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Abstract. Let H be a bounded and Lipschitz continuous function. We con-
sider discontinuous viscosity solutions of the Hamilton-Jacobi equation Ut +

H(Ux) = 0 and signed Radon measure valued entropy solutions of the conser-

vation law ut + [H(u)]x = 0. After having proved a precise statement of the
formal relation Ux = u, we establish estimates for the (strictly positive!) times

at which singularities of the solutions disappear. Here singularities are jump

discontinuities in case of the Hamilton-Jacobi equation and signed singular
measures in case of the conservation law.

1. Introduction

Let H be bounded and Lipschitz continuous in R,

(H1) H ∈W 1,∞(R) ,

and consider the Cauchy problem for the first order Hamilton-Jacobi equation

(HJ)
⎧⎪⎪⎨⎪⎪⎩

Ut +H(Ux) = 0 in S ∶= R ×R+

U = U0 in R × {0},

where U0 is a given initial function. Setting u ∶= Ux and u0 ∶= U ′
0, the problem is

formally transformed in the Cauchy problem for a scalar conservation law,

(CL)
⎧⎪⎪⎨⎪⎪⎩

ut + [H(u)]x = 0 in S

u = u0 in R × {0} .

Problem (CL) was considered in [4, 5] in the context of Radon measure-valued
entropy solutions . There it was shown that if

(1.1)
u0 is a signed Radon measure on R,

and the singular part u0s is a finite superposition of Dirac masses,

each initial Dirac mass does not increase in time but, since H is bounded, does not
disappear instantaneously, i.e. it survives until a positive waiting time (possibly ∞,
for example if H is constant). The positivity of the waiting time is in contrast with
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the case of nonlinearities H with superlinear growth, where the regularizing effect
is instantaneous [16].

Similarly, in [6] we studied problem (HJ) in the context of discontinuous viscosity
solutions, and showed that if H is bounded and

(1.2) U0 is piecewise continuous in R, with a finite number of jump points,

the size of each jump discontinuity does not increase in time and does not vanish
until a positive waiting time (possibly ∞). We were motivated by a mathematical
model for the process of ion etching, which leads to problem (HJ) with bounded
and non-convex Hamiltonian H which vanishes at infinity (see [13, 18, 19]) - a set
of assumptions scarcely considered in the literature.

In the present paper we are primarily interested in properties of the waiting times.
For this purpose it is useful to know that the formal relation u = Ux can be made
rigorous (if so, the corresponding waiting times for the two problems coincide). We
shall prove that this is indeed the case, but, as we explain below, the proof is indirect
and based on the existence and uniqueness theory for problems (CL) and (HJ). As
far as we know, even in the case of non-singular solutions a direct proof, merely based
on the definitions of entropy and viscosity solutions, is not available in the literature.
We refer to [15] for the indirect approach if U0 ∈ BV (R), and to [7] for the direct
approach in the stationary case. In the case of convex nonlinearities H, stimulating
remarks about the correspondence between viscosity solutions of Hamilton-Jacobi
equations and Radon measure-valued solutions of scalar conservation laws can be
found in the pioneering paper [10].

The proofs of existence of both a measure-valued solution of problem (CL) and
a discontinuous viscosity solution of (HJ) are constructive. Choosing suitable ap-
proximating problems with smooth initial data u0n and U0n (with U ′

0n = u0n) and
smooth solutions un and Un, the relation Unx = un is trivial. Letting n → ∞, the
formal relation between constructed solutions u and U can be made rigorous. So
what we need is a uniqueness result for both u and U .

Let us point out that suitably defined discontinuous viscosity solutions of (HJ)
are unique [6], but, as observed in [10], measure-valued entropy solutions of (CL)
are not. Only recently an additional compatibility condition (see Definition 3.2
below) was identified which guarantees their uniqueness [4].

This leads to the following type of result (see Theorem 4.1 for the precise state-
ment). Let H ∈ W 1,∞(R), let u0 be a Radon measure in R which satisfies (1.1),
and let u be a suitably defined measure-valued solution of (CL) which satisfies the
compatibility condition. Let U be a suitably defined viscosity solution of (HJ) with
initial data U0 satisfying U ′

0 = u0 in the sense of measures. Then

(1.3) U(x, t) = −∫
t

0
H(ur(x, s))ds +U0(x) a.e. in R for all t ≥ 0 ,

(1.4) Ux = u in D′(S) , us(⋅, t) =
p

∑
j=1

[U(x+j , t) −U(x−j , t)] δxj for all t ≥ 0 ,

where x1, . . . , xp are the points where the Dirac masses of u0 are concentrated, ur is
the density of the absolutely continuous part, uac, of the measure u, and us is the
singular part of u. Observe that U ′

0 is a Radon measure without singular continuous
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part:

(1.5) U ′
0 =

p

∑
j=1

[U0(x+j ) −U0(x−j )] δxj + (U ′
0)ac .

Having established the relation between solutions of problems (HJ) and (CL),
the natural tool to prove properties of the (common) waiting times is the construc-
tion of comparison functions. While the comparison principle for viscosity sub- and
supersolutions of problem (HJ) is known, we shall prove it for entropy solutions of
(CL) which satisfy the compatibility condition (Theorem 4.2).

So let u0 = U ′
0, let U be the unique viscosity solution of (HJ) and let u be the

unique entropy solution of (CL) which satisfies the compatibility condition. We
define the waiting times at the point xi where U0 has a jump continuity and where
u0s is concentrated:

(1.6)

⎧⎪⎪⎨⎪⎪⎩

τi ∶= sup{τ > 0; U(⋅, t) is discontinuous at xi for t ∈ [0, τ]}
ti ∶= sup{τ > 0; (us(⋅, t)) ({xi}) ≠ 0 for t ∈ [0, τ]}

(i = 1, . . . , p) .

Clearly τi = ti, and since the comparison principles for the two problems are obvi-
ously not equivalent, we can take advantage of the possibility that we can choose
to construct comparison functions for problem (CL) or problem (HJ) in order to
find estimates for the waiting times.

To fix the ideas, we discuss here the case of a positive initial jump at a point xi:

J0(xi) ∶= U0(x+i ) −U0(x−i ) > 0.

If H(ξ) has no limit at ∞, the waiting time is always finite (Theorem 4.4):

lim sup
ξ→∞

H(ξ) > lim inf
ξ→∞

H(ξ) ⇒ 0 < τi ≤
J0(xj)

lim sup
ξ→∞

H(ξ) − lim inf
ξ→∞

H(ξ)
.

If instead

H(ξ) has a limit as ξ →∞,
it can very well happen that τi =∞. It is trivial to see that this can always occur
if H(ξ) is constant for sufficiently large ξ. So the question is whether τi is always
finite if

H is not constant in (c,∞) for all c ∈ R.

We are not able to give a definite answer and leave the general question as an open
problem. However, we conjecture that this is always the case (for a non definitely
constant Hamiltonian), since several partial results in Section 4.3 (see Theorems
4.5, 4.7) give a strong indication in this direction.

The paper is organized as follows. In Section 2 we introduce the basic notations,
in Section 3 we review some known results, in Section 4 we present the main results,
which are proved in the remaining sections.

2. Notation

2.1. Radon measures. For every open subset Ω ⊆ R we denote by Cc(Ω) the
space of continuous real functions with compact support in Ω and by M+(Ω) the
cone of the nonnegative Radon measures on Ω. Following [12, Section 1.3] we say
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that µ is a (signed) Radon measure on Ω, if there exists ν ∈M+(Ω) and a locally
ν-summable function f ∶ Ω→ R such that

µ(K) = ∫
K
f dν

for all compact sets K ⊂ Ω. The space of (signed) Radon measures on Ω is denoted
by M(Ω). The measure µ ∈M(Ω) is finite if its total variation ∣µ∣(Ω) is finite.

