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A B S T R A C T

In recent years, there has been growing attention to interpretable machine learning models which can give
explanatory insights on their behaviour. Thanks to their interpretability, decision trees have been intensively
studied for classification tasks and, due to the remarkable advances in mixed integer programming (MIP),
various approaches have been proposed to formulate the problem of training an Optimal Classification Tree
(OCT) as a MIP model. We present a novel mixed integer quadratic formulation for the OCT problem,
which exploits the generalization capabilities of Support Vector Machines for binary classification. Our
model, denoted as Margin Optimal Classification Tree (MARGOT), encompasses maximum margin multivariate
hyperplanes nested in a binary tree structure. To enhance the interpretability of our approach, we analyse
two alternative versions of MARGOT, which include feature selection constraints inducing sparsity of the
hyperplanes’ coefficients. First, MARGOT has been tested on non-linearly separable synthetic datasets in a 2-
dimensional feature space to provide a graphical representation of the maximum margin approach. Finally, the
proposed models have been tested on benchmark datasets from the UCI repository. The MARGOT formulation
turns out to be easier to solve than other OCT approaches, and the generated tree better generalizes on new
observations. The two interpretable versions effectively select the most relevant features, maintaining good
prediction quality.
1. Introduction

1.1. Related work

In recent years, there has been growing interest in interpretable
Machine Learning (ML) models (Rudin et al., 2022). Decision trees are
among the most popular Supervised ML tools used for classification
tasks. They are famous for being easy to manage, having low computa-
tional requirements, and the final model is easily understandable from
a human perspective as opposed to other ML methods that are seen
as black boxes. Given a set of points and class labels, a classification
tree method builds up a binary tree structure of a maximum predefined
depth. Trees are composed of branch and leaf nodes, and the branch
nodes apply a sequence of dichotomic rules, called splitting rules, to
partition the training samples into disjoint subsets. Splitting rules route
samples to the left or right child node, and they are usually defined
by hyperplanes. In a univariate tree, these hyperplanes are orthogonal,
involving one single feature, while in a multivariate tree, they can be
oblique, involving more than one feature. A value for the predicted
class label is assigned to each leaf node according to some simple
rule, for instance, the most common label rule. The key advantage
of tree methods lies in their interpretability. The process behind a
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decision tree is transparent, and the sequential tree structure mimics
the human decision-making process. These properties can be crucial
factors in many applications, ranging from business and criminal justice
to healthcare and bioinformatics. Indeed, in these domains, it is of great
interest to use explainable approaches to help humans understand the
model’s decisions and identify a subset of the most prominent features
that influence the classification outcome. To this aim, it is preferable
to build and manage shallow trees with small depth; indeed, if allowed
to grow large, decision trees lose their interpretability aspect.

It is well-known that constructing a binary decision tree in an
optimal way is an NP-complete problem (Hyafil and Rivest, 1976). For
this reason, traditional approaches for finding decision trees rely on
heuristics. In general, they are based on a top-down greedy strategy
for growing the tree by generating splits at each node and, once the
tree is built, a bottom-up pruning procedure is applied to handle the
complexity of the tree, i.e. the number of splits. Breiman et al. (1984)
proposed a heuristic algorithm known as CART (Classification and
Regression Trees), for learning univariate decision trees. Starting from
the root node, each hyperplane split is generated by minimizing a local
impurity function, e.g. the Gini impurity for classification tasks.
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Other univariate approaches employing different impurity func-
tions were later proposed by Quinlan (1986, 1993) in his ID3 and
C4.5 algorithms. These heuristic procedures produce a solution in
fast computational time but may also generate tree models with poor
generalization performances. In order to overcome these drawbacks,
tree ensemble methods, such as Random Forests (Breiman, 2001),
TreeBoost (Friedman, 2001) and XGBoost (Chen and Guestrin, 2016),
have been proposed. These approaches combine decision trees using
some kind of randomness; however, using multiple trees leads to a lack
of interpretability of the final model.

Another way to improve prediction quality is to use multivariate
decision trees, which employ oblique hyperplane splits. These methods
involve more features per split, thus producing smaller trees but at
the expense of the computational cost. Several approaches for inducing
multivariate trees have been proposed (see Murthy et al. (1994), Brod-
ley and Utgoff (1995), Orsenigo and Vercellis (2003), Wickramarachchi
et al., 2016). For instance, OC1 (Murthy et al., 1994) is a greedy algo-
rithm that searches for the best hyperplane at each node by applying a
randomized perturbation strategy. In contrast, Orsenigo and Vercellis
(2003) presented a heuristic procedure that, at each step, solves a
variant of the Support Vector Machine problem, where the empirical
error is discretized by counting the number of misclassified samples.

Recently, several papers have been devoted to global exact op-
timization approaches to find an Optimal Classification Tree (OCT)
using mathematical programming tools and, in particular, Mixed In-
teger Programming (MIP) models (see the recent surveys (Gambella
et al., 2021; Carrizosa et al., 2021) and references therein). Indeed, the
significant improvement in the last thirty years of both algorithms for
integer optimization and computer hardware has led to an incredible
increase in the computational power of mixed integer solvers, as shown
in Bixby (2012). Thus, MIP approaches became viable in the definition
of ML methods, being (Bertsimas and Dunn, 2017) the seminal paper
inaugurating a new era in using mixed integer based optimization
to learn OCTs. Such approaches find the decision tree in its entirety
through the resolution of a single optimization model, defining each
branching rule with full knowledge of all the remaining ones. Bertsimas
and Dunn (2017) proposed two Mixed Integer Linear Programming
(MILP) models to build optimal trees with a given maximum depth
based on univariate and multivariate splits. Along these lines, Günlük
et al. (2021) proposed a MIP formulation for binary classification
tasks by exploiting the structure of categorical features and modelling
combinatorial decisions. Further, in order to circumvent the problem
of the curse of dimensionality related to the MIP approaches, Verwer
and Zhang (2019) presented BinOCT, a binary linear programming
model, where the size is independent of the training set dimension.
Aghaei et al. (2021) proposed a flow-based MILP model for binary
features with a stronger linear relaxation and, by exploiting the decom-
posable and combinatorial structure of the model, derived a Benders’
decomposition method to deal with larger instances. Boutilier et al.
(2022) presented a new formulation for learning multivariate optimal
trees. Moreover, they introduced a new class of valid inequalities
and leveraged them within a Benders-like decomposition to improve
the optimization process. In addition to expressing the combinatorial
nature of the decisions involved in the process, the mixed integer
framework is suitable to handle global objectives and constraints to
embed desirable properties such as fairness, sparsity, cost-sensitivity,
robustness, as it has been addressed in Carrizosa et al. (2021), Verwer
and Zhang (2017), Aghaei et al. (2019, 2021) and Blanco et al. (2022).

Alongside integer optimization, continuous optimization paradigms
have also been investigated in the context of optimal trees. Blanquero
et al. (2021) proposed a nonlinear programming model for learning an
optimal ‘‘randomized’’ classification tree with oblique splits, where at
each node, a random decision is made according to a soft rule, induced
by a continuous cumulative density function. Later, in Blanquero et al.
(2020), the authors addressed global and local sparsity in the random-
2

ized optimal tree model (S-ORCT) by means of regularization terms
based on polyhedral norms (𝓁1-norm and 𝓁∞-norm). In their random-
ized framework, a sample is not assigned to a class in a deterministic
way but only with a given probability. Following this research line,
Amaldi et al. (2023) investigated additional versions of the S-ORCT
model based on concave approximations of the 𝓁0-norm and proposed a
general proximal point decomposition scheme to tackle larger datasets.

Following a different viewpoint, approaches using a Support Vector
Machine (SVM) (see Cortes and Vapnik (1995), Wang (2005), Piccialli
and Sciandrone, 2018) for each split in the tree have been investi-
gated. First, Bennett and Blue (1998) provided a primal continuous
formulation with a non-convex objective function and a dual convex
quadratic model to train optimal trees where each decision rule is
based on a modified SVM problem. Their model can involve kernel
functions to construct nonlinear splitting rules. The resulting problems
are computationally hard to solve, and a tabu search algorithm is used
to approximately find solutions. Recently, margin-based splits of the
SVM type have been proposed by Blanco et al. (2022). The authors
introduced a Mixed Integer Nonlinear formulation for the OCT problem
to solve binary classification tasks. The aim was to build a robust
tree classifier, where during the training phase, some of the labels of
the dataset are allowed to be changed in order to detect the label
noise. Observations are relabelled based on misclassification errors, as
described in Blanco et al. (2020). The method aims to seek a trade-
off between four objectives, the first being the maximization of the
minimum margin among all the margins of the hyperplane splits in the
tree. In addition, it minimizes the misclassification cost at the branch
nodes, the number of relabelled observations and the complexity of
the tree. The model is formulated as a Mixed Integer Second Order
Cone Optimization problem. In Blanco et al. (2023), an extension of
the model in Blanco et al. (2022) for handling multiclass instances has
been proposed.

1.2. Our contribution

Our approach falls within the basic framework of using Support
Vector Machines to define optimal classification trees with multivari-
ate splits for binary classification tasks. In particular, our model em-
ploys maximum margin hyperplanes obtained using a linear soft SVM
paradigm in a nested binary tree structure. The maximum depth of the
tree is fixed, as usual in OCT approaches.

The main contribution of this paper is a novel Mixed Integer
Quadratic Programming (MIQP) formulation, denoted as Margin Op-
timal Classification Tree (MARGOT), for learning classification trees.
Our formulation differs from others in the literature as we exploit the
statistical learning properties of the 𝓁2-regularized soft SVM formula-
tion. In particular, the SVM quadratic convex function is retained, and
the collective measure of performance of the OCT is obtained as the
sum of the objective functions of each SVM-based problem over all
the branch nodes of the tree. Differently, in Blanco et al. (2022), only
the minimum among all the hyperplane margins is maximized. Further,
exploiting both the SVMs properties and the binary classification setting
allows us to drastically reduce the overall number of binary variables
needed in our MIQP model. Specifically, we need to introduce as many
binary variables as half the number of leaf nodes, which is much less
than other OCT MIP approaches. We show, both on synthetic datasets
in a 2-dimensional feature space and on datasets selected from the
UCI Machine Learning repository (Dua and Graff, 2017), that MARGOT
formulation requires less computational effort than other state-of-the-
art MIP models for OCT, and it can be solved to certified optimality
on nearly all the considered problems with a limited computational
time using off-the-shelf solvers. As a consequence of the maximum mar-
gin approach, our model produces OCTs with a higher out-of-sample
accuracy.

As a second contribution, we aim to reduce the number of features

used in each split to enhance the interpretability of the model itself.
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Fig. 1. Example showing how errors are upper-bounded in the SVM approach by
ariables 𝜉𝑖: values 0 < 𝜉𝑖 ≤ 1 correspond to samples that lie within the margin but are
orrectly classified; values 𝜉𝑖 > 1 correspond to samples wrongly classified.

ndeed, for tabular data, sparsity is a core component of interpretabil-
ty (Rudin et al., 2022), and having fewer features selected at each
ranching node allows the end user to identify the key factors affecting
he classification of the samples.

Actually, due to the intrinsic statistical properties of SVMs, such a
odel tends to use a large number of features to define each split of

he classification tree. For this reason, we propose two embedded mod-
ls that simultaneously train the OCT and perform feature selection.
mbedded models for feature selection in SVMs have been studied in
everal papers (see e.g. Jiménez-Cordero et al., 2021; Carrizosa et al.,
011; Maldonado et al., 2014; Labbé et al., 2019; Lee et al., 2022). To
ontrol the sparsity of the oblique splits, we draw inspiration from the
odel proposed in Labbé et al. (2019), and we use additional binary

ariables and a budget on the number of features used. We consider
wo different modellings of the budget on the number of features: hard
onstraints and soft penalization, respectively implemented in HFS-
ARGOT and SFS-MARGOT. Numerical results on the UCI datasets are

eported, showing that the hard version seems to be easier to solve to
ertified optimality in a reasonable CPU time, resulting in a more sparse
olution too. For all the formulations, we propose a simple greedy
euristic to obtain a first incumbent which exploits the SVM-based tree
tructure.

The rest of the paper is organized as follows. In Section 2, a brief
ntroduction about Multivariate Optimal Classification Trees, proposed
n Bertsimas and Dunn (2017), and Support Vector Machines is pro-
ided. In Section 3, we introduce our approach and its formulation,
enoted as MARGOT. In Section 4, we present the two interpretable
ersions of the model with hard and soft feature selection techniques
o address the sparsity of the hyperplanes’ weights. In Section 5,
e provide a heuristic to generate starting feasible solutions for the
nalysed MIP problems. Then, in Section 6, we first evaluate MARGOT
n 2-dimensional synthetic datasets, and we report a graphical repre-
entation of the generated trees. Finally, computational experiments on
enchmark datasets from the UCI repository are presented for all the
roposed models.

