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Abstract

A novel virtual sensing technique aimed at reconstructing the displacement field throughout the structure
from pointwise measurements is here exploited for dynamic shape reconstruction of a notched beam. This
estimator is a proportional observer that exploits a linear, frequency independent, relation between the esti-
mated state-space vector and the measurements. To improve its accuracy, this concept is augmented to the
definition of a sequence of proportional observers, each one acting on a signal decomposition provided by
wavelet multi-resolution analysis . The considered experimental test case is a straight, uniform beam with
an unmodeled stiffness and mass reduction. The strain data are provided by strain gauges positioned on the
top face of the beam, whereas the estimated state variables are the time dependent coordinates of the modal
expansion of the vertical displacement along the beam elastic axis. An optimization solver, which minimizes
the estimation error, is employed to get the optimal gain matrix of the proposed observer.

1 Introduction

The availability of high-performance computing at different scales makes nowadays the implementation of
digital twins of complex structural systems a not so far objective. For certain purposes, like structural health
monitoring, the full-field description of continuous systems can be also achieved with a virtual sensing
approach which brings the sensor data at the centre of the reconstruction technique. Indeed, virtual sensing
aims at providing a reliable estimation of a physical variable that is not possible to measure directly. As there
is no limitation in the number of virtual sensors, the present virtual sensing approach seeks to reconstruct the
entire field of structural deflections and strain for continuous systems.

Typically, the problem of virtual sensing of structures has been addressed in different ways. In structural
engineering, a first systematic approach to the problem of determining in real-time the applied loads, stresses
and displacements motivated the development of the inverse finite element method (iFEM) [1]. The use of
sub-structuring techniques (see [2]) has been also successively employed to obtain the reconstruction of the
displacement field, whereas, more general approaches not necessarily limited to identify structural variables,
have been typically considered in control theory applications, for instance through modal filters as in [3].
Restricting to recent years, Hwang et al. [4] proposed the use of Kalman filter to estimate the modal elastic
deflections. The unknown state-space vector was made up by modal coordinates and velocities relative to a
numerical model of a building; once estimated on the basis of virtual measurements, the modal coordinates
allowed for providing the correspondent wind loads. Similarly, Papadimitriou et al. [5] successfully predicted
the fatigue-life reduction of metallic structures by using the stress field obtained by means of Kalman filter.
Lourens et al. [6] introduced the so-called augmented Kalman filter, which adds the unknown external forces
to the state-space vector to be estimated. From the dynamic modelling point of view, these external forces,
though unknown, were provided as the result of a random walk dynamics with an associated process noise.
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Continuing the work of Gillins and De Moor [7], Lourens et al. [8] proposed a new technique to obtain a
joint estimation of the state-space variables (made up by modal coordinates and velocities) as well as of the
input. The joint input-response estimation exploits an algorithm similar to Kalman filter that, besides the
usual tasks of measurement update and time update, considers a further step concerning the input estimation,
recursively estimated by means of an unbiased minimum-variance process.

Despite of their ability to track unmeasured time-histories, all the methods that exploit Kalman filtering
are not natural for second-order structural systems as highlighted by Balas [9]; the time derivative of the
estimated modal coordinate (e.g., relative to displacements) is not equal to the estimated velocity. This
limit is magnified when unknown external forces are dominant with respect to the process and measurement
noises, and consequently Balas [9] proposed a first-order observer aimed to reduce the gap. More recently,
Demetriou [10] presented a natural second-order observer that utilizes a parameter-dependent Lyapunov
function to ensure the asymptotic convergence of the error on the state-space variables. Among approaches
based on second order observers, Hernandez [11] addressed the problem of finding the optimal observer gain
by minimizing the estimation error in the frequency domain, although the observation process is naturally
defined in time domain. The statistics of the noise and external loads are expressed by means of power
spectral densities instead of the covariance matrices typically used in Kalman filter. This enhances the
capability of observing linear (structural) systems that are intrinsically featured by their frequency domain
behavior. A real-life application based on model-based observer is present in [12]).

