
Athens Journal of Social Sciences- Volume 10, Issue 2, April 2023 – Pages 79-100 
 

https://doi.org/10.30958/ajss.10-2-1                                       doi=10.30958/ajss.10-2-1 

From Big Data to Machine Learning:  
An Empirical Application for Social Sciences 

 
By Giovanni Di Franco* & Michele Santurro±   

 
Machine learning (ML), and particularly algorithms based on artificial neural 
networks (ANNs), constitute a field of research lying at the intersection of different 
disciplines such as mathematics, statistics, computer science and neuroscience. 
This approach is characterized by the use of algorithms to extract knowledge 
from large and heterogeneous data sets. In this paper we will focus our attention 
on its possible applications in the social sciences and, in particular, on its 
potential in the data analysis procedures. In this regard, we will provide an 
example of application on sociological data to assess the impact of ML in the 
study of relationships between variables. Finally, we will compare the potential 
of ML with traditional data analysis models. 
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Introduction 
 

ML is an automatic learning process that takes place through the processing of 
usually very large data sets. The procedures of the past, defined with the “symbolic 
artificial intelligence” label, operated on algorithms constituted by a logical set of 
instructions by which a given output (usually called target) was encoded for all 
possible inputs. Contrarily, the new ML systems “learn” directly from data and 
estimate mathematical functions that discover representations of some input, or 
learn to link one or more inputs to one or more outputs in order to make predictions 
on new data (Jordan and Mitchell 2015). 

In recent years in various human sciences: economics (Varian 2014, Blumenstock 
et al. 2015, Athey and Imbens 2017, Mullainathan and Spiess 2017), political science 
(Baldassarri and Goldberg 2014, Bonikowski and DiMaggio 2016), sociology 
(Barocas and Selbst 2016, Evans and Aceves 2016, Baldassarri and Abascal 2017), 
communication science (Hopkins and King 2010, Grimmer and Stewart 2013, Bail 
2014), etc., ML has started to be applied both in academic research and in areas 
related to the management of services provided by the public administration (Athey 
2017, Berk et al. 2021) or by private companies. 

Overall, many different approaches and tools are included under the ML label 
(Kleinberg et al. 2015). There is no consensus about how much depth a model 
requires to qualify as deep. Discussions with deep learning (DL) experts have not 
yet yielded a conclusive response to this question. However, DL can be safely 
understood as the set of models that involve a greater amount of composition of 
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either learned functions or learned concepts than traditional ML does (Schmidhuber 
2015, Goodfellow et al. 2016). 

DL is not a breakthrough in the scientific sense, rather it is a relevant 
breakthrough in efficient coding that makes a difference in several contexts. In 
practical applications, DL is able to achieve higher accuracy on more complex tasks 
as compared with traditional ANNs, although it requires more computational 
resources. Furthermore, DL needs less manual interference to craft the right 
features or the suitable transformations of data. It performs exceptionally precise 
operations on data that come from different modalities, such as images, texts and 
videos (Schmidhuber 2015, Alpaydin 2016, Goodfellow et al. 2016). 

So, the choice between ML or DL algorithms depends on the problem to be 
analysed. If the problem is relatively simple, it is preferable to use ML based on 
ANNs with few layers of hidden units; if the problem is complex or requires the 
achievement of very specific and rigorous objectives, it is considered more useful to 
resort to DL. 

Here we will only consider ANNs that use supervised ML algorithms. In the 
supervised ML the algorithm observes an output for each input. This output gives 
the algorithm a target to predict and acts as a “teacher”. On the contrary, 
unsupervised ML algorithms only observe the input and their task is to 
autonomously compute a function without a predetermined target (Hastie et al. 
2009, Molina and Garip 2019). This work has two aims: a) to present ANN 
algorithms-based ML in a simple and intuitive manner; b) to apply it to sociological 
data by comparing the results obtained with the results of traditional statistical 
techniques, to evaluate its strengths and weaknesses. 

When the question of progress in sociology is raised, it is in fact on the extent 
of theoretical progress that debate centres. In this regard, we would then suggest, 
empirical research will benefit in so far as its practitioners show a readiness to 
engage with methodological issues. Through such an engagement, we will be called 
upon to confront problems that arise by the development of the phenomena studied 
rather than by the development of science itself and will in this way be subject to 
two constraints or disciplines that we would view as salutary. The first requirement 
will be to move, as it were, from explananda to explanantia, from effects to causes 
– which, following Popper, we would take to be the way of science – rather than to 
go in the reverse direction. Second, theoretical models will more often come to be 
deployed in “data-rich” rather than “data-poor” contexts. This means that they will 
face relatively stringent empirical tests of their validity. In this way, serious 
explanatory efforts may be more readily distinguished from what Goldthorpe 
(2004) called sociological dandyism: a preoccupation with models, whether 
statistical or theoretical, on account more of their intrinsic elegance, refinement and 
subtlety than of what can be shown to follow from their sociological use that is of 
major substantive relevance, whether from the standpoint of pure or applied 
interests. 
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Literature Review 
 

Historically, ANNs have been proposed to emulate some functions of the 
human brain and nervous system, within an approach called connectionism (Di 
Franco 1998, van der Maas et al. 2021). 

Connectionism attempts to simulate biological intelligence on a computer by 
taking the brain as a physical organ as a model. This is a first and fundamental 
distinction between connectionism on the one hand and cognitivism based on 
symbolic artificial intelligence on the other (Grum 2022). 