If µ, ν ∈M(Ω), we say that µ ≤ ν inM(Ω) if ν−µ ∈M+(Ω). We denote by ⟨⋅, ⋅⟩Ω
the duality map between M(Ω) and Cc(Ω). For any open set Ω̃ ⊂⊂ Ω, M(Ω̃) is a

Banach space with norm ∥µ∥M(Ω̃) ∶= ∣µ∣(Ω̃). Similar definitions are used for Radon

measures on any subset of Q ∶= Ω × (0, T ).
Every µ ∈M(Ω) has a unique decomposition µ = µac + µs, with µac ∈M(Ω) ab-

solutely continuous and µs ∈M(Ω) singular with respect to the Lebesgue measure.
We denote by µr ∈ L1

loc(Ω) the density of µac. Every function f ∈ L1
loc(Ω) can be

identified to an absolutely continuous Radon measure on Ω; we shall denote this
measure by the same symbol f used for the function.

For every open subset Ω ⊆ R we denote by BV (Ω) the Banach space of functions
of bounded variation in Ω:

BV (Ω) ∶={z ∈L1(Ω) ∣ z′ ∈M(Ω), ∥z′∥M(Ω) <∞}, ∥z∥BV (Ω) ∶=∥z∥L1(Ω) + ∥z′∥M(Ω),

where z′ is the first order distributional derivative. The total variation in Ω of z
is TV (z; Ω) ∶= ∥z′∥M(Ω). We say that z ∈ BVloc(Ω) if z ∈ BV (Ω̃) for every open

subset Ω̃ ⊂⊂ Ω. Similar notions hold if z ∈ BV (Q); in this case we denote by zx, zt
the first order distributional derivatives of z.

By C([0, T ];M(Ω)) we denote the set of strongly continuous mappings from
[0, T ] into M(Ω) - namely, u ∈ C([0, T ];M(Ω)) if for all t0 ∈ [0, T ] and for every
compact K ⊂ Ω there holds ∥u(⋅, t) − u(⋅, t0)∥M(K) → 0 as t→ t0.

We denote by L∞w∗(0, T ;M+(Ω)) the set of nonnegative Radon measures u ∈
M+(S) such that for a.e. t ∈ (0, T ) there is a measure u(⋅, t) ∈M+(Ω) such that

(i) if ζ ∈ C([0, T ];Cc(Ω)) the map t↦ ⟨u(⋅, t), ζ(⋅, t)⟩Ω belongs to L1(0, T ) and

(2.1) ⟨u, ζ⟩S = ∫
T

0
⟨u(⋅, t), ζ(⋅, t)⟩Ω dt ;

(ii) the map t↦ ∥u(⋅, t)∥M(K) belongs to L∞(0, T ) for every compact K ∈ Ω.

By the definition of L∞w∗(0, T ;M+(Ω)), for all ρ ∈ Cc(Ω) the map t↦ ⟨u(⋅, t), ρ⟩Ω
is measurable, thus the map u ∶ (0, T )→M+(Ω) is weakly* measurable.

If u ∈ L∞w∗(0, T ;M+(Ω)), then uac, us ∈L∞w∗(0, T ;M+(Ω)), ur ∈L∞(0, T ;L1
loc(Ω))

and, by (2.1), for all ζ ∈ C([0, T ];Cc(Ω))

⟨uac, ζ⟩S =∬
S
ur ζ dxdt, ⟨us, ζ⟩S = ∫

T

0
⟨us(⋅, t), ζ(⋅, t)⟩Ω dt.

Denoting by [u(⋅, t)]ac, [u(⋅, t)]s ∈M+(Ω) the absolutely continuous and singular
parts of the measure u(⋅, t) ∈M+(Ω), a routine proof shows that for a.e. t ∈ (0, T )
(2.2) us(⋅, t) = [u(⋅, t)]s , uac(⋅, t) = [u(⋅, t)]ac , ur(⋅, t) = [u(⋅, t)]r ,
where [u(⋅, t)]r denotes the density of the measure [u(⋅, t)]ac.

We say that a (signed) Radon measure u ∈M(S) belongs to L∞w∗(0, T ;M(Ω))
if both its positive and negative parts u+ and u− belong to L∞w∗(0, T ;M+(Ω)).
In particular, this implies that the total variation ∣u∣ of the measure u belongs to
L∞w∗(0, T ;M+(Ω)), and that conditions (i) and (ii) in the definition of L∞w∗(0, T ;M+(Ω))
hold with u(⋅, t) ∶= u+(⋅, t) − u−(⋅, t) for a.e. t ∈ (0, T ).
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Since u+ and u− are mutually singular, it follows that for a.e. t the nonnegative
measures u+(⋅, t) and u−(⋅, t) are mutually singular, whence

(2.3) u±(⋅, t) = [u(⋅, t)]± , ∣u(⋅, t)∣ = ∣u∣(⋅, t) for a.e. t ∈ (0, T ) ,

(2.4) u±s(⋅, t) = [u(⋅, t)]±s , ∣us∣(⋅, t) = ∣[u(⋅, t)]s∣ for a.e. t ∈ (0, T ) .

2.2. Functions and envelopes. Let χE be the characteristic function of E ⊆ R.
For every u ∈ R we set

[u]± ∶= max{±u,0}, sgn±(u) ∶= ±χR±(u), sgn(u) ∶= sgn−(u) + sgn+(u) .
Let Ω = (a, b) (−∞ < a < b <∞). We say that a function f ∶ Ω → R, f ∈ L∞(Ω),

is piecewise continuous if:

- Ω = ⋃p+1
j=1 Ij (p ∈ N) with I1 ∶= (a, x1), Ij ∶= (xj−1, xj) for j = 2, . . . , p, Ip+1 ∶= (xp, b);

- fj ∶= f ⌞Ij admits a representative (denoted again fj for simplicity) which belongs

to C(Ij) (j = 1, . . . , p + 1); fj(xj) ≠ fj+1(xj) (j = 1, . . . , p).

If Ω is unbounded, f ∈ L∞loc(Ω) is piecewise continuous in Ω if it is piecewise
continuous in every bounded interval (a0, b0) ⊂ Ω.

Let Q ⊆ R2 be open, g ∶ Q↦ R be a measurable function, (x0, t0) ∈ Q. We set

ess lim sup
Q∋(x,t)→(x0,t0)

g(x, t) ∶= inf
δ>0

⎛
⎝

ess sup
(x,t)∈Bδ(x0,t0)∩Q

g(x, t)
⎞
⎠
= lim
δ→0+

⎛
⎝

ess sup
(x,t)∈Bδ(x0,t0)∩Q

g(x, t)
⎞
⎠
,

ess lim inf
Q∋(x,t)→(x0,t0)

g(x, t) ∶= sup
δ>0

(ess inf
(x,t)∈Bδ(x0,t0)∩Q

g(x, t)) = lim
δ→0+

(ess inf
(x,t)∈Bδ(x0,t0)∩Q

g(x, t)) ,

where

Br(x0, t0) ∶= {(x, t) ∈ R2 ∣ (x − x0)2 + (t − t0)2 < r2} (r > 0) .
If ess lim supQ∋(x,t)→(x0,t0) g(x, t) = ess lim infQ∋(x,t)→(x0,t0) g(x, t), the essential limit

of g at (x0, t0) is defined as

ess lim
Q∋(x,t)→(x0,t0)

g(x, t) ∶= ess lim sup
Q∋(x,t)→(x0,t0)

g(x, t) = ess lim inf
Q∋(x,t)→(x0,t0)

g(x, t) .

The quantities
ess lim sup
Q∋(x,t)→(x0,t

+

0)
g(x, t), ess lim inf

Q∋(x,t)→(x0,t
+

0)
g(x, t)

are defined by replacing Br(x0, t0) by Br(x0, t0) ∩ {(x, t) ∈ R2 ∣ t > t0}. Similarly,

ess lim sup
Q∋(x,t)→(x±0 ,t0)

g(x, t), ess lim inf
Q∋(x,t)→(x±0 ,t0)

g(x, t)

are defined by replacing Br(x0, t0) by Br(x0, t0)∩{(x, t) ∈ R2 ∣x > x0}, respectively
by Br(x0, t0) ∩ {(x, t) ∈ R2 ∣x < x0}.

Let g ∈ L∞(Q). By the essential upper semicontinuous envelope (shortly, upper

envelope) of g we mean the function g∗ ∶ Q→ R,

(2.5) g∗(x0, t0) ∶= esslim sup
Q∋(x,t)→(x0,t0)

g(x, t) for any (x0, t0) ∈ Q.