Recently, Saltari et al. [13] have introduced the combined use of wavelet multi-resolution analysis (see
Refs. [14, 15]) and proportional observer (PO) concept. The PO shares the same form with modal filters, but
unlike the latter it takes into account the model structural features as well as excitation and noise statistics
in building the error function; the availability of such analytical expression speeds up the error computation,
and is a key point for employing error minimization procedures when dealing with large systems. This
approach is then generalized to the definition of a sequence of proportional observers, each one acting on a
signal decomposition provided by wavelet multi-resolution analysis, named as Multi-Resolution Proportional
Observer (MR-PO).

This paper is aimed at experimentally validating the MR-PO in [13] via experimental campaign on model
similar to that used for its numerical validation. The experimental testbed is a notched beam, suspended
under a spring bed, with rectangular section, tested at Structural dYnamics and Diagnostics Lab (SYDLab)
at CNR-INM in Rome.

The paper is organized as follows. The dynamical model of the considered mechanical system is presented
in Sec. 2. Section 3 introduces the Multi-Resolution Proportional Observer as well as the correspondent
analytical formulations of the estimation error. The experimental test case to which the considered method
is applied is introduced in Sec. 4 whereas its analytical model is described in Sec. 5. Then, the optimization
procedure to calculate the observer gain is explained in Sec.6. The numerical results accounting for the
capability of the proposed method to approximate the true solution even in the points not considered for state
estimation are finally discussed in Sec. 7.

2 Mechanical system modelling

In the present paper, we shall limit our attention to linear mechanical systems which can be represented in
time domain, including suitable initial conditions as:

Mg+ Dg+Kg=Ff+w (1)

where q € R is a vector of generalized coordinates (nodal displacements and rotations in finite element
discretization or modal amplitudes), M, D and K denote the mass, damping and stiffness N x N matrices,
respectively, f € RY is the external force vector and the vector w € RY accounts for modelling errors in
terms of process noise. The system observations are assumed to be of the form:

y =Sq+v 2
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where the M x N matrix S relates linearly and instantaneously the measurement vector y € R to the vector
of generalized coordinates q and v € RM is the measurement noise vector. More general forms of Eq. 2
have been proposed but we limit ourselves to measurements expressed in terms of displacements like strain
measurements. For linear systems, it is common to consider the Fourier transform of Egs. 1 and 2, i.e.,

—w?Mg + iwDg + Kg = f(w) + w(w) 3)
y =5d+v(w) )

where ~ indicates the transformed variables and the dependence on w is highlighted only in the case of
external input and noise. The frequency response function matrix H(w) for the mechanical system alone is
given by:

H(w) = [~w*M +iwD + K] ~* 5)

relating the state-space vector to the inputs, i.e., § = H(w)(f(w) + w(w)). If the statistical features of the
forcing terms in Eq. 3 as well as of the process noise are stochastic and uncorrelated to each other, the power
spectral density of the state response to the stochastic inputs is obtained as follows:

Paq(w) = H*(w)(Pf(w) + Puw(w))HT () (©)

where ®¢(w) and ®,,, (w) indicate the power spectral density matrices of the inputs.

3 Multi-Resolution Proportional Observer

Let us first consider the following decomposition of the measurement vector into /N, functions spanning
different time-scale ranges according to the WMRA:

N,
y(t) = y™), (7
n=1

where the dependence on time is here highlighted for sake of clarity. For each time-scale function of the
signal decomposition, one has:

™) = Quy™ (). (8)

Thus, Egs. 7 and 8 provide the following estimation of the generalized coordinates (see Fig. 1):

Ns N
a=> 4" =>"Q.y" ©)
n=1 n=1

Therefore, defining q(") as the n-th time-scale component of q obtained with the same signal decomposition
(WMRA), it yields for the estimation error:

N N N N,
e=q-4=> q" -3 4" =% <q<n> _ q(n)) =3 e (10)
n=1 n=1 n=1 n=1

In Eq. 10 the global error e depends on the errors at the different orders e(™), which have the following
expression:

e™ = (1 - Q,5)q™ — Quv™ 11

where the measurement noise is also decomposed into different contributions v("™) corresponding to the



1090 PROCEEDINGS OF ISMA2020 AND USD2020

q(l)