. Preliminaries

.1. Multivariate optimal classification trees

In this section, we introduce in more detail multivariate optimal
lassification trees. Given a dataset {(𝑥𝑖, 𝑦𝑖) ∈ R𝑛 × {1,… , 𝐾}, 𝑖 ∈ },
nd a maximum depth 𝐷, an optimal classification tree is made up by
(𝐷+1) − 1 nodes, divided in:
3

s

• Branch nodes, 𝐵 = {0,… , 2𝐷−2}: a branch node applies a splitting
rule on the feature space defined by a separating hyperplane
𝑡(𝑥) ∶= {𝑥 ∶ ℎ𝑡(𝑥) = 0}, where ℎ𝑡(𝑥) = 𝑤𝑇

𝑡 𝑥+ 𝑏𝑡 is the hyperplane
function and 𝑤𝑡 ∈ R𝑛 and 𝑏𝑡 ∈ R. If ℎ𝑡(𝑥𝑖) ≥ 0, sample 𝑖 will follow
the right branch of node 𝑡, otherwise it will follow the left one;

• Leaf nodes, 𝐿 = {2𝐷−1,… , 2𝐷+1−2}: leaf nodes act as collectors,
and the samples which end up in the same leaf are classified with
the same class label.

The training phase aims at building a classification tree by finding
coefficients 𝑤𝑡 and the intercept 𝑏𝑡 for each 𝑡 ∈ 𝐵 and by assigning
class labels to the leaf nodes. According to the hierarchical tree struc-
ture, the feature space will be partitioned into disjoint regions, each
corresponding to a leaf node of the tree. The obtained tree is then used
to classify out-of-sample data: every new sample will follow a unique
path within the tree based on the splitting rules, ending up in a leaf
node that will predict its class label.

Bertsimas and Dunn (2017) proposed a MILP optimization model
for training multivariate OCTs, denoted as OCT-H, where, in the ob-
jective function, the misclassification error together with the number
of features used at each split is minimized. In the optimization model,
each sample is forced to end up in a single leaf, a class label for each
leaf node is chosen according to the most common label rule and the
classification error is computed according to the assignment of each
sample to a leaf. Routing constraints enforce each sample to follow
a unique path, while other constraints control the complexity of the
tree by imposing pruning conditions and a minimum number of points
accepted by each non-empty leaf.

2.2. A brief overview on support vector machines

Given a binary classification instance {(𝑥𝑖, 𝑦𝑖) ∈ R𝑛 × {−1, 1}, 𝑖 ∈
}, the linear soft-margin SVM classification problem defines a linear
classifier as the function 𝑓 ∶ R𝑛 → {−1, 1},

𝑓 (𝑥) = sgn(𝑤∗𝑇 𝑥 + 𝑏∗),

sing the structural risk minimization principle (Cortes and Vapnik,
995; Vapnik, 1999). In the traditional 𝓁2-regularized 𝓁1-loss linear
VM, coefficients (𝑤∗, 𝑏∗) ∈ R𝑛 × R identify a separating hyperplane
hat maximizes its margin, i.e. the distance between two parallel hy-
erplanes, each supporting samples belonging to one of the two classes.
he tuple is found by solving the following convex quadratic problem:

SVM) min
𝑤,𝑏,𝜉

1
2
‖𝑤‖

2
2 + 𝐶

∑

𝑖∈
𝜉𝑖 (1)

s.t. 𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 ∀𝑖 ∈  (2)
𝜉𝑖 ≥ 0 ∀𝑖 ∈ ,

where 𝐶 is a hyperparameter that balances the two objectives: the
maximization of the margin 2‖𝑤‖

−1
2 and the minimization of the mis-

classification cost. Variables 𝜉𝑖 allow for violation of the margin con-
traints (2) and a sample 𝑖 is misclassified when 𝜉𝑖 > 1, while values
< 𝜉𝑖 ≤ 1 correspond to correctly classified samples inside the margin.
he further a misclassified data point 𝑥𝑖 is from a feasible hyperplane,
he greater the value of variable 𝜉𝑖 will be (see Fig. 1). Thus, ∑𝑖∈ 𝜉𝑖
s an upper bound on the number of samples misclassified by the
yperplane.

Although the objective function of the SVM problem is loosely
onvex, in Burges and Crisp (1999), necessary and sufficient conditions
re given for the support vector solution to be unique. In particular,
ith reference to (1) where 𝐶 is the same for all 𝑖, a necessary condition

or the solution to be non-unique is that the negative and positive
olarity support vectors are equal in number. Further, it has been
roven that, even when the solution is not unique, all solutions share
he same 𝑤. Thus, among the infinite separating hyperplanes, SVM

elects the unique one that maximizes the margin.
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Minimizing the 𝓁2-norm of the vector 𝑤 has little effect on its
parsity, namely in reducing the number of components different from
ero. In this regard, in the literature, many papers adopted the SVM
ersion where the 𝓁2-regularization term is replaced by the 𝓁1 one (see

e.g. Bradley and Mangasarian (2000), Mangasarian et al. (2006), Fan
et al. (2008)), because 𝓁1-norm acts on the sparsity of the vector. Some
references also suggest the combined use of the two terms (Wang et al.,
2006; Hajewski et al., 2018). In the models proposed in this paper, we
consider the 𝓁2-regularized 𝓁1-loss linear SVM and, when addressed,
the sparsity of the oblique splits is modelled by constraints involving
additional binary variables, following the idea of Labbé et al. (2019).

3. The Margin Optimal Classification Tree

In this section, we propose a novel MIQP model for constructing op-
timal classification trees which encompasses multivariate hyperplanes.
The aim is to exploit the generalization capabilities of the soft SVM
approach using maximum margin hyperplanes, thus the name Margin
Optimal Classification Tree (MARGOT). For the sake of interpretability,
we also analyse two alternative versions of MARGOT which reduce
the number of features used at each split. These additional models are
addressed in Section 4.

In order to formally present the MARGOT formulation, besides the
sets of branch and leaf nodes, we use the following additional notation
(see Fig. 2). The set of branch nodes 𝐵 is partitioned into:

•  ′′
𝐵 , the set of nodes in the last branching level;

•  ′
𝐵 , the set 𝐵 ⧵  ′′

𝐵 .

We also define the following sets:

• (𝑡), the set of nodes of the subtree rooted at node 𝑡 ∈ 𝐵 ;
•  ′′(𝑡) ∶= (𝑡) ∩  ′′

𝐵 , the subset of nodes of (𝑡) belonging to the
last branching level  ′′

𝐵 ;
•  ′′

𝐿 (𝑡) and  ′′
𝑅(𝑡), the set of nodes in  ′′

𝐵 under the left and right
branch of node 𝑡 ∈  ′

𝐵 such that:

-  ′′(𝑡) =  ′′
𝐿 (𝑡) ∪  ′′

𝑅(𝑡)
-  ′′

𝐿 (𝑡) ∩  ′′
𝑅(𝑡) = ∅.

The formulation needs to model the fact that the hyperplane at each
node 𝑡 needs to be trained on just a subset of samples. To this aim, let
𝑡 ⊆  be the index set of samples routed to 𝑡 ∈ 𝐵 . The definition of
the hyperplane at each node 𝑡 is obtained by means of an SVM-type
problem. This means that, for each node 𝑡 ∈ 𝐵 , we will have standard
variables (𝑤𝑡, 𝑏𝑡, 𝜉𝑡) ∈ R𝑛 × R × R|𝑡| which must satisfy the soft SVM
margin constraints:
𝑖 𝑇 𝑖
4

𝑦 (𝑤𝑡 𝑥 + 𝑏𝑡) ≥ 1 − 𝜉𝑡,𝑖 ∀𝑖 ∈ 𝑡 (3) l
𝜉𝑡,𝑖 ≥ 0 ∀𝑖 ∈ 𝑡.

Samples (𝑥𝑖, 𝑦𝑖), 𝑖 ∈ 𝑡, can be split among the right or left child
node of 𝑡 depending on the rules:

𝑤𝑇
𝑡 𝑥

𝑖 + 𝑏𝑡 ≥ 0 if 𝑖 ∈ 𝑅(𝑡) or 𝑤𝑇
𝑡 𝑥

𝑖 + 𝑏𝑡 < 0 if 𝑖 ∈ 𝐿(𝑡), (4)

where sets 𝑅(𝑡) and 𝐿(𝑡) are the index sets of samples assigned to the
right and left child nodes of 𝑡, respectively, thus 𝑅(𝑡) ∪ 𝐿(𝑡) = 𝑡 and
𝑅(𝑡)∩𝐿(𝑡) = ∅. A set of routing constraints is therefore needed, for each
sample 𝑖 ∈ 𝑡, in order to impose the correct sign of the hyperplane
function in 𝑥𝑖, ℎ𝑡(𝑥𝑖) = 𝑤𝑇

𝑡 𝑥
𝑖 + 𝑏𝑡.

The objective function of the single SVM-type problem at node 𝑡
optimizes the trade-off between the maximization of the hyperplane
margin and the minimization of the upper bound on the misclassifi-
cation cost given by the sum of the slack variables 𝜉𝑡,𝑖 for all 𝑖 ∈ 𝑡,
weighted by a positive coefficient 𝐶𝑡:
1
2
‖𝑤𝑡‖

2
2 + 𝐶𝑡

∑

𝑖∈𝑡

𝜉𝑡,𝑖.

The aim is to train all the hyperplanes with a single optimization
odel. Thus, in the objective function, we sum the previous terms over

ll branch nodes 𝑡 ∈ 𝐵 and all samples 𝑖 ∈ 𝑡:

in
∑

𝑡∈𝐵

(1
2
‖𝑤𝑡‖

2
2 + 𝐶𝑡

∑

𝑖∈𝑡

𝜉𝑡,𝑖
)

.

However, the route of the samples in the tree, and consequently the
efinition of subsets 𝑡 with 𝑡 ∈ 𝐵 , is not preassigned, but it is defined

by the optimization procedure. Hence, we need to define variables
𝜉𝑡,𝑖 and all margin and routing constraints for every sample in ,
onsidering that constraints at node 𝑡 must activate only on the subset
f samples 𝑡. In order to model the activation/deactivation of these
onstraints, we need to introduce binary variables which determine the
nique path of each sample in the tree. In state-of-the-art OCT models,
uch variables model the assignment of each sample in  to either leaf
odes (resulting in |𝐿| ⋅ || = 2𝐷|| variables), as in Bertsimas and
unn (2017), or to branch nodes (resulting in |𝐵| ⋅ || = (2𝐷 − 1)||
ariables), as in Blanco et al. (2022). Routing constraints are defined
sing these variables, often leading to large MIP models. We aim to
educe as much as possible both the number of binary variables and
he constraints used in the model to obtain a more tractable problem.
or each sample in  we can introduce such binary variables only for
he branch nodes in  ′′

𝐵 , resulting in | ′′
𝐵 |⋅|| = 2𝐷−1

|| variables which
re half the value |𝐿| ⋅ || and less than |𝐵| ⋅ ||. Indeed, following
he SVM approach, we do not need to model the assignment of labels
o the leaf nodes. This is because, once hyperplanes 𝑡 for 𝑡 ∈  ′′

𝐵 are
efined, labels are then implicitly assigned to the leaves, with positive

abels always assigned to right leaf nodes and negative labels to the
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n
l

left ones, as shown in Fig. 2. Moreover, the modelling of the leaf
level is usually needed to evaluate the misclassification error, which
is usually computed ‘‘inside’’ the leaves, counting, with appropriate
binary variables, the number of misclassified samples assigned to each
leaf. Nonetheless, in our case, the misclassification cost is controlled
by its upper bound defined by the sum of slack variables which do not
depend on the leaf nodes. Thus, we will model the assignment of a
sample 𝑖 only to a node in  ′′

𝐵 , and this will be sufficient to reconstruct
the unique path of the sample within the tree.

We can now define binary variables 𝑧𝑖,𝑡 for all 𝑖 ∈  and 𝑡 ∈  ′′
𝐵 , as

follows:

𝑧𝑖,𝑡 =

{

1 if sample 𝑖 is 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 to node 𝑡 ∈  ′′
𝐵

0 otherwise
.

Each sample has to be assigned to exactly one node 𝑡 ∈  ′′
𝐵 , so we must

impose that
∑

𝑡∈ ′′
𝐵

𝑧𝑖,𝑡 = 1 ∀𝑖 ∈  (5)

𝑧𝑖,𝑡 ∈ {0, 1} ∀𝑖 ∈ , 𝑡 ∈  ′′
𝐵 , (6)

where constraints (5) will be also referred to as assignment constraints.
To model the SVM margin constraints (3), we observe that whenever
a sample 𝑖 belongs to 𝑡, it must be assigned to a node in  ′′(𝑡), hence
we must have
∑

𝓁∈′′(𝑡)
𝑧𝑖,𝓁 = 1 ∀𝑖 ∈ 𝑡.

