the nine selection states
based upon its central subwindow while using spatial infor-
mation from the neighboring five subwindows on either side.
To clarify, this eliminated any window that did not have a
consecutive sequence of 11 subwindows that survived data
filtering, and resulted in a sliding window that progressed a
single subwindow at a time, such that succeeding full win-
dows could be overlapping by up to ten subwindows.

Every independent simulation totaling 55 kb in length
from 11 subwindows of 5 kb, as well as empirical sequence
of 11 adjacent subwindows per population, was then trans-
formed into 89 separate summary statistic vectors that cap-
ture aspects of population-level variation across the sampled
individuals, with each vector consisting of 11 elements corre-
sponding to the subwindows. The first 17 summary statistics
were p (Tajima 1983), hW (Watterson 1975), Tajima’s D
(Tajima 1989), hH (Fay and Wu 2000), Fay-Wu’s H (Fay and
Wu 2000), number of unique haplotypes, H1 (Garud et al.
2015), H12 (Garud et al. 2015), H2/H1 (Garud et al. 2015), ZnS

(Kelly 1997), maximum x (Kim and Nielsen 2004), E[iHS)
(Voight et al. 2006), maximum iHS (Voight et al. 2006), pro-
portion of outlier iHS values (Voight et al. 2006), variance of
pairwise genotype distances (Kern and Schrider 2018), skew-
ness of pairwise genotype distances (Kern and Schrider 2018),
and kurtosis of pairwise genotype distances (Kern and
Schrider 2018). These were previously implemented in S/
HIC (Schrider and Kern 2016) and/or diploS/HIC (Kern and
Schrider 2018) except for H1 (though a multilocus genotype
equivalent was used in diploS/HIC) and the iHS-based statis-
tics. We employed the Python package scikit-allel to calculate
p, hW, Tajima’s D, hH, Fay-Wu’s H, number of unique haplo-
types, H1, H12, H2/H1, and the statistics related to iHS. Values
for iHS were standardized within 50 derived allele frequency
bins, following mispolarization in the case of simulated data.
Outlier iHS values were defined as within either 2.0% tail of
the distribution obtained from simulations of neutral evolu-
tion under the appropriate demographic history.

The remaining 72 summary statistics were distribution
summaries of SAFE and its various components (Akbari
et al. 2018), specifically: haplotype allele frequency (HAF),
which is the sum of derived allele counts across all the derived
alleles present within a sequence; unique HAF score (i.e., each
unique HAF value is counted only once, even if representing
multiple individuals); u, which is the sum of HAF scores for
sequences harboring the derived allele, divided by the total
sum of HAF scores across all sequences; j, which is the pro-
portion of distinct HAF scores that carry the derived allele;
derived allele frequency; and the SAFE score itself, which is the
difference between u and j normalized against the derived
allele frequency. Notably, HAF is calculated per sequence,
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whereas u, j, derived allele frequency, and SAFE are calcu-
lated per polymorphism. The following distribution summa-
ries were utilized to construct individual values spanning a
subwindow: mean, median, mode; 2.5%, 25%, 75%, and 97.5%
quartiles; maximum, variance, standard deviation, skewness,
and kurtosis. Importantly, each summary statistic vector was
normalized, in the same manner as the preceding versions to
partialS/HIC (Schrider and Kern 2016; Kern and Schrider
2018), to capture signal solely from the relative spatial distri-
bution of the summary statistics across the 11 subwindows,
rather than allowing influence from absolute values.
Subsequently, the 89 vectors were vertically collated to
form a 2D matrix that could then be exploited for image
processing. The arrangement of these vectors was such that
the 11 columns corresponded to the series of subwindows
from left to right, and the 89 rows of summary statistics were
in the order presented here (with the distribution summaries
iterating first for every SAFE component, e.g., row 52: skew-
ness of u values; row 53: kurtosis of u values; row 54: E[j]).
Importantly, column and row order affects deep learning
optimization, which may have consequences on overall effi-
cacy, due to the convolutional and pooling windows
employed by the CNN architecture, hence related summary
statistics were grouped together (e.g., alternative distribution
summaries of an SNP-based statistic, various SAFE deriva-
tives). Heatmap images, based on median values per statistic
and subwindow, were generated in R for the neutral case and
each of the four sweep states under every population history
from the training simulations.

