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Abstract
Microplastic pollution is one of the greatest environmental concerns for contemporary times and the future. In the last years, 
the number of publications about microplastic contamination has increased rapidly and the list is daily updated. However, the 
lack of standard analytical approaches might generate data inconsistencies, reducing the comparability among different stud-
ies. The present study investigates the potential of two image processing tools (namely the shapeR package for R and ImageJ 
1.52v) in providing an accurate characterization of the shape of microplastics using a restricted set of shape descriptors. To 
ascertain that the selected tools can measure small shape differences, we perform an experiment to verify the detection of 
pre-post variations in the shape of different microplastic types (i.e., nylon [NY], polyethylene [PE], polyethylene terephthalate 
[PET], polypropylene [PP], polystyrene [PS], and polyvinylchloride [PVC]) treated with mildly corrosive chemicals (i.e., 
10% KOH at 60 °C, 30%  H2O2 at 50 °C, and 15%  H2O2 + 5%  HNO3 at 40 °C; incubation time ≈ 12 h). Analysis of surface 
area variations returns results about the vulnerability of plastic polymers to digestive solutions that are aligned with most of 
the acquired knowledge. The largest decrease in surface area occurs for KOH-treated PET particles, while NY results in the 
most susceptible polymer to the 30%  H2O2 treatment, followed by PVC and PS. PE and PP are the most resistant polymers to 
all the used treatments. The adopted methods to characterize microplastics seem reliable tools for detecting small differences 
in the shape and size of these particles. Then, the analytic perspectives that can be developed using such widely accessible 
and low-cost equipment are discussed.

Keywords Image analysis · Shape descriptors · Shape variations · Microplastic extraction · Microplastic characterization · 
Microplastic classification · Corrosiveness test

Introduction

In the twentieth century, Homo sapiens became able of pro-
ducing a new class of totally synthetic materials, which he 
called plastics. All plastic materials are organic polymers 
that share low production costs, malleability, and durabil-
ity (Geyer et al. 2017). Since the 1950s, plastic waste is 
accumulating in natural environments and today contami-
nates almost all places on earth (Zalasiewicz et al. 2016). 
Due to their insolubility, biochemical inertness, and high 
molecular weight, most of the plastic polymers show low 
toxicity (Worm et al. 2017). However, many plastic-associ-
ated chemicals — such as monomer residues, plasticizers, 
and pigments — are known to be hazardous, often toxic, 
or carcinogenic (Deanin 1975; Lithner et al. 2011; Fries 
et al. 2013). The lack of natural analogues makes plastic 
polymers resistant to biodegradation (Gómez and Michel 
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2013). Plastic waste may persist and accumulate for centu-
ries both in marine and terrestrial environments (Kubowicz 
and Booth 2017). In the meantime, both environmental and 
biological drivers can split plastic litter into plastic particles 
of ever-smaller sizes, which may sorb many kinds of per-
sistent pollutants due to their high surface-area-to-volume 
ratio (Wright and Kelly, 2017; Huang et al. 2021). Therefore, 
plastic pollution is recognized as one of the greatest envi-
ronmental concerns of contemporary times and an emerging 
threat for the future (Horton et al. 2017).

Thompson et al. (2004) first coined the term “microplastic” 
(MP), which is now generally used to describe plastic 
fragments less than 5 mm in size (Arthur et al. 2009; Frias 
and Nash 2019). In recent years, several studies began to 
focus on the presence of MPs in every kind of environmental 
samples. Since 2014, the number of publications on MP 
contamination has increased rapidly (He et al. 2018; Borja 
and Elliott 2019), and the list is daily updated. The pathways 
that different MP types follow from sources to sinks and 
the dynamics of their transfer through the food web, as 
well as the complex patterns of biological effects on living 
organisms are the main knowledge gaps to be filled (Horton 
et al. 2017; Worm et al. 2017). However, the lack of standard 
analytical approaches and shared data reporting generates a 
lot of inconsistencies, reducing the information value and the 
comparability among different studies (Cowger et al. 2020a).