We use this condition to activate or deactivate the SVM margin
constraints when 𝑖 ∈ 𝑡 or 𝑖 ∉ 𝑡 respectively by means of a Big-M
term. Hence, we can express the SVM constraints as

𝑦𝑖(𝑤𝑇
𝑡 𝑥

𝑖 + 𝑏𝑡) ≥ 1 − 𝜉𝑡,𝑖 −𝑀𝜉

(

1 −
∑

𝓁∈′′(𝑡)
𝑧𝑖,𝓁

)

∀𝑖 ∈ , ∀𝑡 ∈ 𝐵 (7)

𝜉𝑡,𝑖 ≥ 0 ∀𝑖 ∈ , ∀𝑡 ∈ 𝐵 , (8)

where 𝑀𝜉 > 0 is a sufficiently large value such that 𝑀𝜉 ≥ 1−𝑦𝑖(𝑤𝑇
𝑡 𝑥

𝑖+𝑏𝑡)
is satisfied for all 𝑖 ∈ . When a sample 𝑖 ∉ 𝑡, margin constraints in (7)
will always be satisfied, and variables 𝜉𝑡,𝑖 at the optimum will be set to
0 because their sum is minimized in the objective function.

It remains to force each sample 𝑖 ∈  to follow a unique path from
the root node to the node in  ′′

𝐵 . As we have already commented,
we must impose routing constraints only for the branch nodes in  ′

𝐵 .
Indeed, the hyperplane at each node 𝑡 ∈  ′′

𝐵 is defined according to the
soft SVM-type model using 𝜉 variables to measure the misclassification
cost, and it does not depend on how the samples are finally routed in
the leaves (namely on the predicted label). Thus, for each 𝑡 ∈  ′

𝐵 , we
introduce the routing constraints modelling rules in (4) observing that
a sample 𝑖 ∈ 𝑡 following either the left or right branch from 𝑡, must
satisfy

either
∑

𝓁∈′′
𝐿 (𝑡)

𝑧𝑖,𝓁 = 1 or
∑

𝓁∈′′
𝑅 (𝑡)

𝑧𝑖,𝓁 = 1.

We can model the routing conditions for each 𝑡 ∈  ′
𝐵 and for each

𝑖 ∈  using big-M constraints as follows:

𝑤𝑇
𝑡 𝑥

𝑖 + 𝑏𝑡 ≥ −𝑀

(

1 −
∑

𝓁∈′′
𝑅 (𝑡)

𝑧𝑖,𝓁
)

∀𝑖 ∈ , ∀𝑡 ∈  ′
𝐵 (9)

𝑤𝑇
𝑡 𝑥

𝑖 + 𝑏𝑡 + 𝜀 ≤ 𝑀

(

1 −
∑

𝓁∈′′
𝐿 (𝑡)

𝑧𝑖,𝓁
)

∀𝑖 ∈ , ∀𝑡 ∈  ′
𝐵 , (10)

where 𝜀 > 0 is a sufficiently small positive value to model closed
inequalities. We observe that when a sample 𝑖 ∉ 𝑡, we have that
∑

𝓁∈′′
𝐿 (𝑡) 𝑧𝑖,𝓁 =

∑

𝓁∈′′
𝑅 (𝑡) 𝑧𝑖,𝓁 = 0 and both the constraints do not force

any restriction on the sample. Thus, each separating hyperplane (𝑤𝑡, 𝑏𝑡)
5

is constructed using a subset of samples.
Table 1
Summary of the dimensions of MARGOT.

Class Cardinality

Variables Continuous variables (𝑤, 𝑏, 𝜉) (𝑛 + 1 + |𝐼|)(2𝐷 − 1)
Integer variables 𝑧 |𝐼| ⋅ 2𝐷−1

Constraints
Routing constraints 2(2𝐷−1 − 1)|𝐼|
Margin constraints (2𝐷 − 1)|𝐼|
Assignment constraints |𝐼|

The final MARGOT formulation is the following:

(MARGOT) min
𝑤,𝑏,𝜉,𝑧

∑

𝑡∈𝐵

( 1
2
‖𝑤𝑡‖

2
2 + 𝐶𝑡

∑

𝑖∈
𝜉𝑡,𝑖

)

s.t. 𝑦𝑖(𝑤𝑇
𝑡 𝑥

𝑖 + 𝑏𝑡) ≥ 1 − 𝜉𝑡,𝑖 −𝑀𝜉

(

1 −
∑

𝓁∈ ′′ (𝑡)
𝑧𝑖,𝓁

)

∀𝑖 ∈ , ∀𝑡 ∈ 𝐵

𝑤𝑇
𝑡 𝑥

𝑖 + 𝑏𝑡 ≥ −𝑀

(

1 −
∑

𝓁∈ ′′
𝑅 (𝑡)

𝑧𝑖,𝓁
)

∀𝑖 ∈ , ∀𝑡 ∈  ′
𝐵

𝑤𝑇
𝑡 𝑥

𝑖 + 𝑏𝑡 + 𝜀 ≤ 𝑀

(

1 −
∑

𝓁∈ ′′
𝐿 (𝑡)

𝑧𝑖,𝓁
)

∀𝑖 ∈ , ∀𝑡 ∈  ′
𝐵

∑

𝑡∈ ′′
𝐵

𝑧𝑖,𝑡 = 1 ∀𝑖 ∈ 

𝜉𝑡,𝑖 ≥ 0 ∀𝑖 ∈ , ∀𝑡 ∈ 𝐵

𝑧𝑖,𝑡 ∈ {0, 1} ∀𝑖 ∈ , ∀𝑡 ∈  ′′
𝐵 .

It is important to observe that the complexity of the tree, namely the
umber of effective splits, is implicitly controlled in MARGOT. Indeed,
et us assume that the node 𝑡 does not split, namely that 𝑤𝑡 = 0. The

value of 𝑏𝑡 and 𝜉𝑡,𝑖 are set to appropriate values according to the SVM
constraints (3) that read as

𝑦𝑖𝑏𝑡 ≥ 1 − 𝜉𝑡,𝑖 =

{

𝑏𝑡 ≥ 1 − 𝜉𝑡,𝑖 if 𝑦𝑖 = 1
𝑏𝑡 ≤ 𝜉𝑡,𝑖 − 1 if 𝑦𝑖 = −1

.

Hence, the minimization of the misclassification cost will lead to 𝜉𝑡,𝑖 = 0
for samples 𝑖 ∈ 𝑡 labelled with the most common label �̂� in the node
𝑡, and, accordingly, �̂�𝑏𝑡 ≥ 1. For the samples 𝑖 ∈ 𝑡 with the minority
label, the minimization of 𝜉𝑡,𝑖, and the constraints 𝜉𝑡,𝑖 ≥ 1 + |𝑏𝑡| and
|𝑏𝑡| ≥ 1 will lead to 𝑏𝑡 = �̂� and 𝜉𝑡,𝑖 = 2. Thus, if a sample 𝑖 is well
classified, the misclassification cost related to node 𝑡 is 𝐶𝑡𝜉𝑡,𝑖 = 0,
otherwise 𝐶𝑡𝜉𝑡,𝑖 = 2𝐶𝑡. In the special case when samples 𝑖 ∈ 𝑡 belong
to the same class �̂�, then we get 𝑤𝑡 = 0, 𝜉𝑡,𝑖 = 0 and we do not incur
any cost in the objective function for that node. In this case, we have
multiple solutions for 𝑏𝑡 that must satisfy �̂�𝑏𝑡 ≥ 1 for 𝑖 ∈ 𝑡.

In Table 1, we report a summary of the number of variables and
constraints as a function of the depth 𝐷 of the tree. For the sake
of simplicity, all the notation used in the definition of the model is
reported in Table B.17 in the Appendix.

It is worth noticing that, even in the case in which the binary
variables 𝑧𝑖,𝑡 are fixed to values �̂�𝑖,𝑡 (e.g. by setting the values returned
by another classification tree method such as CART), the subproblems
solved at each 𝑡 ∈ 𝐵 are not pure SVM problems unless 𝑡 ∈  ′′

𝐵 . Let us
first note that sets 𝑡, for all 𝑡 ∈ 𝐵 , can be equivalently redefined as:

𝑡 ∶=
{

𝑖 ∈  ∶
∑

𝓁∈′′(𝑡)
�̂�𝑖,𝓁 = 1

}

.

Similarly, sets 𝑅(𝑡) and 𝐿(𝑡), for all 𝑡 ∈  ′
𝐵 , can be redefined as:

𝑅(𝑡) ∶=
{

𝑖 ∈  ∶
∑

𝓁∈′′
𝑅 (𝑡)

�̂�𝑖,𝓁 = 1
}

and 𝐿(𝑡) ∶=
{

𝑖 ∈  ∶
∑

𝓁∈′′
𝐿 (𝑡)

�̂�𝑖,𝓁 = 1
}

.

Thus, the MARGOT optimization problem decomposes into the resolu-
tion of |𝐵| problems, where the first | ′

𝐵| problems, one for each 𝑡 ∈  ′
𝐵 ,

are of the type:

min
𝑤𝑡 ,𝑏𝑡 ,𝜉𝑡

1
2
‖𝑤𝑡‖

2
2 + 𝐶𝑡

∑

𝑖∈𝑡

𝜉𝑡,𝑖

s.t. 𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏 ) ≥ 1 − 𝜉 ∀𝑖 ∈ 
𝑡 𝑡 𝑡,𝑖 𝑡
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𝑤𝑇
𝑡 𝑥

𝑖 + 𝑏𝑡 ≥ 0 ∀𝑖 ∈ 𝑅(𝑡)
𝑤𝑇

𝑡 𝑥
𝑖 + 𝑏𝑡 + 𝜀 ≤ 0 ∀𝑖 ∈ 𝐿(𝑡)

𝜉𝑡,𝑖 ≥ 0 ∀𝑖 ∈ 𝑡.

Only the remaining | ′′
𝐵 | problems are pure SVM problems in that

routing constraints are not defined for the nodes of the last branching
level.

4. MARGOT with feature selection

In Machine Learning, Feature Selection (FS) is the process of se-
lecting the most relevant features of a dataset. Among FS approaches,
embedded methods integrate feature selection in the training process.
In optimization literature, a solution is defined as sparse when the
cardinality of the variables not equal to 0 is ‘‘low’’. The sparsity of an
optimal solution is a requirement that is highly desirable in many ap-
plication contexts. As a matter of fact, the concept of embedded feature
selection translates into the sparsity requirement for the solution of the
optimization model used for the training process.

The MARGOT formulation does not take into account the sparsity
of the hyperplane coefficients variables 𝑤𝑡 for each node 𝑡 ∈ 𝐵 . Thus,
in order to improve the interpretability of our method, we propose
two alternative versions of the MARGOT model where the number of
features used at each branch node of the tree is either limited (‘‘hard’’
approach) or penalized (‘‘soft’’ approach). This way, the hyperplane
at each branch node is induced to use only a subset of features. This,
together with the tree structure of the model, yields a hierarchy scheme
on the subset of features which mostly affect the classification. In more
detail, we introduce, for each node 𝑡 ∈ 𝐵 and for each feature 𝑗 =
1,… , 𝑛, a new binary variable 𝑠𝑡,𝑗 ∈ {0, 1} such that:

𝑠𝑡,𝑗 =

{

1 if feature 𝑗 is 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 at node 𝑡 (𝑤𝑡,𝑗 ≠ 0)
0 otherwise

.

Classical Big-M constraints on the variables 𝑤𝑡,𝑗 must be added to
model the above implication:

−𝑀𝑤𝑠𝑡,𝑗 ≤ 𝑤𝑡,𝑗 ≤ 𝑀𝑤𝑠𝑡,𝑗 ∀𝑡 ∈ 𝐵 , ∀𝑗 = 1,… , 𝑛 (11)

𝑠𝑡,𝑗 ∈ {0, 1} ∀𝑡 ∈ 𝐵 , ∀𝑗 = 1,… , 𝑛, (12)

where 𝑀𝑤 is set to a sufficiently large value.
Similarly to Labbé et al. (2019), where a MILP feature selection

version of the 𝓁1-regularized SVM primal problem is proposed, in the
hard features selection approach, we restrict the number of features
used at each node to be not greater than a budget value. We do that
by introducing a hyperparameter 𝐵𝑡 and a budget constraint for each
branch node 𝑡 ∈ 𝐵 :
𝑛
∑

𝑗=1
𝑠𝑡,𝑗 ≤ 𝐵𝑡.

The resulting formulation for the hard version, denoted as HFS-
MARGOT, is the following:

(HFS-MARGOT) min
𝑤,𝑏,𝜉,𝑧,𝑠

∑

𝑡∈𝐵

( 1
2
‖𝑤𝑡‖

2
2 + 𝐶𝑡

∑

𝑖∈
𝜉𝑡,𝑖

)

s.t. (5)–(10)

− 𝑀𝑤𝑠𝑡,𝑗 ≤ 𝑤𝑡,𝑗 ≤ 𝑀𝑤𝑠𝑡,𝑗 ∀𝑡 ∈ 𝐵 , ∀𝑗 = 1,… , 𝑛
𝑛
∑

𝑗=1
𝑠𝑡,𝑗 ≤ 𝐵𝑡 ∀𝑡 ∈ 𝐵

𝑠𝑡,𝑗 ∈ {0, 1} ∀𝑡 ∈ 𝐵 , ∀𝑗 = 1,… , 𝑛.