1 Qp

(n)
y

q
Qn,[—

Figure 1: MR-PO plant.
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selected time scales. Next, using the properties of variance (Var) and covariance (Cov), one has:

N, N, N,
[02] = Var (E e(")) = Cov (Z e Z e("‘)) = Z Z Cov (e("),e("‘)) (12)

n=1 n=1 n=1m=1

which can be further recast as:

ZVa.r(e(") )+ 2 2 i Cov (e(") e(m)) (13)

n=1 n=1m=n+1

In a more coincise form, setting [o2 Cov(e(™, e(™)), the previous equation can be expressed as:

e, 71771-]

Z[oemmHzi Z (02 ] (14)

n=1 n=1m=n+1

where, recalling Eq. 11, each matrix [afymm] has the following expression:

[Ue nm] (I - Qn ) [ q nm] (I - QmS)T + Q”l [03,1z171] Q;lr-t (15)

provided that the state-space vector q and the noise v are statistically independent, with the cross co-variance
of state and noise defined as (02 ,,,,] = Cov(q™,q(™) and [02,,,,,] = Cov(v(™,v(™). Though the covari-
ance can be computed on the time-domain signals by definition, it is more efficient to carry out its evaluation
in the frequency domain due to the linearity of the observed system. Therefore, by introducing the WMRA
scalar transfer function 4™ (w) associated to the n-th scale, the Fourier transforms of the signals q(™ and
v(™) can be obtained as:

4" (w) = 7" (W)a(w) (16)
v (w) = 'y(") (w)v(w). (17)

Indeed, once specific wavelet and scaling functions are assigned, the WMRA based on orthogonal wavelets
provides the related transfer functions 4(™). Therefore, the mixed-scale covariances associated to modal
response and measurement noise, respectively, are given by:

+o0 +00
[ag,mn] = / Pgq,mn dw = / ’7(")’7(1") Pgq dw (18)
—00

—00

+oo +o00
[Ug,nm] . / (I)W,mn dw = / ;y(n);?(m) P,y dw (19)
—00

—00
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Figure 2: Tested beam at SYDLAB.

where ®qq mn(w) and @y ymn(w) are the cross-spectral densities relative to the components 1 and 7 of the
considered signals, which are related to the PSD matrices ®qq(w) and ®,, (w). Equation 14, along with Eq.
15 and the involved definitions by Egs. 18 and 19, gives the objective function to be minimized for MR-PO.
The larger number of gain matrices Q,, improves the search for the minimum. Nevertheless, it is worth
noting that MR-PO maintains a quadratic form of the error covariance (see Egs. 14 and 15).

4 Test case

As stated initially, the problem under investigation is relative to the displacement field reconstruction of a
beam with a rectangular, hollow section, tested at Structural dYnamics and Diagnostics Lab (SYDLab) at
CNR-INM headquarters in Rome. The beam is made of aluminum and is suspended on springs to reproduce
free-free boundary conditions for the vibration modes of interest. The experimental set-up is shown in Fig.
2. The frequency of the rigid-body modes (heave and pitch) is sufficiently lower than the frequency of the
two-node vertical bending mode. The beam is mostly uniform with the exception of two notches, named
notch ‘L’ and notch ‘R’, respectively, placed toward the left and right end of the beam, if observed as in Fig.
2. In Fig. 3, the top view of the beam shows the position of the notches with respect to the sensor position.
However, while the ‘L’ notch is obtained by reducing to 2mm the thickness of the entire section (half of its
intact thickness), notch ‘R’ considers the reduction of the top side of the beam alone. The dimensions and
other characteristics of the beam are reported in Table 1.

The beam is equipped with strain-gauges equally spaced with the unique exception given by an additional
sensor placed close to notch ‘R’, with positions and numbers reported in Fig. 3. The axis orientation is
inverted to be in coherent with the point of view of the beam set-up reported in Fig. 2. The strain-gauge
signals are then collected by a LMS- SCADAS system at the sampling frequency of 2K H z.

