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Abstract
In this paper, we propose a new methodology to design quantum hybrid diffusion models, derived from classical U-Nets 
with ResNet and Attention layers. Specifically, we propose two possible different hybridization schemes combining quantum 
computing’s superior generalization with classical networks’ modularity. In the first one, we acted at the vertex: ResNet con-
volutional layers are gradually replaced with variational circuits to create Quantum ResNet blocks. In the second proposed 
architecture, we extend the hybridization to the intermediate level of the encoder, due to its higher sensitivity in the feature 
extraction process. In order to conduct an in-depth analysis of the potential advantages stemming from the integration of 
quantum layers, images generated by quantum hybrid diffusion models are compared to those generated by classical models, 
and evaluated in terms of several quantitative metrics. The results demonstrate an advantage in using hybrid quantum dif-
fusion models, as they generally synthesize better-quality images and converges faster. Moreover, they show the additional 
advantage of having a lower number of parameters to train compared to the classical one, with a reduction that depends on 
the extent to which the vertex is hybridized.

Keywords Quantum hybrid diffusion model · Variational quantum circuit · Quantum hybrid U-Net · Efficient quantum 
simulation.
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1 Introduction

Quantum Machine Learning (QML) has recently emerged as 
a promising framework for generative Artificial Intelligence 
(AI). In fact, over the years, QML algorithms have been 
developed for both supervised [1–3] and unsupervised [4, 5] 
learning tasks. The implementation and performance analy-
sis of these machine learning algorithms have demonstrated 
that quantum computing can bring numerous advantages. In 
particular, the benefits come from the exponentially large 
space that a quantum system can express, as well as from 
the ability to represent mappings that are classically impos-
sible to compute [6, 7]. Additionally, an investigation into 
effective dimension is presented in [8] by a data-dependent 

capacity measure, revealing that quantum computing can 
offer benefits by achieving a better effective dimension than 
comparable classical neural networks.

In classical AI, Diffusion Models (DMs) have established 
themselves as the leading candidates for data and image 
generation [9–11], showcasing superior quality and stabil-
ity in training when compared to state-of-the-art Genera-
tive Adversarial Networks (GANs) [12]. DMs rely on an 
iterative diffusion process that effectively models complex 
distributions by progressively refining the data distribution 
through a sequence of diffusion steps. However, DMs may 
encounter notable challenges, including high computational 
requirements and the need for extensive parameter adjust-
ments [13].

Considering generative QML, there have been various 
implementations of Quantum Generative Adversarial Net-
works (QGANs) that have demonstrated superior perfor-
mance in capturing the underlying data distribution. They 
have also shown better generalization properties, allow-
ing for a significantly lower number of trainable parame-
ters compared to classical GANs [14–17]. One of the first 
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implementations of a QGAN is described in [14]. In this 
implementation, only the generator is realized using quan-
tum circuits, offering two different solutions: the first one, 
called Quantum Patch GAN, involves dividing an image into 
sub-images, which are then generated by sub-generators and 
later recombined to form the complete image, whereas in the 
second one, called Quantum Batch GAN, there is no longer 
a division into sub-images.

Another possible implementation of QGANs is proposed 
in [15], where a novel architecture called style-qGAN is pre-
sented. In this scenario, the Generator is entirely quantum 
whereas the Discriminator remains entirely classical. The 
novelty of this model consists in the embedding of the latent 
variable into every quantum gate of the network, whereas 
previous qGAN models introduced them only at the begin-
ning of the network. The results obtained by testing the 
architecture on toy data, namely 1D gamma and 3D corre-
lated Gaussian distributions, as well as on data for realistic 
quantum processes at the Large Hadron Collider (LHC), 
demonstrate the effectiveness of such an architecture and 
its potential use for data augmentation, as it is capable of 
reproducing known reference distributions from small sam-
ple sets.

Concerning DMs, there have been only some initial and 
simple attempts to develop a quantum version of a DM. 
While in [18] a sole theoretical discussion of a potential 
quantum generalization of diffusion models is provided, 
with results tied only to very basic and simplified scenarios, 
two different architectures are proposed in [19]: the first one 
works on downsized images from the MNIST dataset; the 
second model suggests operating on a latent space using 
a pretrained autoencoder. Both architectures use amplitude 
encoding to load data into quantum circuits, which is a mem-
ory-efficient approach suitable for current quantum devices, 
but requires an exponential number of circuit runs to fully 
reconstruct the entire output distribution of bitstrings.