In connectionism the brain is the metaphor by which the mind is studied. For 
years there has been a bitter dispute between the opposing advocates of the two 
different approaches, for which readers are referred to Parisi (1989), Cammarata 
(1990) and Buscema (1994). 

In the opinion of the psychologist Parisi (1989) this set of ideas, theories and 
computational techniques, starting from the second half of the 1980s, represents a 
scientific revolution in the study of the mind and brain. 

The first attempts to set up intelligent systems on computers that emulated 
brain activity had been elaborated in neurocybernetics in the 1930s. In the 1940s 
McCulloch and Pitts built the first intelligent systems based on the simulation of 
brain activity. In the 1970s, research on ANNs experienced a period of stagnation 
as the systems that were created showed low efficiency. Since the second half of the 
1980s, thanks to the availability of parallel computing systems and new learning 
algorithms, interest in ANNs has grown rapidly (Lu 2019, Toosi et al. 2021). At the 
same time, the limited progress of symbolic artificial intelligence in the 
construction of general intelligent systems through the symbolic manipulation 
techniques typical of this approach (expert systems, logical languages, semantic 
networks, etc.) and the technological interest in computer architectures closer to 
what appears to be the way the nervous system works (parallel rather than 
sequential), have fed the dispute between the advocates of cognitivism (or symbolic 
approach) and connectionism (Dietrich et al. 2021). According to Cammarata 
(1990) the symbolic approach is more suitable for simulating conscious intelligence 
processes, such as the human expert reasoning or theorem proving; but it does not 
seem to reflect the nature of many unconscious intelligence processes such as those 
related to image or sound recognition. It is however acknowledged that the 
connectionist paradigm, and in particular ANNs, not only can tackle new classes of 
problems, but also confer advantages in terms of simplicity and efficiency in 
solving problems already tackled. At present, the applications of ANNs range from 
sophisticated military technologies for guiding missiles to airport security systems, 
to encryption mechanisms, to shape and image recognition, to quality control in 
industrial automation processes, to adaptive noise cancellation in telecommunications, 
and many more (Balas et al. 2020, Echeberria 2022, Elliott 2022). 

We can say that connectionism is an approach that opposes cognitivism trying 
to overcome the classic Cartesian distinction between mind and brain. As a result of 
this distinction, disciplines that dealt with mental capacities and intelligence, such 
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as psychology, had separated from the neurosciences that studied the brain and 
central nervous system as organs of the human body (Boden 2006, Pecere 2020). 

Connectionism is linked to a set of tools such as ANNs, nonlinear dynamic 
systems, complex dynamic systems, distributed parallel computing systems, 
associative memories, etc., which make use of computer simulation. The advantages 
offered by this approach are also very interesting for the social sciences. First of all, 
to simulate a phenomenon on a computer it is necessary to make explicit and 
formalize all the knowledge that is available. Furthermore, once one is able to 
simulate a certain phenomenon, it becomes possible to manipulate it in ways that 
would not be allowed with other research techniques, for ethical reasons and for 
other constraints dictated by the limited resources available in any scientific 
research (Fetzer 2004, Keuschnigg et al. 2018). 

The use of the computer has made it possible to successfully study phenomena 
characterized by high dynamism, high parallelism and strong complexity, governed 
by rules of change that can be described by nonlinear equations, practically solvable 
only by using a computer (Strohmaier 2021). 

Shortly, connectionism, by building artificial neural systems based exclusively 
on mathematical rules, attempts to build intelligent systems. The term ANN stands 
for a set of computational rules that simulate a behaviour typical of the brain 
structure of human beings. This is the fundamental difference of connectionism 
compared to the symbolic approach, whose intelligence model is based on the 
symbol manipulation through the use of rules that constitute the program to be 
executed. Unlike the computational models used in expert systems, in ANNs there 
is no program that specifies the operations to be executed, but the computational 
procedure is defined through the characteristics of the units and their connections 
(Davenport 2013). 

A network learns and generalizes through the experience it acquires rather than 
through a program that determines its behaviour. The alternative that connectionism 
offers consists in the construction of artificial neural systems capable of learning, 
and subsequently generalizing, based on the experience that is administered to 
them. There are many types of ANNs, distinguished by architecture, learning rules, 
signal transfer functions, etc. There is no space here to present them all. We will 
focus in particular on those networks, called supervised, that have a goal to achieve 
in the training step, as opposed to those called unsupervised (also called autopoietic) 
which in the training step do not have a predetermined goal to achieve. 
 
 
Methodology 
 

ANNs consist of many computing units (called nodes or artificial neurons), 
usually organized into layers, with very simple operation and interconnected to each 
other. Through such networks, a signal (in the form of examples, called patterns) is 
passed, exciting or inhibiting the units. They, with appropriate mathematical rules, 
transfer the signal to other units until producing a quantitative output. In other 
words, each unit receives excitation (or inhibition) from the units from which 
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connections arrive and, in turn, transmits excitation (or inhibition) to the units 
towards which it has connections. 

Here we will mainly deal with feedforward networks, which have units 
arranged on at least three layers and unidirectional connections between each unit 
of one layer and all the other units of the next layer. 

The excitation or inhibition that reaches a certain unit through the other units 
to which it is connected depends on the weights that characterize the links. If a 
connection weight is high, this causes a lot of activation; a low weight causes little 
activation. A positive weight transmits excitation; a negative weight inhibition. 

What characterizes ANNs is the parallel processing: each node of the network 
constitutes an autonomous computing unit that carries out computations in parallel 
with all the others. In serial systems, on the other hand, operations are carried out in 
sequence, one after the other. 

