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Estimating the distribution of air pollutants over space and time 
is a crucial challenge concerning climate change and human 
health. In urban environments, the air pollution generated by 

vehicle emissions has become increasingly evident, to the point that 
the temporary interruption of regular traffic during the COVID-19 
lockdowns resulted in a tremendous decrease in CO2 emission1–4. 
Even if this brief period’s impact on the epochal challenge of cli-
mate change is negligible5, it helps to outline the impact of emis-
sions related to transportation on our everyday life. Greenhouse gas 
(GHG) emissions from this sector have doubled since 1970, and, 
in 2016, 11.9% of global GHG emissions were from road transport 
(60% of which was from passenger travel)6,7. Moreover, the trans-
port sector emits non-CO2 pollutants such as nitrogen oxides, 
ozone, particulate matter and volatile organic compounds, which 
play a fundamental role in changing climate and are dangerous for 
human health6. Among the Sustainable Development Goals to be 
reached by 2030 (ref. 8), the United Nations posed an urgent call 
for action to reduce “the adverse per capita environmental impact 
of cities, including by paying particular attention to air quality”8. 
In this regard, measuring vehicle emissions is primary to designing 
policies to reduce transportation emissions.

Based on the available data, existing methods to quantify vehicle 
emissions range between two extremes. On the one hand, some 
approaches rely on measurements performed on small samples of 
vehicles (usually less than ten) but with high spatiotemporal reso-
lution, such as those coming from particulate sensors9 or portable 
emissions measurement systems (PEMS)10,11. These sensors mea-
sure emissions in real-world driving conditions, producing accu-
rate estimates, but they are hardly generalizable patterns due to the 
limited sample size. For example, two studies10,11 analysed emissions 
from PEMS of one and three light-duty vehicles, finding that the 
highest emissions are associated with the urban part of their routes, 
flat roads and low speed.

On the other hand, some studies cover a region’s almost entire 
fleet, for example, using odometer readings obtained from annual 
safety inspections. These inspections provide data on the age, fuel 
type, engine volume as well as the distance travelled for each vehicle, 
and are used in macroscopic models to estimate annual emissions. 
For example, two studies12,13 used odometer readings to compute 
mean annual emissions for UK postcode areas and explored the 
built-environment effects (for example, work accessibility) on the 

annual kilometres travelled by vehicles in Boston. Unfortunately, 
odometer readings miss critical information such as instantaneous 
speed and acceleration14–17, making it challenging to track emissions 
over time and map them to suburban areas.

Global Positioning System (GPS) traces generated by in-vehicle 
devices stand as a trade-off between these two extremes. Depending 
on the provider’s market penetration, they can cover a representative 
fraction of the vehicle fleet18 and allow the instantaneous speed and 
acceleration to be computed, which are then used within microscopic 
models to obtain emissions estimates with high spatiotemporal reso-
lution. GPS traces describe human mobility in great detail19–22 and 
offer an unprecedented tool to implement strategies such as reducing 
congestion, improving vehicle efficiency and shifting to lower-carbon 
options23–29. Given these peculiarities, several studies used GPS traces 
to analyse vehicle emissions at different spatiotemporal scales30,31, 
investigate the relationship between emissions and the urban envi-
ronment32, vehicle kilometres travelled and fuel consumption33, or 
trip rates and travel mode choice34. Other studies concentrated on 
congestion-related emissions35 or braking36, emissions associated with 
ride-hailing37 and bus stop positioning38, the impact of urban poli-
cies39, methods for emission modelling40,41 and air quality monitoring9.

Despite this variety of literature, it remains unclear what statisti-
cal patterns characterize the distribution of emissions per vehicle 
and road, how these distributions change in time and space, and 
how we can exploit this information to simulate emission reduction 
scenarios. For example, although it is reported that the distribution 
of emissions from on-road remote sensing sites across vehicles is 
skewed42–44, this finding has been questioned given the inherent 
limitations of this type of measurement45.