In this paper, we propose an efficient methodology to 
design Hybrid Quantum Diffusion Models (HQDMs) by 
incorporating variational quantum layers, with novel cir-
cuit designs within a classical U-Net [20]. Namely, we 
employ a state-of-the-art U-Net architecture, proposed in 
[11] and composed of ResNet [21] and Attention blocks 
as the foundation for our approach. Therefore, the U-Net 
is hybridized in two different modes: the first involves 
inserting Variational Quantum Circuits (VQCs) only at 
the vertex, while the second implies the insertion of VQCs 
on both the encoder side, which is more sensitive to fea-
ture extraction, and the vertex, which is responsible for 
compressed image processing. The rationale behind this 
approach is to leverage the strengths of both classical and 
quantum computing paradigms. By integrating variational 
quantum layers into the classical U-Net architecture, we 
aim to exploit the expressive power of quantum circuits 

for faster network convergence and superior generaliza-
tion capabilities [8]. On the other hand, classical U-Net 
layers allow us to introduce modularity and nonlinearity in 
the computation, thus enabling complex image processing 
while mitigating the inherent challenges associated with 
quantum computing [22, 23]. Furthermore, by strategically 
placing VQCs at key points within the U-Net architecture, 
we ensure that quantum layers are properly allocated to 
areas where they can have the most significant impact on 
performance improvement, thanks to their expressivity and 
feature extracting capabilities [24–26].

We also propose to adopt an approach inspired by trans-
fer learning, aiming at an overall efficient training time of 
the models. During the initial epochs, a classical model is 
trained and then, some of its weights are transferred to a 
hybrid model that is trained, in turn, for some further epochs. 
In this way, while still maintaining a limited training time, 
we achieve better results compared to the classical counter-
part: on Fashion MNIST, we achieve + 2% FID, + 5% KID, 
and + 2% IS. On MNIST, the results are even better with 
an improvement in metrics of approximately + 8% on FID, 
+ 11% on KID, and + 2% on IS.

Our innovative architecture seamlessly incorporates quan-
tum elements through the employment of angle encoding as 
the primary encoding method, whereas the outputs of the 
circuits are retrieved through the expected value of the Pauli-
Z observable. Since the VQCs are placed at specific points in 
the U-Net where the image dimensions are reduced, and thus 
the number of pixels to be encoded in the circuit through 
angle encoding is low, we achieve a crucial result: having a 
low number of qubits, which optimizes resource utilization 
and ensures practicality when deploying our model on Noisy 
Intermediate-Scale Quantum (NISQ) devices. Moreover, 
unlike amplitude encoding, angle encoding has the advan-
tage of streamlining output computation without the need for 
an exponentially long circuit, which is unfeasible for current 
NISQ machines.

Additionally, the analysis of two different hybrid architec-
tures allows to highlight how certain parts of the U-Net are 
more sensitive to the quantum integration than others. Not 
only do these enhancements lead to remarkable improve-
ments across various performance metrics, but they also yield 
a substantial reduction in the number of parameters requir-
ing training. In particular, depending on the degree of U-Net 
hybridization, we can achieve up to about an 11% reduction 
in parameters compared to the classical one. Furthermore, it 
is possible to achieve an improvement of almost 2% on the 
FID and KID metrics in the case of the Fashion MNIST data-
set, while in the case of the MNIST dataset, we achieve an 
improvement of about 5% on the FID and more than 6% on 
the KID compared to the classical network.This reduction not 
only streamlines the overall training process, but also contrib-
utes to more efficient utilization of computational resources, 
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ultimately enhancing the model’s scalability and applicability 
in real-world scenarios.

The rest of the paper is organized as follows. In Sect. 2 
we provide an explanation of DMs and variational circuits. 
In Sect. 3 we present the employed methodology, while in 
Sect. 4 we discuss the obtained results. Finally, we draw our 
conclusions in Sect. 5.

2  Theoretical Background

2.1  Classical Diffusion Models

In recent years, DMs have proven to be an important class of 
generative models. A standard mathematical formulation for 
diffusion models is the one presented by [10] and here summa-
rized to give to readers a general overview of its fundamentals.

DMs mainly consist of two distinct phases as shown in 
Fig. 1. The first one is the forward process, also called diffu-
sion, involving a transformation that gradually converts the 
original data distribution x0 ∼ q , where q is a probability dis-
tribution to be learned, by repeatedly adding Gaussian noise:

where �1,… , �T are IID samples drawn from a zero-mean, 
unit variance Gaussian (normal) distribution N(0, I) , and �t 
determines the variance scale for the t-th step. This progres-
sion is underpinned by a Markov chain that can be repre-
sented as follows:

(1)xt =
√
1 − �txt−1 +

√
�t�t, t = 1…T ,

being I the identity matrix.
The goal of the forward process is to add incremental 

noise to the initial sample x0 over a certain number of steps, 
until at the final time step T all traces of the original distribu-
tion x0 ∼ q are lost so as to obtain xT ∼ N(0, I) . Through the 
application of the ‘reparameterization trick’, a closed-form 
solution becomes available for calculating the total noise at 
any desired step using the cumulative product:

where �t = 1 − �t , �̄�t =
∏t

i=1
𝛼i , and � ∼ N(0, I) is the 

Gaussian noise.
The second phase is the reverse process or backward 

diffusion, where the transformations gradually restore the 
initial noise distribution and reconstruct a noise-free ver-
sion of the original data. If we could successfully reverse 
the aforementioned process sampling from q(xt−1|xt) , we 
would gain the ability to recreate the true sample starting 
from the Gaussian noise input xT ∼ N(0, I) ; it is also note-
worthy that when �t is sufficiently small, q(xt−1|xt) is close to 
a Gaussian distribution. Regrettably, estimating q(xt−1|xt) is 
complex due to its reliance on the entire dataset and hence, 
a data-driven learning model like a neural network must be 

(2)q(x0∶T ) = q(x0)

T∏

t=1

q(xt|xt−1) ,

(3)q(xt�xt−1) = N

�√
1 − �txt−1, �tI

�
,

(4)xt =
√
�̄�t x0 +

√
1 − �̄�t �,

Fig. 1  Diffusion process and reverse process of a DM
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used in order to approximate these conditional probabilities, 
enabling the execution of the reverse diffusion process.