An ANN is able to learn a task, solve a problem, when the parallel propagation 
of the network activation reaches an equilibrium (when the function reaches its 
minimum value), namely, when the activation arrives at the output units of the 
network. 

As said, the fundamental aspect of ANNs is their ability to learn, but it is 
important to be clear on this point. In fact, what ANNs learn and what allows them 
to perform tasks or solve problems are the weights that are assigned to the links and 
that regulate how much excitation or inhibition is propagated in the network and 
how this propagation takes place. 

In other words, in ANNs, learning, that is, the acquisition of knowledge and 
ability, consists in a process of connection weight adjustment. ANNs are therefore 
intrinsically quantitative, they learn numerical weights, transform them mathematically 
and provide a quantitative result. 

In the training step of a network, the initial state (i.e., the initial connection 
weights) is randomly defined, usually in a very small range (e.g., between -0.1 and 
+0.1). Some patterns are presented to the network, each associated, in supervised 
networks, with a target. The network must produce, for each pattern, an output as 
similar as possible to the target. The difference between the network output and its 
target is the error. Through a mechanism that is called error backpropagation 
(EBP), the network adjusts the connection weights until the distance between 
output and target is minimized. 

The nodes emulate the brain’s nerve cells (neurons); the links between the 
nodes emulate the synaptic connections that exist between the axon of a neuron and 
the dendrites of another neuron. Indeed, research conducted so far with ANNs has 
allowed to reproduce only some, though important, characteristics of the human 
brain, which however are not reproducible in any other way. 

In their mathematical characteristics, ANNs are part of a larger class of models 
formulated for the study of complex systems, with nonlinear dynamics, of the 
chaotic type, etc. These models have been introduced in the most innovative 
research sectors of different disciplines. Their general and abstract character makes 
them applicable to very different phenomena, and therefore of very broad potential 
interest, even for social phenomena. 
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The point is whether ANNs can be usefully applied in social research, besides 
as a complex of nonlinear data processing algorithms, also as a tool to simulate 
social phenomena (Capecchi 1996). 

It is difficult to assimilate social phenomena to neurophysiological ones; for 
this reason, the analogies of the nodes of an ANN with neurons, of its connections 
with synapses, etc., that are possible in the study of the brain, are not possible in 
these other cases. However, it is a question of assessing whether the abstractness of 
the structures and processes postulated in ANNs, understood as models of complex 
nonlinear dynamic systems, does allow their application also to the study of social 
phenomena. In this case it is necessary to determine the interpretation to be given to 
concepts such as node, connection, excitation/inhibition, connection weight, 
learning rule, equilibrium and so on. 

On the other hand, the use of ANNs allows the possibility of partially 
overcoming some limitations of the analyses conducted with traditional statistical 
techniques. For example, the use of ANNs does not require any hypothesis on the 
distributions of the system variables and their reciprocal associations. For this 
reason, it is possible to treat cardinal, ordinal and/or categorical variables (Di 
Franco 2017). By such approach the actual analysis of the system is left to the 
network, which alone creates its own criteria to reproduce its behaviour and 
consequently enables itself to formulate predictions on the system itself. In Fabbri 
and Orsini’s (1993) judgement, this is both a strength and a weakness of ANNs: it 
is a strength because in this way the researcher is not conditioned by a priori 
hypotheses in the choice of the network units; the weakness consists in the fact that 
the network is not able to do other than reproduce the behaviour of the analysed 
system in a phenomenological manner, without contributing to the knowledge of 
the internal relationships between the single parts of the system. This problem, 
however, can be partially overcome as some devices, that allow us to interrogate 
the network about what it was able to reproduce, have been fine-tuned (Di Franco 
1998). 

If the simulation approach of ANNs to social phenomena proved to be possible 
and useful (Capecchi et al. 2010), this would allow significant progress in the social 
disciplines because it would also contribute to the foundation of a consistent basis 
of simulation concepts, models and techniques. If social phenomena can be thought 
of as complex dynamic systems1 then it is necessary to accept the possibility of 
simulating them on a computer with more meaningful results than those obtainable 
with traditional data analysis tools. 

We illustrate some key concepts of ANNs, and in particular of the feedforward 
networks with at least one hidden layer characterized by a learning technique called 
EBP. This type of network was proposed by a group of researchers at the University 
of California in San Diego (Rumelhart et al. 1986, 1987). Instead of resorting to 
mathematical formalizations we will use graphs. 

                                                                 
1Where by complex dynamic system we mean a system made up of a large number of elements 
that interact on the basis of purely quantitative and non-symbolic rules, and that change over 
time, giving rise to complex collective dynamics. 
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As said, a characterizing aspect of ANNs is their ability to learn; learning 
consists in the search for the set of connection weights appropriate for each specific 
task. The network starts from a state where weights are randomly assigned; therefore, 
the resulting output is, at time t-zero, equally random. Through its training, a 
progressive adjustment of the connection weights of the network takes place until 
obtaining the set of weights that produces the desired output in the best possible 
way. But, even after long training, ANNs do not usually produce very accurate 
results. This feature, which could be a limitation especially for tasks where high 
accuracy is required, becomes interesting in classification and recognition tasks. In 
fact, in a classification task, similar objects can be placed in the same class; 
consequently, even patterns affected by noise, biases or missing data can be 
classified. This shows that the networks have a high noise tolerance; this feature is 
important considering that in data analysis one often comes across low quality data. 

The most interesting peculiarity of neural models, however, is their ability to 
generalize: if a pattern different from the ones used for learning is presented as 
input, the network is able, within certain limits, to classify it in the “correct” way 
(provided that a class for that pattern exists). 