In the soft approach, we remove the budget constraints and control
heir violations by adding a penalization term in the objective function
eighted by an appropriate hyperparameter 𝛼:

∑

max
{

0,
𝑛
∑

𝑠𝑡,𝑗 − 𝐵𝑡

}

.

6

∈𝐵 𝑗=1
Table 2
Overview of all the variables used in the MARGOT formulations and their
meaning.
Variable Meaning Model

𝑤 ∈ R|𝐵 |×𝑛 Split coefficients All
𝑏 ∈ R|𝐵 | Split biases All
𝜉 ∈ R|𝐵 |×|| Slack variables All
𝑧 ∈ {0, 1}||×| ′′

𝐵 | Samples assignment to nodes in  ′′
𝐵 All

𝑠 ∈ {0, 1}|𝐵 |×𝑛 Feature selection HFS/SFS-MARGOT
𝑢 ∈ R|𝐵 | Soft FS penalization parameter SFS-MARGOT

The resulting version allows for more than 𝐵𝑡 features to be selected
at each splitting node 𝑡 by penalizing the number of the features
that exceed the budget. The max functions can be linearized with the
introduction of a new continuous variable 𝑢𝑡, for all 𝑡 ∈ 𝐵 , thus
obtaining the following MIQP formulation denoted as SFS-MARGOT:

(SFS-MARGOT) min
𝑤,𝑏,𝜉,𝑧,𝑠,𝑢

∑

𝑡∈𝐵

( 1
2
‖𝑤𝑡‖

2
2 + 𝐶𝑡

∑

𝑖∈
𝜉𝑡,𝑖 + 𝛼𝑢𝑡

)

s.t. (5)–(10)

− 𝑀𝑤𝑠𝑡,𝑗 ≤ 𝑤𝑡,𝑗 ≤ 𝑀𝑤𝑠𝑡,𝑗 ∀𝑡 ∈ 𝐵 , ∀𝑗 = 1,… , 𝑛

𝑢𝑡 ≥
𝑛
∑

𝑗=1
𝑠𝑡,𝑗 − 𝐵𝑡 ∀𝑡 ∈ 𝐵

𝑢𝑡 ≥ 0 ∀𝑡 ∈ 𝐵
𝑠𝑡,𝑗 ∈ {0, 1} ∀𝑡 ∈ 𝐵 , ∀𝑗 = 1,… , 𝑛.

Inducing local sparsity on each vector 𝑤𝑡 may be preferable rather
han addressing global sparsity on the full vector 𝑤, as done in the
CT-H model proposed in Bertsimas and Dunn (2017). Indeed, global

parsity of the vector 𝑤 has little effect on the ‘‘spreadness’’ of the
eatures among the splitting rules in the tree, often leading to trees
ith fewer and less interpretable splits, usually at the higher levels.
his way, a local approach can generate models that better exploit the
ree’s hierarchical structure. A solution that is more ‘‘spread’’ in terms
f features can thus result in a more interpretable machine learning
odel because it yields a hierarchy scheme among the features which
ostly affect the classification. In this sense, HFS-MARGOT attains a

ocally sparse tree classifier, while SFS-MARGOT is more of a hybrid
etween HFS-MARGOT and OCT-H, and, depending on the choice of
arameters 𝛼 and 𝐵𝑡, 𝑡 ∈ 𝐵 , it can be regarded as a more local or global
pproach. Of course, other constraints facing additional requirements
n the selected features can be added to these formulations. Indeed, the
parsity of the 𝑤𝑡 variables may not be the only interesting property
hen addressing the interpretability of the decision.

Table 2 provides an overview of all the variables used in the
ARGOT formulations.

. Heuristic for a starting feasible solution

We develop a simple greedy heuristic algorithm to find a feasible
olution to be used as a good-quality warm start for the optimization
rocedure. As well known, the value of the warm start solution is an
pper bound on the optimal one, and it can be used to prune nodes of
he branch and bound tree of the MIP solver, eventually yielding shorter
omputational times. Thus, developing a good warm start solution is
sually addressed in MIP formulations and implemented in off-the-shelf
olvers at the root node of the branching tree. In Bertsimas and Dunn
2017), several warm start procedures are proposed, from the simplest
ne, which consists of using the solution provided by CART, to more
ailored ones.

The general heuristic scheme, denoted as Local SVM Heuristic,
xploits the special structure of the MIQP models addressed and can be
pplied to obtain feasible solutions for MARGOT, HFS-MARGOT, and
FS-MARGOT models. The Local SVM Heuristic is based on a greedy
ecursive top-down strategy. Starting from the root node, the maximum
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margin hyperplane is computed using an SVM model embedding, when
needed, feature selection constraints and penalization. More in detail,
for each node 𝑡 ∈ 𝐵 , given a predefined index set 𝑡 ⊆ , the heuristic
solves the following problem:

(WS-SVM𝑡) min
𝑤𝑡 ,𝑏𝑡 ,𝜉𝑡 ,𝑠𝑡 ,𝑢𝑡

1
2
‖𝑤𝑡‖

2
2 + 𝐶𝑡

∑

𝑖∈𝑡

𝜉𝑡,𝑖 + 𝛼𝑢𝑡

s.t. 𝑦𝑖(𝑤𝑇
𝑡 𝑥

𝑖 + 𝑏𝑡) ≥ 1 − 𝜉𝑡,𝑖 ∀𝑖 ∈ 𝑡
− 𝑀𝑤𝑠𝑡,𝑗 ≤ 𝑤𝑡,𝑗 ≤ 𝑀𝑤𝑠𝑡,𝑗 ∀𝑗 = 1,… , 𝑛

𝑢𝑡 ≥
𝑛
∑

𝑗=1
𝑠𝑡,𝑗 − 𝐵𝑡

𝑢𝑡 ≥ 0

𝜉𝑡,𝑖 ≥ 0 ∀𝑖 ∈ 𝑡
𝑠𝑡,𝑗 ∈ {0, 1} ∀𝑗 = 1,… , 𝑛,

where hyperparameters 𝐵𝑡, 𝛼 and variable 𝑢𝑡 may be fixed to specific
values to get warm start solutions for the three different models. In
particular, when 𝐵𝑡 = 𝑛 we do not impose restrictions on the number
of features, and variable 𝑢𝑡 will be automatically set to 0. When 𝐵𝑡 < 𝑛
and 𝑢 is set to zero, we obtain an 𝓁2-regularized SVM model with a
hard constraint on the number of features, similar to the approach
in Labbé et al. (2019). Finally, when 𝛼 > 0, 𝐵𝑡 < 𝑛 and variable 𝑢𝑡
is not fixed, we impose a soft constraint on the number of features.
Given the optimal tuple (�̂�𝑡, �̂�𝑡, 𝜉𝑡, �̂�𝑡) ∈ R𝑛 × R × R|| × {0, 1}𝑛 obtained
at node 𝑡, the samples are partitioned to the left or right child node in
the subsequent level of the tree according to the routing rules defined
by the hyperplane 𝑡 = {𝑥 ∈ R𝑛 ∶ �̂�𝑇

𝑡 𝑥 + �̂�𝑡 = 0}. Thus, each node
𝑡 works on a different subset of samples 𝑡 ⊆ , and 𝐿(𝑡) and 𝑅(𝑡)
are the index sets of samples assigned to the left and right child node
of 𝑡, respectively. At the end of the procedure, for each 𝑡 ∈ 𝐵 , the
solutions (�̂�𝑡, �̂�𝑡, 𝜉𝑡) ∈ R𝑛 ×R×R||, together with solutions �̂�𝑡 ∈ {0, 1}𝑛,
when needed, constitute a feasible solution for the original problem. In
the very last step, variables 𝑧𝑖,𝑡 are set according to the definitions of
sets 𝑡, 𝑡 ∈  ′′

𝐵 . The general scheme encompassing the three different
strategies is reported in Algorithm 1.

The heuristic procedure requires the solution of 2𝐷 − 1 MIQP prob-
lems with a decreasing number of constraints (depending on the size of
𝑡) that can be easily handled by off-the-shelf MIP solvers. We show in
the computational experiments that the use of the proposed heuristics
improves the quality of the first incumbent solution with respect to the
chosen optimization solver.

6. Computational results

In this section, we present different computational results where
models MARGOT, HFS-MARGOT and SFS-MARGOT are compared to
other three benchmark OCT models:

• OCT-1 and OCT-H, the traditional univariate and multivariate op-
timal classification tree models proposed in Bertsimas and Dunn
(2017);

• MM-SVM-OCT, as proposed in Blanco et al. (2022), where no
relabelling is allowed.

Note that there are alternative methods for constructing optimal
univariate trees based on dynamic programming algorithms (Aglin
et al., 2020; Lin et al., 2020). However, to ensure a fair comparison, we
select OCT-1 as a standard benchmark for univariate trees so that all
the tested approaches rely on solving MIP formulations using the same
optimization solver. Moreover, in the case of MM-SVM-OCT, we did
not allow relabelling, which is used to make the method robust against
noisy data. Indeed, our aim is to evaluate the isolated effect of their way
of constructing margin-based splits in the tree without considering the
potential effects relabelling may introduce.

All mathematical programming models have been implemented on
our own. They were coded in Python and solved using Gurobi 9.5.1 on
7

Algorithm 1: Local SVM Heuristic

Data: {(𝑥𝑖, 𝑦𝑖) ∈ R𝑛 × {−1, 1}, 𝑖 ∈ };

Parameters: {𝐶𝑡 > 0, 𝑡 ∈ 𝐵}, 𝛼 > 0, 𝑀𝑤 > 0, 𝐷, 𝜀 > 0,
𝐵𝑡 > 0, 𝑡 ∈ 𝐵};
nput: Model ∈ {MARGOT, HFS-MARGOT, SFS-MARGOT};

nitialize: 0 = , 𝑡 = ∅ ∀𝑡 ∈ 𝐵 ⧵ {0}, 𝑧𝑖,𝑡 = 0, ∀𝑡 ∈  ′′
𝐵 ,∀𝑖 ∈ ,

�̂�,𝑖 = 0, ∀𝑡 ∈ 𝐵 ,∀𝑖 ∈ ;

for level 𝑘 = 0,… , 𝐷 − 1 do
for node 𝑡 = 2𝑘 − 1,… , 2𝑘+1 − 2 do

if model = MARGOT then
set 𝐵𝑡 = 𝑛

end
if model = HFS-MARGOT then

set 𝐵𝑡 = 𝐵𝑡 and 𝑢𝑡 = 0
end
if model = SFS-MARGOT then

set 𝐵𝑡 = 𝐵𝑡 and 𝛼 = 𝛼
end

Find (�̂�𝑡, �̂�𝑡, 𝜉𝑡, �̂�𝑡) optimal solution of WS-SVM𝑡

Set 𝐿(𝑡) = {𝑖 ∈ 𝑡 ∶ �̂�𝑇
𝑡 𝑥

𝑖 + �̂�𝑡 + 𝜀 ≤ 0} and
𝑅(𝑡) = {𝑖 ∈ 𝑡 ∶ �̂�𝑇

𝑡 𝑥
𝑖 + �̂�𝑡 ≥ 0}

end
end
for 𝑡 ∈  ′′

𝐵 do
if 𝑖 ∈ 𝑡 then

Set 𝑧𝑖,𝑡 = 1
end

nd

utput: A feasible solution (�̂�, �̂�, 𝜉, �̂�, 𝑧) for all the input models.

a server Intel(R) Xeon(R) Gold 6252N CPU processor at 2.30 GHz and
96 GB of RAM. The source code and the data of the experiments are
available at https://github.com/m-monaci/MARGOT, and additional
implementation details are provided in the next sections.

We used two groups of datasets:

• 3 non-linearly separable synthetic datasets in a 2-dimensional
feature space, in order to give a graphical representation of the
maximum margin approach (presented in Section 6.1);

• 10 datasets from UCI Machine Learning Repository (Dua and
Graff, 2017), to assess the effectiveness of the formulations as
regards both the predictive and the optimization performances
(presented in Section 6.2).