Most applied procedures to extract MPs from complex 
matrices — such as soils, sediments, or biological samples 
— imply a digestion step to eliminate the biogenic 
component (Stock et  al. 2019). Thereafter, samples are 
usually filtered onto a membrane, where MPs are identified 
using a stereomicroscope and their polymeric composition 
characterized through Fourier transform infrared 
spectroscopy (FT-IR) or Raman spectroscopy (Lenz et al. 
2015). Finally, the collected MPs are almost always classified 
according to shape categories and size classes (Shim et al. 
2017). The qualitative operator-based classification of 
MPs often implies loss of objective information. Visual 
identification is a laborious and time-consuming task, 
and therefore subject to observer bias (Primpke et al. 2017). 
Furthermore, MP categories used in different studies are 
not always congruent and clearly defined, resulting in the 
lack of a standard, globally shared glossary (Miller et al. 
2021). Then, the use of categorical variables to describe the 
shape and size of MPs limits cross-studies consistency, and 
therefore the understanding of pathways, mechanisms, and 
patterns that describe the fate of different MP types within 
ecosystems (Cowger et al. 2020b).

The present study investigates the potential of two open-
source image processing software in providing an accurate 
characterization of the shape of MPs using a restricted set of 
shape descriptors. The image processing software used are 
the shapeR package for R (Libungan and Pálsson 2015a) and 

ImageJ 1.52v (https:// imagej. nih. gov/ ij/, accessed 28 March 
2022). To ascertain that the selected tools can measure small 
differences in the shape and size of MPs, we performed an 
experiment to verify the detection of shape variations in 
MPs treated with mildly corrosive chemicals. Since different 
chemicals attack different polymeric structures (Cole et al. 
2014; Rocha-Santos and Duarte 2015), we treated six plastic 
polymers with different digestion protocols known to be 
slightly corrosive against MPs with various compositions. 
The selected polymers are the most common polymers 
found in environmental samples (nylon, NY; polyethylene, 
PE; polyethylene terephthalate, PET; polypropylene, PP; 
polystyrene, PS; polyvinylchloride, PVC) (Hidalgo-Ruz 
et al. 2012). The digestion protocols were chosen among the 
variety of methodological approaches used in the extraction 
of MPs from biological matrices.

The rationale for the experiment supposed that if the 
selected tools are useful to detect small modifications 
in MPs induced by the known corrosiveness of digestive 
solutions, the same tools could be used to obtain a careful 
characterization of the shape and size of MPs based on shape 
descriptors. The development of new tools for translating 
categorical data into quantitative variables can improve 
current methods for the characterization of the shape and 
size of MPs, providing a rigorous methodological framework 
for monitoring routines that will be essential for effective 
management policies (Hardesty and Wilcox 2017; Valente 
et al. 2020). MPs are usually classified according to shape 
categories that at times provide information on their origin 
(Rochman et al. 2019; Miller et al. 2021). However, different 
studies often adopt different categorization systems due to 
the lack of standard definitions (Hartmann et al. 2019; Yu 
et al. 2022). In this view, shape descriptors could be the 
base of a consistent glossary for microplastic classification, 
which will be crucial to understand the relative importance 
of different MP sources and thus to guide appropriate 
mitigation actions (Rochman et al. 2016). Furthermore, 
image analysis might help the validation of new procedures 
for the extraction of microplastics from complex matrices.

Materials and methods

Three digestion protocols, which share a short incubation 
time (about 12 h), were selected according to the use of 
different digestive solutions at different incubation tempera-
tures, namely: 10% KOH at 60 °C (hereafter KOH; Rochman 
et al. 2015); 30%  H2O2 at 50 °C  (H2O2; Li et al. 2016, modi-
fied according to Bianchi et al. 2020); and 15%  H2O2 + 5% 
 HNO3 at 40 °C  (HNO3; Bianchi et al. 2020). A treatment 
with Milli-Q ultrapure water at room temperature (CTRL; 
 H2O at 25 °C) was set as control treatment.

https://imagej.nih.gov/ij/
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KOH was produced by dissolving KOH pellets (Carlo 
Erba Reagents) in ultrapure Milli-Q water.  H2O2 was pur-
chased from Carlo Erba Reagents (Italy).  HNO3 solution 
was prepared by diluting 30%  H2O2 and 65%  HNO3 (AnalaR 
NORMAPUR® analytical reagent, VWR chemicals) with 
ultrapure Milli-Q water.