Let p� be the mathematical model depending on some 
parameters � that represents the estimated distribution of 
the backward diffusion process:

where ��(xt, t) and ��(xt, t) are the general outputs of the 
adopted neural network, which takes as inputs xt and t.

A simplified approach based on variational inference 
assumes a fixed covariance matrix, such as for instance 
��(xt, t) = �tI , and the direct estimation by the neural net-
work of the noise ��(xt, t) at time step t. Then, using repa-
rameterization and the normal distributions of conditional 
data, we obtain:

The neural network producing ��(xt, t) is usually trained by 
stochastic gradient descent on an even more simplified loss 
function like:

2.2  Variational Quantum Circuits

Variational Quantum Algorithms (VQAs) are the most 
common QML algorithm that are currently implemented 
on today’s quantum computers [27], they make use of para-
metrized quantum circuits known as ansatzes. Ansatz cir-
cuits are composed of quantum gates that manipulate qubits 
through specific parametrized unitary operations. However, 

(5)p�(xT ) = N(0, I) ,

(6)p�(xt−1|xt) = N
(
��(xt, t),��(xt, t)

)
,

(7)��(xt, t) =
1√
𝛼t

�
xt −

1 − 𝛼t√
1 − �̄�t

��(xt, t)

�
.

(8)L
simple
t = �

x0∼q,t,�∼N(0,I)

[
‖‖��(xt, t) − �‖‖

2
]
.

these operations depend on parameters denoted as � , which 
are the parameters to be trained during the training process.

The training workflow of a VQC, shown in Fig. 2, can be 
summarized as follows: 

1. Classical data x ∈ ℝ
n is appropriately encoded in a 

quantum state of the Hilbert space ℍ2n through the uni-
tary U�(x) , to be used by the quantum computer;

2. An ansatz UW (�) of �-parametrized unitaries with ran-
domly initialized parameters and fixed entangling gates 
is applied to the quantum state ��(x)⟩ obtained after the 
encoding;

3. Upon completion, measurements are taken to obtain the 
desired outcomes. The expected value with respect to a 
given observable Ô is typically computed, and the result-
ing prediction is given by: 

4. Finally, a suitable loss function is evaluated, and a clas-
sical co-processor is used to properly update the param-
eters �.

This cycle is repeated until a termination condition is met. 
To update � and train the VQC, gradient-based techniques 
can be used; gradients in a parametrized quantum circuit are 
calculated via the parameter-shift rule:

where f (x, �) is the output of the quantum circuit and � is the 
parameter to be optimized.

3  Proposed Methodology

In the following, we introduce the quantum hybrid architec-
tures proposed in this paper.

(9)f (x,�) = ⟨𝜙(x)�UW (�)
†ÔUW (�)�𝜙(x)⟩,

(10)∇�f (x, �) =
1

2

[
f (x, � +

�

2
) − f (x, � −

�

2
)

]
,

Fig. 2  Scheme of a hybrid 
quantum-classical VQC
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3.1  Quantum Vertex U‑Net Hybrid Architecture

Starting from the classical U-Net architecture, which is an 
extremely parameter-rich and expressive model, we propose 
a hybrid architecture capable of harnessing quantum capa-
bilities to achieve better performance and, furthermore, to 
reduce the total number of parameters to be trained. The 
classical U-Net is initially implemented according to the 
proposal by [28], aiming at working with a state-of-the-art 
model: it is composed of ResNet blocks for residual connec-
tions and Attention blocks for feature aggregation; specifi-
cally, we use Multi-head Attention with four attention heads, 
as suggested in [28]. The ResNet and Attention layers are 
hence applied at various resolution levels in the U-Net. The 
first hybrid architecture we propose, which we name Quan-
tum Vertex U-Net (QVU-Net), uses this U-Net as its refer-
ence architecture and efficiently integrates quantum layers 
within its structure, as shown in Fig. 3.

We use angle encoding as the data encoding method in 
order to achieve an architecture that efficiently incorporates 
quantum layers. This approach avoids the inefficiencies asso-
ciated with amplitude encoding, which requires exponen-
tially long circuits, and an exponential number of circuit 
runs to generate statistically valid outputs from the quan-
tum states distribution with the same dimensionality as the 
inputs. In our angle encoding, input data x ∈ ℝ

n is encoded 
into n qubits via unitary transformation U�(x) made up of Rx 
rotation gates; each qubit encodes one feature of our input 
data, resulting in O(1) circuit depth.

