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Abstract. This paper investigates the mathematical modeling and the stability of multi-lane
traffic in the microscopic scale, studying a model based on two interaction terms. To do this
we propose simple lane changing conditions and we study the stability of the steady states
starting from the model in the one-lane case and extending the results to the generic multi-lane
case with the careful design of the lane changing rules. We compare the results with numerical
tests, that confirm the predictions of the linear stability analysis and also show that the model
is able to reproduce stop & go waves, a typical feature of congested traffic.
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1. Introduction

In this paper we deal with microscopic modeling of traffic flow, focusing on lane changing
dynamics. In particular we study a second order model for one lane that combines two different
interaction terms and we describe the extension to the multi-lane case giving particular attention
at the two-lane case.

1.1. Related work. The interest in the dynamics of traffic flow dates back to the first half of
the twentieth century and the related mathematical literature is quite large. An overall view
can be found, for instance, in the book by Haberman [10] and in the survey paper by Helbing
[11].

There are various points of view for modeling traffic flow. In this paper we concentrate on
the microscopic approach that is based on the dynamics of individual vehicles considering the
individual behaviour of each driver. A typical microscopic model is the Car Following model or
Follow the Leader model (FtL) based on the idea that the dynamics of each vehicle (follower)
depends on the vehicle in front (leader) and therefore the other vehicles do not affect it. These
models are normally for single-lane roads [4, 6, 14]. A typical Follow the Leader model can be
described as follows. In a single-lane with N vehicles where overtaking is not allowed, we are
interested in study the position xn(t) and the velocity vn(t) of each vehicle n = 1, . . . , N at
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different times t. This dynamics can be described by a system of ordinary differential equations:
ẋn(t) = vn(t) n = 1, . . . , N

v̇n(t) = a(xn(t), xn+1(t), vn(t), vn+1(t)) n = 1, . . . , N − 1

v̇N = w(t).

(1)

where a(·) is a given acceleration function and w(·) is the dynamics of the leader vehicle,
independent from the other vehicles (followers).

Many single-lane car following models have been developed and applied to study traffic
dynamics. Here we recall some models that will be useful in the following.

The Follow the Leader model, introduced in [26, 27], assumes that each vehicle modifies its
velocity based on the distance (headway) xn+1 − xn to the vehicle ahead, the n+ 1-th, and to
the difference in velocities between its own velocity vn and the velocity of the vehicle ahead
vn+1, multiplied by appropriate coefficients βn. This model can be described by the following
system {

ẋn(t) = vn
v̇n(t) = βn

vn+1−vn
(xn+1−xn)2

. (2)

The optimal velocity model (OVM) of Bando et al. [2, 3] in which a driver aims to a desired
velocity function V that depends on the headway with the vehicle ahead. The equation of this
model is given by {

ẋn(t) = vn
v̇n(t) = αn(V (xn+1 − xn)− vn)

(3)

with appropriate coefficients αn.
We mention also some interesting works. Pipes proposed [25] a traffic model in which each

vehicle maintains a certain prescribed ”following distance” from the preceding vehicle; the
generalized force model (GFM) by Helbing and Tilch [13] in which the optimal velocity function
is obtained calibrating the parameters with the observed data; the full velocity difference model
(FVDM) by Jiang et al. [17] that predicts delay time of car motion and kinematic wave speed
at jam density; the optimal velocity difference model (OVDM) by Peng et al. [24] where a
new term is introduced involving the optimal velocity functions and the vehicles n, n+ 1, n+ 2.
Aw et al. [1] studied the derivation of a continuum model starting from the FtL model. We
mention an analytical study for the OVM with a stepwise specification of the optimal velocity
function and a simple kind of perturbation in [12].

Another type of microscopic model is given by lane changing models which provide for the
possibility of changing lanes according to the analysis of some factors that intervene in the
decision process, for example the need, opportunity and safety of a lane change [7, 29]. The
interest in modeling vehicle lane changing is due to the effect that it induces in traffic flow, for
instance in bottleneck discharge rate and in the stop & go oscillations. Here we recall some
works. Cassidy and Rudjanakanoknad [5] showed that when traffic density upstream of a busy
merge increases beyond a critical value, vehicles manoeuvre toward faster lanes causing traffic
breakdown and ”capacity drop” of the road; Zheng et al. [30] showed that lane changing are
responsible for transforming subtle localized oscillations to substantial disturbances; Klar and
Wegener [21, 20] developed a model based on reaction thresholds from which they derived a
kinetic model; Song and Karni [28] proposed a macroscopic model in which the acceleration
terms take lead from microscopic car-following models, and yield a non-linear hyperbolic system
with viscous and relaxation terms; Herty et al. [15] proposed a macroscopic model, which
accounts for lane-changing on motorway, based on a two-dimensional extension of the Aw
and Rascle and Zhang macroscopic model for traffic flow; Gong et al. [9] presented a finite
dimensional hybrid system based on the continuous Bando-Follow-the-Leader dynamics coupled
with discrete events due to lane changing; Goatin and Rossi [8] developed a macroscopic model
for multi-lane road networks with discontinuities both in the speed law and in the number of
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lanes; Hodas and Jagota presented in [16] a microscopic model for multi-lane dynamics where
each car experiences a force resulting from a combination of the desire of the driver to attain
a certain velocity and change of the force due to cars interactions; Kesting et al. [19] proposed
a general model to derive lane changing rules for discretionary and mandatory lane changes
for a wide class of car following models; Lv et al. in [22] extended the continuous single-lane
models to simulate the lane changing behaviour on an urban roadway with three lanes and in
[23] proposed a model where lane changing is not instantaneous but is a continuing process
which can affect the following cars; Zheng et al. in [31] analysed the effects of lane changing in
the driver behaviour.