Following Nuelle et al. (2014) and Bianchi et al. (2020), 
all MPs were produced by fragmenting daily-use plastic 
products or laboratory materials (NY: black plastic cable ties; 
PE: blue vials cap; PET: light blue water bottle; PP: black pen 
cap; PS: red plastic cup; PVC: orange pipe) using a variety 
of tools (such as scissors, pincers, clippers, and graters) to 
obtain different breaking profiles. The polymer composition 
of all materials was verified using a Nicolet iS10 Fourier 
Transform Infrared Spectroscopy with attenuated total 
reflection (ATR) FT-IR (Thermo Fisher Scientific, Madison, 
WI, USA). The plastic products selected for analysis had 
spectra matching at 81–97% with spectra of reference 
libraries (“HR Spectra Polymers and Plasticizers by ATR”, 
and “HR Polymer Additives and Plasticizers”) provided with 
OMNIC 9.8.286 (Thermo Fisher Scientific Inc.).

MPs for the analyses were chosen using a graphical 
filtering to select particles with surface area < 2  mm2 
(size range: 0.171–1.874  mm2; representative images 
are available in Fig. 1). A total of 720 MPs (30 MPs ∙ 6 
polymers ∙ 4 treatments) were photographed before and after 
the treatment using a camera-equipped stereomicroscope 
(see “Image capture and pre-processing”). Groups of 180 
MPs (30 MPs for each polymer) were randomly assigned 
to the digestion and control treatments. Samples of 30 
MPs were plunged into 2 ml of the abovementioned four 

solutions (i.e., three test and one control) and stored in a 
water bath at the established temperatures. At the end of the 
incubation time, MPs were recovered onto glass microfiber 
membranes (Whatmann GF/D™; 2.7 μm pore size) by 
filtering the digestive solutions using a vacuum pump 
system. Then, wet membranes were placed into individual 
glass Petri dishes and dried.

Image capture and pre‑processing

Pictures of MPs were taken before and after their treatment 
using a ZEISS Discovery.V20 SteREO modular stereo 
microscope with motorized zoom (objective PlanAPO 
S 1.0 x, FWD 60 mm; eyepieces WPL 10x/23 Br. foc, 
magnification 7.5 × –150 × , object field 30.7–1.5 mm), 
equipped with SYCOP 3 system control panel, EMS 3 
controller, and an AxioCam ERc5s camera.

All the pictures were captured setting the zoom to 50 × , 
with the aid of motorized focusing and substantially constant 
background and lighting conditions for each polymer.

The 1440 obtained images (2560 ∙ 1920 pixel, 1143 pixel 
∙  mm−1) were stored in full color in jpeg format. Following 
Libungan and Pálsson (2015b), an image manipulation 
program (i.e., Adobe Photoshop® version 19.1.6) was used 
to reduce background noise and enhance the contrast to 
simplify the outline detection with shapeR and the threshold 
selection for particle analysis with ImageJ (Cowger et al. 
2020b). The image elaboration process is summarized in 
Fig. 2. Further details on the process, including scripts and 
processing time estimates, are available in Supplementary 
Information.

Fig. 1  Materials. Representative 
images of microplastics pro-
duced by fragmenting daily-use 
plastic products or laboratory 
materials: (a) nylon (NY) from 
a black plastic cable tie; (b) pol-
yethylene (PE) from a blue vial 
cap; (c) polyethylene tereph-
thalate (PET) from a light-blue 
water bottle; (d) polypropylene 
(PP) from a black pen cap; (e) 
polystyrene (PS) from a green 
plastic cup; (f) polyvinylchlo-
ride (PVC) from an orange pipe. 
The polymer composition of all 
materials was verified using a 
Nicolet iS10 Fourier Trans-
form Infrared Spectroscopy 
with attenuated total reflection 
(ATR) FT-IR (Thermo Fisher 
Scientific, Madison, WI, USA)
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Image processing

The shapeR package for R was created as a tool to analyze 
otolith shape variations among fish population, but it could 
be useful in studies of any two-dimensional objects. It 
was used to automatically extract the contour outline 
of each microplastic (see Script 1 in Supplementary 
Information). The considered outputs were surface area 
of each microplastic and their 64 wavelet coefficients 
(computed on 10 wavelet levels using the Daubechies 
least-asymmetric wavelet) (Gençay et al. 2001; Libungan 
and Pálson 2015b).