In this study, we analysed the estimated emissions of several air 
pollutants from thousands of private vehicles moving in different 
European cities. We used trajectories produced by onboard GPS 
devices to compute the vehicle emissions and matched the obtained 
emissions to the cities’ road networks. We then studied how the 
emissions distribute across vehicles and roads to discover the sta-
tistical patterns that characterize emissions and investigated the 
relationships between emissions, human mobility and the road net-
work’s characteristics. Finally, we simulated two emission reduction 
scenarios in which a share of vehicles become zero-emission or limit 
their mobility, identifying strategies to drastically reduce emissions 
over a city while minimizing the share of vehicles targeted.
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Our framework, which applies to any city provided the avail-
ability of vehicle GPS trajectories and road network data, may pro-
vide practical support for decision-makers to implement strategies 
to reduce emissions, improve citizens’ well-being and design more 
sustainable cities46–48.

results
Computation of emissions. We used anonymous GPS trajecto-
ries describing 423,018 trips from 16,715 private light-duty vehi-
cles moving in Greater London, Rome and Florence throughout 
January 2017 (Table 1). The spatiotemporal patterns of the vehicle 
trajectories are stable across the cities and the seasons of the year 
(Supplementary Note 1).

The trajectories were produced by onboard GPS devices, which 
automatically turn on when the vehicle starts, transmitting a point 
every minute to the server via a General Packet Radio Service con-
nection18–20. When the vehicle stops, no points are logged or sent. 
The GPS traces are collected by a company that provides a data col-
lection service for insurance companies. The market penetration of 
this service is variable, but, in general, it covers at least 2% of the 
total registered vehicles, and it is representative of the overall num-
ber of vehicles circulating in a city18. Figure 1a shows a sample of 
trajectories for 20 vehicles in Rome.

We defined a methodological framework to compute vehicle 
emissions from their raw GPS trajectories (Extended Data Fig. 1).  
We filtered the GPS trajectories so that the time between con-
secutive points is below a certain threshold (see Methods and 
Supplementary Note 2). For each vehicle, we estimated the instan-
taneous speed and acceleration at each point of its trajectory and 
filtered out points with unrealistic values (see Methods and Fig. 1b).  
We used a nearest-neighbour algorithm to assign the points to 
the cities’ roads based on the road networks downloaded from 
OpenStreetMap49 (see Methods).

The three cities are heterogeneous in their road networks: Rome 
is large, but with the sparsest network; London is huge, but with the 
densest network; Florence is small (~1/12 of Rome and ~1/15 of 
London in terms of land area), but with a dense road network (see 
Supplementary Note 3 for details).

We employed a microscopic emissions model30 that uses speed, 
acceleration and fuel type to estimate the instantaneous vehicle 
emissions of CO2, nitrogen oxides (NOx), particulate matter (PM) 
and volatile organic compounds (VOC; see Methods). Finally, 
we computed each vehicle’s overall emissions as the sum of all its 

instantaneous emissions during the period of study. Analogously, 
we computed the overall amount of air pollutants on each road by 
summing all the instantaneous emissions from any vehicle passing 
along that road during the same period (Fig. 1c).

Patterns of emissions. We found, for all three cities, that the emis-
sions were distributed across vehicles in a heterogeneous way: a few 
vehicles, which we call gross polluters, were responsible for a tremen-
dous amount of the emissions. At the same time, most vehicles emit-
ted considerably less (Fig. 2). The distribution of emissions per vehicle 
is associated with a Gini coefficient higher than 0.55, for all the cities 
and pollutants (Supplementary Note 4). In line with previous stud-
ies42–44, we found that the top 10% of gross polluters in Florence, Rome 
and London were responsible for 47.5, 50.5 and 38.5% of the total 
CO2 emitted during the month, respectively. The distributions of CO2 
emissions per vehicle of Rome and Florence are well approximated by 
a truncated power law with probability density function: p(x) ∝ x−αe−λx, 
with parameters α = 1.13 and λ = 1.04 × 10−3 for Rome (Fig. 2e), and 
parameters α = 2.12 and λ = 1.45 × 10−3 for Florence (Fig. 2h), where 
e represents the natural logarithm. Similarly, London’s distribution is 
well approximated by a stretched exponential with probability den-
sity function: p(x) ∝ xβ−1e−λxβ, with parameters λ = 5.7 × 10−4 and 
β = 1.26 (Fig. 2b). These results are consistent with those we obtained 
for the other three pollutants (NOx, PM and VOC): a truncated power 
law approximates well the distribution for Rome and Florence, and a 
stretched exponential approximates well the distribution for London 
(see Supplementary Notes 4 and 5 for details).