1.2. Goal and paper organization. This paper proposes the study of a second order mi-
croscopic model combining models (2) and (3) for reproducing traffic flow and its extension to
the multi-lane case with simple lane changing conditions in order to study its stability under
perturbations . In Section 2 we introduce the model for a single-lane and we study its stability
in the linearized case, then we show numerical tests making comparisons with model (3). In sec-
tion 3 we describe the extension of the model to the two-lane case studying its stability around
the equilibrium when a lane is perturbed. We present some numerical tests that confirm the
predictions of the linear stability analysis. Finally, in section 4, we illustrate the generalization
of the model to the generic multi-lane case.

2. Single-lane model

2.1. Description. In this section we describe the main mathematical model we use in this
paper. Consider a homogeneous population of N ∈ N vehicles, and denote by xn = xn(t) and
vn = vn(t) the position and the velocity of the n-th vehicle at time t ∈ R+. We want to describe
the traffic flow in a road with a single-lane where overtaking is not allowed.

The dynamical equations of the system are obtained combining two interaction terms. The
first one is the interaction term related to the model (3) [3, 2]. It is a relaxation term towards
a desired velocity function V (·) that depends only on the headway ∆xn = xn+1 − xn > 0
between the vehicle n and the vehicle ahead with index n + 1, as shown in Fig. 1. The
acceleration of each vehicle is regulated by the difference between its velocity and the optimal
velocity. The optimal velocity function is typically a monotonically increasing function of the
headway and it is bounded. It tends to zero for small headways and to a maximum value V max

for large headways. Furthermore we assume that V is non-negative. This term is multiplied
by a parameter αn denoting the speed of response of each driver, with dimensions one over
time. The second term is the classical Follow-the-Leader interaction term [26, 27] from model
(2), multiplied by a parameter βn with dimensions length square over time. In this term the
acceleration of a vehicle is directly proportional to the difference between the velocity of the
vehicle in front and its own and is inversely proportional to their mutual distance.

Since we are considering identical vehicles we assume αn = α and βn = β for all n = 1, . . . , N .
The model is given by ẋn = vn

v̇n = α(V (∆xn)− vn) + β
∆vn

(∆xn)2

(4)

with ∆xn = xn+1 − xn and ∆vn = vn+1 − vn.
In our study we usually refer to a circular road which means to solve (4) with periodic

boundary conditions, in this way the vehicle with index n = N + 1 coincides with vehicle with
index n = 1. If we deal with a straight road we simply add an equation describing the dynamics
of the leader vehicle, which must be known.
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. . . . . .1 n− 1 n+ 1n N →

Figure 1. Vehicles in single-lane road.

2.2. Stability. Let us characterize the equilibrium for the single-lane model.

Proposition 2.1. The equilibrium of the system (4) is given if all vehicles are equally spaced
and move with the same constant velocity.

In fact, let us indicate with h = L
N

the constant spacing of two successive vehicles, where
L > 0 is the length of the road. Then solving (4) with initial conditions{

xn+1(0)− xn(0) = h

vn(0) = V (h) for n = 1, . . . , N
(5)

with xN+1(·) = x1(·) by boundary conditions, we easily obtain the solution of the system that
represents the steady state described above:

x̄n(t) = hn+ V (h)t. (6)

Note that the equation depends parametrically by the given number N of vehicles which is
constant due to the periodic boundary conditions.

Now we study the stability of model (4) around the equilibrium (6) by linearizing the original
system. Let yn be a small perturbation from the steady state (6) and consider

xn = x̄n + yn. (7)

Disregarding terms higher than O(y2
n) we obtain the linearized equation of (4)

ÿn = α(V ′(h)∆yn − ẏn) + β
∆ẏn
h2

(8)

where ∆yn = yn+1 − yn and ∆ẏn = ẏn+1 − ẏn, again vehicle with index n = N + 1 coincides
with the vehicle with index n = 1.

We solve (8) looking for solutions

yk(n, t) = exp{iakn+ zt} (9)

where eiakn is the Fourier coefficient with ak = 2π
N
k, k = 0, . . . , N − 1 and z ∈ C. Substituting

in (8) we obtain an equation for z = u+ iv

z2 + z

(
α− β

h2
(eiak − 1)

)
− αV ′(h)(eiak − 1) = 0. (10)

If the amplitude of yk(n, t) blows up in time then the solution is unstable, so in order to find
stable solutions we require that <(z) = u < 0.

Let us write the two solutions of (10) as zj = uj + ivj for j = 1, 2, then the following relations
holds:

<(z1 + z2) = u1 + u2 = −α + β
h2

(cos(ak)− 1)

=(z1 + z2) = v1 + v2 = β
h2

sin(ak)
<(z1 · z2) = u1 · u2 − v1 · v2 = −αV ′(h)(cos(ak)− 1)
=(z1 · z2) = u1 · v2 − v1 · u2 = −αV ′(h) sin(ak).