In social research, by exploiting the generalization ability of ANNs, cases with 
missing data could be processed without being forced to exclude them or replace 
them with the mean, the mode or the median of the relative distribution. 

Schematically an ANN consists of: 
 
• a large number of simple units (artificial neurons); 
• a large number of links between the units (artificial synapses); 
• a parallel and distributed control scheme; 
• a learning algorithm. 
 
A feedforward ANN is made up of a number of units connected by links which 

are, in this type of network, unidirectional. Excitation or inhibition is transmitted 
through the links from one unit to another. Each unit has a number of incoming 
links with other units and some outgoing links towards other units (see Figure 1). 
 
Figure 1. Unit with Three Incoming and Two Outgoing Links 
 
 
 
 
 
 

So, there is a layer of input units that have no incoming links but only outgoing 
links. The activation state of these input units is determined from outside the 
network. And there is a second layer of output units that have only incoming links 
and no outgoing links. In practice, the activation state of the output units is read 
from the outside and tells us how the network reacted to the input from the outside. 
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The activation state of a unit is equal to a combination of all the excitations 
and inhibitions that reach that unit through its incoming links. Each amount of 
excitation or inhibition is weighted by a value, called connection weight, which 
characterizes each link. The weight can have a positive or negative sign, and this 
determines whether excitation (positive sign) or inhibition (negative sign) is 
transmitted (Figure 2). 
 
Figure 2. Connection Weights 
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The amount of excitation or inhibition that comes through a certain link is 
actually determined by two factors. The first one is the connection weight (a link 
with weight +0.8 passes more activation than a link with weight +0.2). The second 
one is the activation state of the unit from which the link starts, which can be more 
or less high. The two factors are multiplied among themselves, and the result is the 
amount of excitation or inhibition that arrives at a certain unit through a certain 
link. In feedforward ANNs the activation state of a certain unit varies from a 
minimum (0) to a maximum (1). At a given moment, a number of excitations and 
inhibitions arrive at a certain unit. 

The first thing the unit has to do is to compute all these excitations and 
inhibitions in a single value, which is called the net input for that unit. The net input 
is normally the algebraic sum of all the excitations and all the inhibitions that arrive 
at each node of the network. 

The net input is then transformed through a mathematical function in the 
activation state of the unit. The algorithm that transforms the net input into the 
activation state can be the logistic function, or sigmoid, with continuous values and 
saturation. Other algorithms (called transfer functions) can also be used, such as the 
identity or linear function without saturation, the linear function with saturation, the 
step function with binary or bipolar values, and others. 

In the sigmoid the activation state varies between a minimum and a maximum 
(0 and 1). When the net input is 0, the activation state is 0.5. The algorithm is 
sensitive to small variations in the net input, which produce strong upward or 
downward deviations of the activation state in the central part of the range of 
variation. 



Athens Journal of Social Sciences April 2023 
 

87 

Once the activation state has been computed through the algorithm of the 
sigmoid function, it is determined how each unit influences the other units with 
which it is linked. In feedforward networks the units are grouped in layers and the 
units of the same layer are not linked together; they can only be linked with units in 
other layers. 

When the network has only one input and one output layer, it is called 
Perceptron. Each input unit is linked with each of the output units through a link 
whose intensity is measured by the weight; there are no horizontal links between 
output units; the propagation of signals is unidirectional from the input to the output 
(Figure 3). 
 
Figure 3. The Perceptron (Two-Layer Feedforward Network Input -> Output) 
     Y 
      output level 
 
 
 
      input level 
      X1    X2    X3 
 

Each unit of a Perceptron has a set of inputs, each having a weight that 
represents the strength of the neuron’s synaptic link. 

Figure 4 shows the case of a Perceptron with two input and one output units. 
The two input units encode the coordinates of patterns with respect to the two-
dimensional plane; the output unit encodes the type of pattern in two classes, A and 
B. The task of the Perceptron is to classify the input patterns into two distinct 
classes. 
 
Figure 4. A Perceptron with Two Input and One Output Units is Able to Identify 
the Two Classes in Situation (a) = Linearly Separable Patterns; but it Fails in 
Situation (b) = Nonlinearly Separable Patterns 

(a)   (b) 
 
 
 
 
 
 
 
 

Two sets of patterns are presented. In the first set, the patterns of the two 
classes, distributed in a plane, can be separated by a line (the Perceptron is able to 
discriminate the two classes). In the second set, conversely, the patterns of the two 
classes cannot be separated by a line (consequently the Perceptron is not able to 
discriminate them correctly). 
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The global input of the neuron is an n-dimensional vector with associated 
weights. To obtain the output of the Perceptron, each element of the input vector is 
multiplied by its weight, and all the values thus obtained are added together. The 
unit gives 1 as output if the sum is greater than a certain threshold value, otherwise 
it gives 0. The major limitation of the Perceptron is its inability to perform 
classification tasks for nonlinearly separable problems (Figure 4). 

In summary, a Perceptron does nothing but learn a series of direct associations 
between pairs of activation patterns. The network associates the output pattern with 
the input pattern by progressively adjusting the weights of the direct links between 
the input and the output units so as to store not a single association between an 
input and an output pattern, but as many associations as there are patterns to learn. 
In so doing, the Perceptron does not construct any internal representation of the 
different patterns it has learned, and therefore cannot highlight the similarities and 
differences between them. Precisely because the Perceptron cannot construct an 
autonomous internal representation, it is unable to make inferences on new 
characteristics of patterns, viz. on characteristics that it has not directly experienced. 