The picture is similar when considering the distribution of 
emissions per road: a few grossly polluted roads suffered from a 
substantial quantity of emissions, most of the roads suffered sub-
stantially fewer emissions. The distributions for all the cities and 
pollutants are associated with a Gini coefficient higher than 0.64 
(Supplementary Note 4), and are well approximated by a truncated 
power law, with exponents α = 1.55 and λ = 1.08 × 10−4 for Rome 
(Fig. 2f), α = 1.52 and λ = 1.30 × 10−4 for Florence (Fig. 2i), and 
α = 2.59 and λ = 2.88 × 10−4 for London (Fig. 2c). Both exponents 
α and λ are higher for London than for Rome and Florence, denot-
ing a more even distribution of emissions per road (Supplementary  
Fig. 13). In Florence and Rome, the top 10% of grossly polluted 
roads are associated with more than 90% of the CO2 emitted during 
the period. In London, this quantity is lower (56.7%), but still more 
than half of the city’s total emissions of CO2. Again, we found simi-
lar results for the other pollutants (Supplementary Note 4).

The above results held when changing the year’s season 
(Supplementary Note 1). Also, the sample size of the dataset and the 
choice of filtering parameter θ did not affect the significance of our 
results: the shape of the distributions held even if we substantially 
reduced the sample size or changed θ (Supplementary Note 6).

Relationship with mobility and road features. To investigate the 
relationship between a vehicle’s emissions and mobility patterns, we 
computed Spearman’s correlation coefficient between the emissions 
and three mobility metrics (see Methods): the radius of gyration, 
indicating the characteristic distance travelled by an individual50,51, 
the mobility entropy52–54, characterizing the predictability of their 
visitation patterns, and the total travel time of the vehicles, a prin-
cipal factor governing emissions. The travel time shows positive 
correlations, with the strength of the correlations varying from city 
to city. The radius correlates positively with a vehicle’s emissions, 
whereas the entropy correlates negatively. In London, the travel time 
has a strong positive correlation (0.98) with the emissions (Table 2), 
the radius has an almost null correlation (0.09) and the entropy has 
a strong negative correlation (−0.72). In Rome, the strength of the 
correlation with travel time is high (0.8), and the radius (0.58) and 
entropy (−0.54) are positively and negatively correlated with the 
emissions, respectively. In Florence, the correlation coefficient of 

Table 1 | Summary statistics of the GPS data

Original GPS trajectories

Vehicles trips Points average sampling 
rate (s)

London 2,745 117,930 2,978,989 72.9 (144)

Rome 9,188 254,088 2,221,206 207.7 (245.6)

Florence 4,782 51,000 291,598 261.3 (400.4)

GPS trajectories after filtering

Vehicles trips Points average sampling 
rate (s)

London 2,721 233,627 2,936,512 58.3 (18)

Rome 9,069 216,083 1,033,487 76.8 (27.7)

Florence 4,471 35,145 86,187 75.8 (31.2)

The number of vehicles, trips and points, and their mean sampling rate (standard deviations are 
given in parentheses), are reported for greater London, Rome and Florence before and after the 
filtering step. Note that after filtering, the number of trips of London is higher due to gPS data 
acquisition. See Supplementary Note 2 for details.
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the travel time is reduced (0.48), and those of the radius and entropy 
show similar behaviour to Rome: the first is positive (0.30), the sec-
ond is negative (−0.29).

As could be expected, the more a vehicle travels, the more emis-
sions it produces. However, the vehicles with more regular and pre-
dictable behaviour generate the highest emissions, not those with 
more erratic behaviour. Indeed, mobility entropy is low when a 
vehicle performs a high number of recurring trips, indicating pre-
dictable travelling patterns. In contrast, it is high when the vehicle 
performs trips from various origins and destinations, denoting a 
more unpredictable travelling behaviour. The observed negative 
correlations suggest that gross polluters are more regular and pre-
dictable than low-emitting vehicles.

To deepen our understanding of these relationships, we used a 
generalized additive model55 to express the emissions as a non-linear 
combination of the three mobility measures (Supplementary  
Note 7). We found that the radius and entropy contribute in an 
opposite way to determine a vehicle’s emissions. On the one hand, 
for Rome and Florence, the greater a vehicle’s radius of gyration, the 
greater its emissions (Supplementary Figs. 25 and 26). For London, 

the radius of gyration’s marginal contribution to the emissions is 
constant for radii of >7 km (Supplementary Fig. 24). On the other 
hand, for Rome and Florence, the greater a vehicle’s entropy, the 
lower its emissions (Supplementary Figs. 25 and 26). For London, 
the negative marginal contribution of the entropy to the emissions 
only holds for an entropy value of >0.7 (Supplementary Fig. 24). 
We also performed a cluster analysis to group vehicles based on 
their radius of gyration, mobility entropy and travel time. We found 
two clusters, namely the predictable and erratic drivers, and found 
that the former emit typically more than the latter (Supplementary  
Note 7 and Supplementary Fig. 27).