The boundary of the stability region is obtained when u1 = 0 then

v1 =
−αV ′(h) sin(ak)

−α + β
h2

(cos(ak)− 1)
.
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After some algebraic manipulations we get

V ′(h) =
α

2 cos2
(
ak
2

) +
β

h2
+ 2 tan2

(ak
2

)
· β
h2

(
β

αh2
+ 1

)
. (11)

We can study this problem with polar coordinates in the (αk, V
′(h)) plane as shown in Fig. 2.

The plane (V ′(h), ak) can be divided into two regions: a stable region (u < 0) and an unstable
one (u > 0) by the critical curve u(ak, V

′(h)) = 0 express by (11). We observe that equation
(11) coincides with the curve found in [2] if β = 0. The curve (11) is represented by the red
line while the black curve is the critical curve of model (3).

Figure 2. Red: curve (11) in the (αk, V
′(h)) polar coordinate plane. Black:

critical curve of model (3).

Thus we have proved the following result.

Proposition 2.2. If

V ′(h) <
α

2
+
β

h2
(12)

the steady state (6) of model (4) is stable, because for all k we have u < 0; if V ′(h) = α
2

+ β
h2

we have a marginal state; while for V ′(h) > α
2

+ β
h2

the model is unstable, because there exists
at least one index k such that u > 0.

For β = 0 the condition (12) is consistent with the stability condition derived in [2]. Remem-
bering that h = L

N
the previous condition expresses that we gain more stability with a large

number of vehicles.

2.3. Numerical tests. Now we present some numerical tests of model (4) using the Runge
Kutta 5 method, with time step ∆t = 0.1 s.

Let us fix α = 1 s−1, β = 100 m2/s, L = 1500 m, and consider the desired velocity function
expressed by

V (∆x) = max{0, VHT (∆x)} (13)

see Fig 3, where

VHT (∆x) = V1 + V2 tanh(C1(∆x− lc)− C2) (14)

is the function given by Helbing and Tilch in [13] where they carried out a calibration of model
(3) respect to the empirical data, obtaining the optimal parameter values V1 = 6.75 m/s,
V2 = 7.91 m/s, C1 = 0.13 m−1, C2 = 1.57 and lc = 5 m is the length of the vehicles. Velocity
parameters V1, V2 determine the minimum expected speed V1 − V2 and the maximal expected
speed V1 + V2, while C1, C2 are calibration parameters. Thus V max = 14.66 m/s.
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Figure 3. V (·) function.

From condition (12) we obtain that the model (4) with velocity (13) is stable if h < 10.14
m and h > 24 m as shown in Fig.4. In terms of number of vehicles along the circular road we
have stability for N < 68 and N > 100. Note that, with the same parameters, the model (3)
is stable for N < 62 and N > 147.
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Figure 4. V ′(·) function in blue, model (4) stability condition in red, model (3)
stability condition in black.

In the next two simulations we show a comparison between model (4) and model (3), per-
turbing the system adding or removing a vehicle. The initial number of vehicles is chosen in
such a way that the model (4) is stable while the model (3) is unstable according their stability
condition.

2.3.1. Test 1: adding one vehicle in the road. In this simulation we consider N = 120 vehicles
at the equilibrium (6), equispaced with distance L

N
= 12.5 m and with velocities equal to V ( L

N
).

At time t = 0 s we perturb the system adding a one new vehicle inserting it in the position
1
2
(xN + L) with initial velocity equal to V ( L

N
). The final time is T = 1000 s.

Model (4):
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Figure 5. On the left: all vehicles trajectories, on the right: velocity of vehicle 1.

Model (3):
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Figure 6. On the left: all vehicles trajectories, on the right: velocity of vehicle 1.

We can see how the perturbation is absorbed in the in first model while it causes a creation
of stop & go waves in the second model.

2.3.2. Test 2: Removing one vehicle from the road. In this simulation we consider again N =
120 vehicles at the equilibrium (6), equispaced with distance L

N
and with velocities equal to

V ( L
N

). At time t = 0 s we perturb the system removing one vehicle choosing the one with index
N . We set the final time T = 1000 s.

Model (4):
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Figure 7. On the left: all vehicles trajectories, on the right: velocity of vehicle 1.
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Model (3):
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Figure 8. On the left: all vehicles trajectories, on the right: velocity of vehicle 1.

Also in this test we can observe the differences when a perturbation occurs in the two models.

2.3.3. Test 3: stop & go waves. In this simulation we start with N = 90 vehicles at the
equilibrium (6), equispaced with distance L

N
' 16.66 m and with velocities equal to V ( L

N
). At

time t = 0 s we perturb the system adding a new vehicle as in the previous simulations. We
set T = 1000 s.

Model (4):
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Figure 9. On the left: all vehicles trajectories, on the right: velocity of vehicle 1.
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Figure 10. On the left: all vehicles trajectories, on the right: velocity of vehicle 1.
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An example of instability for both models is reported. Although stop & go waves occur we
can appreciate the differences in the oscillations of the velocity in the two models and the lack
of region with zero speed in model (4).