Similarly, the essential lower semicontinuous envelope (shortly, lower envelope) of

g is the function g∗ ∶ Q→ R,

(2.6) g∗(x0, t0) ∶= ess lim inf
Q∋(x,t)→(x0,t0)

g(x, t) for any (x0, t0) ∈ Q.

Similar definitions hold for measurable functions f ∶ R↦ R.
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3. Definitions and preliminary results

3.1. Conservation law.

Definition 3.1. Let −∞ ≤ a < b ≤∞, Ω = (a, b), u0 ∈M(Ω) and H ∈W 1,∞(R). A
measure u ∈ L∞w∗(0, T ;M(Ω)) is called a solution of

(3.1) ut + [H(u)]x = 0 in Q ∶= Ω × (0, T ), u = u0 in Ω × {0}

in Q if for all ζ ∈ C1([0, T ];C1
c (Ω)), ζ(⋅, T ) = 0 in Ω there holds

(3.2) ∬
Q
[urζt +H(ur) ζx]dxdt + ∫

T

0
⟨us(⋅, t), ζt(⋅, t)⟩Ω dt = − ⟨u0, ζ(⋅,0)⟩Ω .

A solution of (3.1) in Q is called an entropy solution if it satisfies the entropy
inequality: for all k ∈ R and ζ ∈ C1([0, T ];C1

c (Ω)), ζ ≥ 0, ζ(⋅, T ) = 0 in Ω,

∬
Q
{∣ur − k∣ ζt + sgn (ur − k) [H(ur) −H(k)] ζx}dxdt +(3.3)

+∫
T

0
⟨∣us(⋅, t)∣, ζt(⋅, t)⟩Ω dt ≥ −∫

Ω
∣u0r(x) − k∣ ζ(x,0)dx − ⟨∣u0s∣, ζ(⋅,0)⟩Ω .

Global (entropy) solutions of (3.1) are (entropy) solutions in Ω×(0, T ) for all T > 0.

In particular, setting Ω = R, we have defined a (global) entropy solution of the
Cauchy problem (CL). Summing and subtracting (3.2) and (3.3), we find that
entropy solutions u in Q of (3.1) satisfy

∬
Q
{[ur − k]± ζt + sgn ±(ur − k) [H(ur) −H(k)] ζx}dxdt +(3.4)

+∫
T

0
⟨u±s(⋅, t), ζt(⋅, t)⟩Ω dt ≥ −∫

Ω
[u0r(x) − k]± ζ(x,0)dx − ⟨u±0s, ζ(⋅,0)⟩Ω

for all k ∈ R and ζ ∈ C1([0, T ];C1
c (Ω)), ζ ≥ 0, ζ(⋅, T ) = 0 in Ω.

Entropy solutions satisfy the following monotonicity result (see [5, Theorem 3.3]).

Theorem 3.1. Let (H1) hold, let u0 ∈M(Ω) and let u be an entropy solution of
(3.1) in Q. Then for a.e. 0 ≤ t1 ≤ t2 ≤ T

(3.5) [u(⋅, t2)]±s ≤ [u(⋅, t1)]±s ≤ u±0s in M(Ω) .

From now on we consider entropy solutions of (3.1) with initial data u0 which
satisfy

(H2)
⎧⎪⎪⎨⎪⎪⎩

u0 is a Radon measure on Ω, finite if Ω is bounded;

u0s = ∑pj=1 cjδxj with x1 < x2 < ⋅ ⋅ ⋅ < xp, cj ∈ R ∖ {0} for 1 ≤ j ≤ p.

We shall indicate the support of u0s by J ∶= {x1, x2, . . . , xp}.
Let (H1) and (H2) be satisfied. If u is an entropy solution of (3.1) in Q, it follows

from the proof of [3, Proposition 3.20] that u ∈ C([0, T ];M(Ω)). This implies that
if u is a global entropy solution of (3.1) in Q, then

(3.6) tj = sup{t > 0 ∣us(⋅, t)({xj}) ≠ 0} > 0 for all xj ∈ J = {x1, x2, . . . , xp}.

More precisely, tj can be estimated from below (see the proof of [5, Corollary 1]):

(3.7) tj ≥
∣u0s∣ ({xj})

2∥H∥∞
.
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In addition it follows from (3.5) that suppus ⊆ J × [0, T ] and, for all t ∈ (0, tj),

(3.8) us(⋅, t)({xj})
⎧⎪⎪⎨⎪⎪⎩

> 0 if cj = u0s({xj}) > 0

< 0 if cj = u0s({xj}) < 0.

Definition 3.2. Let (H1)-(H2) hold. An entropy solution u of (3.1) in Q is said
to satisfy the compatibility condition at xj ∈ J if

(3.9a) ess lim
x→x+j

∫
tj

0
sgn ±(ur(x, t) − k) [H(ur(x, t)) −H(k)]β(t)dt ≤ 0 if ± cj < 0

(3.9b) ess lim
x→x−j

∫
tj

0
sgn ±(ur(x, t) − k) [H(ur(x, t)) −H(k)]β(t)dt ≥ 0 if ± cj < 0

for all k ∈ R and β ∈ C1
c (0, tj), β ≥ 0, where tj ∈ (0, T ] is defined by (3.6).

By [5, Remark 7] the limits in (3.9a)-(3.9b) exist and are finite.
Before stating the basic well-posedness result for the Cauchy problem, we intro-

duce the following singular Cauchy-Dirichlet problems, where m1,m2 = ±∞:

� if Ω = (a, b) with −∞ < a < b <∞,

(D)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut + [H(u)]x = 0 in Q

u =m1 in {a} × (0, T )
u =m2 in {b} × (0, T )
u = u0 in Ω × {0} ;

� if Ω = (−∞, b) with b <∞,

(D)−

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut + [H(u)]x = 0 in Q

u =m2 in {b} × (0, T )
u = u0 in Ω × {0} ;

� if Ω = (a,∞) with a > −∞,

(D)+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut + [H(u)]x = 0 in Q

u =m1 in {a} × (0, T )
u = u0 in Ω × {0} .

Definition 3.3. Let Ω = (a, b) with −∞ < a < b < ∞. Let (H1) hold, and let
u0 ∈M(Ω). An entropy solution u of (D) in Q with m1,m2 = ±∞ is an entropy
solution of (3.1) in Q such that for all k ∈ R and β ∈ C1

c (0, T ), β ≥ 0 there holds

(3.10a) ess lim
x→a+ ∫

T

0
sgn +(ur(x, t)−k) [H(ur(x, t))−H(k)]β(t)dt ≤ 0 if m1 = −∞,

(3.10b) ess lim
x→a+ ∫

T

0
sgn −(ur(x, t) − k) [H(ur(x, t)) −H(k)]β(t)dt ≤ 0 if m1 =∞,

(3.10c) esslim
x→b− ∫

T

0
sgn +(ur(x, t) − k) [H(ur(x, t)) −H(k)]β(t)dt ≥ 0 if m2 = −∞,

(3.10d) esslim
x→b− ∫

T

0
sgn −(ur(x, t) − k) [H(ur(x, t)) −H(k)]β(t)dt ≥ 0 if m2 =∞.

Entropy solutions of (D)− and (D)+ are defined by dropping conditions (3.10a)-
(3.10b) at x = a (resp. (3.10c)-(3.10d) at x = b).
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Again it follows from [5, Remark 7] that the limits in (3.10) exist and are finite.
The proof of the following well-posedness result is basically the same as in the

case of problem (CL) (see [5, Theorem 3.5]; for the existence part, see also the
proof of Theorem 4.2 below).

Theorem 3.2. Let (H1) and (H2) be satisfied. Then the following problems have
a unique global entropy solution which satisfies the compatibility condition at all
xj ∈ J :
(i) problem (D), with m1 = ±∞, m2 = ±∞;
(ii) problem (D)−, with m2 = ±∞;
(iii) problem (D)+ with m1 = ±∞;
(iv) problem (CL).