The interpretation of these results implies that further analyses 
are required to garner additional data providing information about 
the motivations behind each vehicle’s trip (for example, drivers’ 
mobility diaries). For example, the erratic vehicles could emit less 
because they are primarily used for sporadic excursions towards 
unknown locations. In contrast, predictable drivers could be forced 
to use private vehicles because they live or work in neighbour-
hoods poorly served by public transportation. Also, the heteroge-
neity of emissions’ distributions could be related to socioeconomic  
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Fig. 1 | Computation of emissions from GPS trajectories. a, Visualization of the trajectories of 20 vehicles travelling in in Rome, Italy, during January 
2017. Each colour represents a different trajectory. The grey area indicates the territory of the municipality of Rome. Plot generated with Python library 
scikit-mobility51. b, Visualization of the gPS points of three vehicles passing through a neighbourhood of Rome. Each symbol and colour indicates a 
different vehicle, with its own identity (ID) number; the corresponding instantaneous speed (s) and acceleration (a) are given for each point. The point 
with zero speed and acceleration is the first point of the trajectory sample. c, Instantaneous CO2 emissions at each gPS point and for each road crossed. 
The points and the roads are coloured in a gradient ranging from white (low emission) to red (high emission). The legend shows the overall emissions for 
each vehicle. The road networks in b and c were plotted with the Python library OSMnx49,63.

Fig. 2 | Distributions of emissions. a,d,g, CO2 emissions (expressed as grams per metre of road emitted during January 2017) on the road networks 
of greater London (a), Rome (d) and Florence (g). The roads are coloured according to the level of emissions in a gradient ranging from yellow (low 
emission) to red (high emission). The road networks in a,d,g were plotted with the Python library OSMnx49,63. b,e,h, Plots, on the log–log scale, showing 
P(X > x), i.e., the complementary cumulative distribution function (CCDF; black dots) of the CO2 emissions per vehicle, together with the best fit (red 
curve), in greater London (b), Rome (e) and Florence (h). c,f,i, Plots, on the log–log scale, showing the CCDF (black dots) of the CO2 emissions per road, 
together with the best fit (red curve), in greater London (c), Rome (f) and Florence (i).
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inequalities and the centre–periphery divide. For example, “new 
low-density settlements that often take on the character of sprawl 
and rely exclusively on private transportation” have been developed 
in Rome56.

We also investigated the relationship between the emissions 
suffered by a road and network features such as road length and 
the betweenness centrality of the edge representing the road. The 
betweenness centrality is based on how frequently a road lies on the 
shortest paths connecting two crossroads (see Methods). Therefore, 
a road with a high centrality is more likely to be crossed. We found 
a positive correlation between the betweenness centrality and the 
emissions on roads for all three cities (Table 2). This result confirms 
that our emissions estimates are consistent with the roads’ character-
istics, as roads that are central in the network are more likely to host 
greater emissions. Similarly, we found a positive correlation with the 
road length (Table 2), as longer roads capture more points and thus 
more emissions. Similar results were obtained for the emissions of 
the other three pollutants in all three cities (Supplementary Note 7). 
Figure 2a,d,g shows the entire road networks of Greater London, 
Rome and Florence, respectively, with the emissions on each road 
normalized by the length of the road to highlight better the differ-
ences between the roads.

Simulation scenarios. Reducing emissions is becoming increas-
ingly important for cities, and it is crucial to estimate the impact of 
policies targeting vehicles to reduce their footprint on a city’s envi-
ronment. We investigated the impact of vehicle electrification on 
the total amount of emissions and the distribution of those emis-
sions across the roads. In particular, we studied how the electrifica-
tion of a certain share of vehicles would change the emissions on 
the roads of the three cities. In this setting, even if a vehicle’s elec-
trification were to change its driver’s mobility behaviour, the vehicle 
would not create any emissions.