Table 1: Tested beam main dimensions and properties

Length 2918m | Width 0.008 m | Height 0.04 m
Thickness 0.004m | Young modulus | 68.5GPa | Density 2728 Kg/m?
Notch L 0.5106 m | Notch length 0.05m Reduced thickness | 0.002m
mid-point position (Entire section)

Notch R 1.985m | Notch length 0.05m Reduced thickness | 0.002 m
mid-point position (Top side)
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Figure 3: 2D top view of the beam with highlighted position of strain-gages and Left and Right damage.
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Figure 4: Reference beam model. In the example, only one notch is considered.

5 Analytic model of the experimental case study

The above theory is applied to a slender beam with a two-side notch as shown in Fig. 4. The notch represents
a feature that is not included in the equations of the observed system, i.e., in Eq. 1. The Euler-Bernoulli
equation of a beam lying on a spring layer is:

0? 02 ow ow Ow
32 [EI(T)W (w -+ "bﬁ)] + kg (w + nsﬁ) + [L(.T)W = p(z) (20)

where z, t and w are the dimensional abscissa, time and vertical displacement, respectively, E'1(x) and p(z)
are the piecewise constant sectional stiffness and mass, respectively, 7, is the structural damping coefficient,
ks and 74 are the spring and damping coefficients of the supporting elastic layer, respectively, and p is the
external load expressed as force per unit length. The spring layer is added to represent a real structure on
elastic foundations, floating condition or constrained for modal testing. The notch is represented with a
reduction bs of the width b of the rectangular section of the beam, while the height & is kept constant (see
Fig. 4). Introducing a shape function rs(z), defined as rs = bs/b along the notch, and equal to 1 elsewhere,
width, sectional mass and stiffness ratio variations along the beam can be expressed in concise form.

The Galerkin method is exploited to transform the partial differential equation above into a system of linear
ordinary differential equations by decomposing the displacement w(z,t) as a sum of modal contributions,

ie, w(z,t) =~ Z,’:{;‘{"“”‘ Gn(t)Yn(x), where the functions v, (x) are the analytical normal modes of the

uniform undamped free-free beam without the spring layer, including the heave and pitch rigid-body modes.
From the ‘true’ mass Mg, (proportional) damping Ds and stiffness matrices K5 = K((,.b) + K, by setting
rs(z) = 1 the mass M, damping D and stiffness K matrices which define the structural model in Eq. 1 can
be obtained. A more systematic description of the modelling error introduced by the notch is presented in

Ref. [13].

For the sake of clarity, in the following we will refer only to the bending modes by renumbering the bending
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modes or the corresponding modal coordinates from 1. The first seven modal frequencies of the considered
beam (all those numerically below the Nyquist frequency of 1000 Hz) are reported in Table 2 comparing the
natural frequencies evaluated experimentally with those provided by the analytical model for both notched
and uniform model.

Table 2: Experimental natural frequency of the notched beam compared to the analytical solution of notched
and uniform beam.

| ilHz] | f2lH2) | fs[HZ) | falHZ] | fs[HZ] | fe[Hz] | fr[H]

Experimental notched beam | 33.5 89.1 175.6 | 288.0 | 419.6 | 578.1 757.8
Numerical notched beam 33.26 | 91.69 180.15 | 297.89 | 445.11 | 622.73 | 829.34
Numerical uniform beam 33.45 | 92.16 180.66 | 298.65 | 446.12 | 623.10 | 829.56

6 Optimal gain computation

The numerical determination of the observer gain plays a central role in the estimation techniques presented
in the previous sections. It implies finding the observer gain parameters which minimize the error variance
defined by Eq. 13. Thus, the present section explains how the observer gain is numerically computed
according to the present observer formulation.