ImageJ is a widely used open-source program for 
scientific image processing. The automated use with 
Macros and Batch Processing was employed to get shape 
descriptors from each image (see Script 2 in Supplementary 
Information). The computed shape descriptors were: 
surface area; compactness (ratio of the particle’s area to 
the area of a circle with the same perimeter, 4π ∙ area ∙ 
 perimeter−2); solidity (ratio of the area of an object to the 
area of the convex hull of the object, area ∙ convex  area−1); 
and convexity (ratio of the perimeter of an object’s convex 
hull to the perimeter of the object itself, convex perimeter 
∙  perimeter−1).

Statistical analysis

To ensure the absence of strong corrosive effects, the 
recovery efficiency of each treatment was evaluated in 
terms of recovery rate (no. of treated MPs ∙ no. of recovered 
 MPs−1) and pre-post pairing rate (no. of treated MPs ∙ no. 
of pre-post paired  MPs−1). Surface area measurements 
obtained with shapeR and ImageJ were compared by fitting 
a linear regression model. Wavelet coefficients were used 
to graphically assess pre-post variation of the mean shape 
of each sample. Moreover, pre-post differences in Wavelet 
coefficients were analyzed using an ANOVA-like permutation 
test for Constrained Analysis of Principal Coordinates.

Then, effect size estimates (Glass’s delta, Δ) were used 
to assess pre-post variations in surface area, compactness, 
solidity, and convexity. Depending on data distribution 
(Shapiro–Wilk normality test) and homogeneity of variances 
(Levene test), either analysis of variance (ANOVA), or 
Kruskal–Wallis tests were performed to test the differences 
among the effects of treatments applied to each polymer 
(α = 0.05). When significant differences were detected, 
post-hoc comparisons (respectively Tukey’s HSD test, or 
Mann–Whitney U test with Bonferroni correction) were 
used to highlight the formation of treatment groups.

Fig. 2  Image pre-processing. Representative pictures of the image 
elaboration process. Sample images: PET particle before (I) and after 
(II) a treatment with 10% KOH at 60 °C (incubation time ≈ 12 h). (a) 
Original images stored in full color; (b) pre-processing for reducing 
background noise and enhance the contrast (performed using Adobe 

Photoshop® version 19.1.6); (c) conversion to 8-bit images using 
ImageJ 1.52v (https:// imagej. nih. gov. ij//, accessed 28 March 2022); 
(d) threshold selection for extracting the particle from the back-
ground; (e) outline detection

https://imagej.nih.gov.ij/
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All statistical analyses were performed using R 4.0.3 (R 
Core Team 2020) and the packages shapeR (Libungan and 
Pálsson 2015a), lawstat (Gastwirth et al. 2020), agricolae (de 
Mendiburu 2020), and vegan (Oksanen et al. 2020). Graphi-
cal outputs were produced using Cairo (Urbanek and Horner 
2020).

Results

A 100% recovery rate was achieved for all the treatments. 
The pre-post pairing of all MPs was also completed. Sur-
face area measurements obtained using shapeR and ImageJ 
were nearly perfectly fitted (R2 > 0.99). Both ANOVA-like 
permutations tests and the graphical assessment of mean 
shapes computed for each sample before and after the 
treatment showed the absence of significant shape varia-
tions (all p-values > 0.05; Fig. 3).

Despite the lack of strong shape differences, statistical 
testing in Table 1 highlighted significant surface area vari-
ations for: (1) PET particles treated with KOH; (2) NY, PS, 
and PVC particles treated with  H2O2 (Table 1, a). The larg-
est decrease in surface area was recorded for KOH-treated 
PET particles (0.061 ± 0.003  mm2; Δ = 24.0). NY resulted 
in the most susceptible polymer to the  H2O2 treatment 
(Δ = 9.3), followed by PVC (Δ = 6.0), and PS (Δ = 3.7). PE 
(max Δ = 1.3) and PP (max Δ = 2.3) proved to be the most 
resistant polymers to the used treatments (Fig. 4).