Training and Testing CNNs for Deep Learning
Implementation
The architecture of our CNN was composed of the following
sequential layers: 1) 2D convolutional layer with 256 filters
using 3� 6 windows and “same” padding; 2) 2D max pooling
layer given a 3� 3 window; 3) a second 2D convolutional
layer of 256 filters based also on 3� 3 windows, “same” pad-
ding, and ReLU activation; 4) a second 2 D max pooling layer
with a 3� 1 window; 5) dropout layer with P¼ 0.25; 6) flat-
tening layer; 7) fully connected layer with ReLU activation to
512 responses; 8) a second dropout layer with P¼ 0.50; 9) a
second fully connected layer with ReLU activation to 128
elements; 10) another dropout layer with P¼ 0.50; and 11)
softmax activation layer to 9 states (fig. 1). This architecture
was trained using the Python module Keras (Chollet 2015)
given the Adam optimizer (Kingma and Ba 2014), with 20
epochs, batch size of 32 simulations per step within an epoch,
and 10% of the training data (e.g., 1,800 simulations from the
total nine-state training data set) randomly removed as a
validation set during optimization (supplementary fig. S1,
Supplementary Material online). Training was performed
for every population demography under three experimental
settings: 1) given the full set of training data distributed across
nine selection states; 2) exploiting a subset of the training data
from only five of the selection states, specifically those involv-
ing neutral regions or completed sweeps; 3) deploying the
entire training data, but with binary classification between
selective sweeps in the focal subwindow and all unselected

classes (i.e., neutral class together with every linked class). The
three training regimes were then applied to the test data set
that corresponded in underlying simulated history, resulting
in predictions of selection state given the default Keras
threshold parameters for the first two training schemes,
whereas the softmax probability of a focal sweep was instead
exploited under training on binary classification. In the former
case, individual inferences per test simulation were collated
and compared against true values to produce overall accuracy
measures as well as confusion matrix heatmaps to assess
misclassification bias for each of the 45 simulated scenarios
(i.e., 11 subwindow sweep locations for each of the four sweep
types, plus neutrality).

Moreover, to explore the effect of demographic misspeci-
fication, we conducted a single additional test under the first
experimental set-up whereby the CNN trained on the GAS
simulations was applied to the CMS test simulations.
Furthermore, we engaged in two more misspecification
experiments that involved simulating, for the first experiment,
five testing data sets that changed the underlying demo-
graphic model, and for the second experiment, six testing
data sets that differed in fixed h value. In the five test sets
that altered the demographic history, we used an instanta-
neous contraction model that experienced a population
crash at 0.0001 time units with an intensity of, respectively,
across the five data sets: 20�, 40�, 60�, 80�, 100�. Priors for
h, q, s, end time of sweep, selected SNP allele frequency at
onset of soft sweep, and selected SNP allele frequency at end
of partial sweep remained the same as for the initial BFS
simulations. In the six test sets that varied h, we employed
the same parameterization from the initial BFS simulations
with the exception that h was set to, respectively, across the
six data sets: 1,000; 5,000; 10,000; 15,000; 20,000; 25,000. Our
motivation for these intervals was to exceed the bounds of
the original prior distribution, h � U(1,750.204699,
17,502.046985). After simulation, we leveraged the nine-
state CNN trained under the BFS specifications against each
of the 11 testing data sets to obtain overall accuracies for
comparison among these test data sets and to the original
test data set whereby the BFS history was correctly modeled.

Regarding the binary classification experiment, the Python
module sklearn (Pedregosa et al. 2011) was used for building
the ROC curves to evaluate accuracy and sensitivity.
Additionally, sklearn was utilized for conducting PCA on
the training simulations, on either the focal subwindow or
across the entire full-scale genomic window, respectively, with
subsequent projection of the testing simulations into inde-
pendent sets of PC1 and PC2 values, to obtain a total of four
individual ROC curves. To calculate the Composite of
Multiple Signals (Grossman et al. 2010), training data were
separated into the two categories of selection versus neutral-
ity (i.e., 4,000 simulations from four selection states versus
41,000 simulations from 41 neutral or linked classes), which
were, respectively, converted into a histogram of 200 bins for
every summary statistic. Assuming the Composite of Multiple
Signals for the central subwindow only, this resulted in a total
of 178 distributions given the 89 statistics for both selection
and neutral; for all subwindows, this was instead a total of

Classifying Partial Sweeps in Anopheles Populations via Deep Learning . doi:10.1093/molbev/msaa259 MBE

1181

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/38/3/1168/5918472 by guest on 19 M
ay 2023



1,958 distributions due to the 11 total subwindows of statis-
tics. These distributions were then employed to calculate
probabilities both under selection and neutrality for the cor-
responding testing data summary statistics; for bins with a
zero value, 0.1 of the smallest possible increment (i.e., selec-
tion: 0:1 � 1

4;000 ; neutrality: 0:1 � 1
41;000 ) was assigned as the proba-

bility. To determine the prior for each probability, represented
in the original Composite of Multiple Signals equation by p,
we utilized the proportional composition of the training sim-
ulations (i.e., selection: 4

45; neutrality: 41
45). Finally, probabilities

were natural log-transformed and summed among summary
statistics to compute the Composite of Multiple Signals.