As regards categorical data, we treated ordinal attributes as numer-
ical ones, while we applied the standard one-hot encoding for nominal
features. We normalized the feature values of each dataset to the 0–
1 interval. For the results on the UCI datasets, we performed a 4-fold
cross-validation to select the best hyperparameters which is detailed
in the specific sections below. In Section 6.3, we eventually present a
brief analysis on the Local SVM algorithm presented in Section 5, in
order to motivate the use of the warm start solution in input to the
solver. In all tables reporting predictive and optimization performances,
the best result is highlighted in bold, while, when the time limit was
reached, the time value is underlined. The interested reader can also
refer to Appendix A for other insightful results that were omitted here
to avoid excessive verbosity.

https://github.com/m-monaci/MARGOT
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Fig. 3. Results on the 4-partitions synthetic dataset.
Fig. 4. Results on the 6-partitions synthetic dataset.
Table 3
Time (s), Gap (%) and ACC (%) performances on the synthetic datasets (time limit = 14400 s = 4 h).
Dataset || 𝐷 Local SVM OCT-H MM-SVM-OCT MARGOT

Time Gap ACC Time Gap ACC Time Gap ACC Time Gap ACC

4-partitions 108 2 0.1 – 86.1 53.5 0 100 5.2 0 100 0.2 0 100
6-partitions 96 3 0.1 – 91.7 14400 50 100 181.2 0 96.9 4215.0 0 100
fourclass 689 4 126.0 – 80.0 14400 100.0 97.8 14400 74.5 88.4 14400 67.2 99.6
b

6.1. Results on 2-dimensional synthetic datasets

As regards the 2-dimensional datasets, we used two artificially
constructed problems, 4-partitions and 6-partitions, and the
more complex synthetic fourclass dataset (Ho and Kleinberg, 1996)
as reported in LIBSVM Library (Chang and Lin, 2011). Our aim is
to offer a glimpse of the differences in the hyperplanes generated by
8

the different multivariate optimal tree models, thus OCT-1 was not
compared here. We also reported the solution returned by the Local
SVM Heuristic (Algorithm 1) to show how far the greedy solution is
from the optimal ones. For all three synthetic datasets, there exists a set
of hyperplanes that can reach perfect classification on the training data.
In particular, 4-partitions and 6-partitions were constructed
y defining hyperplanes with margins and plotting 108 and 96 random
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Fig. 5. Results on the fourclass synthetic dataset.

points, respectively, in regions outside the margin (see Figs. 3(a), 4(a)).
Although reaching zero classification error on the training data is not
desirable in ML models, in these cases, we want to highlight the power
of using hyperplanes with margins to derive more robust classifiers.
We did not account for the out-of-sample performance; therefore the
entire datasets were used to train the optimal tree. Of course, because
these datasets are in a 2-dimensional space, we do not consider HFS-
MARGOT and SFS-MARGOT. The results are commented below, and a
cumulative view is provided in Table 3. For all the experiments, the
time limit of the solver has been set to 4 h. In Figs. 3(b), 4(b), 5, we
report the hyperplanes generated by the Local SVM Heuristic, OCT-H,
MM-SVM-OCT, and MARGOT. Different colours correspond to different
branch nodes of the tree, as reported in the legend.

In the case of MM-SVM-OCT and MARGOT, at each last splitting
node, we plotted the two supporting hyperplanes at a distance of
2‖𝑤‖

−1 to highlight the margins of the hyperplanes that define the
predicted class of samples. Of course, such supporting hyperplanes can
also be plotted for the other splitting nodes. However, we omit them
because the hyperplane margins at these nodes are very wide, and
highlighting them may be confusing and not provide much insight for
the reader.

For the 4-partitions dataset, we consider trees with depth 𝐷 =
2. Fig. 3(b)(i) represents the tree obtained by the Local SVM Heuristic.
Hyperplane 0 at the root node coloured in blue is obtained on the
whole dataset, while the hyperplanes at its child nodes, 1 in green and
2 in orange, are obtained considering the partition of the points given
by 0 as the splitting rule on the whole dataset. The heuristic returns
a classification tree that does not classify all data points correctly,
obtaining an accuracy of 86.1%. Concerning the OCT approaches in
Fig. 3(b)(ii), (iii), and (iv), the solver certified the optimal solution on
all three models, thus obtaining 0% MIP gap in different computational
times. All three OCT models reach an accuracy of 100%. We note that
OCT-H creates hyperplanes that do not consider the margin. Indeed,
the objective of this approach is to minimize the misclassification cost
and the number of features used across the whole tree. Thus, as it
happens for the orange hyperplane 1, OCT-H tends to select axis-
aligned hyperplanes to split the points. As regards the tree produced
by the MM-SVM-OCT model, only the minimum margin among all the
hyperplanes is maximized. Consequently, only the green hyperplane
2 lies in the centre between the partitions of points, while the others
do not. Instead, the MARGOT tree is the one that most resembles the
ground truth in Fig. 3(a) and both the 1 and 2 hyperplanes have a
wider margin.
9

Fig. 4 shows the more complex synthetic dataset 6-partitions
where we set 𝐷 = 3, the minimum depth to correctly classify all
samples. MARGOT and OCT-H reach perfect classification on the whole
dataset, and both Local SVM Heuristic and MM-SVM-OCT return good
accuracies above 90%. Moreover, the solutions produced by MARGOT
and MM-SVM-OCT models are optimal, while OCT-H optimization
reaches the time limit with a MIP gap of 50%. In this case as well,
MARGOT appears to produce the most reliable classifier among all the
generated trees, as it is the one closest to the ground truth.

Finally, we evaluated the four methods on the fourclass dataset.
In this case, being the problem the most complex of the three, none of
the models has been solved to certified optimality, and OCT-H, MM-
SVM-OCT and MARGOT optimization procedures reach a MIP gap of
100%, 74.5% and 67.2% respectively. MARGOT and OCT-H approaches
were able to correctly classify almost all the samples, outperforming
MM-SVM-OCT, which reaches an accuracy of 88.4%. It is possible
to observe how the greedy fashion of the Local SVM Heuristic may
generate models not able to capture the underlying truth of the data.
Indeed, when applying local SVMs after the split at the root node, it
might happen that producing splits is not ‘‘convenient’’ in terms of
the objective function. This is due to the highly nonlinear separability
of the dataset, which cannot be effectively handled by a single linear
SVM. Thus, when applying the Local SVM Heuristic, not all the possible
15 splits are generated. This case illustrates the drawbacks of the
greedy methods compared to optimal ones: when applied to highly non-
linearly separable datasets, these heuristic approaches lead to myopic
decisions resulting in poor predictive performances.

It is worth noticing that all the approaches on the 6-partitions
and fourclass datasets tend to minimize the complexity of the tree,
i.e. the number of hyperplane splits created. In OCT-H model, this is a
consequence of both the penalization of the selection of features in the
objective function and the presence of specific constraints and variables
which model the pruning of the tree. Similarly, MM-SVM-OCT controls
the complexity of the tree with a penalization term in the objective
function by introducing binary variables and related constraints. On the
contrary, in MARGOT model the complexity is implicitly minimized in
the objective function. Indeed, creating an hyperplane split at a node 𝑡
eads to new coefficients 𝑤𝑡 ≠ 0 and variables 𝜉𝑡 ≠ 0 that appear in the

objective function.

6.2. Results on UCI datasets

We compare the different OCT models computing two predictive
measures: the accuracy (ACC) and the balanced accuracy (BACC). The
ACC is the percentage of correctly classified samples, and the BACC is
the mean of the percentage of correctly classified samples with positive
labels and the percentage of correctly classified samples with negative
labels.

Hence,

𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

,

𝐵𝐴𝐶𝐶 =
𝑇𝑃

𝑇𝑃+𝐹𝑁 + 𝑇𝑁
𝑇𝑁+𝐹𝑃

2
,

where TP are true positives, TN are true negatives, FP false positives
and FN false negatives. Information about the datasets considered is
provided in Table 4. We first partitioned each dataset in training (80%)
and test (20%) sets and then performed a 4-fold cross-validation (4-
FCV) on the training set in order to find the best hyperparameters.
In the first set of results where feature selection is not taken into
account, the selected hyperparameters are the ones which gave the
best average validation accuracy in the cross-validation process. For
the second set of results, we implemented a more specific tuning
of the hyperparameters to address the sparsity of the hyperplanes’
coefficients, as will be explained later in this section. Once the best
hyperparameters are selected, we compute the predictive measures on
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Table 4
Information about the datasets considered.
Dataset || 𝑛 Class (%)

Breast Cancer D. 569 30 63/36
Breast Cancer W. 683 9 65/35
Climate Model 540 18 9/91
Heart Disease C. 297 13 54/46
Ionosphere 351 34 36/64
Parkinsons 195 22 25/75
Sonar 208 60 53/47
SPECTF H. 267 44 21/79
Tic-Tac-Toe 958 27 35/65
Wholesale 440 7 81/19

the training and test sets. The results on the training dataset, as well
as all the hyperparameters used in this paper, can be found in the
Appendix B.

For the resolution of MARGOT, HFS-MARGOT and SFS-MARGOT
models, we injected warm start solutions produced by the Local SVM
Heuristic. Similarly, for OCT-1, we used as a heuristic solution the one
produced by CART (Breiman et al., 1984) using the same setting of
OCT-1 for depth 𝐷, the minimum number of samples per leaf 𝑁𝑚𝑖𝑛 and
omplexity parameter 𝛼. OCT-H was also given its starting solution,
ollowing the warm start procedure presented in Bertsimas and Dunn
2017). A time limit of 30 s was set for every warm start procedure,
nd an overall time limit of 600 s was set for training the models.
he maximum depth of the trees generated was fixed to 𝐷 = 2, and
he ranges of the hyperparameters used in the 4-FCV for the different
odels are the following:

• For OCT-1 and OCT-H, 𝑁𝑚𝑖𝑛 was set to 5% of the total number
of training samples and the grid used for the hyperparameter 𝛼 is
{0} ∪ {2𝑖 ∶ 𝑖 ∈ {−8,… , 2}}.

• For MM-SVM-OCT, we used the same grid as the one specified in
the related paper; 𝑐1 ∈ {10𝑖 ∶ 𝑖 ∈ {−5,… , 5}} and the complexity
hyperparameter 𝑐3 ∈ {10𝑖 ∶ 𝑖 ∈ {−2,… , 2}}.

• For MARGOT, we consider all possible combinations resulting
from 𝐶𝑡 ∈ {10𝑖 ∶ 𝑖 ∈ {−5,… , 5}} for all 𝑡 ∈ 𝐵 , and 𝐶1 = 𝐶2,
imposing the same 𝐶𝑡 values for all nodes 𝑡 belonging to the same
branching level.

• For HFS-MARGOT, we used the same grid for the 𝐶𝑡 values as in
MARGOT and, concerning the budget parameters {𝐵𝑡, for all 𝑡 ∈
𝐵}, we varied all possible combinations resulting from values of
𝐵𝑡 ∈ {1, 2, 3}, with 𝑡 ∈ 𝐵 , considering only combinations where
𝐵0 ≤ 𝐵1 = 𝐵2, with the value 3 regarded as the maximum number
of features a node can admit in order to be interpretable.

• For SFS-MARGOT, the grid used for the hyperparameter 𝛼 is {2𝑖 ∶
𝑖 ∈ {0,… , 10}} and we varied 𝐶𝑡 values as in MARGOT but in a
smaller grid {10𝑖 ∶ 𝑖 ∈ {−4,−2, 0, 2, 4}}. We set all budget values
𝐵𝑡 = 1 for all 𝑡 ∈ 𝐵 , allowing the model to have full flexibility
on where to use more features than the budget value.

6.2.1. Choice of the Big-M and 𝜀
Regarding the 𝜀 parameter used in our formulation, for similar

reasons as the one stated in Bertsimas and Dunn (2017), we set 𝜀 =
0.001 as a compromise between choosing small values that lead to
numerical issues and large values that can affect the feasible region
excluding possible solutions. Moreover, we carefully tuned the big-M
parameters through extensive computational experiments in order to
find values as tight as possible. As a result, we set those values as
follows:

𝑀𝜉 = 𝑀𝑤 = 50, 𝑀 = 100,

while the Big-M values in MM-SVM-OCT are fixed as indicated
in Blanco et al. (2022).
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Table 5
Results on the test predictive performances of the OCT models evaluated: test ACC (%)
and test BACC (%).

Dataset OCT-H MM-SVM-OCT MARGOT

ACC BACC ACC BACC ACC BACC

Breast Cancer D. 94.7 94.3 93.9 92.7 97.4 96.9
Breast Cancer W. 94.9 95.6 96.4 96.2 96.4 96.2
Climate Model 93.5 86.4 97.2 88.4 97.2 88.4
Heart Disease C. 80.0 79.7 81.7 81.3 83.3 83.0
Ionosphere 87.3 85.7 85.9 80.9 93.0 90.0
Parkinsons 82.1 84.7 87.2 81.6 84.6 83.1
Sonar 66.7 65.9 73.8 73.0 73.8 73.0
SPECTF H. 74.1 53.3 79.6 50.0 79.6 56.8
Tic-Tac-Toe 96.9 96.2 97.4 97.0 97.9 97.0
Wholesale 84.1 79.8 83.0 74.2 87.5 85.1

Table 6
Results on the optimization performances of the OCT models evaluated: computational
times (s) and MIP Gaps (%).

Dataset OCT-H MM-SVM-OCT MARGOT

Time Gap Time Gap Time Gap

Breast Cancer D. 620.2 72.8 600.2 27.5 7.4 0.0
Breast Cancer W. 615.3 80.1 333.0 0.0 8.7 0.0
Climate Model 620.2 90.6 600.2 0.6 10.7 0.0
Heart Disease C. 630.1 91.9 600.0 28.8 318.1 0.0
Ionosphere 59.1 0.0 600.0 8.4 11.2 0.0
Parkinsons 612.3 90.8 600.1 12.5 207.4 0.0
Sonar 620.2 96.1 262.7 0.0 1.5 0.0
SPECTF H. 620.2 96.9 30.3 0.0 600.2 3.3
Tic-Tac-Toe 625.4 100.0 600.1 78.1 3.5 0.0
Wholesale 620.1 95.6 600.0 32.4 46.4 0.0

6.2.2. First set of results
The first set of results is shown in Table 5, where we compare

the predictive performances of MARGOT against OCT-H and MM-
SVM-OCT. We can see how MARGOT takes full advantage of the
generalization capabilities deriving from the maximum margin ap-
proach, resulting in much higher ACC and BACC scores on the test
sets.