When linear separation is impossible, the Perceptron is unable to solve even 
seemingly simple problems. This limitation can be overcome by adding to the 
network an additional layer of units placed between the input and output ones. This 
intermediate layer is called hidden precisely because it is inside the network and has 
no links with outside the system, unlike the input layer which receives information 
from the outside and the output layer which transmits information to the outside 
(Figure 5). 
 
Figure 5. Feedforward Network with One Input, One Hidden and One Output 
Layer 
 
 
 
 
 
 
 
 
 
 

Figure 6 presents a case in which the input patterns of the two classes, distributed 
in a plane, cannot be linearly separated. However, they can be separated by drawing 
a number of lines (in this example, four). A possible solution to the problem consists 
in defining a multilayer neural architecture, which contains a sufficient number of 
hidden neurons to solve the task. 

According to Kolmogorov’s theorem (Cammarata 1990) a multilayer network 
provided with a sufficient number of hidden units is able to learn any function. 
 

output 

hidden 

input 
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Figure 6. Example of Input Patterns Divided into Two Nonlinearly Separable 
Classes 
 
 
 
 
 
 
 
 
 

A multilayer ANN is therefore able to recognize whether or not a given pattern 
belongs to class A by separating it from class B and to recognize the classes starting 
from a structure of links progressively adjustable in the training phase. Here the 
error is minimized by adjusting the connection weights by various criteria that 
guarantee, even in the case of linear nonseparability, the convergence of the 
iterative process towards the optimal solution. The way in which a network 
responds to an external activation pattern depends entirely on the connection 
weights between the units. What we want from a network is that it produces a 
certain activation pattern on the output units. But the weight of a specific link enters 
in determining the activation value of a given output unit by combining with the 
weights of the other links and with the activation state of the other hidden units. 
The activation states of the hidden units, in turn, depend on a large number of links 
proceeding from behind, and so on. So, it is almost impossible to determine the 
weight of each link, all the more if the fact that an output unit must be activated or 
not on a particular occasion depends on the overall activation pattern that is 
expected from all the output units on that occasion. 

The common feature of many ANNs is that they initially have randomly 
chosen connection weights; there are criteria by which networks automatically 
adjust these weights until assigning them those values that allow to respond to a 
certain external stimulation as desired. At the beginning the network will give 
random responses to external stimuli. However, exposed to repeated experiences, 
the network progressively adjusts its weights so that they will produce the desired 
performance. Different learning techniques have been defined for ANNs. What we 
will consider is a supervised learning from the outside, that is, a learning in which 
there is a specific external target associated with each input pattern that each time 
imposes on the network the desired performance. The network consequently adjusts 
the connection weights until, after a number of times, it is able to reproduce 
approximately the desired output for each input. 

In this paper we present the supervised learning criterion called EBP. EBP 
allows the network to compare, for each output unit, the obtained value with the 
desired value and to use the difference to adjust the connection weights in the right 
direction, so that after a number of learning cycles the connection weights 
determine the desired activation values on the output units. The EBP algorithm 
requires a multilayer network architecture: one input layer, one output layer and one 
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or more hidden layers. Each unit of a layer is linked to the units of the preceding 
layers; there are no horizontal links between units of the same layer and the signal is 
propagated unidirectionally from the input to the output through the hierarchy of 
the hidden layers (feedforward networks). The procedure envisages two steps: in 
the first one, the input patterns are transmitted to the output, the activation value of 
the outputs is evaluated and compared with the target values; in the second one, the 
computed error is backpropagated from the output to the hidden layers and from 
these to the input layer. 

The errors of the output units allow to estimate the errors of the hidden units 
and update the weights of their links. Thus, the errors of the input units are 
estimated and the weights of their links are updated. The algorithm is run for all the 
values of the training set until obtaining the correct values for the weights of all the 
links. After a first presentation of the patterns, for which the weights are updated, it 
is possible to proceed to other cycles of presentation until the mean squared error 
over the entire training set does not fall below a set threshold, or when new 
iterations do not correspond to a decrease in the error and therefore the network has 
reached a stable state, i.e. a minimum of the error function. For a number of times 
(which can vary from a few hundred to several thousand: each cycle carried out 
over the entire series is called epoch) it elaborates this series of training patterns. 

A mathematical description of the EBP algorithm is in Cammarata (1990). The 
EBP algorithm can be applied to a network with any number of layers; the number 
of units can vary from layer to layer. The number of input units and output units is 
determined by the problem to be solved, whereas there are no criteria to determine 
the optimal number of hidden layers and that of the units they contain. Generally no 
more than one or two hidden layers are introduced, and the number of their units is 
usually limited. The advantage of the EBP algorithm compared to the previous 
weight adjustment techniques is its ability to compute an error not only for the 
output unit layer – for which it is very easy since they receive the target from the 
outside – but also for the hidden unit layer. In this way, through the learning, not 
only the connection weights between hidden units and output units, but also those 
between input units and hidden units are adjusted. In an ANN of the kind described 
above, the association between input and output is mediated by the hidden units and 
the links that connect, each with its weight, the input units with the hidden ones and 
these with the output units. We can say that an ANN develops an internal 
representation of the input, and its response to the input depends on that. This 
aspect of the networks recalls the concept of latent dimension typical of many 
traditional statistical techniques such as factor analysis (Di Franco and Marradi 
2013). The internal representation of an input is obviously not symbolic; it is 
nothing more than the set of activation values that result on hidden units when the 
network receives an input. It is these activation values that determine the activation 
values of the output units, based on the connection weights between hidden and 
output units. And it is on the basis of this internal representation produced during 
the training phase that the network recognizes similarities and differences and is 
able to infer and generalize. 
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The EBP algorithm can be speeded up by adding a term to the weight adjustment 
formula that takes into account the update in the previous epoch: this additional 
term is controlled by a parameter ranging from zero to one called momentum. One 
drawback is the possibility that the algorithm does not reach the absolute minimum 
of the error function. In fact, the higher the value of the learning rate, the faster the 
network will learn. However, this entails the possibility of oscillations of the error 
function around a minimum value. On the other hand, a too small value of the 
learning rate can lead to too long training times, so the value of the parameter is 
often determined by trial and error. EBP guarantees that the convergence towards 
the global minimum occurs for a wide variety of tasks, in particular by avoiding the 
network falling into a local minimum, i.e., in a weight setting from which it cannot 
move but which does not correspond to the global minimum error that is trying to 
reach. 