3. Two-lane model

3.1. Description. Here we study the extension of model (4) to a road with 2 lanes, where
lane changing is allowed: lane 1 is the driving lane, while lane 2 is the fast lane. We consider
a single population of homogeneous vehicles and we assume that the coefficients α, β are the
same for both lanes and for all vehicles.

Let N be the total number of vehicles in the road and Nj = Nj(t) the number of vehicles in
lane j = 1, 2 at time t; we have for all t, N1(t) +N2(t) = N ; we recall we are assuming periodic
boundary conditions. Each vehicle is identified by an index n ∈ {1, . . . , N}, and it is associated
with a vector Nn = (j, p1

n, p
2
n, s

1
n, s

2
n) whose components are: the current index lane j ∈ {1, 2},

and the indices sjn of the vehicle in front of vehicle n in the lane j (successive vehicle) and pjn
of the vehicle behind vehicle n in the lane j (previous vehicle) as shown in Fig. 11. If the n-th
vehicle does not have a successive or a previous vehicle in lane j we set sjn = −1 or pjn = −1
respectively. In other words, the index −1 signifies that there is no such vehicle; for instance
s1
n = −1 means that the vehicle n has no vehicle in front in lane 1. Whenever a lane change

occurs, e.g. if the n-th vehicle changes lane, the vectors Nk for k ∈ {n, s1
n, s

2
n, p

1
n, p

2
n} affected

by the change are updated with the new indices.

lane 1

lane 2

p1
n

p2
n

s1
n

s2
n

n

Figure 11. Components of the vector Nn, containing information on cell neigh-
bours of the n-th vehicle.

Assuming that vehicle n is currently in lane j then ∆xjn = xsjn − xn and ∆vjn = vsjn − vn
denote the difference of positions and the difference of the velocities between vehicle n and its
successive in the same lane. Moreover we denote with Ij(t) = Ij the set of indices of vehicles
ordered by their position in lane j at time t. Note that it is sufficient to update this set only
after each lane changing.

The model can be written for j = 1, 2 as
ẋn = vn

v̇n = α(Vj(∆x
j
n)− vn) + β

∆vjn
(∆xjn)2

n ∈ Ij

+ lane changing conditions

(15)

where Vj(·) is the desired velocity function for lane j = 1, 2 with V max
2 ≥ V max

1 . In particular
we assume that the velocity functions are equal to zero up to a security distance, then they
monotonically increase up to their maximum value:

V1(∆x) = V2(∆x) = 0 ∆x 6 ds (security distance)
V1(∆x) 6 V2(∆x) otherwise.

(16)

The parameter ds is a fixed security distance that must be held by the vehicles in order to avoid
collisions.

The lane changing rules are based according essentially on two criteria: a vehicle may change
lane if it would travel at a faster speed in the new lane, which means that is would have a
higher acceleration (incentive criterion); and the changing action must be safe in order to avoid
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collisions with the vehicles in the adjacent lane, which means to held the security distance in
every movement (security criterion).

For simplicity we introduce the compact notations:

d(n,m) = xm − xn, aj(n,m) = α(Vj(d(n,m))− vn) + β
vm − vn

(d(n,m))2
(17)

to denote the difference of positions between vehicles with indices n and m, and the acceleration
of vehicle n where vehicle m is its successive vehicle in lane j.

Thus the lane changing rules from lane j to lane j′ can be expressed as

aj′(n, s
j′
n ) > aj(n, s

j
n) (incentive criterion)

d(n, sj
′
n ) > ds and d(pj

′
n , n) > ds (security criterion)

(18)

In particular cases we have:

• if sj
′
n = −1 we consider only the security criterion;

• if pj
′
n = −1 we consider only the incentive criterion;

• if sj
′
n = −1 and pj

′
n = −1 we decide to change lane;

• if sjn = −1 we decide to do not change lane.

Note that in this model lane changes are instantaneous and the velocity of the vehicle remains
the same after the changing action. The vehicles following in the new lane adjust their velocities
according to the distance from the new vehicle.

In order to reproduce a realistic description of traffic flow, we introduce a physical timer for
lane changing because, as reported by experimental studies [18], lane changing is not frequent.
In other words, although a vehicle might have the opportunity and the advantage in changing
lane, most often drivers prefer not to change lane. Therefore we set an expected number of lane
changes per second Nc and we pick randomly Nc vehicles per second uniformly distributed on
the set of vehicles.

3.2. Stability. In the following we will use to this characterization of a steady state of model
(15).

Proposition 3.1. A steady state of model (15) is obtained when both lanes are in equilib-
rium and there are no lane changing. The equilibrium velocity is given by the optimal velocity
functions.

It is easy to show that such steady state for the two-lanes model (15) is given when the
vehicles moves with the same uniform headways hj = L

Nj
, for lane j = 1, 2 respectively, and

with the optimal velocities Vj(hj). We also need to link the velocities for preserve lane changes;
the condition is satisfied provided

V1(h1) = V2(h2). (19)

Recalling that N = N1 +N2, where N is constant, we can write h2 in terms of h1 as

h2 =
Lh1

Nh1 − L
(20)

and if the equilibrium velocity is less than V max
1 we can find a unique value for h1 from equation

(19) that we denote by h̄1. Let N̄1 be the number of vehicles in lane 1 with headways h̄1 and
in the same way we define h̄2 and N̄2. Thus

V eq := V1(h̄1) = V2(h̄2). (21)

Now we prove that if (21) holds we have no lane changes and both lanes remain at equilibrium.
Consider model (15) with N̄1 vehicles in lane 1 and with N̄2 vehicles in lane 2, with initial
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conditions

∀n ∈ I1

{
xn(0) equally spaced with distance h̄1

vn(0) = V eq

∀n ∈ I2

{
xn(0) equally spaced with distance h̄2

vn(0) = V eq.