The underlying idea in our hybrid model is to integrate 
the quantum components strategically, in such a way that 
the number of qubits used is kept limited while ensur-
ing streamlined data processing efficiency. Specifically, 
considering that the classical U-Net initially processes a 
28 × 28 × 1 image and progressively scales it within the 
network’s encoder until reaching a vertex with dimensions 
of 2 × 2 × 40 , we introduce the quantum elements precisely 
at the vertex of the network.

We propose the Quantum ResNet (QResNet) layer at the 
vertex of the QVU-Net, as shown in Fig. 4. The QResNet is 
analogous to the ResNet, as it is characterized by skip con-
nections and two processing layers, whose output is then 
added to the input; the difference with the classical ResNet 
layer is that some of the Convolutional layers used in the 
classical ResNet are replaced with VQCs. As we are work-
ing with images scaled down to 2 × 2 dimensions, the only 
viable choice is to use a VQC instead of convolutional lay-
ers, which effectively amounts to a single filter pass over 
the entire image. Not all Convolutional layers of the ResNet 
are replaced with VQCs; rather, the replacement is done 
gradually. We initially analyze a hybrid architecture where 
the percentage of channels processed by VQCs in QResNet 
is set at 10%. Subsequently, we examine an architecture in 
which 50% of the input channels in QResNet are processed 
by VQCs. Finally, we explore an architecture in which all 40 
channels are processed solely by VQCs instead of Convolu-
tional layers. Gradually hybridizing the architecture allows 
us to better and more comprehensively analyze the impact 

Fig. 3  First proposed hybrid 
U-Net architecture named 
QVU-Net, where the quantum 
part is incorporated at the vertex 
of the network

Fig. 4  Architecture of the 
QResNet block, where Convo-
lutional layers are replaced with 
VQCs. The QResNet takes as 
input x, which is the informa-
tion coming from the image, 
and t, which is the temporal 
information, and finally returns 
h
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of incorporating quantum elements into the network’s struc-
ture. To the best of our knowledge, this is the first time a 
quantum version of the ResNet block within a hybrid U-Net 
is proposed in the literature.

The choice of the ansatz in the VQCs was made consider-
ing that the maximum channels at the vertex are 40. Since 
the information in the vertex is distributed across multiple 
channels rather than confined to one, we want to adopt an 
ansatz configuration capable of efficiently capturing and lev-
eraging the correlations among these channels. Starting from 
these considerations, we try two distinct ansatzes structures, 
inspired by [29]. In fact, their choice is driven by the fact 
that they work on three channels simultaneously, aiming to 
process not only local information related to a single chan-
nel, but especially intra-channel information.

The Hierarchical Quantum Convolutional Ansatz 
(HQConv) in Fig. 5 extracts local information separately 
among the initial channels, followed by additional con-
trolled gates used to encode intra-channel information. Ini-
tially, controlled gates are used to extract information within 
each channel first. In particular, as shown in Fig. 5, the A 
blocks, acting on qubits belonging to the same channel, can 
be expressed mathematically as:

where symbol ◦ represents the composition of the CRx gate 
and CRz gate, with CRz being implemented first. Addition-
ally, q1

p
 is the control qubit and q1

p+s
 is the target qubit, more-

over the subscript p indicates the pixel to which the qubit 
refers and ranges from 0 to 3 as the images has dimensions 
of 2 × 2 for each channel. The symbol s represents instead 
the value of hyperparameter stride, i.e. indicates the distance 

||| q
2
p
, q2

p+s

⟩
=
[
CRx(�x,p)◦CRz(�z,p)

]||| q
1
p
, q1

p+s

⟩

between the control qubit and the target qubit. The stride 
used in this case is equal to 1. The superscript 1 indicates the 
initial state of the qubit immediately after encoding, while 
the superscript 2 indicates the state of the qubit after the 
application of the considered block A. The second part of 
the ansatz is instead characterized by intra-channel informa-
tion processing. As seen in Fig. 5, the B blocks are aimed at 
working on qubits belonging to two different channels, and 
in particular, we can express them in mathematical terms as:

where q2
0
 is the control qubit, i.e. the first qubit of the first 

channel considered in the block B and q2
4
 is the target qubit, 

i.e. the first qubit of the second channel considered in the 
block B. The subscript 3 in this case indicates the state of 
the qubit after the application of the block B.

On the other hand, the Flat Quantum Convolutional 
Ansatz (FQConv) in Fig. 6 immediately incorporates both 
intra-channel and inter-channel information, giving its struc-
ture a flat form. The blocks C and D, as shown in Fig. 6, are 
characterized by the presence of gates controlled by qubits 
belonging to another channel. In mathematical terms, the 
block C can be expressed as:

while the block D as:

where as before qp is the control qubit and qp+s is the target 
qubit. The stride used in this case is equal to 4. Once again, 

||| q
3
0
, q3

4

⟩
=
(
CRx(�x)◦CRz(�z)

)||| q
2
0
, q2

4

⟩

||| q
2
p
, q2

p+s

⟩
=
(
CRz(�z,p)

)||| q
1
p
, q1

p+s

⟩

||| q
3
p
, q3

p+s

⟩
=
(
CRx(�x,p)