We found that the electrification of just the top 1% of gross pollut-
ers would reduce emissions as much as electrifying a random 10% of 
vehicles. In Fig. 3, we show a case study for the entire city of Rome, as 
well as for a single neighbourhood, to investigate the impact of massive 
electrification on emissions. The results for London and Florence are 
provided in Supplementary Note 8. As the number of gross polluters 
that shift to electric engines grows, the impact on the roads of reduc-
ing emissions becomes more evident. In particular, if the top 10% of 
gross polluters shift to an electric engine, 107 roads would experience 
a notable reduction in the grams of CO2 per metre (at least equal to 
0.01 g m–1; Table 3 and Fig. 3d). In contrast, if 10% of the vehicles that 
shift to electric engines are chosen at random, only 18 roads would 
have a substantial reduction of emissions (Fig. 3b). These results hold 
for both single neighbourhoods and the entire city (see Fig. 3e,f for 
Rome and Supplementary Note 8 for London and Florence).

The percentage reduction of the overall emissions grows almost 
linearly when the share of electric vehicles is chosen at random. 

In contrast, a generalized logistic function (GLF), also known as 
Richard’s curve57,58, approximates the growth rate when the gross 
polluters are electrified first. We used non-linear least-squares 
methods to fit the GLF, which describes the growth of a variable 
x as f(x) = α

(1+βe−rx)1/ν , where α represents the upper asymptote, 
β the growth range, r the growth rate and ν the slope of the curve. 
The model gives R2 = 0.99 both for the selected neighbourhood 
(Fig. 3e) and for the whole city of Rome (Fig. 3f). The estimated 
growth rate r of the curve is 4.84 × 10−2 for the neighbourhood and 
3.96 × 10−2 for the entire city of Rome. Its slope ν is almost the same 
for both the neighbourhood and the entire city (−1.55 and −1.56, 
respectively). The values of α and β are ~100 and −1, respectively, 
for both the neighbourhood and the city. Similar results hold for 
Florence (Supplementary Fig. 31b and Supplementary Table 11). 
In Greater London (Supplementary Fig. 31a), the growth starts 
slowly (ν = −0.86): there are fewer vehicles with high emissions 
levels, and electrifying the most polluting vehicles is slightly 
less effective in reducing emissions than in the other two cities  
(Supplementary Table 11).

Given the increasing importance of remote working, especially 
since the COVID-19 pandemic59,60, we simulated the impact of 
a massive shift to remote working on reducing vehicle emissions. 
This working style may affect individual mobility patterns, but we 
assumed that it eliminates commuting trips. Indeed, if an individ-
ual works from home, the most straightforward implication is the 
removal of commuting trips from their mobility habits. We identi-
fied vehicles’ home and work locations (see Methods) and studied 
the emissions generated from their commuting patterns. We then 
performed a simulation in which a growing share of these commut-
ers become home workers, that is, they no longer travel between 
their home and work locations.

We found that emissions reduction is more effective when the 
home workers are gross polluters. In this case, remote working for 
the top 1% gross polluters leads to the same reduction as if they were 
~4% random vehicles (Supplementary Fig. 32). Again, a GLF fits 
well the emissions reduction when the gross polluters become home 
workers. In particular, we obtained estimates for ν (the slope of the 
curve) that are similar for Rome and Florence (−1.30 and −1.35, 
respectively) and lower for London (−0.72; see Supplementary  
Note 8 and Supplementary Fig. 32 for details).

Overall, these results demonstrate that targeting specific profiles 
of vehicles can substantially improve emission reduction policies.

Discussion
Using GPS data to estimate the emissions from thousands of vehi-
cles in three European cities of different sizes and characteristics, 
we have shown here the existence of gross polluters, that is, vehicles 
responsible for the greatest quantity of emissions. The existence of 
gross polluters has been reported in previous studies using mea-
surements from on-road remote sensing sites42–44; however, these 
studies have been questioned because measurements from on-road 
sites cannot represent a vehicle’s overall emission level45. Our study 
contributes to reshaping this discussion because our findings are 
based on a microscopic emission model that captures in great detail 
the instantaneous emissions of vehicles. We have added new ele-
ments to this debate, discovering that gross polluters exist in dif-
ferent cities and for different pollutants (CO2, NOx, PM and VOC) 
and reporting the existence of grossly polluted roads suffering the 
greatest amount of emissions.