Considering the other shape descriptors (i.e., compact-
ness, solidity, and convexity), no significant differences were 
detected between CTRLs and the other treatments (Table 1, 
b–d). However, though the shape variations induced by the 
treatments were not extended (Δ mean ± sd = 1.27 ± 0.96), our 
results revealed slight modifications toward a more rounded 
shape (increases in compactness, solidity, and convexity 
values) of KOH-treated PET particles (as appreciable in the 
sample image in Fig. 2) and  H2O2-treated PS particles. In par-
ticular, significant differences were noticed in: (1) compact-
ness and solidity variations between PET particles treated 
with KOH and  H2O2; (2) convexity variations between PET 
treated with KOH and the two oxidant solutions (i.e.,  H2O2 
and  HNO3); (3) solidity variations between PS particles treated 
with  H2O2 and KOH. Overall, Glass’s delta values indicated 
 H2O2 as the most impacting treatment on compactness, solid-
ity, and convexity of MPs (ΣΔH2O2 = 32.7, ΣΔHNO3 = 17.5, 
ΣΔKOH = 18.1; Fig. 4b–d).

Discussion

Experimental results

In most studies, MPs are visually identified using a ster-
eomicroscope and later classified by observers according 

to customary shape categories and size classes (He et al. 
2018). Being manual classification a step that often implies 
loss of information, we explored the possibility to preserve 
the informative value by processing images caught by a cam-
era-equipped stereomicroscope. To verify the usefulness of 
image processing, we exploited information from previous 
studies on the corrosive effect of various digestion proto-
cols on different plastic polymers (Nuelle et al. 2014; Cole 
et al. 2014; Rocha-Santos and Duarte 2015; Dehaut et al. 
2016; Karami et al. 2017; Bianchi et al. 2020). In this view, 
we verified the reliability of two different approaches for 
image processing (i.e., shapeR and ImageJ) by testing their 
power in detecting small shape variations in MPs treated 
with mildly corrosive digestion protocols.

The analysis of surface area variations returned results 
about the vulnerability of plastic polymers to digestive solu-
tions that were aligned with most of the acquired knowl-
edge. Image analysis highlighted no corrosive effects of 
 HNO3, as reported by Bianchi et al. (2020). On the con-
trary,  H2O2 seemed the most impacting treatment. Previous 
studies reported that  H2O2 damages different plastic poly-
mers. Karami et al. (2017) described non-optimal recovery 
rates for NY, PS, and PVC microplastics treated with 30% 
 H2O2 at 50 °C for 96 h, highlighting possible changes of 
the polymeric structures of NY (decreased intensity of the 
peak at 1435  cm−1 and increased intensity of the band at 
1118  cm−1), PS (sharpness of the peak at around 998  cm−1), 
and PVC (decreased intensity of the band for the stretching 
of C–Cl) through Raman spectroscopy.

Shape variations in PET particles treated with KOH were 
documented by Dehaut et al. (2016). In this case, other stud-
ies suggested that degradation may be led by the high incu-
bation temperature of 60 °C, which approaches the softening 
point of PET (74–85 °C) (Wan et al. 2001). In fact, Karami 
et al. (2017) also described for temperatures ≥ 50 °C: (1) a 
reduction of KOH-treated PET recovery rates; (2) a greater 
number of voids on the surface of the particles (detected with 
scanning electron microscopy); (3) a decreased sharpness of 
the band at 1610  cm−1 (ring C = C stretching) (Awasthi et al. 
2010). Overall, though the extent of the variations induced 
by the used treatments was not sufficient for determining 
strong shape differences in the MPs we examined, our results 
suggested that comparability among different studies could 
be affected by the different digestion protocols adopted dur-
ing the extraction of MPs (Table 1, b–d), with a potentially 
more significant effect on MPs with smaller sizes.

Methodological perspectives

Image processing seems a reliable tool for detecting small 
differences in the shape and size of MPs. Therefore, the 
characterization of MPs through image processing could be 
useful for many applications.