)||| q
2
p
, q2

p+s

⟩

Fig. 5  HQConv ansatz proposed in [29] initially extracts local information, then uses additional controlled gates to encode intra-channel infor-
mation
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the superscript 1 indicates the initial state of the qubit after 
encoding, 2 after the application of the first block (block 
C), and 3 the state of the qubit after the application of the 
second block (block D). These ansatzes operate on 3 chan-
nels at a time; since the compressed image at the vertex is 
2 × 2 in size, we need 4 qubits per channel, and hence the 
total number of qubits used in our VQCs is 12. When con-
sidering the architecture where the entire vertex is processed 
with quantum circuits, as there are a total of 40 channels 
to be processed, the first 39 are processed with the previ-
ously described ansatzes, HQConv or FQConv, while the 
last one is processed with the PennyLane Basic Entangling 
Layer, which involves Rx rotations acting on 4 qubits only. 
The number of layer inside each VQC is equal to 3. At the 
end of the circuit, a measurement operation carried out in 
the Pauli-Z basis, which has + 1 and − 1 as eigenvalues, 
is performed on each qubit to extract the outcome of the 
quantum circuit as the expected value with respect to the 
Pauli-Z operator. The output of each VQC is thus restricted 
to the [−1, 1] range.

3.2  Quanvolutional U‑Net Hybrid Architecture

In addition to the QVU-Net, where only the vertex is hybrid-
ized, we also propose a hybridization in a part of the U-Net 
network dedicated to feature extraction. The purpose is to 
assess whether quantum feature extraction can indeed bring 
further improvements in terms of the quality of the gener-
ated images. However, we decide not to act on the first level 
of the U-Net because the images still have dimensions of 
28 × 28 × 10 , making the efficient use of a VQC computa-
tionally challenging. Therefore, we consider the second level 
of the encoder, where the images are 14 × 14 × 20 , as shown 
in Fig. 7; we call this architecture QuanvU-Net.

In order to keep angle encoding, we process the image in 
the second level of the encoder with an idea inspired by the 
Quanvolutional method [30]. We employ Quanvolutional fil-
ters that, similarly to classical Convolutional filters, process 
one subsection of the image at a time, until they have tra-
versed the entire image. In doing so, they produce a feature 
map by transforming spatially-local subsections of the input 
tensor. Unlike the straightforward element-wise matrix mul-
tiplication operation performed by a classical Convolutional 
filter, a Quanvolutional filter alters input data through the 
utilization of a quantum circuit, which may have a structured 
or random configuration. In our case, the Quanvolutional 
approach is employed within the ResNet block, thereby cre-
ating the QuanResNet block, as depicted in Fig. 8. Specifi-
cally, we consider only 3 channels out of the total 20 in the 
14 × 14 image to make the approach practically feasible, as 
it requires a large number of quantum circuits executions. 
In particular, 4 pixels are taken from each channel and pro-
cessed by a 12-qubits variational circuit; the variational cir-
cuit remains always the same when passing over the entire 
image and acts as if it was a classical Convolutional filter.

As for the previous QVU-Net architecture, the idea with 
the QuanvU-Net is to work on 3 channels at a time to process 
both intra-channel and inter-channel features. Therefore, 
the ansatzes used in the QuanResNet block are the same as 
the ones used at the vertex, namely HQConv and FQConv 
shown in Figs. 5 and 6, respectively. Also in this case, the 
use of Quanvolutional filters in a ResNet block marks a 
novel advancement compared to the literature.

3.3  Transfer Learning Approach

In addition to standard training for both the hybrid and clas-
sical networks, we propose an approach inspired by transfer 
learning. In fact, both the training phase and the subsequent 

Fig. 6  FQConv ansatz proposed in [29] is capable of immediately incorporating both intra-channel and inter-channel information
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inference phase prove to be significantly time consuming in 
the case of the hybrid QVU-Net and QuanvU-Net, becoming 
even longer compared to the classic U-Net as the percentage 
of variational circuits at the vertex increases. It is therefore 
worth reducing the time required for the training phase.

For this reason, we propose to adapt classical-to-quan-
tum transfer learning [31], which proves to be one of the 
most appealing transfer learning approaches. As illustrated 

in Fig. 9, our idea is to initially train the classic U-Net for 
a certain number of epochs. The weights obtained in this 
way are then transferred to the QVU-Net, except for the 
weights at the vertex. So the QVU-Net is trained for a very 
limited number of epochs. In this way, it is expected that 
the final fine-tuning with the hybrid networks can bring 
a significant improvement in performance compared to 
using only the classical network, while still maintaining a 
low training time.