The following results follow from the proofs of [5, Theorem 3.5 and Proposition 5.8].
The first one states that at the singularities, the one-sided traces of H(u) =H(ur)
at xj ∈ J exist in a weak sense:

Proposition 3.3. Let (H1) and (H2) be satisfied and let u be the global entropy
solution of (D) satisfying the compatibility conditions at all xj ∈ J . Let tj ∈ (0,∞]
be defined by (3.6). For all xj there exists fx±j ∈ L

∞(0, tj) such that

(3.11)

ess lim
x→x±j

∫
tj

0
H(u(x, t))β(t)dt = ∫

tj

0
fx±j (t)β(t)dt for all β ∈ Cc([0,∞)).

Moreover, for a.e. t ∈ (0, tj) there holds

(3.12) lim sup
u→∞

H(u) ≤ fx+j (t) ≤ sup
u∈R

H(u) if cj > 0 ,

(3.13) inf
u∈R

H(u) ≤ fx+j (t) ≤ lim inf
u→−∞ H(u) if cj < 0 ,

(3.14) inf
u∈R

H(u) ≤ fx−j (t) ≤ lim inf
u→∞ H(u) if cj > 0 ,

(3.15) lim sup
u→−∞

H(u) ≤ fx−j (t) ≤ sup
u∈R

H(u) if cj < 0 .

The weak traces fx±j determine the evolution of the Dirac masses. In fact, since

the solution u satisfies the weak formulation (3.2), we have:

Proposition 3.4. Under the assumptions of Proposition 3.3, for all xj ∈ J ,
(3.16)

us(t) ⌞ {xj} = Cj(t)δxj , Cj(t) ∶=
⎧⎪⎪⎨⎪⎪⎩

cj − ∫
t

0 [fx+j (s) − fx−j (s)] ds if 0 ≤ t < tj
0 if t ≥ tj ,

(3.17) Cj(t) ∶=
⎧⎪⎪⎨⎪⎪⎩

> 0 if cj > 0

< 0 if cj < 0
for every 0 ≤ t < tj .

Similar results hold for problems (D)− and (D)+ when Ω is an half-line, and for
the Cauchy problem (CL) when Ω = R.
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3.2. Hamilton-Jacobi equation.

Definition 3.4. Let H ∈ W 1,∞(R), E ⊆ R2 an open set and U ∈ L∞loc(E). U is a
viscosity solution of the equation Ut +H(ux) = 0 in E, if for all ϕ ∈ C1(E):

(3.18) ϕt(x, t)+H(ϕx(x, t)) ≤ 0 if (x, t) is a local maximum point of U∗ − ϕ in E;

(3.19) ϕt(x, t) +H(ϕx(x, t)) ≥ 0 if (x, t) is a local minimum point of U∗ − ϕ in E.

Definition 3.5. Let −∞ ≤ a < b ≤ ∞, Ω = (a, b), U0 ∈ L∞loc(Ω) and H ∈ W 1,∞(R).
A viscosity solution of

(3.20)

⎧⎪⎪⎨⎪⎪⎩

Ut(x, t) +H(Ux(x, t)) = 0 in Q = Ω × (0, T )
U(⋅,0) = U0 in Ω

is a viscosity solution of Ut +H(ux) = 0 in Q such that

(3.21) U∗(⋅,0) = (U0)∗ , U∗(⋅,0) = (U0)∗ in Ω .

Global viscosity solutions of (3.20) are viscosity solutions in Ω× (0, T ) for all T > 0.

In particular we have defined a viscosity solution of the Cauchy problem (HJ).
The singular Dirichlet problems for the conservation law naturally correspond to

singular Neumann problems for the Hamilton-Jacobi equation, where m1,m2 = ±∞:

� if Ω = (a, b) with −∞ < a < b <∞,

(N)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ut +H(Ux) = 0 in Q

Ux =m1 in {a} × (0, T )
Ux =m2 in {b} × (0, T )
U = U0 in Ω × {0} ;

� if Ω = (−∞, b) with b <∞,

(N)−

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ut +H(Ux) = 0 in Q

Ux =m2 in {b} × (0, T )
U = U0 in Ω × {0} ;

� if Ω = (a,∞) with a > −∞,

(N)+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ut +H(Ux) = 0 in Q

Ux =m1 in {a} × (0, T )
U = U0 in Ω × {0} .

Definition 3.6. Let Ω = (a, b) with −∞ < a < b <∞ and Q̂ ∶= Ω × (0, T ]. Let (H1)
hold, and let U0 ∈ L∞loc(Ω). A viscosity solution U of (N) with m1 = ±∞, m2 = ±∞
is a viscosity solution of (3.20) in Q such that for all ϕ ∈ C1(Q̂) there holds:
(i) if m1 =m2 =∞:

(3.22) ϕt(a, t)+H(ϕx(a, t)) ≤ 0 if (a, t) is a local maximum point of U∗ − ϕ in Q̂,

(3.23) ϕt(b, t) +H(ϕx(b, t)) ≥ 0 if (b, t) is a local minimum point of U∗ − ϕ in Q̂;

(ii) if m1 =m2 = −∞:
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(3.24) ϕt(a, t) +H(ϕx(a, t)) ≥ 0 if (a, t) is a local minimum point of U∗ − ϕ in Q̂,

(3.25) ϕt(b, t) +H(ϕx(b, t)) ≤ 0 if (b, t) is a local maximum point of U∗ − ϕ in Q̂;

(iii) if m1 =∞ and m2 = −∞ and (a, t) and/or (b, t) are local maximum points of

U∗ − ϕ in Q̂, then

(3.26)

⎧⎪⎪⎨⎪⎪⎩

ϕt(a, t) +H(ϕx(a, t)) ≤ 0 ,

ϕt(b, t) +H(ϕx(b, t)) ≤ 0 ;

(iv) if m1 = −∞ and m2 = ∞ and (a, t) and/or (b, t) are local minimum points of

U∗ − ϕ in Q̂, then

(3.27)

⎧⎪⎪⎨⎪⎪⎩

ϕt(a, t) +H(ϕx(a, t)) ≥ 0 ,

ϕt(b, t) +H(ϕx(b, t)) ≥ 0 .

Viscosity solutions of (N)− and (N)+ are defined as above, dropping conditions
at x = a, respectively at x = b in Definition 3.6.

The following well-posedness result holds for (N) ([6, Theorem 3.3 and 3.4]).

Theorem 3.5. Let Ω = (a, b). Let (H1) hold, and let U0 ∈ L∞loc(Ω) be piecewise
continuous in Ω with J = {x1, . . . , xp} as the set of jump discontinuities. Then
there exists a unique global viscosity solution U of problem (N), with m1 = ±∞,
m2 = ±∞. Moreover:

(a) for every j = 1, . . . , p+1 the restriction U⌞Sj has a continuous representative

Ũj in Sj, with Sj ∶= Ij ×R+, Ij ∶= (xj−1, xj), x0 ∶= a, xp+1 ∶= b;
(b) for every j = 1, . . . , p there exists a unique waiting time τj ∈ (0,∞] such that

Ũj(xj , t) ≠ Ũj+1(xj , t) ⇔ t ∈ [0, τj) .
Similar statements hold for (N)− with m2 = ±∞ if Ω = (−∞, b) with b < ∞, for
(N)+ with m1 = ±∞ if Ω = (a,∞) with a > −∞, and for (HJ) if Ω = R.