The heterogeneous patterns governing the distribution of 
emissions across vehicles and roads are well approximated by 
heavy-tailed distributions, with exponents that vary from city to 
city and from pollutant to pollutant. These peculiar exponents may 
depend on the characteristics of the city’s road network and people’s 
commuting behaviour. For example, London has a vast and dense 
road network, and people use private vehicles less intensively61 than 

Table 2 | Correlations of vehicle emissions with mobility metrics 
and road features

Mobility metrics road features

radius entropy travel 
time

Betweenness 
centrality

Length

London 0.09 –0.72 0.98 0.27 0.22

Rome 0.58 –0.54 0.80 0.30 0.35

Florence 0.30 –0.29 0.48 0.10 0.25

Spearman’s correlation coefficients between CO2 emissions per vehicle and vehicle mobility 
metrics (radius of gyration, uncorrelated entropy and travel time), and between CO2 emissions per 
road and road features (betweenness centrality and length).
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in Rome and Florence. Thus, one can argue that mobility behaviour 
in London leads to a distribution of emissions per vehicle that is 
more even than in Rome, which is characterized by a vast and sparse 
road network and intensive use of private vehicles62.

Our study can be reproduced with any city provided the avail-
ability of vehicle GPS trajectories and road network data, and may 

help to find more effective strategies to reduce emissions. For exam-
ple, our study demonstrates that blocking the circulation based on 
an uninformed choice (for example, blocking vehicles with odd or 
even number plates) has less impact on reducing emissions than 
identifying and targeting a small share of gross polluters. Moreover, 
we have designed a precise model to estimate the overall reduction 
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Fig. 3 | Simulation of vehicle electrification. Impact on CO2 emissions of the electrification of the vehicles moving within a neighbourhood (the Second 
Municipality of Rome), as well as within the whole city of Rome, during January 2017. a, Distribution of emissions of CO2 across the roads of the 
neighbourhood. The roads are coloured in a gradient ranging from yellow (low emission) to red (high emission), and the histograms show the distribution 
of the emissions across the roads, with the bars coloured according to the same gradient. b–d, Reduction of emissions experienced by the same roads if 
a random 10% of the vehicles (b), the top 3% gross polluters (c) and the top 10% gross polluters (d) shift to electric engines. The roads are coloured in 
a gradient ranging from light blue (low reduction) to dark blue (high reduction), and the histograms show the distribution of the reduction in emissions 
across the roads, with the bars coloured according to the same gradient. e,f, Percentage reduction of CO2 emissions corresponding to the share (0–100%) 
of electric vehicles in the Second Municipality of Rome (e) and for the whole city of Rome (f). The insets zoom in on the first 10% share of electric 
vehicles. The solid blue lines correspond to the scenario when the vehicles to be electrified are chosen from the most polluting to the least polluting. 
The black dashed lines indicate the emission reduction when the vehicles to be electrified are chosen at random. The dotted red line is the gLF fit: 
f(x) = α

(1+βe−rx)1/ν . The road networks in a–d were plotted with the Python library OSMnx49,63.
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of emissions caused by the electrification of a particular share of 
vehicles or by reducing the number of commuting trips travelled by 
the vehicles (for example, caused by a transition to the home work-
ing of their drivers).

There are several directions in which this study can be extended. 
For example, because we focused on light-duty vehicles, all the results 
we have shown are valid for this fleet of vehicles only. Although they 
make up the vast majority of vehicles circulating in a city, we are 
aware that the absence of other vehicles, such as heavy-duty vehicles 
(for example, buses and trucks), generates an incomplete mosaic of 
the emissions within the urban environment. We hope, therefore, 
for a more comprehensive study that may include different types 
of vehicles.

Also, our analysis can be extended by investigating how the 
emission patterns vary between weekdays and weekends or weather 
conditions, and by considering more sophisticated simulation sce-
narios. For example, it would be interesting to investigate the impact 
of policies that aim to improve walking, transit or cycling on the 
distribution of emissions, the number of gross polluters and grossly 
polluted roads. Finally, the relationship between vehicle emissions 
and mobility patterns may be examined in more depth to investigate 
whether the observed heterogeneous distributions originate from 
other inequalities (for example, socioeconomic inequalities and the 
centre–periphery divide).

Meanwhile, our study may shape the discussion on measuring 
emissions with digital data and how to use such measurements 
to simulate emission reduction scenarios. If we learn how to use 
such a resource, we have the potential to monitor in real time the 
level of emissions in our urban environments and take immediate, 
informed actions when they overcome a certain tolerance thresh-
old. This fact is crucial because the decisions that policymakers take 
depend on what we measure, how good our measurements are and 
how promptly we react to these measurements.