Learning ends when the value of the global error is low enough, and in any 
event it shows no signs of any further reduction by increasing the number of 
epochs. At this point the network has learned, namely, it is able to provide the 
approximately correct output for each input. Most importantly, the network 
demonstrates that it has an ability to go beyond what it has been explicitly taught. 
This ability manifests itself in various ways. If the network has learned to give a 
certain response to a pattern, it will give this response to a damaged, partial, 
obscured by noise version of this pattern too. If a pattern has been classified as 
belonging to a certain class, similar patterns never seen before will also be 
classified as belonging to that class. If the response that has been learned from the 
network for a certain pattern contains some unspecified parts, the network will be 
able to correctly infer the missing parts. 

There are other factors, besides EBP, that can come into play in learning. For 
example, the learning rate, viz. the size of connection weight adjustment given a 
certain error, can be varied. As a rule, it is preferred to make small adjustments to 
have a gradual and smooth learning. Another factor that can be varied is the 
momentum, that is, if and how much the adjustment that I introduce now must be 
influenced by the adjustments introduced on the same weight previously. Then 
there is the bias, namely, an activation value that each unit tends to take regardless 
of the excitations and inhibitions that come from the other units. The bias is 
different from unit to unit and consists of excitation or inhibition that reaches the 
unit, through a link with a learnable weight, from a hypothetical special unit that 
always has activation equal to one. These additional mechanisms are indicative of 
the flexibility of multilayer networks and EBP learning. 

All this variability of factors, which first of all derives from the fact that at the 
outset each network receives its own specific random assignment of weights, 
entails that the whole course of learning and its final result will vary from network 
to network. Thus, if the same experiment is repeated on different networks, that is, 
having an initial assignment of different weights and/or different values of the 
parameters described above, it will not be possible to have identical but only similar 
results. Other differences may arise from the training time and from the way in 
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which the network examines the different patterns. Even by varying the training 
time and the order of presentation of the patterns, different results are obtained. 

The training time poses a further problem: if a network undergoes long 
learning there is the risk of overtraining thus compromising its ability to generalize. 
In fact, if a network learns the patterns used during the training too well, it will be 
less able to classify new patterns, different from those used in the training set. To 
this goal, the testing set is used. In this step the network has already learned the 
weights used in the training set and now responds to new patterns that are 
submitted to it without each being associated with a target. It is therefore more 
important that the network is able to learn well the prototypes underlying the 
patterns, rather than being able to respond correctly to each input in the training set. 
The conclusion to be drawn is that the concept of prototype is central to ANNs as a 
basis for classification. This shifts the emphasis from the classes defined in terms of 
characteristics (as is normally done) to the classes defined in terms of prototype. 
The ability to extrapolate, to respond sensibly to the new things, is one of the most 
important features of ANNs, and one of their main advantages compared to 
traditional analysis systems. Each network responds sensibly to patterns that are 
new compared to those with which it was trained. However, the response is 
generally less good than that given for the training patterns: the network is more 
uncertain; if it has to classify the new pattern in class A, it gives an activation value 
of 0.8 or 0.7, instead of 0.9. Conversely, what happens with the prototypes is that, if 
the prototype pattern is presented to the network, and the latter has never seen it 
before, its response can be even better than that given to the patterns it has trained 
many times. 

In short, the learning algorithm can be interpreted as the descent down any 
function from its generic point, whose coordinates are the initial randomly assigned 
weights and the initial error at its minimum point. The learning rate can be interpreted 
as the step of such descent. 

Of course, local minima are possible. What the network looks for is a minimum 
value of the global error, i.e., the connection weight setting that gives the minimum 
error for all input patterns. Instead, a local minimum is a weight setting that keeps 
the error still quite high without the network being able to escape from this setting, 
as that would lead to an initial increase in the error and then a descent towards a 
lower error. In nonlinear functions there is not a single point of absolute minimum, 
but it is possible to find several local minima that would represent suboptimal 
solutions for the network. 
 
 
Results and Discussion 
 

We present an example of application2 that consists of a comparison between a 
multiple linear regression model and an ANN Multilayer Perceptron. 
                                                                 
2The data used in the example are taken from a matrix containing some information on the electoral polls 
published by the mass media in Italy from 1 January 2017 to 29 February 2020. The information 
relating to these polls was taken from the website www.sondaggipoliticoelettorali.it of the Presidency 
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We first present the results of multiple linear regression. The dependent 
variable is the percentage of voters who declared their intention to abstain or who 
declared their indecision regarding the election choice (label ‘no-vot’). The 
independent variables are the following four: the number of days for carrying out 
the poll (label ‘days’); the sample size (label ‘n-sample’); the completeness index of 
the poll information (label ‘ind-1’); the ratio between the interview attempts and the 
interviews carried out (‘ind-2’). 