Remark 3.1. Let U be the global viscosity solution of (N) with initial datum U0

as in Theorem 3.5. For all xj ∈ J we consider the jumps

(3.28) J0(xj) ∶= U0(x+j ) −U0(x−j ) , Jt(xj) ∶= U(x+j , t) −U(x−j , t) (t > 0)

(here U(x+j , t) = Ũj+1(xj , t) and U(x−j , t) = Ũj(xj , t); see Theorem 3.5(a)). By

Theorem 3.5(b) the jump Jt(xj) persists until the strictly positive waiting time

(3.29) τj = sup{t ∈ R+ ∣Jt(xj) ≠ 0} ∈ (0,∞] .
Moreover, as observed in [6, Remark 3.2], jumps cannot change sign,

(3.30) Jt(xj)
⎧⎪⎪⎨⎪⎪⎩

> 0 if J0(xj) > 0

< 0 if J0(xj) < 0
for all t ∈ [0, τj),

and are nonincreasing (in absolute value, [6, Theorem 3.4-(d)]): for 0 ≤ t0 < t1 < τj
(3.31)

∣Jt1(xj)∣ ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣Jt0(xj)∣ − [lim sup
ξ→∞

H(ξ) − lim inf
ξ→∞

H(ξ)] (t1 − t0) if J0(xj) > 0

∣Jt0(xj)∣ − [lim sup
ξ→−∞

H(ξ) − lim inf
ξ→−∞

H(ξ)] (t1 − t0) if J0(xj) < 0.
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4. results

4.1. Conservation law versus Hamilton-Jacobi equation. The correspon-
dence between the solutions u of (CL) and U of (HJ), with u0 = U ′

0, is a special
case (set Ω = R) of the following result. Observe that, in terms of U0, hypothesis
(H2) on u0 becomes

(H3)
⎧⎪⎪⎨⎪⎪⎩

U0 ∈ BVloc(Ω); U0 ∈ C(Ω) or ∃x1 < ⋅ ⋅ ⋅ < xp ∶ U0(x+j ) ≠ U0(x−j ) ∀xj ,
U0 ∈W 1,1

loc (Ij), Ij = (xj−1, xj) (1 ≤ j ≤ p + 1; x0 = a, xp+1 = b).

Theorem 4.1. Let Ω = (a, b) with −∞ < a < b <∞, let (H1)-(H3) be satisfied and
let J = {x1, x2, . . . , xp}.

(i) Let u be the unique entropy solution of (D) with initial data u0 = U ′
0 as in

(1.5), which satisfies the compatibility condition at all xj ∈ J . Set

(4.1) U(⋅, t) ∶= −∫
t

0
H(ur(⋅, s))ds +U0 a.e. in Ω (t ∈ (0, T )) .

Then U is the unique viscosity solution of (N), and u and U satisfy (1.4).
(ii) Let U be the unique viscosity solution of (N). Then the distributional de-

rivative Ux belongs to C([0, T ];M(Ω)), the measure u ∶= Ux is the unique
entropy solution of problem (D) with initial data u0 ∶= U ′

0 which satisfies the
compatibility condition at all xj ∈ J , and u and U satisfy (1.3) and (1.4).

Similar statements hold if Ω is unbounded.

4.2. Comparison. We shall prove the following:

Theorem 4.2. Let Ω = (a, b) with −∞ < a < b < ∞, and let (H1) hold. Let
u0, v0 ∈M(Ω) satisfy

⎧⎪⎪⎨⎪⎪⎩

u0s = ∑pj=1 cjδxj with x1 < x2 < . . . xp, cj ∈ R ∖ {0} for 1 ≤ j ≤ p ,

v0s = ∑qj=1 djδx′j with x′1 < x′2 < . . . x′q, dj ∈ R ∖ {0} for 1 ≤ j ≤ q ,

and let u0 ≤ v0 in M(Ω). Let u, v be the entropy solutions of (D) with initial
data u0, v0 given by Theorem 3.2 (in particular u and v satisfy the compatibility
condition). Then u(⋅, t) ≤ v(⋅, t) in M(Ω) for all t ∈ [0, T ].

Similar statements hold if Ω is unbounded.

The companion result for solutions of (N) is known ([6, Corollary 3.5]):

Theorem 4.3. Let Ω = (a, b) with −∞ ≤ a < b ≤∞, and let (H1) hold. Let U0, V0 ∈
L∞(Ω), U0 and V0 piecewise continuous in Ω with a finite number of discontinuities.
If U and V are viscosity solutions of problem (N) in Q with initial data U0 ≤ V0

a.e. in Ω, then U ≤ V a.e. in Q. Similar statements hold if Ω is unbounded.

Observe that the above assumptions on U0 and V0 are satisfied if (H3) holds.

4.3. Waiting time for global solutions of (HJ) and (CL). The first result is an
upper bound for the waiting times of solutions of problem (HJ) if the Hamiltonian
H(ξ) does not have a limit as ξ → ±∞.

Theorem 4.4. Let H ∈ W 1,∞(R) and let U0 ∈ L∞loc(R) be piecewise continuous in
R with a finite number of discontinuities: J = {x1, . . . , xp}. Let

(H∗)± ∶= lim sup
ξ→±∞

H(ξ) , (H∗)± ∶= lim inf
ξ→±∞

H(ξ) ,
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and let U be the unique global viscosity solution of (HJ). Let the initial jump J0(xj)
and the waiting time τj ∈ (0,+∞] at xj ∈ J be defined by (3.28) and (3.29). Then

(4.2) τj ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

J0(xj)
(H∗)+ − (H∗)+

if J0(xj) > 0 and (H∗)+ > (H∗)+

∣J0(xj)∣
(H∗)− − (H∗)−

if J0(xj) < 0 and (H∗)− > (H∗)−.

By assumption (H1), both (H∗)± and (H∗)± are finite.
In view of Theorem 4.4, it is natural to seek estimates of τj from above assuming

that the limits limξ→±∞ H(ξ) exist. However, if there exist c, d ∈ R such that H
is constant either in (−∞, d), or in (c,∞), it is easy to construct examples with
τj =∞. Hence we make the following assumption:

(H4)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(i) ∃H+ ∶= lim
ξ→∞

H(ξ); ∄ c > 0 such that H is constant in (c,∞);

(ii) ∃H− ∶= lim
ξ→−∞

H(ξ); ∄d < 0 such that H is constant in (−∞, d).

Theorem 4.5. Let (H1) hold. Let U0 ∈ L∞loc(R) be piecewise continuous in R, let
J be the finite set of its discontinuities, and let A,B > 0 be such that

(A1) ∣U0(x)∣ ≤ A +B∣x∣ for all x ∈ R .

Let U be the unique global viscosity solution of (HJ) with initial data U0. Then
for every xj ∈ J the waiting time τj is finite if either J0(xj) > 0 and H satisfies
(H4)-(i), or J0(xj) < 0 and H satisfies (H4)-(ii).

In view of the correspondence between problems (HJ) and (CL) stated in Theo-
rem 4.1, the above results concerning the waiting time have a counterpart for global
entropy solutions of (CL). For every U0 ∈ L∞loc(R) and u0 ∈M(R) as in assump-

tions (H2)-(H3), with U ′
0 = u0 in M(R) , let U ∈ L∞loc(S) and u ∈ C([0,∞);M(R))

be the global viscosity solution of (HJ), respectively the global entropy solution of
(CL) satisfying the compatibility condition at every xj ∈ J = suppu0s. Then for
every xj ∈ J

(4.3) J0(xj) = u0s({xj}) = cj
and the waiting times for the persistence of jumps in (HJ) (see (3.29)) and of the
singular part in (CL) (see (3.6)) coincide, namely

(4.4) tj = τj ,

(4.5) us(⋅, t)({xj}) = Jt(xj) for every 0 ≤ t ≤ tj
(see (1.4) and (3.28)). Therefore, as a by-product of Theorems 4.1, 4.4 and 4.5 we
have the following statements.

Corollary 4.6. Let (H1)-(H2) hold. Let u ∈ C([0,∞);M(R)) be the unique global
entropy solution of (CL) with initial data u0, which satisfies the compatibility con-
dition at all xj ∈ J . Let tj be the waiting time defined by (3.6). Then

(4.6) tj ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

cj

(H∗)+ − (H∗)+
if cj > 0 and (H∗)+ > (H∗)+

∣cj ∣
(H∗)− − (H∗)−

if cj < 0 and (H∗)− > (H∗)−.
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In addition, if Ā, B̄ > 0 are such that

(A2) ∣∫
x

0
u0r(s)ds ∣ ≤ Ā + B̄∣x∣ for x ∈ R ,

then the waiting time tj is finite if either cj > 0 and H satisfies (H4)-(i) or cj < 0
and H satisfies (H4)-(ii).

Remark 4.1. Clearly, assumption (A2) is satisfied if u0r ∈ L1(R) or u0r ∈ L∞(R).