Suitable optimization procedures are then employed for searching the optimum gain matrix and, conse-
quently, different optimization problems are defined in terms of objective function, design variables and
constraints. The optimization problem consists in minimizing the variance matrix [02] of the estimation
error on the state-space vector . The user input consists essentially in a statistical description of distur-
bances and noises, i.e., the covariance matrix of the measurement noise and the PSD of process noise and
external excitation. For such an observer, a simple gradient-based algorithm as available in MATLAB(©) is
employed for a full convergence to a global minimum since the objective function is quadratically dependent

on the design variables. The optimizations are initialized with zero initial Q,, matrices, such that at first step
2 2

0%] = [qu] :

As mentioned above, the additional information required to evaluate the objective functions consist of some
statistics on the measurement and process noises, as well as on the external forces, either directly provided
by the covariance matrices or by the PSDs. As far as it concerns the external forces, their PSD matrix @ (w)
is generally derived by means of suitable spectral load models which depend on the statistical description
of the environmental or operational excitation and on the transfer function from the excitation source (wind,
waves, vibrations, etc) to the applied forces.

The measurement noise is modelled as white noise and featured by the sensor signal-to-noise ratio (SNR).
Nonetheless, the approach foresees the presence of coloured noise to account sensors with different operating
frequency range

In this experimental application, the process noise has not been modelled and, as a consequence, it has been
set to zero.

7 Numerical results

As stated in the previous sections, the present application aims at estimating the full field response based on
pointwise measurements provided by strain gages in presence of an unknown excitation. In Sec. 7.1, the
quantities related to the measurement set-up (sensors and excitation sources) are characterized. In the same
section, the implementation of multi-resolution analysis is provided along with the considered error metrics.
Finally, in Sec. 7.2 the analysis of the performance in estimating the system response is dealt with for the
considered methods.
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Figure 5: Some components of synthesized power spectral density of modal external force.

7.1 Displacement field estimation

In the present application, the measurement set consists of noisy data relative to the strains on the top face
of the beam at equidistant positions. The reconstruction of the elastic displacement field is done via the
estimation of the modal coordinates g, according to the following decomposition of the response:

Nimodes

Wz t) = Y @t)ve(x), 21)

k=1

with ¢ (z) the vertical bending modes of the uniform structure. 10 vibration modes are considered for the
analysis by renumbering the bending modes from 1 to 10. The rigid-body modes are not observable since
they do not generate strain response. Thus heave and pitch are excluded from the reconstruction of the
deflection field.

Considering the relation between the strain and the vertical beam displacement in the linear case (small
displacements), it follows:

+ vk(t), (22)

2w X
yk(t) = g Fula,b)

0z? _ (s9)
k

being h/2 the distance between the strain sensor and the neutral axis.

The variance matrix of the measurement noise used in the error evaluation is reported below:
(02,] = 0.04us” |

where | is the identity matrix. The noise has been considered as equal for each sensors and uncorrelated to
each other. On the other hand the process noise has been considered as unknown and for this reason set to 0.

To validate the approach in a simple experimental environment, the set goal of the present work is to provide
the state response of the structure to tap test. Even though the proposed method is suitable for stochastic
processes, the following criterion has been adapted to build the power spectral density associated to the
external loads, that plays a key role in training the observer synthesis. A tap test with 155 impulsive taps in
unknown positions throughout the beam has been considered to get the data for the identification of the PSD
of external forces. The impact forces has been recorded by means of instrumented impact hammer. Then, the
position of each impact force has been assumed to be randomly in one of the points where the strain gauges
are located. These synthetic impact forces are then projected over the bending modes. Since, their number is
statistically enough, it is assumed that all the considered bending modes are sufficiently excited. The PSD is
then built by considering the modal forces so synthetized. Some components of this PSD are shown in Fig.
5.

The wavelet multi-resolution analysis is performed within the embedded wavelet toolbox using Daubechies
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dB12 orthogonal wavelets (Ref. [14]). Specifically, Ny = 7 time scales are considered for the present
analyses. The corresponding WMRA scalar transfer functions v (w) are illustrated in Fig. 6 highlighting
their frequency content.

~

f [Hz|

Figure 6: WMRA scalar transfer functions for the considered test case.