 Environmental Science and Pollution Research

1 3



Environmental Science and Pollution Research 

1 3

Firstly, as no standardized protocols exist to extract MPs 
(Miller et al. 2021), no standardized validation procedure of 
these protocols is also in use (for instance compare Nuelle 
et al. 2014; Avio et al. 2015; Karami et al. 2017; Bianchi 
et al. 2020). Since the efficiency of different digestion pro-
tocols changes according to the chemical composition of 
different environmental matrices (Bianchi et al. 2020), pos-
sibly new protocols will be developed in the future. There-
fore, image processing could represent a replicable key step 
useful in detecting and quantifying the corrosiveness of 
digestive solutions on MPs with different sizes and polymer 
compositions.

Furthermore, image processing could drive the develop-
ment of a standard glossary for MP classification. Visual 
identification is a basic approach for the quantification of 
MPs (He et al. 2018). However, it is inevitably affected by 
the staff training level and weariness caused by the labor-
intensive and time-consuming activity (Cowger et  al. 
2020b). The computation of shape descriptors can bring to 
the development of a new and consistent MP classification 
system based on strict quantitative definitions, avoiding the 
influence of the observer bias. The main shape categories 
used to classify MPs worldwide are fiber, film, fragment, 
and sphere/pellet (Lusher et al. 2017). All these forms can 
be distinguished according to the combination of different 
shape descriptors. For instance, fibers are thin particles that 
are certainly characterized by high values of aspect ratio 
(height-to-width ratio, major axis ∙ minor  axis−1; Cole 
2016), elongation indexes (e.g., the width-to-length ratio of 
the object bounding box, bounding-box width ∙ bounding-
box  length−1; Wirth 2004; Primpke et al. 2019), and perim-
eter-to-surface area ratio. Diagnostic descriptors of spheres/
pellets can be compactness (see “Image processing”) and 
roundness (inverted aspect ratio, minor axis ∙ major  axis−1), 
while fragments can be distinguished from films by the pres-
ence of more crooked edges (GESAMP, 2019), and therefore 
by lower convexity values (see “Image processing”).

These and other numerical descriptors of shape may 
also allow the definition of additional categories and sub-
categories that could be established to answer specific 
research questions (GESAMP, 2019; Miller et al. 2021). For 
instance, Avio et al. (2020) pointed out that it is important 

to discriminate lines and filaments from textile microfibers 
to correctly evaluate the relative importance of different MP 
sources in marine areas exploited by fisheries. Lines and fila-
ments derived from fisheries are defined as rod-like particles 
with regular diameter, while microfibers are characterized by 
a ribbon-like shape, not regular diameter, and frayed ends. 
Therefore, rectangularity measures (e.g., ratio of the surface 
area of the object to the surface area of the minimum bound-
ing rectangle, surface area ∙ bounding box surface  area−1; 
Rosin 1999) and curl indexes (length ∙ fiber  length−1; Wirth 
2004) can be used in distinguishing MP sub-types within the 
class of threadlike particles. The description of the shape 
and size of MPs using quantitative descriptors such as major 
and minor axes, surface area, perimeter, convex hull, and 
bounding box of each item could be a reliable way to ensure 
comparability among current studies, as well as a mode of 
preserving data for future analytical advances.

Future advances

The potential of high-technology techniques used in the 
study of MP pollution is increasing through integration 
with image processing and analysis. Recent studies propose 
algorithms to automate MP detection and recognition using 
chemical imaging based on FT-IR or Raman microspectros-
copy (Primpke et al. 2018; Anger et al. 2018). Recently, Ser-
ranti et al. (2018) successfully explored the utility of Hyper-
Spectral Imaging in the characterization of ocean-floating 
MPs, while Chen et al. (2021) assessed the degradation 
degree of MPs through a spectral-image fusion model. Other 
authors already remarked that in-depth analyses of surface 
morphology can be useful to estimate the degradation degree 
of MPs (Veerasingam et al. 2016; Cai et al. 2018). Images 
can detect the presence and frequency of holes, hollows, and 
rifts. Therefore, roughness measures can be used to estimate 
the extent of the weathering process, providing interesting 
information on the persistence time of MPs in different envi-
ronments (Cowger et al. 2020b).