(22)

For the lane change from lane 1 to lane 2 we can show that the condition

a2(n, s2
n) > a1(n, s1

n) (23)

is never verified because we have

a2(n, s2
n)− a1(n, s1

n) =

= α(V2(xs2n − xn)− vn) + β
vs2n − vn

(xs2n − xn)2
− α(V1(xs1n − xn)− vn)− β

vs1n − vn
(xs1n − xn)2

= V2(xs2n − xn)− V1(xs1n − xn).
(24)

Moreover h̄2 < h̄1 so the distance xs2n − xn ∈ (ds, h̄2 − ds), but from the monotonicity of the
function we obtain that V2(h) < V1(h̄1) ∀h ∈ (ds, h̄2 − ds). In conclusion (24) is always
negative. Similarly we can prove that there are not lane changes from lane 2 to lane 1.

We have proved the following result.

Proposition 3.2. Consider the system (15) with initial conditions (21)-(22), then no lane
changing occurs.

In the following we study the stability of this equilibrium solution perturbing the initial
headways in a lane and analysing the possibility of lane changing in both lanes. We start
perturbing the slow lane (lane 1) and then the fast lane (lane 2). Thus we start from an initial
condition in which lane 1 is in a local equilibrium but does not satisfy the global equilibrium
we described above. This means that we consider a uniform perturbation ε in the headways in
lane 1 where we fix an initial constant headway equal to h̄1 + ε and initial velocities equal to
V1(h̄1 + ε). In lane 2 we consider initial headways h̄2 and initial velocities V2(h2). We would
like to study how this perturbation influences the equilibrium (22).

3.2.1. Case 1: perturbation in lane 1 - lane changes from lane 1 to lane 2. We study the
possibility of lane changes from lane 1 to lane 2. Let us consider a vehicle with index n in lane
1, we wonder if the acceleration in lane 2 could be greater than the acceleration in lane 1

a2(n, s2
n)

?
> a1(n, s1

n)⇔ V2(d2)− V1(h̄1 + ε) +
γ

d2
2

(V2(h̄2)− V1(h̄1 + ε))
?
> 0 (25)

where d2 = d(n, s2
n) and γ = β

α
. If ε > 0 we do not have lane changes because the previous

inequality is always false, in fact it means that in lane 1 there is now a smaller number of
vehicles.

lane 1

lane 2 p2
n

s1
n

s2
n

n

d2

h̄2

h̄1 + ε

Figure 12. Lane change from 1 to 2.
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Consider now the case ε < 0, assuming V1 is an invertible function, and denoted with V −1
1

its inverse, we can write

ε < V −1
1

(
V2(d2) + γ

d22
V2(h̄2)

1 + γ
d22

)
− h̄1. (26)

Recalling the security criterion we have that an admissible distance d2 must satisfy d2 ∈
(ds, h̄2 − ds) and therefore the maximum of (26) is reached when d2 tends to h̄2 − ds. We get
so this threshold for ε:

ε < V −1
1

(
V2(h̄2 − ds) + γ

(h̄2−ds)2
V2(h̄2)

1 + γ
(h̄2−ds)2

)
− h̄1 < 0. (27)

Using a Taylor expansion for V1 and disregarding terms of order O(ε2) we can also obtain an
approximation at the first order of the threshold (27). In fact the relation

V2(d2)− V2(h̄2)− ε
(

1 +
γ

d2
2

)
V ′1(h̄1)

?
> 0 (28)

is satisfied provided

ε <
V2(d2)− V2(h̄2)(
1 + γ

d22

)
V ′1(h̄1)

. (29)

Then using the monotonicity of the velocity function we get this a priori bound, approximated
at the first order respect to ε

ε <
V2(h̄2 − ds)− V2(h̄2)(
1 + γ

(h̄2−ds)2

)
V ′1(h̄1)

< 0. (30)

So if ε is smaller than this value we have lane changes from lane 1 to lane 2.

3.2.2. Case 2: perturbation in lane 1 - lane changes from lane 2 to lane 1. Consider a vehicle
with index n in lane 2 as in Fig. 13. This vehicle will change to lane 1 if the following condition
is satisfied

a1(n, s1
n)

?
> a2(n, s2

n). (31)

lane 1

lane 2

p1
n s1

n

s2
nn

d1

h̄2

h̄1 + ε

Figure 13. Lane change from 2 to 1.

In this case clearly we will not have lane changes if ε < 0. Thus we consider only the case
ε > 0 and we obtain

V1(d1)− V1(h̄1) +
γ

d2
1

V ′1(h̄1)ε
?
> 0 (32)

where d1 = d(n, s1
n) with admissible distance d1 ∈ (ds, h̄1 + ε − ds). If d1 > h̄1 the previous

relation is always verified, while if d1 ≤ h̄1 considering the security criterion we can conclude
that the perturbation must be greater than the safety distance in order to activate lane changes:

ε > ds. (33)
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In fact the arrival of a vehicle from lane 2 modifies the initial perturbation ε, decreasing the
headway in lane 1, and we go back to the case 1.