 
Table 1. Multiple Regression Model Summary 

R R Square Adjusted R 
Square 

Std. Error of the 
Estimate 

0.563 0.317 0.311 8.4224 
Predictors: (Constant), days, n-sample, ind-1, ind-2. Dependent Variable: no-vot. 
 

Table 1 presents the fitting results of the model. Considering the adjusted R 
square, we find that the four independent variables reproduce just under a third 
(31.1%) of the variance of the dependent variable. Table 2 shows the regression 
coefficients and Table 3 the residual statistics. 
 
Table 2. Multiple Regression Coefficients 

Model 
Unstandardized 

Coefficients 
Standardized 
Coefficients   

B Std. Error Beta t Sig. 
(Constant) 21.168 2.609  8.114 0.000 
days -0.663 0.297 -0.105 -2.229 0.026 
n-sample 0.007 0.001 0.284 4.986 0.000 
ind-1 25.129 2.872 0.348 8.749 0.000 
ind-2 -0.705 0.156 -0.226 -4.521 0.000 

Dependent Variable: no-vot. 
 

The analysis of the beta weights confirms that the contribution of the four 
independent variables is significant in explaining the variance of the dependent one. 

The analysis of the residual statistics also shows a good fit of the model to the 
data (Table 3). 
 

Table 3. Multiple Regression Residual Statistics 

Model Min. Max. Mean Std. 
Deviation N 

Predicted Value 30.684 56.227 41.261 5.711 506 
Residual -26.179 35.316 0.000 8.389 506 
Std. Predicted Value -1.852 2.621 0.000 1.000 506 
Std. Residual -3.108 4.193 0.000 0.996 506 
Dependent Variable: no-vot. 
                                                                                                                                                                         

of the Council of Ministers, Department for Information and Publishing. For further information on 
the data matrix, see Di Franco (2018). 
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Let’s now evaluate the results obtained with the ANN3 comparing them with 
those obtained with the multiple linear regression (Figure 7). 
 
Figure 7. ANN Architecture 

 
 
The cases submitted to the network are obviously the same 506 used in the 

regression. In this case, however, 70% of cases (359) were used in the training set 
and the remaining 30% (147) in the testing set. Table 4 presents the model summary. 
In the training step the relative error was equal to 0.225. In the testing step it grows 
slightly reaching the value of 0.327. Recall that in the testing step the network 
predicts the value of the dependent variable using the weights that it computed on 
the cases observed during the training. So basically, we assess the ability of the 
network to generalize what it has learned in the training. 
 
Table 4. ANN Model Summary 

Training 

Sum of Squares Error 40.218 
Relative Error 0.225 

Stopping Rule Used 1 consecutive step(s) with no 
decrease in error 

Training Time 0:00:00.194 

Testing 
Sum of Squares Error 19.528 

Relative Error 0.327 
 
We do not report the parameter estimates (i.e., the weights calculated for each 

node of the network) as their examination does not clarify the impact of each 
independent variable in the estimate of the dependent one. 

The comparison between the results of the multiple regression and the ANN 
leaves no doubt about the better predictive performance of the network (Table 5). 
The correlation between the values predicted by the multiple regression and the 
                                                                 
3For the ANN applications we used the Multilayer Perceptron procedure available in the SPSS 
program for Windows. 
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actual values of the dependent variable is equal to 0.563; the correlation between 
the values predicted by the ANN and the actual values of the dependent variable is 
thirty points higher, rising to 0.866. 
 
Table 5. Correlations between Predicted Values of Regression and ANN and 
Values of Dependent Variable 
No-vot 1   
Unstandardized Predicted Value: regression 0.563** 1  
Predicted Value for no_vot: ann 0.866** 0.391** 1 
**. Correlation is significant at the 0.01 level (2-tailed). 
 

Evidently in the relationship between the independent variables and the 
dependent one, the network managed to capture nonlinear trends which allow for a 
better estimate of the values. 
 
 
Conclusions 
 

At the end of this excursus on feedforward ANNs we can summarize the most 
important aspects by highlighting their strengths and weaknesses. 

Do ANNs replace the other techniques of traditional sociology? No, they 
should be used essentially when we do not know how to solve a problem in another 
way or when we know how to solve it otherwise, but with less convenience or 
poorer results (Evans and Foster 2019). The logic with which these networks learn 
is the connectionist one and there are four great differences from the models of 
relations among variables and classification typical of quantitative methods: a) 
ANNs can define strategies of connection and predictions with variables that are 
not limited to the four levels indicated by Torgerson (1958) (nominal, ordinal, 
interval scales or relations) but also extend to fuzzy variables or variables 
represented by a pixel in an image (therefore different types of variables can be 
considered in the same case-by-variable matrix); b) ANNs use data to estimate the 
performance of alternative models (functions, regularization parameters) to choose 
the best one with respect to all of the variables (this process requires solving an 
optimization problem, discovering either linear or nonlinear associations among the 
variables themselves); c) such networks are bottom-up systems producing a data 
model as an end point of an iterative and a feedback loop process (this means that 
the weight connecting unit i to unit j has not the same value as the weight 
connecting unit j to unit i, as happens for instance in a correlation matrix); d) the 
connections between variables, being direct, have a clear conceptual meaning, 
indicating a relationship of faded excitement, inhibition, or indifference between 
every pair of variables or records (this situation is quite different from the clear 
separation of traditional quantitative methods between models of classification and 
models of relations between variables) (Kent 2009). 