Methods
Data filtering. In our GPS dataset, each trajectory point is associated with a vehicle 
identifier, a trajectory identifier, a timestamp and a latitude and longitude pair. 
The sampling rate of the trajectory points may affect the estimate of instantaneous 
speed and acceleration. Because the mean time interval between trajectory points 
varies from city to city (it is about 1 min for London and 4 min for Rome and 
Florence, see Table 1), we performed a pre-processing step to align them. For 
each trajectory, we retained only those subtrajectories (that is, disjoint subsets of 
points) that satisfy two constraints: (1) there are at least two points and (2) the time 
interval between consecutive points is less than θ = 120 s. The filtering step causes 
a drop in the number of points and, in consequence, of vehicles. We analysed 
the trends in the number of both vehicles and points resulting from the filtering 
step, varying the filtering parameter θ from 1 to 300 s (Supplementary Note 1). By 
choosing θ = 120 s, we lost 53.5% of the points in Rome, 1.4% in London and 70.4% 
in Florence. Consequently, we discarded 1.3% of the vehicles in Rome, 0.9% in 
London and 6.5% in Florence (Table 1).

In previous work, different values of θ were used (for example, the time interval 
between the points was set to 1 s (ref. 36), 3 s (ref. 37), 5 s (ref. 30) and 5–50 s (ref. 31)).  
Our choice derives from our data sampling rate and is a trade-off between the 
reliability of the results and the data coverage. As the last step, we computed, for 
each vehicle, the speed and acceleration at each point, and retained only those 
points with a speed of less than 300 km h–1 and an acceleration in the range −10 to 
+10 m s–2 (as suggested by Nyhan et al.30).

Road network and GPS point snapping. The road network of each city was 
extracted from OpenStreetMap (OSM)49, a collaborative project to create a 
free editable map of the world and provide the geodata underlying the map. In 
particular, the road network is provided as a multigraph G = (V,E), with V being 
the set of nodes v and E being the multiset of edges e, the edges representing 
public roads accessible to vehicles (including service roads). Each edge e ∈ E 
comprises two identifiers that indicate the starting and ending OSM nodes, and 
a key that discriminates between parallel edges (if present). Moreover, it carries 
some information about the road it represents, such as its name, length and type 
(for example, whether it is a motorway or residential street). In this context, we 
call nodes v ∈ V that have at least two roads (that is, edges e ∈ E) incident on them 
crossroads. To download, compute statistics and visualize the road networks, we 
conceived methods based on the Python library OSMnx63. Our matching step 
consisted of a ball tree nearest-neighbour algorithm that assigns each point of a GPS 
trajectory to the nearest edge in the road network. This point snapping step allowed 
us to assign vehicle emissions to the roads on which they were produced (Fig. 1c). 
Note that the nearest-neighbour algorithm used does not affect the quality of the 
emissions estimated with the microscopic model. Indeed, instantaneous emissions 
were computed on the basis of the speed and acceleration of the points computed 
from the GPS data (not matched yet with the road network). Moreover, our GPS 
data come with a quality index that ranges from 1 to 3 and indicates the precision 
of each GPS point’s location. A point’s maximum quality (that is, index = 3) 
indicates that at least four satellites’ signals received by the GPS device are used for 
the trilateration of the point’s location. In this study we used only points with the 
highest quality (that is, index = 3). Given this accuracy in the points’ locations, the 
reconciliation problem is straightforward64, and we assigned the location obtained 
from the GPS receiver to the nearest edge in the network.

Computing emissions. We implemented a microscopic emissions model30 to 
compute the instantaneous emissions associated with each trajectory point p. 
We denote the quantity of pollutant j ∈ {CO2, NOx, PM, VOC} emitted at point p 
from vehicle u as Ej,up , and the instantaneous speed and acceleration of the vehicle 
at point p as sp and ap, respectively. Information about its engine type (whether 
it is petrol, diesel or liquefied petroleum gas) is available for each vehicle. This 
information determines, together with the type of pollutant, the emission factors 
fi. We used the following equation to compute the instantaneous emissions Ej,up  of 
pollutant j from vehicle u at point p:

E j,u
p = f j,u1 + f j,u2 sp + f j,u3 s2p + f j,u4 ap + f j,u5 a2p + f j,u6 spap (1)

where for NOx and VOC emissions the factors f1, ..., f6 change with a cceleration 
(based on whether ap ≥ −0.5 m s–2 or ap < −0.5 m s–2). We show the variation  
of factors f1, …, f6 with the vehicle’s fuel type and acceleration in Supplementary 
Table 13.