The fidelity level of the observation process is addressed by means of the so called Time Response Assurance
Criterium (TRAC) (see Ref. [2]) on the strain gauge data and the covariance of the a-posteriori residual
of measurements. In this work, the number of strain gauges used the state estimation varies to test the
observer’s robustness. However, the entire set of measurements, here denoted as y., is considered to assess
the estimation performance. By taking into account the entire set of measurement vector y.(¢) and its a-
posteriori estimation y,(t), the TRAC is defined as below:

lye®T5e@ 12
(vl ye®) (307 5:())

The function above represents the similarity of the signal array y. and y. with a suitable indicator in time
domain and can assume values between 0 and 1 when the signals are similar. Its time-averaged value
TRAC is here assumed as one of the two global indicators for the quality of the estimation. Indeed, the
other indicator is the trace of the covariance matrix of the a-posteriori measurement residual defined as

tr[Cov(ye(t) — Ve(t))].

TRAC(t) =

(23)

7.2 Results

In order to validate the approach in Ref. [13], this work aims at estimating the modal response of the notched
beam during a tap test where the position of each impact is unknown. As already defined in Sec. 7.1, not all
the available measurements are used to observe the system. The most of virtual sensing/shape reconstruction
techniques are particularly sensitive to the number of sensor used for estimating the state. Thus, the ultimate
goal of the section is to assess the estimation capabilities of the MR-PO as well as its sensitivity to the
number of strain gauges. On the other hand, the set number of modes to be tracked is ten. Besides the seven
modes in Tab. 2 with a natural frequency below 1000 Hz, further 3 residual modes are taken into account.
The results are provided by considering first 5 strain gauges and then 2 strain gauges. The first case takes
into consideration five strain gauges uniformly spaced over the beam corresponding to the numbers 1, 4, 6,
8, 10 of Fig. 3. The modal response of the first seven modes obtained via MR-PO is shown in Fig. 7(a) in a
time window between 35 s and 36 s of the considered test. On the other hand, Fig. 7(b) shows their power
spectral density. The numerical simulation of a perfect, uniform, beam would present a modal response
featured by the presence of only one peak of the PSD for each mode. However, the presence of unmodeled
notch and of the measurement noise introduces some noise/error in the estimation procedure. Indeed, the
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modal coordinate PSDs share some of the peaks of the spectrum. For instance, the first mode (blue curve)
has the main peak at approximately the first modal frequency of Tab. 2. However, further peaks are visible
about the second and third peaks associated to the second and third modes. A further study will investigate
whether using the true modal basis reduces this effect. A comparison between the measurements of the strain
gauges 3 and 5 and their a-posteriori estimate via MR-PO and Modal filter (MF) is then presented in Fig. 8.
The considered strain gauges are out of the estimation process and result useful to check whether the state
estimation provides a good agreement between real measurements and their a-posteriori estimates. MR-
PO seems to perform well in such measurement points. The TRAC (see Sec. 7.1) resulting from MR-PO
estimation is 0.87. The comparison with MF is performed by projecting the vibration modes over deflection
field obtained by integrating piece-wise linear function of w” between sensors and beam edges (equivalent to
natural spline approximation). In this case, MF estimate is obtained by employing all available strain gauge
measurements.
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Figure 7: Time histories of modal coordinates and their associated power spectral densities via MR-PO with
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estimation via MR-PO (with 5 considered strain gauges) and MF.

The same analysis is then performed by reducing the number of strain gauges to be used for the estimation
to only two, i.e., strain gauges 1 and 7. The modal response obtained by this estimation is shown in Fig. 9(a)
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along with their PSD in Fig. 9(b). In Fig. 9(b), it is possible to notice that the frequency content of the modal
coordinates has slightly modified. The main peaks of each mode are basically the same. However, being the
number of information provided by measurements much less than the previous case, the optimizer provides
an observer in which Q,, components are almost zero out of the band of interest of each mode. This results
in having mitigated multiple peaks. A comparison between the measurements of the strain gauges 3 and 5
and their a-posteriori estimate via MR-PO and Modal filter (MF) is presented in Fig. 10. This case provides
a TRAC value for MR-PO equal to 0.83.
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Figure 9: Time histories of modal coordinates and their associated power spectral densities via MR-PO with
2 considered strain gauges.
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Figure 10: Comparison between the time histories of strain gauges 3 and 5 compared to their a-posteriori
estimation via MR-PO (with 2 considered strain gauges) and MF.