Computational times and MIP gaps can be found in Table 6. It is
clear how MARGOT optimization problem is much easier to solve than
OCT-H and MM-SVM-OCT. Indeed, 9 times out of 10, MARGOT reaches
the optimal solution with a mean computational time and MIP gap
of 121.5 seconds and 0.3%, respectively. MM-SVM-OCT reaches the
optimal solution 3 times out of 10, with a mean running time and gap of
482.7 seconds and 18.8% respectively, and OCT-H reaches the optimum
only in one case, with a mean time and gap of 564.3 seconds and 63.7%
respectively.

6.2.3. Second set of results: feature selection
In the following set of results, we compare HFS-MARGOT and SFS-

MARGOT with OCT-1 and OCT-H. Both MARGOT and MM-SVM-OCT
do not appear in this set of results because these models do not address
the sparsity of the hyperplanes’ weights. For this analysis, a different
hyperparameter selection was carried out. This was done to take into
account that we are not just comparing the predictive performances of
the methods, but we are also evaluating the feature selection aspect.
The 4-FCV was still conducted, but this time we did not select the
hyperparameters which gave the highest mean validation accuracy.
Indeed, the highest mean validation accuracy values yield to models
which select a high number of features, thus contrasting the aim to
create more interpretable trees. At the same time, solely considering
sparsity is not useful as the hyperparameters which gave the best results
in terms of feature selection may result in less performing classifiers.

Thus, we proceeded as follows. For each dataset, after performing
the standard 4-FCV, we highlighted the combinations of hyperpa-
rameters which resulted in a mean validation accuracy in the range
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Table 7
Results on the test predictive performances of the OCT models with feature selection: test ACC (%) and test
BACC (%).
Dataset OCT-1 OCT-H* HFS-MARGOT* SFS-MARGOT*

ACC BACC ACC BACC ACC BACC ACC BACC

Breast Cancer D. 91.2 91.6 94.7 94.3 95.6 95.5 94.7 94.3
Breast Cancer W. 92.0 90.9 92.0 91.4 94.2 94.5 94.2 93.6
Climate Model 91.7 60.1 98.1 93.9 96.3 77.8 96.3 82.8
Heart Disease C. 71.7 71.0 80.0 79.5 83.3 82.6 86.7 86.2
Ionosphere 91.5 91.7 90.1 86.9 87.3 83.8 84.5 79.8
Parkinsons 89.7 83.3 87.2 81.6 89.7 83.3 87.2 84.8
Sonar 69.0 68.9 71.4 71.1 71.4 70.9 73.8 73.6
SPECTF H. 77.8 65.8 75.9 51.1 75.9 57.8 83.3 65.9
Tic-Tac-Toe 69.3 61.5 96.4 95.5 76.0 65.7 97.9 97.0
Wholesale 86.4 85.2 87.5 86.1 86.4 85.2 88.6 86.9
Table 8
Results on the optimization performances of the OCT models with feature selection: computational times
(s) and MIP Gap values (%).
Dataset OCT-1 OCT-H* HFS-MARGOT* SFS-MARGOT*

Time Gap Time Gap Time Gap Time Gap

Breast Cancer D. 600.0 96.3 620.2 72.8 313.9 0.0 314.7 0.0
Breast Cancer W. 138.6 0.0 615.4 72.3 14.1 0.0 37.6 0.0
Climate Model 600.0 100.0 620.1 81.4 600.3 100.0 600.4 14.2
Heart Disease C. 93.3 0.0 630.1 86.9 106.5 0.0 600.3 28.2
Ionosphere 600.0 52.0 625.2 83.2 124.0 0.0 15.9 0.0
Parkinsons 600.0 92.9 620.1 82.4 7.8 0.0 600.2 62.0
Sonar 600.1 30.7 620.1 91.4 601.2 98.3 610.8 42.2
SPECTF H. 600.0 98.0 626.1 94.5 601.3 93.8 610.1 99.9
Tic-Tac-Toe 268.1 0.0 630.0 94.7 604.6 88.2 47.2 0.0
Wholesale 600.0 86.5 620.2 73.5 36.4 0.0 600.2 80.1
Table 9
Comparison on the number of features selected by the OCT models; 𝐹 is the set of features used in the tree, and 𝐹𝑡
are the features selected at the node 𝑡 = 0, 1, 2.
Dataset 𝑛 OCT-H MM-SVM-OCT MARGOT

|𝐹 | |𝐹0|, |𝐹1|, |𝐹2| |𝐹 | |𝐹0|, |𝐹1|, |𝐹2| |𝐹 | |𝐹0|, |𝐹1|, |𝐹2|

Breast Cancer D. 30 3 3, 0, 0 30 30, 30, 30 30 30, 30, 0
Breast Cancer W. 9 4 4, 0, 0 9 9, 9, 0 9 9, 8, 0
Climate Model 18 11 11, 0, 0 18 18, 18, 18 18 18, 0, 18
Heart Disease C. 13 4 4, 0, 0 13 13, 0, 0 13 13, 0, 6
Ionosphere 34 32 28, 22, 23 33 33, 33, 33 33 33, 33, 31
Parkinsons 22 13 7, 0, 8 22 22, 22, 22 22 22, 22, 22
Sonar 60 23 23, 0, 0 60 60, 60, 60 51 51, 0, 0
SPECTF H. 44 25 10, 4, 17 0 0, 0, 0 44 44, 0, 42
Tic-Tac-Toe 27 26 18, 18, 1 27 26, 26, 22 18 18, 0, 0
Wholesale 7 7 6, 0, 5 7 7, 7, 7 7 7, 0, 6
[0.975𝛾, 𝛾], where 𝛾 is the best mean validation accuracy value scored.
This way, we selected the combinations of hyperparameters corre-
sponding to ‘‘good’’ classifiers. Among these combinations, we chose
the ones corresponding to the lower number of features used, and,
among these last ones, we picked the combination corresponding to the
best validation accuracy. We denote by OCT-H*, HFS-MARGOT* and
SFS-MARGOT* the tree models generated with this feature selection
driven hyperparameter tuning. For OCT-1, we performed the standard
hyperparameter search considering that the univariate splits of the
model are sparse by definition. To the best of our knowledge, this is the
first time a tailored cross-validation was carried out to fairly compare
optimization-based ML models that embed feature selection.

Tables 7 and 8 report both the predictive and optimization per-
formances of the compared models. Tables 9 and 10, together with
their graphical representation in Fig. 7, show the difference in the
features selected among the analysed OCT models. We denote by 𝐹
the set of distinct features used overall in the tree, and by 𝐹𝑡 the set
of features selected at node 𝑡. As expected, MARGOT and MM-SVM-
OCT models tend to use all the available features because they have
11

no feature selection constraints or penalization terms in the objective
function. One thing to notice is that, in many cases, MM-SVM-OCT
tends to activate more branch splits than MARGOT, each involving
all the features. This might be due to the difference in the objective
functions of the two models. Moreover, the OCT-H model for which
a standard 4-FCV is carried out, tends to produce sparser tree models
since the number of features selected is penalized in its formulation.

OCT-1, OCT-H*, HFS-MARGOT* and SFS-MARGOT* generate mod-
els selecting a lower number of features, maintaining good prediction
performances, as shown in Table 7. In particular, we can notice how
SFS-MARGOT* presents better ACC and BACC values, and this is prob-
ably due to the combination of the maximum margin approach and the
feature selection penalization. Indeed, we can see how SFS-MARGOT*,
where violation of the budget constraints is allowed, has more freedom
in the selection of features compared to the more restrictive approach
of HFS-MARGOT*, which at each node cannot exceed a predefined
number of selected features. One thing to notice is that, on these
results, both OCT-H and OCT-H* tend to use the selected features just
in the first branch node of the tree. A similar behaviour is exhibited
by the SFS-MARGOT∗ model. In contrast, the features selected by HFS-
MARGOT∗ tend to be more spread throughout the branch nodes. Using
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Fig. 6. Trees generated by models in Table 7 on the Parkinsons and Breast Cancer D. datasets. For each branch node, we report the number of positive and negative training
samples in the squared brackets and below the features selected at each node. For each leaf node, the number of positive and negative samples is indicated, together with the
assigned class label.
Table 10
Comparison on the number of features selected by the OCT models with feature selection; 𝐹 is the set of features used in the tree,
and 𝐹𝑡 are the features selected at the node 𝑡 = 0, 1, 2.
Dataset 𝑛 OCT-1 OCT-H* HFS-MARGOT* SFS-MARGOT*

|𝐹 | |𝐹0|, |𝐹1|, |𝐹2| |𝐹 | |𝐹0|, |𝐹1|, |𝐹2| |𝐹 | |𝐹0|, |𝐹1|, |𝐹2| |𝐹 | |𝐹0|, |𝐹1|, |𝐹2|

Breast Cancer D. 30 2 1, 0, 1 3 3, 0, 0 4 2, 0, 2 3 3, 0, 0
Breast Cancer W. 9 3 1, 1, 1 2 2, 0, 0 4 2, 3, 0 3 3, 0, 0
Climate Model 18 2 1, 1, 1 7 7, 0, 0 6 3, 3, 0 4 4, 0, 0
Heart Disease C. 13 1 1, 0, 0 3 3, 0, 0 3 1, 2, 2 6 6, 0, 0
Ionosphere 34 2 1, 0, 1 3 2, 0, 1 7 2, 2, 3 2 1, 0, 1
Parkinsons 22 2 1, 1, 1 5 3, 3, 0 3 1, 2, 0 12 9, 2, 4
Sonar 60 1 1, 0, 0 15 15, 0, 0 5 1, 2, 2 8 7, 0, 1
SPECTF H. 44 2 1, 0, 1 5 5, 0, 0 6 2, 1, 3 10 9, 1, 0
Tic-Tac-Toe 27 2 1, 0, 1 18 18, 0, 0 5 2, 3, 0 18 18, 0, 0
Wholesale 7 2 1, 1, 1 2 2, 0, 0 5 1, 2, 2 3 3, 0, 0
hard budget constraints limiting the number of features selected at each
branch node has indeed two consequences: on the one hand, it spreads
more evenly the features selected among the tree structure, while on
the other, this restriction might result insufficient in order achieve the
best performances. This is the case of the Tic-Tac-Toe dataset where the
HFS-MARGOT* model clearly did not perform well, and this is most
likely because the values we adopted for budget parameters 𝐵𝑡 were
too limiting. In this sense, OCT-1 represents the extreme case, in that it
is limited to select only one feature per split, generally worsening the
predictive quality of the classifier. Of course, for HFS-MARGOT*, we
could have used higher budget values, but this, apart from leading to
less interpretable tree structures and time-consuming hyperparameters
tuning, does not attain the scope of our computational results. We
finally note how OCT-1 is easier to solve than OCT-H*, closing the gap
12
in 3 datasets, but it still results to be computationally more expensive
than the MARGOT feature selection models.

In Figs. 6, we give more insight into how the features selected by
the different OCT models divide the training samples. We focused on
two datasets, the Parkinsons and the Breast Cancer D. ones, in that we
found them explicative of the behaviour of all the trees generated by
OCT-1, OCT-H*, HFS-MARGOT* and SFS-MARGOT* models.