Mobility measures and road centrality. We used three quantities to describe the 
mobility of a vehicle u:
•	 The radius of gyration18,19,50 rg(u) =

√
1
n
∑

i∈Pdist[ri(u) − rcm(u)]2 , where P 
is the set of n points recorded for u, ri(u) indicates the coordinates of trajectory 
point i ∈ P, rcm(u) is the centre of mass of u and dist is the haversine distance 
between two points on earth

•	 The temporal-uncorrelated entropy52–54 S(u) = −

∑Nu
i=1 pu(i)log2pu(i), where 

Nu is the number of distinct locations visited by u and pu(i) is the probability 
that u visits location i

•	 The travel time of u, computed as the sum of all the travel times of its 
trajectories

•	 We measured the centrality of a road, a proxy of its traffic volume in the city, 
as its betweenness centrality. In network science, the betweenness centrality 
of an edge e (that is, a road in our case) is defined as Cb(e) =

∑
s,t∈V

σ(s,t|e)
σ(s,t) , 

where V is the set of nodes in the network, σ(s,t) is the number of shortest 
paths between s and t, and σ(s,t∣e) is the number of those shortest paths pass-
ing through edge e.

Home and work locations. The first step when identifying an individual’s home 
and work locations is the selection of the starting and ending points of their 
trajectories65. The position of the starting (or ending) points of the trajectories 
that start from (or end at) the same semantic location may not coincide. This may 
happen (1) because a driver may park the vehicle within a certain radius of the 
location and (2) because the first point sent by the GPS device often lacks precision 

Table 3 | CO2 reduction experienced on roads in three different 
scenarios

CO2 reduction 
(g m–1)

Number of roads with specific CO2 reduction

10% random 3% most polluting 10% most 
polluting

≥10−4 232 385 665

≥10−3 137 258 469

≥10−2 18 53 107

≥10−1 0 6 10

The number of roads that experience certain levels of CO2 reduction are presented according to 
three different scenarios of vehicle electrification: (1) when electrifying a random 10% of vehicles, 
(2) when electrifying the top 3% most polluting vehicles and (3) when electrifying the top 10% 
most polluting vehicles.
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and is discarded, the second point sent is taken as the starting point of the 
trajectory. For the above reasons, we spatially clustered these points within a radius 
of 250 m and took the centroid of each cluster as the vehicle’s stop location.

To identify a vehicle’s home and work locations, we used a principle commonly 
adopted in the literature65: the home location is the stop location corresponding to 
the most frequent cluster, and the work location is the stop location corresponding 
to the second most frequent cluster. We discarded the vehicles for which it 
is impossible to identify the most frequent stop location(s) (for example, the 
vehicle visited each location only once). We successfully identified home and 
work locations for 55, 31 and 16% of the vehicles moving in London, Rome and 
Florence, respectively. There are two main reasons we cannot identify the home 
and work locations of many vehicles in Florence. First, the average number of 
trajectories per vehicle (10.7) is much lower than in the other two cities (27.6 in 
Rome and 43 in London; see Table 1). The fewer trajectories a vehicle has, the more 
difficult it is to identify its home and work locations. Second, while a relatively 
small city, Florence is an essential hub for the surroundings. Thus, many users 
could live outside the city. Moreover, even if they live inside the city, given various 
restricted traffic areas in the city’s historic centre, many could reach the workplace 
by public transportation or walking. This leads to a low number of commuting 
trajectories inside the city.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting summary linked to this article.

Data availability
The data that support the findings of this study are not publicly available due to 
privacy restrictions and were used under licence for the current study. Aggregated 
source data for figures are available from the authors upon reasonable request.

Code availability
The Python code to reproduce the analyses in the study from public GPS data (taxi 
trips) is publicly available in GitHub (https://github.com/matteoboh/mobility_
emissions) and the Zenodo repository66.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Step-by-step procedure for the computation of emissions and results analyses. The left column describes the steps followed 
starting from the data, passing through the data processing, and ending with the analyses performed. The central column shows a schema of what 
happens in each step. The right column shows some numbers and results in support of the central column. The heatmap in step 1 is plotted with 
the Python library scikit-mobility51. The small road network in step 7 is plotted with the Python library OSMnx63. Car icons from the Noun Project 
(thenounproject.com).
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