As the phenomenon of generalization demonstrates, ANNs are capable of 
learning, namely, they allow solving problems by associating the sought solution 
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with data. Indeed, network learning techniques are applications of known statistical 
methods (stochastic approximation) to a new class of nonlinear regression models. 
In this sense the determination of the network weights can be interpreted as a 
nonlinear regression applied to an ANN function. The advantage is to have an 
extremely flexible function, avoiding the subjective components of the specification 
error, as the parameters implicitly determine which is the latent function that a 
network approximates (White 1989). 

If the analytical form of the function underlying the problem under study is 
known, or can be assimilated to a known form, the problem of parameter estimation 
refers to the case of nonlinear least squares and the use of ANNs is not justified; it 
becomes so when one is not able to formulate reliable conjectures on such form. In 
this case, the use of networks is easier and more productive than other complex 
procedures with restrictive assumptions. The use of ANNs is therefore effective as 
a criterion for identifying hidden nonlinear relationships (Buskirk and Kirchner 
2021). 

The ability to learn is related to that to forecast. ANNs offer good performances 
both in univariate forecasting, that is, when one wants to predict the behaviour of a 
variable of a system that evolves over time on the basis of its past trend, and in 
multivariate analysis, when trying to predict the trend of a variable observing the 
past behaviour of several variables of the evolving system. Many studies have 
highlighted how ANNs allow good approximations and extrapolations to be made. 
Since a forecast problem can be referred to an approximation and extrapolation 
problem, it is possible to use networks to approximate the regularities present in the 
variations over time of the variable to be predicted. ANNs flexibly adapt to 
complex situations that change over time. They are also suitable for processing data 
that are incomplete or affected by noise or biases. By virtue of this ability to adapt 
to data, ANNs are very robust, viz. they have a high resistance to failures and 
malfunctions. Another important feature is the computational speed that derives 
from their parallelism and the very rapid input-output association, since the 
computations to be performed are weighted sums and threshold selections; 
therefore, they constitute a valid alternative to traditional techniques for performing 
complex computations (Aggarwal 2018). 

The critical points of ANNs are, first of all, the long and scarcely incremental 
learning; in addition to requiring a large number of epochs before significantly 
reducing the error, learning must be repeated when the situation represented by the 
patterns undergoes substantial changes, unless such learning is continuous or 
unsupervised (Bartlett et al. 2021). 

Obviously also for ANNs, as in any other case, it is necessary to have a data set 
that is rich and representative (of the problem under study) so that the training set 
and the testing set are effectively controllable (Molnar et al. 2020). 

Other problems may arise from the low accuracy and the uncertain reliability 
of the results provided by ANNs: the past performances of a network do not 
guarantee those in the future. There is a risk that the generalization is not complete 
and that therefore most of the inputs do not recall correct outputs. Furthermore, 
there are no strict criteria to design the most suitable network for a given problem, 
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but it is necessary to proceed by trial and error with, as mentioned, numerous 
degrees of freedom in the choice of each parameter. Moreover, each network has its 
own specificity. If the same experiment is repeated on another network, there will 
not be the same results, although in most cases they tend to converge. This is 
another interesting feature of ANNs; they are able to provide similar results in 
terms of performance with a variety of weight settings. Clearly what is important is 
not the value of a certain weight, but the overall set of all connection weights 
(Landi et al. 2010). 

Finally, the criticism most frequently raised against the usefulness of ANNs is 
that, even when they succeed in the assigned task, they do not allow to explain their 
operation on a cognitive level (in the case of the sociological research we could say 
on the level of the analysis of relationships between variables). We expect from a 
model not only that it will be able to predict or reproduce its referent, but also that it 
will be transparent, that is, it will make us understand how it works, what 
mechanisms, processes and principles are behind it. ANNs, according to this 
criticism, risk obtaining the first goal, but not the second one. A network that was 
able to learn a certain task and is also capable of extending its performance to new 
situations, showing in this way that it has incorporated the mechanisms and 
principles underlying that task, may nevertheless be not very transparent as to these 
mechanisms and principles, not making them emerge clearly and thus not allowing 
their full explanation regarding the phenomenon in question. Their strictly 
quantitative nature, the interweaving of the links, the connection weights, the 
effects of a local phenomenon of activation on the rest of the network, are all 
factors that make the behaviour of networks dark as tools for explaining the 
relationships between variables (Guidotti et al. 2019, Longo et al. 2020). 

How the role of mathematical thinking in the social sciences will evolve is 
difficult to predict, because neither mathematics nor social sciences are unchangeably 
fixed. Nonetheless, we recognize three main possibilities of application of ANNs. 
The first possibility consists in using ANNs together with statistical models to 
understand how different methods can contribute to the explanation of data 
concerning a single research. The second possibility consists in widening applications 
of ANNs to areas that are significant from a sociological point of view and that 
have not been analysed with ANNs. A third possibility consists in getting a better 
understanding on the way in which ANNs can contribute to the theory/explanation 
of sociological research. This part is very interesting because ANNs illustrate the 
concepts of explanation, prediction, etc. from a different perspective. As shown in 
the literature (Plebe and Grasso 2019), important considerations concerning 
applications of ANNs or their structure still remain to be explored. Answering these 
questions can help us push theory or generate new hypotheses. The results from 
ML provide not an end goal, but the starting point for further analysis and 
conceptualization. As such, ML tools complement, not replace, existing methods in 
sociology. 
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