Fig. 7  Second proposed U-Net hybrid architecture named QuanvU-Net, where the quantum part is incorporated not only at the vertex but also at 
the second level of the encoder block

Fig. 8  Architecture of the 
QuanResNet block, where the 
Convolutional layer of the clas-
sical ResNet is replaced with 
a Quanvolutional filter. The 
QuanResNet takes as input x , 
which is the information coming 
from the image, and t , which is 
the temporal information, and 
finally returns h

Fig. 9  Outline of the proposed 
transfer learning approach. The 
classical model is trained for n 
epochs. All the weights, except 
those of the vertex, are then 
transferred to the hybrid model. 
The latter is further trained for 
additional m epochs
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4  Experimental Results

In this section, we analyze the results obtained by using 
the different architectures proposed in the paper:

– the 1HQConv QVU-Net and 1FQConv QVU-Net with 
quantum circuits in the QResNet that act only on 10% 
of the channels at the vertex and use the HQConv or 
FQConv the ansatz, respectively;

– 7HQConv QVU-Net and 7FQConv QVU-Net, with 
quantum circuits in the QResNet that act only on 50% 
of the channels at the vertex and use the HQConv or 
FQConv the ansatz, respectively;

– FullHQConv QVU-Net and FullFQConv QVU-Net, 
with quantum circuits in the QResNet that act on all 
channels at the vertex and uses the HQConv or FQConv 
the ansatz, respectively;

– QuanvU-Net with the vertex ibridized at 10% and the 
QuanResNet at the second level of the encoder.

4.1  Experimental Settings

The implementation is carried out in Python 3.8 using 
PennyLane and Flax. PennyLane is a framework enabling 
local quantum circuits simulations and integration with 
classical neural networks, whereas Flax is an open-source 
framework providing a flexible and efficient platform for 
hybrid neural network execution via compilation. We use 
PennyLane for the implementation of quantum circuits, 
while the hybrid networks and the entire training process 
are carried out in Flax; the classical U-Net is implemented 
in Flax as well.

Regarding the experiments, the L2 loss is used with the 
P2 weighting [32]. We used an exponential moving aver-
age (EMA) over model parameters with a rate that depends 
on the training step, and the Adam optimizer [33] is used 
with a learning rate of 10−3 , �1 of 0.9, and �2 of 0.99. The 
training process consists of a total of 20 epochs.

We use two benchmark datasets, namely MNIST [34] 
and Fashion MNIST [35]. Both of them contain grayscale 
images belonging to 10 different classes, with a total of 
60k training samples. The metrics used for evaluations 
are FID [17], Kernel Inception Distance (KID) [36], and 
Inception Score (IS) [37], assessed on 7000 generated 
images. We utilize the TorchMetrics library [38], repli-
cating each channel of the generated images three times 
to make the dimensions compatible with those required by 
InceptionV3 network backbone. For the KID calculation, 
the subset size for computing mean and variance was set 
to 100, while for the IS calculation the dataset was divided 
into 10 splits for mean and variance computation.

A machine equipped with an AMD Ryzen  7™ 5800X 
8-Core CPU at 3.80 GHz and with 64 GB of RAM is used 
for the experiments.

4.2  Fashion MNIST Dataset

Let us initially consider the images generated by Fashion 
MNIST. As there are no significant differences between the 
use of HQConv and FQConv, we specifically examine the 
results obtained by HQConv with three layers. As seen in 
Fig. 10, at the first epoch hybrid networks demonstrate bet-
ter performance compared to the classical one, achieving a 
slightly lower FID and a higher IS value. Indeed, the images 
generated by the FullHQConv QVU-Net achieve an FID of 
295.7863 and an IS of 1.4454 ± 0.0057 , while those obtained 
from the classical architecture have a higher FID of 296.869 
and a lower IS of 1.4164 ± 0.0122 . This is in line with our 
expectations, as quantum models with a few epochs are gen-
erally more adept at extracting features and processing than 
classical models. By the tenth epoch, all hybrid networks 
show significantly better values in terms of FID and KID, 
with the 1HQConv QVU-Net Architecture in Fig. 10f hav-
ing a FID of 52.5332, which is more than seven points lower 
than the classical network in Fig. 10e, which has a FID of 
60.1476.Therefore, the 1HQConv QVU-Net Architecture is 
able to achieve an FID that is nearly 13% better than the 
classical architecture. The IS of hybrid networks at the tenth 
epoch is comparable to that achieved by the classical net-
work. However, at the twentieth epoch, a gradual deteriora-
tion in the performance of hybrid networks in Figs. 10j–l 
is observed, progressively worsening with an increase in 
the level of hybridization. The results are still comparable 
to those obtained by the classical network, as the classical 
architecture generates images with an FID of 39.4563, while 
the worst-performing quantum architecture in this case, the 
FullHQConv QVU-Net, has an FID of 41.3882. But the 
most important aspect is that there is a significant reduc-
tion in parameters as the percentage of vertex hybridization 
increases: indeed, the FullHQConv QVU-Net has more than 
11% fewer parameters than the classical architecture.