Despite that all these new methodological approaches 
will contribute decisively to the comprehension of the 
environmental fate of MPs, research has the assignment 
of finding also low-cost systems that are suitable for 
environmental monitoring routines. From this perspective, 
holographic imaging coupled with machine learning is a 
promising approach (Bianco et al. 2020). Our study would 
contribute to this line of interest indicating that a lot of very 
informative data can be collected through widely accessible 
labware. The potential of image analysis from optical 
microscopy is currently underexploited in this field (Cowger 
et al. 2020b), but the development of new reliable approaches 
to describe MP pollution through image processing is a very 
hard task. The aim is to fairly well describe the shape of 
MPs using a restricted set of numbers. Although the shape 

Fig. 3  Mean shape differences. Graphical assessment of the mean 
shape variation of microplastics treated with three different diges-
tion protocols (incubation time ≈ 12  h). A treatment with Milli-Q 
ultrapure water at room temperature (25 °C) was set as control treat-
ment (CTRL). Tested polymers: nylon (NY), polyethylene (PE), pol-
yethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), 
and polyvinylchloride (PVC). Applied treatments: (a) 30%  H2O2 at 
50 °C, (b) 5%  HNO3 + 15%  H2O2 at 40 °C, (c) 10% KOH at 60 °C. 
Drawings are based on wavelet reconstruction: the solid lines repre-
sent the mean shape of microplastics before the treatment; the dashed 
lines highlight the deviations detected after the treatment

◂
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cannot be redrawn from shape descriptors, these should be 
sufficiently different to distinguish different shapes. The 
quality of quantitative information obtained from images 
strictly depends on the quality of the original image and the 
goodness of pre-processing (Wirth 2004). Therefore, further 
studies focusing on the definition of general measurement 
rules will be very important (Cowger et al. 2020b). Although 
fibers, filaments, and films naturally exhibit their two largest 
dimensions when placed on a plain, this may not be true for 
MP fragments with non-negligible thickness and irregular 
margins. Ensuring the repeatability of 2D image-based 

measurements may be difficult for this type of MPs. 
Standardizing measurement conditions (such as considering 
only maximum sizes even for particles with a complex 3D 
structure) can represent a simple way to reduce this source 
of bias. However, novel approaches based on extended depth 
of field (EDF) processing and other thickness estimation 
methods will need to be explored to find more reliable ways 
to describe the 3D aspect of MPs. Moreover, further efforts 
should be addressed in developing tools to consistently 
describe even colors, opacity, and texture of MPs (Maes 
et al. 2017; Rochman et al. 2019).

Table 1  Shape variations. Differences in surface area, compactness, 
solidity, and convexity detected in microplastics treated with three 
different digestion protocols (incubation time ≈ 12  h). A treatment 
with Milli-Q ultrapure water at room temperature (25 °C) was set as 
control treatment (CTRL). Tested polymers: nylon (NY), polyeth-
ylene (PE), polyethylene terephthalate (PET), polypropylene (PP), 
polystyrene (PS), and polyvinylchloride (PVC). Shape descriptors: (a) 
surface area  [mm2]; (b) compactness (ratio of the particle’s area to 
the area of a circle with the same perimeter, 4π ∙ area ∙  perimeter−2); 
(c) solidity (ratio of the area of an object to the area of convex hull of 

the object, area ∙ convex  area−1); (d) convexity (ratio of the perimeter 
of an object’s convex hull to the perimeter of the object itself, con-
vex perimeter ∙  perimeter−1). ANOVA (1) or Kruskal–Wallis test (2) 
was performed to test the differences among the effects of treatments 
applied to each polymer. When significant differences were detected, 
Tukey’s HSD test (1) or Mann–Whitney U test with Bonferroni cor-
rection (2) was used to highlight the formation of treatment groups. 
Values with the same superscript letter are not significantly different 
(α = 0.05)

Polymer Treatment

CTRL 30%  H2O2 at 50 °C 5%  HNO3 + 15%  H2O2 at 40 °C 10% KOH at 60 °C

a) Surface area variations [mm2] (1)
  NY  − 0.010 ± 0.003 b 0.018 ± 0.003 a 0.001 ± 0.004 b 0.000 ± 0.003 b