6.3. Warm start

During the branch and bound process implemented by Gurobi, after
finding an initial incumbent solution, the solver applies heuristics to
improve the quality of the incumbent solution before further exploring
the branch and bound tree. In general, a warm start input solution is
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Fig. 7. Graphical representation of Tables 9, 10: for each branch node 𝑡, the darker coloured cells correspond to the features selected 𝐹𝑡.
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ccepted as the first incumbent if its value is better than the initial
olution found by the solver. In Table 11, we analyse the quality of
he warm start input solution produced by the Local SVM Heuristic.
o this aim, we introduce the following definitions: 𝑓0 refers to the
alue of the first incumbent solution, and 𝑓1 is the value of the best
ncumbent solution after the root node of the branch and bound tree
13
as been explored. We report these values in two different cases. In the
irst one, no input solution was injected, while in the second, the solver
as given the warm start computed with the Local SVM Heuristic. From

he results in the tables, we can see how generally the value of the
ocal SVM solution is better than the one of the first incumbent solution
ound by Gurobi. Only for the SPECTF H. dataset, our warm start for
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Table 11
Warm start analysis for MARGOT, HFS-MARGOT and SFS-MARGOT.
MARGOT 𝑓0 𝑓1
Dataset No warm start Local SVM No warm start Local SVM

Breast Cancer D. 412.69 71.33 73.31 71.33
Breast Cancer W. 41 939.75 5250.53 5357.29 5250.53
Climate Model 2592000000398.93 94.14 113.17 94.14
Heart Disease C. 29.56 18.48 18.48 18.48
Ionosphere 1680000000000.00 768.96 726.56 768.96
Parkinsons 306 298.02 196369.04 213 242.43 196369.04
Sonar 11.02 11.01 0.17 0.35
SPECTF H. 127800000000.00 17.47 17.47 17.47
Tic-Tac-Toe 346.00 84.00 84.00 84.00
Wholesale 349 170.61 104787.61 104787.61 104787.61

HFS-MARGOT 𝑓0 𝑓1
Dataset No warm start Local SVM No warm start Local SVM

Breast Cancer D. 569 527.09 78042.45 569 527.09 78042.45
Breast Cancer W. 45466685.23 7278653.51 45466685.23 7278653.51
Climate Model 7400074.00 6624789.91 7400073.21 6624789.91
Heart Disease C. 107 570.28 98193.89 107 570.28 98193.89
Ionosphere 2820.49 1477.29 2820.49 1477.29
Parkinsons 119 951.06 88203.38 119 951.06 88203.38
Sonar 1434.07 990.21 1434.07 990.21
SPECTF H. 0.89 0.89 0.89 0.89
Tic-Tac-Toe 58 300.00 46528.00 54 822.00 46528.00
Wholesale 7532.43 7256.24 7532.43 7256.24

SFS-MARGOT 𝑓0 𝑓1
Dataset No warm start Local SVM No warm start Local SVM

Breast Cancer D. 125 004.07 7382.54 24 619.24 7382.54
Breast Cancer W. 810.54 117.26 206.87 117.26
Climate Model 61 588.84 14800.00 14800.00 14800.00
Heart Disease C. 414.07 215.00 299.28 215.00
Ionosphere 1120000004951.79 247.86 404.00 247.86
Parkinsons 376 661.06 194921.43 344 525.19 194921.43
Sonar 902.33 228.87 311.75 228.87
SPECTF H. 85200000033077.50 18794.98 8800.01 8800.01
Tic-Tac-Toe 3064000691010.00 101.00 101.00 101.00
Wholesale 40 023.52 12177.22 12 438.92 12177.22
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HFS-MARGOT model did not produce a better first solution. Similarly,
in most cases, 𝑓1 values are better when the Local SVM solution is
njected. Moreover, we can notice how, almost every time the Local
VM input solution was given, values 𝑓0 and 𝑓1 are equal.

7. Conclusions and future research

In this paper, we propose a novel MIQP model, MARGOT, to train
multivariate optimal classification trees which employ maximum mar-
gin hyperplanes by following the soft SVM paradigm. The proposed
model presents fewer binary variables and constraints than other OCT
methods by exploiting the SVM approach and the binary classification
setting, resulting in a much more compact formulation. The computa-
tional experience shows that MARGOT results in a much easier model
to solve compared to state-of-the-art OCT models, and, thanks to the
statistical properties inherited by the SVM approach, it reaches better
predictive performances. In the case sparsity of the hyperplane splits
is a desirable requirement, HFS-MARGOT and SFS-MARGOT represent
two valid interpretable alternatives, which model feature selection with
hard budget constraints and soft penalization, respectively. Both the
feature selection versions are comparable to OCT-H and MM-SVM-
OCT approaches in terms of prediction quality, though they are easier
to solve. On the one hand, HFS-MARGOT, results in a more inter-
pretable model where the selected features are evenly spread among
tree branch nodes without losing too much prediction quality. On the
other, SFS-MARGOT presents better out-of-sample performances than
HFS-MARGOT, though the selection of the features does not exploit the
hierarchical tree structure of the classifier as much.

Plenty of future directions of this work are of interest. Firstly, the
method can be extended to deal with the multi-class case. In addition,
14

M

being SVMs widely used for regression tasks, a similar version of MAR-
GOT to learn optimal regression trees can be further addressed. Lastly,
the development of a tailored optimization algorithm for the resolution
of the proposed models can be investigated to improve computational
times on real-world instances.
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Appendix A. Additional results

In this section, we present additional computational results regard-
ing the OCT models.

A.1. Scalability of MARGOT and OCT-H models with respect to the depth

In order to assess how the resolution of MARGOT and OCT-H opti-
mization models scales with increasing depth values, we compare the
two models with depths 𝐷 ∈ {2, 3, 4}. The hyperparameters used are the
ame as the ones selected for 𝐷 = 2 (reported in Table B.21) to evaluate

how the optimization problems scale only with respect to the depth
hyperparameter. The same time limit of 3600 seconds was set for all
experiments, and a time limit of 120 seconds was set for the warm start
procedure. Results on both predictive and computational performances
are presented in an aggregated form using box plots Fig. A.8. We
can notice how, regarding the predictive performances, both models
perform similarly for every depth value, with a slight decrease at 𝐷 = 4.
Regarding the computational performances, both optimization models
become harder to solve, with OCT-H reaching higher MIP Gap values
than MARGOT. We notice that, though not deducible from the boxplots,
OCT-H with depths 𝐷 ∈ {3, 4} was able to achieve a MIP Gap value
of 0 only for the Ionosphere dataset, while MARGOT with 𝐷 = 3
certified the optimal solution only for the Breast Cancer D. and the
Sonar datasets, while it always reached the time limit for depth 𝐷 = 4.
In general, scaling with respect to the depth is a challenging aspect
in MIP-based OCT models as they become more complex to solve,
presenting a high computational complexity depending both on the
data dimensionality and on the depth of the tree. In particular, as
shown in Table 1, in MARGOT, both variables and constraints grow
exponentially with the depth 𝐷 of the tree, and the same can be stated
for OCT-H (Bertsimas and Dunn, 2017). Nonetheless, solving MARGOT
for increasing values of 𝐷 seems to be more tractable than solving

CT-H.
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A.2. Comparison of HFS-MARGOT against univariate optimal trees with
higher depths

In the following analysis, we compare HFS-MARGOT* with 𝐷 = 2
gainst the univariate model OCT-1 with 𝐷 ∈ {2, 3, 4} in order to assess
f employing shallow and sparse multivariate trees ultimately pays off
ven if univariate ones are allowed higher depths. In general, multivari-
te splits are less interpretable but allow for more flexibility, yielding
hallow trees with less branching levels than univariate ones. In this
omparison, we consider only HFS-MARGOT* in that it represents the
ost sparse multivariate MARGOT model. Thus, if in this extreme case,
FS-MARGOT* performs better, we can deduce that MARGOT and
FS-MARGOT* will perform similarly, if not much better, in terms of
redictive capabilities, but at the expense of interpretability.

For OCT-1 with 𝐷 ∈ {3, 4}, we maintained the same values of
and 𝑁𝑚𝑖𝑛 chosen for OCT-1 with 𝐷 = 2. We set a time limit of

800 and 3600 seconds for 𝐷 = 3 and 𝐷 = 4 respectively. For the
omputation of the warm start solutions, the time limit was set to 60
nd 120 seconds for the two depth values, respectively. Table A.12
eports the predictive test performances and the number of all the (non-
istinct) features used computed as ∑

𝑡∈𝐵 |𝐹𝑡|. Moreover, the mean
IP Gap value and its standard deviation are provided for each model

valuated. We can notice how HFS-MARGOT* with a shallow depth of
favourably compares to OCT-1 in terms of prediction quality even

n the case where the latter is allowed a depth of 4, sometimes even
sing far fewer features. It is also evident that OCT-1 struggles to scale
fficiently to higher depths, showing larger mean gaps even if provided
ith higher time limit values. Though not explicitly deducible in the

able, we highlight that for OCT-1 with depths 𝐷 = {3, 4}, the solver
ever certified the optimal solution except for just a single dataset
Heart Disease C). The train predictive performances are reported in
able B.20.

.3. Results with a fixed set of hyperparameters

Here we provide a set of experiments on MARGOT, HFS-MARGOT
nd SFS-MARGOT, with depth 𝐷 = 2, using a fixed set of hyperpa-
ameters across all datasets. The time limit was set to 600 seconds,
hile the warm start optimization was given a limit of 30 seconds.
hese experiments allow us to evaluate the robustness of the proposed

ethods without conducting an ad-hoc hyperparameter search for each
Fig. A.8. Aggregated representation of the Test ACC (%) and MIP Gap (%) values of OCT-H and MARGOT model with depths 𝐷 ∈ {2, 3, 4}.
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Table A.12
Results on the test predictive performances (test ACC (%) and test BACC (%)) of OCT-1 model with 𝐷 ∈ {2, 3, 4} and HFS-MARGOT* model with 𝐷 = 2 and
comparison on the number of (non-distinct) features used ∑

𝑡∈𝐵
|𝐹𝑡|. The last row is the Mean MIP Gap values (± standard deviations) (%) among all datasets

for each model.
Dataset OCT-1 (𝐷 = 2) OCT-1 (𝐷 = 3) OCT-1 (𝐷 = 4) HFS-MARGOT* (𝐷 = 2)

ACC BACC ∑

|𝐹𝑡| ACC BACC ∑

|𝐹𝑡| ACC BACC ∑

|𝐹𝑡| ACC BACC ∑

|𝐹𝑡|

Breast Cancer D. 91.2 91.6 2 94.7 94.3 3 95.6 95.5 4 95.6 95.5 4
Breast Cancer W. 92.0 90.9 3 92.7 92.0 6 92.7 92.5 11 94.2 94.5 5
Climate Model 91.7 60.1 3 91.7 60.1 6 93.5 76.3 15 96.3 77.8 6
Heart Disease C. 71.7 71.0 1 71.7 71.0 1 71.7 71.0 1 83.3 82.6 5
Ionosphere 91.5 91.7 2 93.0 92.7 2 93.0 92.7 2 87.3 83.8 7
Parkinsons 89.7 83.3 3 82.1 81.4 7 92.3 91.6 15 89.7 83.3 3
Sonar 69.0 68.9 1 61.9 61.8 1 69.0 68.9 1 71.4 70.9 5
SPECTF H. 77.8 65.8 2 83.3 69.2 3 79.6 63.5 6 75.9 57.8 6
Tic-Tac-Toe 69.3 61.5 2 74.5 63.4 3 72.9 65.0 5 76.0 65.7 5
Wholesale 86.4 85.2 3 85.2 83.5 2 84.1 82.6 4 86.4 85.2 5

Mean Gap 55.6 (± 44.3) 75.7 (± 36.5) 77.9 (± 35.6) 38.0 (± 49.2)
Table A.13
Hyperparameters selected for results in Tables A.14, A.15 and A.16.
Dataset MARGOT HFS-MARGOT SFS-MARGOT

𝐶0 𝐶1 = 𝐶2 𝐶0 𝐶1 = 𝐶2 𝐵0 𝐵1 = 𝐵2 𝐶0 𝐶1 = 𝐶2 𝛼

all 102 103 102 103 2 2 102 103 25
Table A.14
Results on the predictive test performances (test ACC (%) and test BACC (%)) of MARGOT models with 𝐷 = 2 and the hyperparameters
set as in Table A.13 and difference 𝑑 = ±|best value - actual value|; a value 𝑑 > 0 indicates an advantage for 4-FCV selection, while
𝑑 < 0 denotes an advantage for the fixed set of hyperparameters.
Dataset MARGOT HFS-MARGOT SFS-MARGOT

ACC BACC 𝑑 ACC BACC 𝑑 ACC BACC 𝑑

Breast Cancer D. 94.7 94.3 2.6/2.6 95.6 95.5 0.0/0.0 95.6 94.5 −0.9/−0.2
Breast Cancer W. 93.4 93.0 2.9/3.2 93.4 93.5 0.7/1.0 93.4 93.0 0.7/0.6
Climate Model 94.4 81.8 2.8/6.6 92.6 65.7 3.7/12.1 95.4 87.4 0.9/−4.5
Heart Disease C. 81.7 81.7 1.7/1.3 73.3 72.3 10.0/10.3 83.3 83.3 3.3/2.9
Ionosphere 87.3 83.8 5.6/6.2 85.9 81.8 1.4/2.0 83.1 78.7 1.4/1.1
Parkinsons 89.7 93.1 −5.1/−10.0 87.2 81.6 2.6/1.7 92.3 94.8 −5.1/−10.0
Sonar 73.8 73.0 0.0/0.0 69.0 68.9 2.4/2.0 76.2 75.5 −2.4/−1.8
SPECTF H. 75.9 61.2 3.7/−4.4 79.6 60.1 −3.7/−2.3 74.1 56.7 9.3/9.2
Tic-Tac-Toe 95.3 95.4 4.7/2.4 70.3 62.0 5.7/3.7 96.4 95.8 1.6/1.2
Wholesale 87.5 85.1 0.0/0.0 88.6 86.9 −2.3/−1.7 87.5 85.1 1.1/1.8

Mean 87.4 84.2 1.9/0.8 83.6 76.8 2.1/2.9 87.7 84.5 1.0/0.0
Table A.15
Results on the predictive train performances (train ACC (%) and train BACC (%)) of MARGOT models with 𝐷 = 2 and the hyperparameters set

as in Table A.13 and difference 𝑑 = ±|best value - actual value|; a value 𝑑 > 0 indicates an advantage for 4-FCV selection, while 𝑑 < 0 denotes
an advantage for the fixed set of hyperparameters.
Dataset MARGOT HFS-MARGOT SFS-MARGOT