Considering the images generated by the second possible 
hybridization of the U-Net, the QuanvU-Net architecture, 
which involves not only the hybridized vertex but also the 
use of quanvolutional on outer layers of the U-Net, it can be 
observed in Fig. 11 how this yields a better performance. 
Considering the case of only 10% of the hybridized vertex, 
which leads to more satisfactory performance, we outline 
that if only the vertex is hybridized at the first epoch, the 
metrics are more or less similar to those of the classical 
network. However, if we also consider the QuanvU-Net from 
the first epoch, as shown in Fig. 11c, the performance is 
greatly improved with a FID lower than that of the classical 
network by about 10 points, as the images generated by the 
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QuanvU-Net achieve an FID of 285.1551, in contrast to the 
classical architecture which has an FID of 296.869. By the 
tenth epoch, there are no significant differences between the 
two possible implementations. More interesting is the case 
of the last epoch Fig. 11i, where initially the introduction of 
the quantum did not bring any improvement. Now, however, 
better performance in terms of FID and KID is achieved, 
as the images of the QuanvU-Net reach an FID of 38.8 and 
a KID of 0.0269 ± 0.0007 , which is better than the FID of 
39.4563 and KID of 0.0275 ± 0.0008 obtained from the clas-
sical architecture. This is in line with our expectations, given 

that we have now incorporated a quantum component into 
a much more critical area of the U-Net, which not only pro-
cesses but, more importantly, extracts features.

4.3  MNIST Dataset

We then consider the MNIST dataset, whose results are 
shown in Fig. 12. In this case, we report the results obtained 
from the first hybridization, the QVU-Net, with the HQConv 
ansatz implemented with three layers only, as the results 
obtained using FQConv or the second hybridization, the 

Fig. 10  Fashion MNIST dataset results using the first hybrid archi-
tecture. The figure shows in the first column the images generated by 
the classical U-Net network, while in the second column the images 
generated by the 1HQConv QVU-Net, in the third column by the 
7HQConv QVU-Net, and in the last column the images generated by 

the FullHQConv QVU-Net. The row-wise division considers in the 
first row the images generated after the networks are trained for just 
one epoch, the second row after training for ten epochs, and the third 
row after the complete training of twenty epochs
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QuanvU-Net, that involves the use of quantum in layers other 
than the vertex are very similar. At the first epoch, hybrid 
networks have significantly better results than the classical 
one in terms of all metrics, as the FullHQConv QVU-Net, 

which is the best-performing hybrid architecture in this case, 
achieves an FID of 299.7292, a KID of 0.3974 ± 0.0028 , 
and an IS of 1.5930 ± 0.0239 . These metrics are better than 
those obtained from the classical architecture, which has an 

Fig. 11  Fashion MNIST dataset results using the second hybrid 
architecture. The figure shows in the first column the images gener-
ated by the classical U-Net network, while in the second column the 
images generated by the 1HQConv QVU-Net, in the third column by 

the QuanvU-Net. The row-wise division considers in the first row the 
images generated after the networks are trained for just one epoch, the 
second row after training for 10 epochs, and the third row after the 
complete training of 20 epochs
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FID of 311.0582, a KID of 0.4144 ± 0.0029 , and an IS of 
1.4936 ± 0.0142 . Similarly to what we observed with the 
Fashion MNIST dataset, this once again demonstrates the 
ability of quantum models to perform better than classi-
cal models when training epochs are limited. By the tenth 
epoch, the advantage diminishes somewhat, except for the 
7HQConv QVU-Net architecture shown in Fig. 12g that 
still shows better values in terms of FID, KID, and IS. At 
the last epoch, once again the 7HQConv QVU-Net archi-
tecture shows better results as shown in Fig. 12k, obtain-
ing an FID of 43.0731, a KID of 0.0523 ± 0.0015 , an IS of 

1.9256 ± 0.0205 , with an FID therefore better by almost 2 
points compared to that of the classical architecture, which 
has an FID of 45.2762, a KID of 0.0558 ± 0.0014 , an IS 
of 1.9152 ± 0.035 . We note that all hybrid networks have a 
lower number of parameters than the classical one.

4.4  Transfer Learning

We can now analyze the results obtained with the transfer 
learning approach. We compare the metrics of the MNIST 
dataset images obtained by first training a classical U-Net 

Fig. 12  MNIST dataset results using the first hybrid architecture. The 
figure shows in the first column the images generated by the classi-
cal network, while in the second column the images generated by the 
1HQConv QVU-Net, in the third column by the 7HQConv QVU-
Net, and in the last column the images generated by the FullHQ-

Conv QVU-Net. The row-wise division considers in the first row the 
images generated after the networks are trained for just one epoch, the 
second row after training for 10 epochs, and the third row after the 
complete training of 20 epochs
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network for all the 20 epochs and then training a classical 
network for 19 epochs and transferring the weights except 
for the vertex to another classical network that is fully 
retrained for an additional epoch. Finally, we compare the 
results obtained by training a classical network for 19 epochs 
and performing transfer learning on the hybrid network 
1FQConv QVU-Net, which is retrained for a single epoch. 
The results obtained are shown in Fig. 13, demonstrating 
how the transfer learning approach from classical to hybrid 
works very well.

What is noticeable is that, by this approach, images are 
obtained with FID of 41.6646, KID of 0.0493 ± 0.0013 , 
IS of 1.9556 ± 0.0335 , which are significantly better even 
than the best-performing hybrid architecture previously pre-
sented, the results of which are shown in Fig. 12k. Thus, 
by using the transfer learning approach the results obtained 
from the classical model are significantly improved, with an 

approximately 8% improvement on FID and 12% on KID for 
the MNIST dataset.