  PE 0.008 ± 0.004 0.003 ± 0.003 0.003 ± 0.004 0.013 ± 0.003
  PET 0.013 ± 0.002 b 0.015 ± 0.002 b 0.020 ± 0.002 b 0.061 ± 0.003 a

  PP 0.003 ± 0.003 0.005 ± 0.002 0.006 ± 0.002 0.010 ± 0.002
  PS 0.012 ± 0.003 b 0.023 ± 0.002 a 0.019 ± 0.003 ab 0.014 ± 0.003 ab

  PVC 0.005 ± 0.002 b 0.017 ± 0.002 a 0.011 ± 0.002 ab 0.009 ± 0.002 b

b) Compactenss variations (2)
  NY  − 0.005 ± 0.006 0.005 ± 0.008  − 0.010 ± 0.007  − 0.011 ± 0.004
  PE  − 0.004 ± 0.010  − 0.014 ± 0.006  − 0.012 ± 0.010  − 0.016 ± 0.010
  PET  − 0.015 ± 0.006 ab 0.000 ± 0.004 a  − 0.009 ± 0.005 ab  − 0.023 ± 0.008 b

  PP  − 0.002 ± 0.007  − 0.020 ± 0.005  − 0.005 ± 0.004  − 0.013 ± 0.004
  PS  − 0.008 ± 0.004  − 0.024 ± 0.009  − 0.023 ± 0.006  − 0.003 ± 0.006
  PVC  − 0.013 ± 0.007  − 0.012 ± 0.007  − 0.005 ± 0.005  − 0.009 ± 0.011

c) Solidity variations (2)
  NY 0.000 ± 0.005  − 0.003 ± 0.006  − 0.002 ± 0.004 0.000 ± 0.003
  PE  − 0.003 ± 0.005  − 0.007 ± 0.003  − 0.005 ± 0.005 0.001 ± 0.004
  PET  − 0.012 ± 0.005 ab 0.001 ± 0.003 a  − 0.005 ± 0.003 ab  − 0.018 ± 0.005 b

  PP 0.002 ± 0.004  − 0.009 ± 0.004  − 0.001 ± 0.002  − 0.001 ± 0.002
  PS  − 0.004 ± 0.004 ab  − 0.016 ± 0.004 b  − 0.012 ± 0.002 ab  − 0.002 ± 0.002 a

  PVC  − 0.005 ± 0.004  − 0.005 ± 0.003  − 0.002 ± 0.002  − 0.007 ± 0.008
d) Convexity variations (2)
  NY  − 0.005 ± 0.004 0.004 ± 0.005  − 0.006 ± 0.004  − 0.011 ± 0.003
  PE  − 0.004 ± 0.007  − 0.009 ± 0.005  − 0.006 ± 0.008  − 0.009 ± 0.005
  PET  − 0.010 ± 0.004 ab 0.001 ± 0.003 a  − 0.008 ± 0.003 a  − 0.020 ± 0.006 b

  PP 0.000 ± 0.004  − 0.010 ± 0.003  − 0.002 ± 0.003  − 0.006 ± 0.003
  PS  − 0.005 ± 0.004  − 0.015 ± 0.006  − 0.011 ± 0.004  − 0.001 ± 0.005
  PVC  − 0.007 ± 0.005  − 0.009 ± 0.005  − 0.003 ± 0.003  − 0.006 ± 0.007
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Conclusions

Microplastics are hazardous and atypical contaminants that 
may differ in size and shape. Current methods to character-
ize the shape of microplastics are based on visual identifica-
tion, which is inevitably affected by observer bias. Moreover, 
the lack of a globally shared glossary for the classification of 
microplastics often implies the loss of comparability among 
different studies. We tested and discussed the potential of 
image processing in providing new tools for describing the 
shape and size of microplastics through quantitative shape 
descriptors. Our results suggest that image analysis can 
allow an accurate characterization of the shape of micro-
plastics by using widely accessible labware and open-source 
software. Novel analytical methods exempt from subjective 
bias will contribute decisively to the development of consist-
ent guidelines for studies on environmental contamination 
by microplastics. In this view, image processing is a branch 
of computing and information science that will have to be 
more included among the variety of disciplines involved in 
the study of microplastic pollution.
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