Finally a convergence analysis on the number of strain gauges is carried out. The strain gauges set associated
to each case of the considered sensitivity analysis is provided in Tab. 3. Thus, Fig. 11 shows the influence
of the strain gauges on the state estimation performances of MR-PO as compared to MF. It is noticeable that
for both MR-PO and MF the trend of covariance of the measurement residual is decreasing as the number
of strain gauges involved decreases (see Fig. 11(a)). On the other hand, as expected, TRAC follows the
opposite trend (see Fig. 11(b)). MR-PO, as opposed to the MF, performs well independently from the
number of strain gauges considered for the analysis and its performance parameters keep almost constant
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with the number of strain gauges involved in the state estimation. This confirms the potential of MR-PO for
shape reconstruction as already provided in Ref. [13].

Table 3: Strain gauge selection for each case.

Ng | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
set 17 178 1578 | 1457813457 1345613456 13456
8 78 789 78910
10* RESRE
—=—MF
—=—MR-PO

—_
o
w

—_
o
N

“\.\__.___,\_\.\a

Error covariance trace

1 . . . ; . . . :
10
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9
number of strain gages number of strain gages
(a) Measur. residual covariance matrix sensitivity to Ng. (b) TRAC sensitivity to Ngg.

Figure 11: Sensitivity of the trace of the error covariance matrix and TRAC with respect to number of strain
gauges

8 Conclusions

In this paper, the problem of reconstructing the vertical displacement field over an experimental beam using
point-wise measurements has been addressed as a specific but meaningful example of shape reconstruction
for building a digital twin based on experimental data. The so-called Multi-Resolution Proportional Observer
introduced in Ref. [13], that is a generalization of the Proportional Observer introduced in the same paper as
well, is employed to follow closely the different components of the tracked signals according to the signal
decomposition given by wavelet multi-resolution analysis. Therefore, a detailed mathematical derivation of
MR-PO has been resumed. The displacement field reconstruction is then based on a modal superposition,
where the mode shapes are obtained from the numerical model of the mechanical system (mass, damping
and stiffness matrices) and the time coordinates are estimated by the observer. Though recalling that the
error estimation based on its analytic expression depends on the model uncertainties as well, the present
procedure has some advantages: i) it highlights clearly the type of error dependence from the observer gain
matrix, that is found to be quadratic for the MR-PO observers at the considered time-scales so facilitating
the search for an absolute minimum, and ii) it is numerically more efficient in terms of the error computation
at each iteration of the optimization process.

A beam with rectangular, hollow section with a notch tested at SYDLab at CNR-INM was then considered
as testbed. Although the MR-PO in [13] is suitably developed for structure operating in stochastic environ-
ments, the goal of the work was to provide a validation of the proposed approach by estimating the modal
response of the notched beam during a tap test, where the position of each impact is unknown. Measure-
ment noise and unknown excitation have been taken into account by their statistical behavior (power spectral
densities), properly specified for the considered application. The capability of accurately reconstructing the
whole displacement field relies on choosing the global observer gain, in the form of a set of gain matrices,
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which minimizes the variance matrix of the error between the true and the estimated state-space vector. This
minimization process is carried out directly on the analytic expression of the error variance matrix which de-
pends on the observer parameters. In the proposed real case experiment only part of the sensor data set have
been considered for state estimation according to the number of strain gauges to be used for the analyses. All
available sensors, including those that do not provide any information as input, were considered as control
sensors on which performance metrics were computed.

Two cases, with respectively five and two strain gauges, were employed to observe the dynamic behaviour of
the structure. Specifically, both cases provided reasonable results and the performance of the worst case (i.e.,
the one that uses only two strain gauges) has not significantly worsened with respect to the first-one. The
error sensitivity has been carried out with respect to the number of strain-gauges, thus showing that MR-PO
does not experience a significant deterioration in performance due to the decrease of number of strain gauges
involved in the estimation process. This has been highlighted by the comparison with the modal filter, here
assumed as representative of the classical methods. This is in general true considering both the global error,
evaluated with the average of TRAC function, and the covariance of the measurement residuals. The results
appear rather encouraging on extending this method to the case of more complex structures for which the
development of these approaches finds its ultimate motivation.
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