Detecting Selective Sweeps for A. gambiae Population
Data sets
To scan the genome for signatures of selective sweeps, the
nine-state trained CNNs were applied to the eight empirical
mosquito data sets, with the underlying simulated demogra-
phy matched to the sampled population (supplementary
fig. S1, Supplementary Material online). Calls were corrected
for false discovery by exploiting the accuracy and error rates
for neutral regions from the nine-state simulation experi-
ment, such that the amount of neutral calls was assumed
to be underestimated whereas the amount of calls for the
remaining eight selection states were assumed to be inflated.
Subsequently, we produced sets of 10,000 randomly per-
muted calls across the genome to derive null expectations
of sweep enrichment, following Schrider and Kern (2017).
Using the gene annotation file “Anopheles-gambiae-
PEST_BASEFEATURES_AgamP4.7.gff3.gz” from VectorBase,
we exploited these permuted data sets to assess statistically
significant enrichment within certain DNA regions, groupings
of known IR genes (N. Harding, pers. comm.), and all basic GO
term definitions from http://www.geneontology.org (last
accessed February 18, 2015). The DNA regions of interest
included gene, mRNA, exon, CDS, five-prime UTR, and
three-prime UTR; IR genes were assigned to four functional
categories: metabolism, target sites, behavior, and cuticular.
To determine significant enrichment, the number of inferred
calls for a particular DNA region or IR gene category had to
have a P value < 0.05 based on the respective distribution of
10,000 permutations; for the GO terms, we deployed a cor-
rected q-value<0.05 due to concerns of false discovery stem-
ming from the large number of terms tested for enrichment.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Acknowledgments
We thank Jeff Adrion for comments on the manuscript. This
work was supported by National Institutes of Health award
no. R01GM117241 to A.D.K. and National Institutes of Health
award no. K99HG008696 to D.R.S.

Data Availability
Software is available at https://github.com/xanderxue/
partialSHIC/. Empirical data from Anopheles mosquito pop-
ulations are available from the Anopheles gambiae 1000
Genomes Consortium at http://ftp://ngs.sanger.ac.uk/pro-
duction/ag1000g/.

References
Adrian AB, Corchado JC, Comeron JM. 2016. Predictive models of re-

combination rate variation across the Drosophila melanogaster ge-
nome. Genome Biol Evol. 8(8):2597–2612.

Adrion JR, Galloway JG, Kern AD. 2020. Predicting the landscape of
recombination using deep learning. Mol Biol Evol. 37(6):1790–1808.

Akbari A, Vitti JJ, Iranmehr A, Bakhtiari M, Sabeti PC, Mirarab S, Bafna V.
2018. Identifying the favored mutation in a positive selective sweep.
Nat Methods. 15(4):279–282.

Battey CJ, Ralph PL, Kern AD. 2020. Predicting geographic location
from genetic variation with deep neural networks. ELife.
9:e54507. doi:10.7554/eLife.54507

Booker TR, Jackson BC, Keightley PD. 2017. Detecting positive selection
in the genome. BMC Biol. 15(1):98.

Brown AW. 1986. Insecticide resistance in mosquitoes: a pragmatic re-
view. J Am Mosq Control Assoc. 2(2):123–140.

Chan J, Perrone V, Spence JP, Jenkins PA, Mathieson S, Song YA. 2018. A
likelihood-free inference framework for population genetic data us-
ing exchangeable neural networks. bioRxiv. doi:10.1101/267211

Chollet FK. 2015. [Internet]. Available from: https://keras.io
Connallon T, Clark AG. 2013. Antagonistic versus nonantagonistic models

of balancing selection: characterizing the relative timescales and hitch-
hiking effects of partial selective sweeps. Evolution 67(3):908–917.

Coop G, Ralph P. 2012. Patterns of neutral diversity under general mod-
els of selective sweeps. Genetics 192(1):205–224.

Elissa N, Mouchet J, Rivière F, Meunier J-Y, Yao K. 1993. Resistance of
Anopheles gambiae s.s. to pyrethroids in Côte d’Ivoire. Ann Soc Belg
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