By strengthening the assumptions on H, the conclusions in the second part of
Corollary 4.6 still hold under very weak assumptions on the initial data. Set

M+
k ∶= ∥H ′∥L∞(k,∞) , M−

k ∶= ∥H ′∥L∞(−∞,k)
(observe that M±

k > 0 by (H4)). We introduce the following assumptions:

(H5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(i) H satisfies (H4)-(i), lim
k→∞

M+
k = 0, lim sup

k→∞
∣H(k)−H+∣

M+

k
≥ C+

0 > 0 ;

(ii) H satisfies (H4)-(ii), lim
k→−∞

M−
k = 0, lim sup

k→−∞
∣H(k)−H−∣

M−

k
≥ C−

0 > 0

(an example of function H satisfying (H5)-(i) is H(s) = e−s sin s), and

(H6)
⎧⎪⎪⎨⎪⎪⎩

(i) ∃k > 0 such that either H(ξ) >H+, or H(ξ) <H+ for any ξ ≥ k ;

(ii) ∃k < 0 such that either H(ξ) >H−, or H(ξ) <H− for any ξ ≤ k .

Theorem 4.7. Let (H1)-(H2) hold, and let u ∈ C([0,∞);M(R)) be the unique
global entropy solution of (CL) with initial data u0, which satisfies the compatibility
condition at all xj ∈ J . Then the waiting time tj is finite if either cj > 0 and H
satisfies (H5)-(i) or (H6)-(i), or cj < 0 and H satisfies (H5)-(ii) or (H6)-(ii).

Again, by Theorem 4.1 these results for (CL) can be translated to problem (HJ).

Corollary 4.8. Let (H1)-(H3) hold, and let U be the unique global viscosity solution
of (HJ) with initial data U0. Then for every xj ∈ J the waiting time τj is finite
if either J0(xj) > 0 and H satisfies (H5)-(i) or (H6)-(i), or J0(xj) < 0 and H
satisfies (H5)-(ii) or (H6)-(ii).

5. (D) versus (N): proof of Theorem 4.1

5.1. Preliminary definitions and notations. Let Ω = (a, b), −∞ ≤ a < b ≤ ∞.

Below we generalize problem (N) to the case that m1,m2 ∈ R ∶= [−∞,∞] :

(5.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ut +H(Ux) = 0 in Q ∶= Ω × (0, T )
Ux =m1 in {a} × (0, T )
Ux =m2 in {b} × (0, T ) ,

with initial condition

(5.2) U = U0 in Ω × {0} .

Definition 5.1. Let Q̂ ∶= Ω × (0, T ] and m1, m2 ∈ R.
(i) By a viscosity subsolution of (5.1) in Q we mean any viscosity subsolution U of
Ut +H(Ux) = 0 in Q such that if (a, t) and/or (b, t) are local maximum points of

U∗ − ϕ in Q̂ for some ϕ ∈ C1(Q̂), then

(5.3)

⎧⎪⎪⎨⎪⎪⎩

ϕt(a, t) +H(ϕx(a, t)) ≤ 0 if ϕx(a, t) ≤m1,

ϕt(b, t) +H(ϕx(b, t)) ≤ 0 if ϕx(b, t) ≥m2 .
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(ii) By a viscosity supersolution of (5.1) in Q we mean any viscosity supersolution
U of Ut +H(Ux) = 0 in Q such that if (a, t) and/or (b, t) are local minimum points

of U∗ − ϕ in Q̂ for some ϕ ∈ C1(Q̂), then

(5.4)

⎧⎪⎪⎨⎪⎪⎩

ϕt(a, t) +H(ϕx(a, t)) ≥ 0 if ϕx(a, t) ≥m1,

ϕt(b, t) +H(ϕx(b, t)) ≥ 0 if ϕx(b, t) ≤m2 .

(iii) A function U is called a viscosity solution of (5.1) in Q, if it is both a viscosity
subsolution and a viscosity supersolution.
(iv) Let U0 ∈ L∞loc(Ω). A viscosity solution of (5.1) in Q with initial condition (5.2)
is a viscosity solution of (5.1) satisfying (3.21).

Remark 5.1. Formally, conditions (5.3) for viscosity subsolutions of (5.1) are void
when m1 = −∞, m2 = ∞; conditions (5.4) for viscosity supersolutions of (5.1) are
void when m1 = ∞, m2 = −∞. Analogously, the boundary conditions at x = a and
x = b are dropped if a = −∞ and b =∞, respectively.

5.2. Parabolic approximation. Let Ω = (a, b) with −∞ < a < b < ∞. Let
f1,ε, f2,ε, f3,ε ∈ C∞(R) (ε ∈ (0,1)) be a partition of unity:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 ≤ fi,ε ≤ 1 , ∑3
i=1 fi,ε = 1 in R ,

f1,ε = 1 in (−∞, a + 2
√
ε] , supp f1,ε ⊆ (−∞, a + 3

√
ε] ,

f2,ε = 1 in [a + 3
√
ε, b − 3

√
ε] , supp f2,ε ⊆ [a + 2

√
ε, b − 2

√
ε] ,

f3,ε = 1 in [b − 2
√
ε,∞) , supp f3,ε ⊆ [b − 3

√
ε,∞) ,

such that for i = 1,2,3

sup
ε∈(0,1)

∥f ′i,ε∥L1(R) <∞ , sup
ε∈(0,1)

√
ε ∥f ′′i,ε∥L1(R) <∞ .

Let U0 ∈ C∞(Ω) and m1, m2 ∈ R. For every x ∈ Ω, we set

(5.5) u0,ε ∶=m1f1,ε + f2,εU
′
0 +m2f3,ε , U0,ε(x) ∶= U0(a) + ∫

x

a
u0,ε(s)ds

(to keep notation as simple as possible we suppress the dependence of u0,ε on m1,

m2). Then U0,ε ∈ C∞(Ω), u0,ε =m1 in [a, a +
√
ε], u0,ε =m2 in [b −

√
ε, b],

U ′
0,ε = u0,ε in Ω, ∥u0,ε∥L∞(Ω) ≤ max{∣m1∣, ∣m2∣, ∥U ′

0∥L∞(Ω)} for ε ∈ (0,1) ,

(5.6) sup
ε∈(0,1)

∥u′0,ε∥L1(Ω) <∞ , sup
ε∈(0,1)

√
ε ∥u′′0,ε∥L1(Ω) <∞ ,

(5.7) u0,ε(x)→ U ′
0(x) for all x ∈ Ω, U0,ε → U0 in C(Ω) ,

u0,ε
∗⇀ U ′

0 in L∞(Ω) and u0,ε → U ′
0 in Lp(Ω) for all 1 ≤ p <∞.

Let H satisfy (H1). We set

Hε(u) ∶= gε(u) ([ηε ∗H](u) − [ηε ∗H](0)) (u ∈ R) ,

where {ηε} ⊆ C∞
c (R) is a sequence of standard mollifiers and the family {gε} ⊂

C∞
c (R) satisfies gε = 1 in (−1/ε,1/ε), supp gε ⊆ (−2/ε,2/ε), and 0 ≤ gε ≤ 1, ∣g′ε∣ ≤ 1 in

R. It is easily seen that

(5.8) sup
ε∈(0,1)

∥Hε∥W 1,∞(R) <∞ , Hε →H uniformly on compact subsets of R .
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Let m1,m2 ∈ R and let uε ∈ C2,1(Q) be the unique classical solution (e.g., see [17]
of the parabolic problem

(Dε)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

uεt + [Hε(uε)]x = εuεxx in Q

uε =m1 in {a} × (0, T )
uε =m2 in {b} × (0, T )
uε = u0,ε in Ω × {0} .

By the maximum principle and (5.5) we have

(5.9) ∥uε∥L∞(Q) ≤ max{∣m1∣, ∣m2∣, ∥U ′
0∥L∞(Ω)} for any ε ∈ (0,1) .

Moreover there exists c > 0 such that for any ε ∈ (0,1)

(5.10) ∥uεx∥L∞(0,T ;L1(Ω)) ≤ c , ∥uεt∥L∞(0,T ;L1(Ω)) ≤ c , ε ∥uεx∥L∞(Q) ≤ c .