Now we repeat the same analysis adding a perturbation ε in the initial headways in lane
2 starting from the equilibrium (22). Thus we consider an initial condition where vehicles in
lane 1 have initial headways h̄1 and initial velocities V1(h̄1), and vehicles in lane 2 have initial
headways h̄2 + ε and initial velocities V2(h̄2 + ε).

3.2.3. Case 3: perturbation in lane 2 - lane changes from lane 1 to lane 2. In this case a vehicle
in lane 1 could clearly have a greater acceleration from lane 1 to the lane perturbed if ε > 0,
but from the security criterion the perturbation must be satisfy the condition

ε > ds (34)

as seen in case 2.

3.2.4. Case 4: perturbation in lane 2 - lane changes from lane 2 to lane 1. If the perturbation
ε is positive we expect no lane changes of this type. Therefore let us consider the case ε < 0.
Let n be the index of a vehicle in lane 1 we wonder if

a1(n, s1
n)

?
> a1(n, s2

n)⇔ V1(d1)− V2(h̄2 + ε) +
γ

d2
1

(V1(h̄1)− V2(h̄2) + ε))
?
> 0 (35)

with admissible distance d1 ∈ (ds, h̄1 − ds). Consider the maximum distance d1 = h̄1 − ds, the
previous inequality is satisfy if

ε < V −1
2

(
V1(d1) + γ

(d1)2
V1(h̄1)

1 + γ
(d1)2

)
− h̄2 < 0 (36)

which can be linear approximated by

ε <
V1(d1)− V1(h̄1)(
1 + γ

d21

)
V ′2(h̄2)

. (37)

Then using the monotonicity of the velocity function we get this a priori bound, approximated
at the first order respect to ε

ε <
V1(h̄1 − ds)− V1(h̄1)(
1 + γ

(h̄1−ds)2

)
V ′2(h̄2)

< 0. (38)

We can summarize the results in the following proposition.

Proposition 3.3. Starting from the equilibrium, lane changing for system (15) are activated
if a perturbation ε in the headways satisfies the thresholds in Tab. 1. Therefore there are
perturbations that do not affect the equilibrium of the system.

from lane 1 to lane 2 from lane 2 to lane 1

perturbation ε in lane 1
(slow lane)

ε <
V2(h̄2 − ds)− V2(h̄2)(
1 + γ

(h̄2−ds)2

)
V ′1(h̄1)

< 0 ε > ds > 0

perturbation ε in lane 2
(fast lane)

ε > ds > 0 ε <
V1(h̄1 − ds)− V1(h̄1)(
1 + γ

(h̄1−ds)2

)
V ′2(h̄2)

< 0

Table 1. Thresholds and perturbations.
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3.3. Numerical tests. Here we present some numerical tests for the two-lane model (15),
using the Runge Kutta 5 method. In the following simulations we set a maximum number of
lane changes per second equal to Nc = 1 and we fix ∆t = 0.1 s.

Let us set L = 1500 m, α = 5 s−1, β = 100 m2/s. We use the two optimal velocity functions
defined in (13) with parameters V1 = 0, V2 = 5, C1 = 0.02 m−1, C2 = 0, lc = 5 m, thus

V1(h) =

{
5 tanh(0.02(h− 5)) if h > ds
0 otherwise

V2(h) = 2V1(h). (39)

with ds = 5 m. We make this choice in order to verify the stability condition (12) in both single
lanes for every value of N . We are interesting to study the stability of the model due to the
lane changes.

Figure 14. Optimal velocity functions.

3.3.1. Test 1: perturbation in lane 1 and lane changing from lane 1 to lane 2. In this simulation
we want to study the perturbation of the lane one from the equilibrium state. Let us fix
N = 100. Solving equation (19) we get the values h̄1 = 45.4 m and h̄2 = 22.4 m for which the
system remains at the equilibrium if we start from the corresponding steady state. In this case
N̄1 = 33 m and N̄2 = 67 m.

Now we want to perturb the lane 1 adding new vehicles. From bound (30) we obtain that
the perturbation ε in the headways of lane 1 that enables lane changing from lane 1 to lane 2
must satisfy ε < −16.5 m, which means that lane changes occur only if N1 > 51.7.

Thus fix ε̃ = −16.59 m in order to have N1(0) = 52 and set N2(0) = N̄2. We consider the
following initial data

∀n ∈ I1

{
xn(0) equally spaced with distance h̄1 + ε̃

vn(0) = V1(h̄1 + ε̃)

∀n ∈ I2

{
xn(0) equally spaced with distance h̄2

vn(0) = V1(h̄2)

(40)

Fig. 15 shows the simulation for T = 500 s. We can see how the perturbation in lane
1 causes lane changes to lane 2 as expected, until the number of vehicles in lane 1 is such
that the headways become smaller than the value h̄1 + ε for which we cannot have any more
lane changes. In this particular case a new equilibrium is reached with N1(T ) = 48 and the
corresponding headways in lane 1 are equal to L

N1(T )
= 31.25 = h̄1− 13.48 m. This corresponds

to a perturbation with ε = −14.15 m which is greater than the threshold above. Thus no more
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lane changes are expected and the system has acquired a new equilibrium with h1 = 31.25 m
h2 = 21.13 m and V1(h1) = 2.41 m/s, V2(h2) = 3.12 m/s.