ACC BACC 𝑑 ACC BACC 𝑑 ACC BACC 𝑑

Breast Cancer D. 100.0 100.0 −0.7/−0.9 98.0 97.4 0.0/0.0 100.0 100.0 −1.8/−2.2
Breast Cancer W. 100.0 100.0 −1.1/−0.9 97.6 97.7 0.7/0.9 100.0 100.0 −2.2/−2.4
Climate Model 100.0 100.0 −0.7/−4.1 95.1 74.1 1.6/7.0 100.0 100.0 −3.2/−15.2
Heart Disease C. 93.7 93.6 −4.6/−4.7 83.5 83.0 −0.8/−0.9 89.5 89.4 −3.0/−3.3
Ionosphere 100.0 100.0 −1.1/−1.3 92.5 90.5 1.4/1.8 100.0 100.0 −9.6/−12.9
Parkinsons 100.0 100.0 0.0/0.0 92.3 86.0 −1.3/−3.5 100.0 100.0 0.0/0.0
Sonar 100.0 100.0 0.0/0.0 85.5 85.3 −6.6/−7.1 100.0 100.0 −9.0/−9.7
SPECTF H. 100.0 100.0 −3.3/−8.0 86.9 75.7 −1.9/−1.2 100.0 100.0 −8.9/−19.1
Tic-Tac-Toe 100.0 100.0 −1.6/−2.3 72.6 64.6 5.5/3.7 100.0 100.0 −1.6/−2.3
Wholesale 96.3 95.2 0.0/0.0 93.8 93.3 0.0/1.4 96.3 95.2 −1.1/−0.6

Mean 99.0 98.9 −1.3/−2.2 89.8 84.8 −0.1/0.2 98.6 98.5 −4.0/−6.8
dataset. We have chosen a set of hyperparameters that was never
selected by the 4-FCV and that could be considered a reasonable choice.
The fixed set of hyperparameters chosen for the MARGOT models is
reported in Table A.13.
16
Tables A.14, A.15, A.16 provide the predictive and optimization
performances obtained with the fixed set of hyperparameters. For each
performance measure (ACC, BACC, Time or Gap), we provide the
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Table A.16
Results on the optimization performances (computational times (s) and MIP Gaps (%)) of MARGOT models with 𝐷 = 2 and the hyperparameters

set as in Table A.13 and difference 𝑑 = ±|best value - actual value|; a value 𝑑 > 0 indicates an advantage for 4-FCV selection, while 𝑑 < 0
denotes an advantage for the fixed set of hyperparameters.
Dataset MARGOT HFS-MARGOT SFS-MARGOT

Time Gap 𝑑 Time Gap 𝑑 Time Gap 𝑑

Breast Cancer D. 3.9 0.0 −3.5/0.0 600.8 79.6 286.9/79.6 608.0 11.1 293.4/11.1
Breast Cancer W. 149.2 0.0 140.5/0.0 126.1 0.0 112.1/0.0 451.9 0.0 414.3/0.0
Climate Model 10.5 0.0 −0.2/0.0 600.2 78.6 −0.1/−21.4 600.3 3.7 0.2/−10.5
Heart Disease C. 600.0 81.2 281.9/81.2 600.2 80.3 493.7/80.3 600.2 83.5 0.2/55.2
Ionosphere 13.3 0.0 2.1/0.0 600.8 85.1 476.8/85.1 601.8 24.1 585.8/24.1
Parkinsons 3.0 0.0 −204.4/0.0 600.4 74.1 592.2/74.1 600.6 4.4 0.6/−57.6
Sonar 0.2 0.0 −1.4/0.0 602.7 91.2 1.8 /−7.1 620.1 4.9 20.1/−37.3
SPECTF H. 10.2 0.0 −590.0/−3.3 600.8 88.7 0.8/−5.1 615.7 20.8 15.6/−79.1
Tic-Tac-Toe 172.8 0.0 169.3/0.0 602.5 90.1 2.4/1.9 604.3 14.8 557.1/14.8
Wholesale 600.0 31.6 553.6/31.6 600.1 22.1 563.8/22.1 600.1 31.6 0.1/−48.5

Mean 156.3 11.3 34.8/11.0 553.5 69.0 253.1/30.9 590.3 19.9 188.7/−12.8
difference 𝑑 defined as:

𝑑 = ± |best value - actual value| ,

here the best value is the value of the performance measure obtained
sing the hyperparameters in Tables B.21 and B.22 obtained with the
-FCV, whereas actual value is the value obtained with the hyperpa-
ameters set as in Table A.13. The sign is ‘‘+’’ when the best value

obtained by 4-FCV is better, otherwise it is ‘‘−’’. Table A.14 reports
the predictive performances on the test sets. These results show that,
despite using the same set of hyperparameters, all the methods achieve
good generalization performances across all the datasets. Additionally,
Table A.16 provides the computational times and MIP Gap values. It
is evident that the MARGOT model is easier to solve, certifying the
optimal solutions in 8 out of 10 datasets. Performances on the train sets
can be found in Table A.15, where it is possible to notice that MARGOT
17

and SFS-MARGOT tend to overfit on some datasets. This result was
expected in that, without conducting a cross-validation procedure, the
risk of overfitting is higher. Overall, these results show that MARGOT
models are robust, reporting overall good prediction quality, without
the need for a dataset-specific hyperparameter search. However, a
tailored hyperparameter tuning can be advisable to mitigate the risk
of overfitting and to maximize the model’s potential.

Appendix B. Additional tables

In this section, we present additional tables. Table B.17 presents
a summary of all the notation of sets, parameters, and hyperparam-
eters adopted in the paper. ACC and BACC performances on training
samples are reported in Tables B.18, B.19 and B.20. Finally, for the
sake of replicability, we present in Tables B.21 and B.22 all the
hyperparameters that were chosen to carry out our computational

experiments.
Table B.17
Notation: sets, parameters and hyperparameters of MARGOT models.
Notation Description

Sets

𝐵 Branch nodes

𝐿 Leaf nodes

 ′
𝐵 Branch nodes excluded the ones in the last branching level

 ′′
𝐵 Branch nodes of the last branching level

(𝑡) Branch nodes of the subtree rooted at node 𝑡 ∈ 𝐵
 ′′(𝑡) Nodes of (𝑡) in the last branching level  ′′

𝐵

 ′′
𝐿 (𝑡) Nodes in  ′′

𝐵 under the left branch of 𝑡 ∈  ′
𝐵

 ′′
𝑅 (𝑡) Nodes in  ′′

𝐵 under the right branch of 𝑡 ∈  ′
𝐵

 Index set of data samples

𝑡 Index set of data samples assigned to node 𝑡 ∈ 𝐵
𝐿(𝑡) Index set of data samples assigned to the left child node of 𝑡 ∈ 𝐵
𝑅(𝑡) Index set of data samples assigned to the right child node of 𝑡 ∈ 𝐵
Parameters

𝑛 Number of features

𝜀 Parameter to model the strict inequality in routing constraints

{𝑀𝑤 ,𝑀𝜉 ,𝑀} Set of Big-M parameters used in MARGOT formulations

Hyperparameters

𝐷 Maximum depth of the tree

𝐶𝑡 Penalty parameter on the misclassification error at node 𝑡 ∈ 𝐵
𝐵𝑡 Budget value on the number of features at node 𝑡 ∈ 𝐵
𝛼 Penalty parameter for the soft feature selection
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Table B.18
Results on the train predictive performances of the OCT models evaluated: train ACC (%) and train BACC (%).
Dataset OCT-H MM-SVM-OCT MARGOT

ACC BACC ACC BACC ACC BACC

Breast Cancer D. 98.2 97.8 98.7 98.2 99.3 99.1
Breast Cancer W. 98.4 98.6 98.2 98.0 98.9 99.2
Climate Model 98.6 91.9 99.3 95.9 99.3 95.9
Heart Disease C. 85.7 85.6 88.6 88.5 89.0 88.9
Ionosphere 100.0 100.0 98.6 98.2 98.9 98.7
Parkinsons 99.4 98.7 96.8 93.4 100.0 100.0
Sonar 98.8 98.8 100.0 100.0 100.0 100.0
SPECTF H. 98.6 96.6 79.3 50.0 96.7 92.0
Tic-Tac-Toe 99.6 99.4 98.6 98.4 98.4 97.7
Wholesale 96.0 95.5 83.5 75.0 96.3 95.2
Table B.19
Results on the train predictive performances of the OCT models with feature selection: train ACC (%) and train BACC
(%).
Dataset OCT-1 OCT-H* HFS-MARGOT* SFS-MARGOT*

ACC BACC ACC BACC ACC BACC ACC BACC

Breast Cancer D. 94.3 93.4 98.2 97.8 98.0 97.4 98.2 97.8
Breast Cancer W. 96.3 95.7 97.3 96.9 98.4 98.6 97.8 97.6
Climate Model 93.8 70.9 98.1 91.6 96.8 81.1 96.8 84.8
Heart Disease C. 77.6 77.5 85.7 85.4 82.7 82.1 86.5 86.1
Ionosphere 90.7 90.1 90.7 87.6 93.9 92.2 90.4 87.1
Parkinsons 91.0 83.4 96.2 94.8 91.0 82.5 100.0 100.0
Sonar 77.7 77.2 97.0 96.8 78.9 78.2 91.0 90.3
SPECTF H. 83.1 70.0 88.3 73.3 85.0 74.6 91.1 80.9
Tic-Tac-Toe 70.9 61.9 99.1 98.7 78.1 68.3 98.4 97.7
Wholesale 95.5 95.5 91.5 89.1 93.8 94.7 95.2 94.6
Table B.20
Results on the train predictive performances of OCT-1 model with 𝐷 ∈ {2, 3, 4} and HFS-MARGOT model with 𝐷 = 2:
train ACC (%) and train BACC (%).
Dataset OCT-1 (𝐷 = 2) OCT-1 (𝐷 = 3) OCT-1 (𝐷 = 4) HFS-MARGOT* (𝐷 = 2)

ACC BACC ACC BACC ACC BACC ACC BACC

Breast Cancer D. 94.3 93.4 95.6 94.5 96.9 96.2 98.0 97.4
Breast Cancer W. 96.3 95.7 97.1 96.8 97.3 97.0 98.4 98.6
Climate Model 93.8 70.9 93.8 70.9 94.2 74.8 96.8 81.1
Heart Disease C. 77.6 77.5 77.6 77.5 77.6 77.5 82.7 82.1
Ionosphere 90.7 90.1 90.7 90.1 90.7 90.1 93.9 92.2
Parkinsons 91.0 83.4 96.8 94.3 98.1 97.8 91.0 82.5
Sonar 77.7 77.2 77.7 77.3 77.7 77.2 78.9 78.2
SPECTF H. 83.1 70.0 86.4 74.6 85.4 72.3 85.0 74.6
Tic-Tac-Toe 70.9 61.9 75.1 64.0 75.3 66.7 78.1 68.3
Wholesale 95.5 95.5 94.6 94.9 94.9 95.5 93.8 94.7
Table B.21
Hyperparameters selected for results in Table 5, Table 6, Table 9 and Table B.18.
Dataset OCT-H MM-SVM-OCT MARGOT

𝛼 𝑐1 𝑐3 𝐶0 𝐶1 = 𝐶2

Breast Cancer D. 2−5 104 100 100 100

Breast Cancer W. 2−7 104 101 102 102

Climate Model 2−6 102 10−2 100 100

Heart Disease C. 2−5 101 10−2 10−1 10−1

Ionosphere 0 102 10−2 101 101

Parkinsons 2−8 103 101 100 104

Sonar 2−7 100 100 10−3 10−1

SPECTF H. 2−6 10−5 10−2 10−1 10−1

Tic-Tac-Toe 0 105 101 100 100

Wholesale 2−7 103 10−1 103 103
18
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Table B.22
Hyperparameters selected for results in Table 7, Table 8, Table 10 and Table B.19.
Dataset OCT-1 OCT-H* HFS-MARGOT* SFS-MARGOT*

𝛼 𝛼 𝐶0 𝐶1 = 𝐶2 𝐵0 𝐵1 = 𝐵2 𝐶0 𝐶1 = 𝐶2 𝛼

Breast Cancer D. 2−8 2−5 103 103 2 2 102 102 210

Breast Cancer W. 0 2−5 105 105 2 3 100 100 24

Climate Model 0 2−4 100 105 3 3 102 102 210

Heart Disease C. 2−2 2−4 101 103 1 2 100 100 22

Ionosphere 2−3 2−4 101 101 2 3 100 100 28

Parkinsons 0 2−5 103 103 1 2 102 104 210

Sonar 2−2 2−7 10−4 101 1 2 100 100 22

SPECTF H. 2−7 2−5 10−4 10−2 2 3 10−4 102 28

Tic-Tac-Toe 2−5 2−5 101 102 2 3 100 100 20

Wholesale 2−8 2−6 10−2 102 1 2 10−2 100 22
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