In fact, arguing as in the proof of [20, Proposition 3.1] (see also [1]) and using (5.6)
we obtain the first two estimates, and the third one easily follows (see [5, Lemma
6.2] for details).

By (5.10) the family {uε} is bounded in L∞(Q), and sup ε∈(0,1) ∥uε∥W 1,1(Q) ≤M
for some M > 0. It follows from embedding theorems and the uniqueness of the
entropy solution u ∈ L∞(0, T ;L1(Ω)) of

(DR),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut + [H(u)]x = 0 in Q
u =m1 in {a} × (0, T )
u =m2 in {b} × (0, T )
u = U ′

0 in Ω × {0}

that

(5.11) uε → u in L1(Q) as ε→ 0.

The following result will be used (see [5, Lemma 5.9]).

Lemma 5.1. Let u be given by (5.11). Then for every t ∈ (0, T ]

(5.12) ∥u(⋅, t)∥L1(Ω) ≤ ∥U ′
0∥L1(Ω) + 2 ∥H∥∞t .

It is easily seen that the function

(5.13) Uε(x, t) ∶= −∫
t

0
{Hε(uε(x, s)) − εuεx(x, s)}ds +U0,ε(x) ((x, t) ∈ Q)

satisfies Uεx = uε in Q and is the unique classical solution of

(Nε)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Uεt +Hε(Uεx) = εUεxx in Q

Uεx =m1 in {a} × (0, T )
Uεx =m2 in {b} × (0, T )
Uε = U0,ε in Ω × {0} .

Then, by (5.10), for all ε ∈ (0,1) there holds

(5.14)
∥Uεx∥L∞(Q) ≤ max{∣m1∣, ∣m2∣, ∥U ′

0∥L∞(Ω)} , ∥Uεxx∥L∞(0,T ;L1(Ω)) ≤ c ,
∥Uεxt∥L∞(0,T ;L1(Ω)) ≤ c , ε ∥Uεxx∥L∞(Q) ≤ c , ∥Uεt∥L∞(Q) ≤ c + ∥H∥∞

(the latter estimate follows from the previous one and the equality Uεt = εUεxx −
Hε(Uεx)).
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Proposition 5.2. Let Ω = (a, b) with −∞ < a < b < ∞, m1,m2 ∈ R, and let (H1)
be satisfied. Then for every U0 ∈ C∞(Ω) there exists a viscosity solution of problem
(5.1) with initial condition (5.2). Moreover:

(i) U ∈W 1,∞(Q) and

(5.15a) ∥Ux∥L∞(Q) ≤ max{∣m1∣, ∣m2∣, ∥U ′
0∥L∞(Ω)} ,

(5.15b) ∥Ut∥L∞(Q) ≤ ∥H∥∞ .

(ii) U(x, t) = − ∫
t

0 H(u(x, s))ds + U0(x) and Ux(x, t) = u(x, t) for a.e. (x, t) ∈ Q,
where u is the unique entropy solution of problem (DR).

Proof. By the estimates for Uεx and Uεt in (5.14), the family {Uε} is bounded in

W 1,∞(Q). Hence there exist {Uεk} ⊆ {Uε} and U ∈ C(Q), with Ut, Ux ∈ L∞(Q),
such that Uεk → U in C(Q) (in particular, Uεk(0) = U0,εk → U0 in C(Ω); see (5.7)),
and (5.15a) follows at once from (5.14). Claim (ii) follows from (5.13), the equality

Uεx = uε in Q, (5.11) and the uniform convergence of Uεk to U in Q (observe that,

by (5.11) and the last estimate in (5.10), εkuεkx
∗⇀ 0 in L∞(Q)).

Finally, (5.15b) will follow from (see [6, Proposition 3.2])

(5.16) inf
s∈R

[−H(s)] ≤ U(x, t1) −U(x, t2)
t1 − t2

≤ sup
s∈R

[−H(s)] (0 < t1 < t2 < T ) ,

as soon as we prove that U is a (continuous) viscosity solution of the equation
Ut +H(Ux) = 0 in Q. To this purpose, we shall only check conditions (3.18) and
(5.3) (checking (3.19) and (5.4) is similar). We distinguish 3 cases: (α), (β), (γ).
(α) Let (x, t) ∈ Ω × (0, T ] be a point where U − ϕ, with ϕ ∈ C2(Q̂), has a local
maximum. Without loss of generality we may assume that the maximum is strict.
Since Uεk → U in C(Q), there exists a sequence {(xk, tk)} ⊆ Ω × (0, T ] such that
(xk, tk) → (x, t) as k → ∞, and the function Uεk − ϕ assumes a local maximum at
(xk, tk) ∈ Ω × (0, T ]. Combined with the regularity of Uεk , this implies that

Uεkx(xk, tk) = ϕx(xk, tk), Uεkt(xk, tk) ≥ ϕt(xk, tk) , Uεkxx(xk, tk) ≤ ϕxx(xk, tk) ,

whence

(5.17)
ϕt(xk, tk) +Hεk(ϕx(xk, tk)) ≤ Uεkt(xk, tk) +Hεk(Uεkx(xk, tk)) =

= εkUεkxx(xk, tk) ≤ εkϕxx(xk, tk) .

Letting k →∞ and using (5.8), we obtain (3.18).

(β) Let U − ϕ (ϕ ∈ C2(Q̂)) assume a strict local maximum at (a, t), t ∈ (0, T ], and
let ϕx(a, t) ≤m1. Suppose first that ϕx(a, t) <m1. Arguing as in (α), there exists a
sequence {(xk, tk)} ⊆ [a, b)× (0, T ] such that (xk, tk)→ (a, t) as k →∞ and Uεk −ϕ
assumes a local maximum at (xk, tk). Observe that xk > a for all k, since otherwise
m1 = Uεkx(a, tk) ≤ ϕx(a, tk) < m1. So also in this case (5.17) holds, and letting
k →∞ we obtain the first inequality in (5.3): ϕt(a, t) +H(ϕx(a, t)) ≤ 0.

Next, let ϕx(a, t) =m1. Set

(5.18) ϕδ(x, t) ∶= ϕ(x, t) − δ(x − a) ((x, t) ∈ Q̂, δ > 0) ;

notice that ϕδt = ϕt, ϕδx = ϕx − δ, and ϕδ → ϕ in C(Q) as δ → 0+. Since U − ϕ has
a strict maximum at (a, t), there exists {(xδj , tδj)} ⊂ [a, b) × (0, T ] such that

(5.19) (xδj , tδj)→ (a, t), U − ϕδj has a local maximum at (xδj , tδj) .
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If xδj ∈ (a, b), as in (α) we obtain that

(5.20) ϕt(xδj , tδj) +H(ϕx(xδj , tδj) − δj) ≤ 0 .

On the other hand, if xδj = a, for all sufficiently large j we get tδj = t (recall that
U − ϕ achieves a strict local maximum at the point (a, t)), hence U − ϕδj admits a
local maximum at the point (a, t). Since ϕδjx(a, t) = ϕx(a, t)− δj <m1, by the first
part of case (β), we get inequality (5.20) in (a, t), namely

(5.21) ϕt(a, t) +H(ϕx(a, t) − δj) ≤ 0 .

Letting j →∞ in (5.20)-(5.21), the conclusion follows from the continuity of H.

(γ) If U − ϕ achieves a local maximum at (b, t), with t ∈ (0, T ] and ϕx(b, t) ≥ m2,
we argue as in step (β) and distinguish the cases ϕx(b, t) > m2 and ϕx(b, t) = m2

(we omit the details). �

5.3. Proof of the correspondence between problems (D) and (N). We prove

Theorem 4.1 first in the case that u0s = 0 and U0 ∈W 1,1
loc (Ω).