Figure 15. Top: vehicle trajectories in the two lanes. Bottom: number of
vehicles versus time.

3.3.2. Test 2: perturbation in lane 1 and lane changing from lane 2 to lane 1. Whit this sim-
ulation we want to study the possibility of lane changes from lane 2 to lane 1. We consider
again the equilibrium found in Test 1, and we focus attention to perturb the headways in lane
1 with a positive value of ε, which means to remove some vehicles from the initial value N̄1.

From (33) we know that a perturbation that activates lane changes from lane 2 to lane 1
must be greater that the security distance. In our case this is verify if we consider N1 < 29.73
vehicles at initial time. Therefore we fix ε̃ = 6.27 m in order to have N1(0) = 29 and set
N2(0) = N̄2. Thus the initial conditions are given by

∀n ∈ I1

{
xn(0) equally spaced with distance h̄1 + ε̃

vn(0) = V1(h̄1 + ε̃)

∀n ∈ I2

{
xn(0) equally spaced with distance h̄2

vn(0) = V1(h̄2)

(41)
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Figure 16. Top: vehicle trajectories in the two lanes. Bottom: number of
vehicles versus time.

Fig. 16 shows the simulation for T = 500 s. We can see how the perturbation in lane 1
causes lane changes from lane 2 to lane 1 as predicted. A new equilibrium is reached with
N1(T ) = 31 and the corresponding headways in lane 1 are equal to L

N1(T )
= 48.39 = h̄1 + 2.99

m. This corresponds to a perturbation with ε = 2.99 m which is smaller than the threshold
above. Thus no more lane changes are expected and the system has acquired a new equilibrium
with h1 = 48.38 m h2 = 23.07 m and V1(h1) = 3.50 m/s, V2(h2) = 3.46 m/s.

3.3.3. Test 3: evolution towards equilibrium. In this simulation we study the evolution towards
equilibrium. We start with the same number of vehicles in both lanes N1(0) = N2(0) = 50. At
the initial time all vehicles are equally spaced with zero velocity.

Fig. 17 shows the simulation for T = 1000 s. We can see the presence of an initial phase
where vehicles change lane more frequently until arriving in a phase with few lane changes that
let the traffic more regular. Initially all vehicles accelerate and lane 1 is partially defected by
lane changes towards lane 2 until N1(T ) = 38, N2(T ) = 62. In this simulation lane changes
from lane 1 to lane 2 are the 92.8% of the total lanes changes.
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Figure 17. Top: vehicle trajectories in the two lanes. Bottom: number of
vehicles versus time.

3.3.4. Test 4: stop & go waves. In this simulation we use the two velocity functions as in (13)
in order to consider also the instability due to the number of vehicles as seen in the single-lane
case. We fix α = 1, β = 100 and

V1(∆x) =

{
6.75 + 7.91 tanh(0.13(∆x− 5)− 1.57) ∆x > 5

0 otherwise
V2(∆x) = 2V1(∆x).

The stability conditions for the single-lane (12) are in this case: for lane 1 stability for N < 68
and N > 100, while for lane 2 we have stability for N < 57 and N > 130.

We start with the same number of vehicles in both lanes N1(0) = N2(0) = 90; lane 2 is at
the equilibrium while in lane 1 we add random perturbations rn in the initial positions of the
vehicles. Thus we have

∀n ∈ I1

{
xn(0)− xn−1(0) = L

N1(0)
+ rn

vn(0) = V1( L
N1(0)

)

∀n ∈ I2

{
xn(0)− xn−1(0) = L

N2(0)

vn(0) = V2( L
N2(0)

)

(42)

Fig. 18 shows the simulation for T = 500 s. We can see the creation of stop & go waves in
both lanes due to the frequently lane changes and to the instability of the model.
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Figure 18. Top: vehicle trajectories in the two lanes. Bottom: number of
vehicles versus time.

4. Generalization to the multi-lane case

The model (15) can be easily generalized to the multi-lane case with a generic number of lanes.
We can differentiate the lanes by attributing different profiles of desired velocity, therefore let
J be the number of lanes, we consider the velocities functions V1(·), . . . , VJ(·) with the property
Vi(·) 6 Vj(·) for i < j.

The model can be written as
ẋn = vn

v̇n = α(Vj(∆x
j
n)− vn) + β

∆vjn
(∆xjn)2

n ∈ Ij

+ lane changing conditions

for j = 1, . . . , J. (43)

We adopt the lane changing conditions as in (18). Note that, except for the cases j = 1
or j = J , if j > 2 a vehicle might have the possibility to changes from lane j to lane j − 1
or from lane j to lane j + 1. Consequently if both changes are possible we choose the most
advantageous one in terms of acceleration.

As we done for the two-lane model we can define the steady state of model (43) in which all
lane are at the equilibrium and lane changes do not occur. This is provided for the values of
the headways

h̄1, . . . , h̄J (44)

that verify the condition

V1(h̄1) = · · · = VJ(h̄J). (45)

In order to find this equilibrium we require also that the equilibrium velocity defined in (45)
must be smaller than the value V max

1 , that is the maximum velocity value allowed in the slower
lane (j = 1).