Similarly, the same approach was taken for the Fashion 
MNIST dataset, with the results reported in Fig. 14. Instead 
of having 19 training epochs on the classical network and 
just one on the network to which the weights have been 
transferred, we now have 18 epochs on the classical net-
work and 2 on the network to which the weights have been 
transferred. Also in this case, better results are obtained 
compared to the end-to-end training of previously proposed 
hybrid architectures. Indeed, the images shown in Fig. 14c 
are obtained with FID of 38.6835, KID of 0.0261 ± 0.0007 , 
IS of 4.0527 ± 0.0890 , which are superior to those of the 
best-performing hybrid architecture previously presented, 
the results of which are shown in Fig. 11i.

Finally, all the numerical results obtained in the pre-
vious experiments are summarized in Tables 1 and 2 for 

Fig. 13  Transfer learning 
results on the MNIST dataset 
where generated images are: a 
classical architecture; b transfer 
learning (19 + 1) classical-
classical; c transfer learning 
(19 + 1) classical-1FQConv 
QVU-Net

Fig. 14  Transfer learning results 
on the Fashion MNIST dataset 
where generated images are: a 
classical architecture; b transfer 
learning (18 + 2) classical-
classical; c transfer learning 
(18 + 2) classical-1FQConv 
QVU-Net

Table 1  Numerical results for the images generated from the Fashion MNIST dataset

Metrics Classical 1HQConv QVU-Net 7HQConv QVU-Net FullHQConv QVU-Net QuanvU-Net Transf. learning

Params 483,321 475,329 440,985 429,993 474,293 483,321
FID 39.4563 39.9935 40.3685 41.3882 38.8 38.6835
KID 0.0275 ± 0.0008 0.0278 ± 0.0008 0.0281 ± 0.0009 0.0294 ± 0.0009 0.0269 ± 0.0007 0.0261 ± 0.0007
IS 3.9783 ± 0.0777 3.9787 ± 0.0550 3.8158 ± 0.1360 3.8019 ± 0.0744 3.9087 ± 0.1485 4.0527 ± 0.0890
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Fashion MNIST and MNIST datasets, respectively, where 
bold values represent the best ones obtained according to 
each metric. 

5  Conclusions

The use of quantum computing in generative machine learn-
ing models can bring numerous advantages, both in terms 
of performance and in terms of reducing the parameters to 
be trained. In this paper, we proposed an efficient integra-
tion of quantum computing in diffusion models, presenting 
for the first time two possible hybrid U-Nets. The first, the 
QVU-Net, involves replacing the convolutional layers that 
form the ResNet with variational circuits only at the vertex, 
while the second, the QuanvU-Net, involves the replacement 
in the second block of the encoder part as well, leveraging 
in this case an approach inspired by quanvolutional. We also 
attempted to exploit an approach inspired by transfer learn-
ing to reduce the overall training times compared to what 
we would have had with the complete training of a hybrid 
architecture.

The obtained results confirm the real advantage in using 
quantum in extremely complex networks, such as the U-Net 
of DMs. The approach of hybridizing the U-Net confirms 
that integrating variational circuits into a classical net-
work can yield certain benefits. Through numerous tests, 
we proved that quantum allows for further enhancement of 
network performance. For MNIST, the use of the 7HQConv 
QVU-Net yielded the best performance. Furthermore, not 
only at the twentieth epoch did the use of quantum lead to 
better performance, but in general all hybrid networks show 
significantly more positive metric values compared to the 
classical network they are consistently compared against 
from the first epoch.

On Fashion MNIST, the first possible hybridization of the 
U-Net, the QVU-Nets, which involves only the hybridized 
vertex, fails to yield better results than the classical one, 
despite having a significantly lower number of parameters 
than the classical network. However, the quantum advantage 
in this case lies in a faster learning rate, as when we analyze 
the results at the tenth epoch, all hybrid networks still dem-
onstrate metric values much more advantageous than those 
observed from the classical network. It is with the second 

implementation, the QuanvU-Net, which also involves the 
use of quanvolutional in more expressive layers, that better 
results are achieved. This demonstrates that having the intro-
duction of quantum in areas dedicated to feature extraction is 
more effective than introducing it only at the vertex, which 
primarily operates on processing features already extracted 
earlier.

Finally, the idea behind using transfer learning between 
a classical network and a hybrid network is driven by the 
desire to keep simulation times limited while still achiev-
ing better performance than the classical network. This is 
observed both in the case of MNIST and Fashion MNIST, 
where we indeed obtain the best results. It is essential to 
note that the main goal of this paper is to demonstrate that 
quantum outperforms or performs equally to a classical net-
work with more parameters. It is worth emphasizing that all 
hybrid networks have significantly fewer parameters.

The possible future developments of this work involve 
expanding hybridization to other parts of the U-Net, replac-
ing convolutional layers with variational circuits even in 
regions where the image is less downscaled. This aims to 
achieve further reduction in the number of trainable param-
eters, in addition to the potential for improved performance. 
Furthermore, the goal is to extend the testing to more com-
plex datasets beyond MNIST and Fashion MNIST.
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