4.1. An example with three lanes. Let us consider a three-lane road (J = 3). The steady
state is given by the three values of the headways h̄1, h̄2, h̄3 such that V eq := V1(h̄1) = V2(h̄2) =
V3(h̄3). Using the same previous techniques can be show that with these conditions no lane
changes occur and the system remains at the equilibrium.
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We are now interested to add a perturbation in the middle lane and to study the possibility
of lane changing. More specifically let us consider the initial conditions

∀n ∈ I1

{
xn(0) equally spaced with distance h̄1

vn(0) = V eq

∀n ∈ I2

{
xn(0) equally spaced with distance h̄2 + ε

vn(0) = V2(h̄2 + ε)

∀n ∈ I3

{
xn(0) equally spaced with distance h̄3

vn(0) = V eq.

(46)

We can observe that the system is comparable to two subsystems: lane 1 - lane 2 and lane
2 - lane 3 where the lane changes are regulated by the thresholds in Table 1. More specifically
for the subsystem lane 2 - lane 3 we consider the case of a perturbation in the slow lane (first
row of the table) while for the subsystem lane 1 - lane 2 we refer to the case of a perturbation
in the fast lane (second row of the table). We add to this framework the possibility of choosing
the best advantageous change for a vehicle in the middle lane that might have two possibilities
for change lane. The thresholds that enable lane changes can be obtained from Table 1 with
the appropriate modifications. We have

1→ 2 & 3→ 2 2→ 1 2→ 3

pert. ε in lane 2 ε > ds > 0 ε <
V1(h̄1 − ds)− V1(h̄1)(
1 + γ

(h̄1−ds)2

)
V ′2(h̄2)

< 0 ε <
V3(h̄3 − ds)− V3(h̄3)(
1 + γ

(h̄3−ds)2

)
V ′2(h̄2)

< 0

Table 2. Thresholds and perturbations.

Here we propose a numerical example with a three-lane road, using the Runge Kutta 5
method. Consider the velocity function V1(h) as in (39) and define V2(h) = 3

2
V1(h) and V3(h) =

2V1(h). From the value h̄1 = 50 m we obtain that h̄2 = 31 m, h̄3 = 23.7 m and V eq = 3.58 m/s
as shown in Fig. 19. The corresponding number of vehicles are: N̄1 = 30, N̄2 = 48, N̄3 = 63.
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Figure 19. Desired velocity functions.

In order to add a perturbation in lane 2 we find the values of the perturbation that allow
lane changing. From Table 2 we obtain: ε > 5 m for lane changes from lanes 1 and 3 to lane 2,
ε < −2.25 m for lane changes from lane 2 to lane 1 and ε < −7.74 m for lane changes from lane
2 to lane 3. In the following numerical tests we use the initial conditions (46) with ε = −2.68
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m in the test (a) and with ε = −7.91 m in the test (b). We can observe that in the test (a) the
perturbation has produced lane changes from lane 2 to lane 1 while in the test (b) lane changes
from lane 2 to lane 3 occurred.

Figure 20. Test (a) - Top: vehicle trajectories in the three lanes. Bottom:
number of vehicles versus time.

Figure 21. Test (b) - Top: vehicle trajectories in the three lanes. Bottom:
number of vehicles versus time.

In the following test we show an example of instability, comparing the results with the test
in section 3.3.4. Let us consider the function V1(h) as in the aforementioned test, and define
V2(h) = 3

2
V1(h) and V3(h) = 2V1(h). We consider N1(0) = N3(0) = 90 and N2(0) = 0 with

initial conditions with random perturbations rn.

∀n ∈ I1

{
xn(0)− xn−1(0) = L

N1(0)
+ rn

vn(0) = V1( L
N1(0)

)

∀n ∈ I3

{
xn(0)− xn−1(0) = L

N3(0)

vn(0) = V2( L
N3(0)

)

(47)

From Fig. 22 we can see that lane 1 gradually empties into lane 2. Due to frequent lane
changes, more pronounced stop & go waves occur in fast lanes, while slow lane tends to stabilize.
In test 3.3.4 we recall that the instabilities were evident in both lanes.
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Figure 22. Top: vehicle trajectories in the three lanes. Bottom: number of
vehicles versus time.

5. Conclusions

In this paper we have studied a microscopic model (4) for lane changing proposing simple
lane changing rules. We have computed global steady states and we have investigated the linear
stability of such solutions. The global steady state of the multi-lane model is parametrized by
the total numberN of vehicles in the road. All lanes are coupled by the lane changing conditions,
and the equilibrium is reached only when the crowding of each single lane is such that no lane
changing is convenient anymore. At that point the system can reach the equilibrium lane by
lane. We have proved that the model for the single-lane case has a larger stability region than
the model (3). In the multi-lane case we have proved that is possible to determine conditions
on perturbations in which the equilibrium of the steady state is preserved and lane changing
does not occur. We plan to derive a macroscopic version of this model where each lane would
be described by its own equation and the lane changes would appear as source terms for the
macroscopic equations. This study can be useful in applications for instance in the design of
velocity profiles to minimize lane changes in order to avoid jams and car accidents.
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