Proposition 5.3. Let (H1) hold. Let Ω = (a, b), −∞ < a < b < ∞, U0 ∈ W 1,1(Ω),

u0 = U ′
0, m1 = ±∞ and m2 = ±∞. Let U ∈ C(Q) be the unique viscosity solution of

problem (N) and let u ∈ C([0, T ];L1(Ω)) be the unique entropy solution of problem
(D). Then U ∈W 1,1(Q) and for a.e. (x, t) ∈ Q

(5.22) U(x, t) = −∫
t

0
H(u(x, s))ds +U0(x) , Ux(x, t) = u(x, t).

Similar statements hold if Ω is unbounded and U0 ∈W 1,1
loc (Ω), with U ∈W 1,1

loc (Q).

Proof of Proposition 5.3. The proof consists of several steps.

(α1) Let −∞ < a < b <∞, U0 ∈ C∞(Ω), m1 =∞ and m2 = −∞ (if m1,m2 = ±∞ the
proof is similar). Let n, p ∈ N and let Un,p ∈W 1,∞(Q) be the viscosity solution of

(Nn,p)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ut +H(Ux) = 0 in Q

Ux(a, t) = n, Ux(b, t) = −p if t ∈ (0, T )
U = U0 in Ω × {0}

constructed in Proposition 5.2. Then,

(5.23) Un,p(x, t) = −∫
t

0
H(un,p(x, s))ds +U0(x) , [Un,p]x(x, t) = un,p(x, t)

for a.e. (x, t) ∈ Q, where un,p is the unique entropy solution of

(Dn,p)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[un,p]t + [H(un,p)]x = 0 in Q

un,p(a, t) = n, un,p(b, t) = −p if t ∈ (0, T )
un,p = U ′

0 in Ω × {0} .

We first let n→∞ in the above problems. Observe that

(5.24) un,p → up in L1(Q) as n→∞ ,

where up ∈ C([0, T ];L1(Ω)) is an entropy solution ([5, proof of Theorem 6.3]) of

(D∞,p)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[up]t + [H(up)]x = 0 in Q

up(a, t) =∞, up(b, t) = −p if t ∈ (0, T )
up = U ′

0 in Ω × {0}.
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In view of (5.23)1 and (5.15b), {Un,p}n and {(Un,p)t}n are bounded in L∞(Q).
It follows from (5.23)2 and (5.24) that {(Un,p)x}n is bounded in L1(Q) and uni-
formly integrable. Hence {Un,p}n is uniformly equicontinuous and, possibly up to
a subsequence, there exists Up ∈W 1,1(Q) with (Up)t ∈ L∞(Q) such that

(5.25) Un,p → Up in C(Q) as n→∞ .

Moreover, by construction, Up(⋅,0) = U0 in Ω, (Un,p)x = un,p → up in L1(Q),

(5.26) Up(x, t) = −∫
t

0
H(up(x, s))ds +U0(x) , (Up)x(x, t) = up(x, t)

for a.e. (x, t) ∈ Q (see (5.23)-(5.24)), and, by (5.15b),

(5.27) ∥(Up)t∥L∞(Q) ≤ ∥H∥∞ .

We claim that Up is a viscosity solution of problem (5.1) with m1 =∞, m2 = −p, i.e.

(N∞,p)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(Up)t +H((Up)x) = 0 in Q,

(Up)x(a, t) =∞, (Up)x(b, t) = −p if t ∈ (0, T ) ,
Up = U0 in Ω × {0} .

We only check conditions (3.18) and (5.3) (for (3.19) and (5.4) the proof is similar).
If Up − ϕ has a strict local maximum at (x, t) ∈ Ω × (0, T ), by (5.25) there exists
{(xn, tn)} ⊆ Ω×(0, T ) such that (xn, tn)→ (x, t) and Un,p−ϕ has a local maximum
at (xn, tn) ∈ Ω × (0, T ). Since Un,p is a viscosity solution of problem (Nn,p),

(5.28) ϕt(xn, tn) +H(ϕx(xn, tn)) ≤ 0 .

If instead Up − ϕ assume a strict local maximum at (a, t), t ∈ (0, T ), we fix a
sufficiently small δ > 0. Then there exists {(xn, tn)} ⊆ [a, b) × (0, T ) such that:
(i) (xn, tn) → (a, t) as n → ∞, 0 < t − δ ≤ tn ≤ t + δ < T for all sufficiently large
n; (ii) Un,p − ϕ achieves a local maximum at (xn, tn); (iii) ϕx(x, t) < n for all

(x, t) ∈ Ω×[t−δ, t+δ]. Since Un,p is a viscosity solution of (Nn,p) and ϕx(xn, tn) < n,
we obtain again (5.28). Letting n → ∞ in (5.28) we obtain the claim. Finally, if
Up − ϕ achieves a local maximum at (b, t), with t ∈ (0, T ), the proof is similar.

To conclude step (α1), we argue as above and let p → ∞ in problems (D∞,p)
and (N∞,p). More precisely, it can be easily checked that up → u in L1(Q), where
u ∈ C([0, T ];L1(Ω)) is the unique entropy solution of problem (D) with m1 = ∞,

m2 = −∞ and u0 = U ′
0 (see the proof of [5, Theorem 6.3]), and Up → U in C(Q),

where Up is the (unique) viscosity solution of the corresponding (singular) Neumann
problem (N) with initial condition U0. Clearly, by (5.26) and (5.27), it follows that
the limiting functions u and U satisfy both (5.22) and the estimate in (5.15b).

(α2) Let Ω = (a, b) with −∞ < a < b < ∞ and U0 ∈ W 1,1(Ω). Let {U0,k} ⊆ C∞(Ω),
U0,k → U0 in C(Ω) as k → ∞. Let Uk be the viscosity solution of problem (N)
with m1 = ±∞, m2 = ±∞ and initial condition Uk(⋅,0) = U0,k , given in step (α1).
Moreover, let u0,k ∶= U ′

0,k , thus {u0,k} ⊆ BV (Ω), u0,k → U ′
0 in L1(Ω) as k →∞. Let

{uk} be the sequence of entropy solutions to problem (D) with the same boundary
conditions m1 = ±∞, m2 = ±∞ and initial data u0,k considered in step (α1).

Arguing as in the proof of [5, Theorem 6.3], it can be seen that uk → u in L1(Q)
as k →∞, where u is the entropy solution of problem (D) with initial data u0 = U ′

0.
On the other hand, by [6, Theorem 3.1] there holds

max
Q

∣Uk −Uh∣ ≤ max
Ω

∣U0,k −U0,h∣ for all k, h ∈ N .
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Hence {Uk} is a Cauchy sequence in C(Q) and there exists U ∈ C(Q) such that

Uk → U in C(Q). Arguing as in step (α1) we conclude that U is a viscosity solution
of problem (N) with initial condition U0.

Finally we observe that (5.22) and (5.15b) are satisfied by uk, Uk and U0,k for
all k ∈ N, and so, letting k →∞, also by u and U . In particular U ∈W 1,1(Q). This
completes the proof of Proposition 5.3 if Ω is bounded.

(α3) If Ω is unbounded, we only the consider the case Ω = (a,∞), a ∈ R (the other
cases are similar). Let Ωj ∶= (a, bj), bj ≤ bj+1 for every j ∈ N, bj →∞ as j →∞. Let

U0 ∈ C(Ω), U0,j ∈ C(Ωj), suppU0,j = Ωj , and let U0,j → U0 uniformly on compact
subsets of [a,∞). Let Uj be the viscosity solution of (N) in Qj ∶= Ωj × (0, T ) with
initial condition Uj(⋅,0) = U0,j in Ωj , with the given boundary condition m1 = ±∞
at {a} × (0, T ) and arbitrary boundary condition m2 = ±∞ at {bj} × (0, T ). For
every b > a set K ∶= [a, b] × [0, T ], and let j0 ∈ N be fixed such that bj > b + ∥H ′∥∞T
for all j ≥ j0. Applying [6, inequality (3.10) in Theorem 3.1] we obtain, for every
i, j ≥ j0,

max
K

∣Uj −Ui∣ ≤ max
[a,b+∥H′∥∞T ]

∣U0,j −U0,i∣ .

By the above inequality {Uj} is a Cauchy sequence, thus a converging sequence in
C(K). Then from the arbitrariness of K, by diagonal and separability arguments,

there exists a subsequence of {Uj} (not relabelled) and U ∈ C(Q) such that Uj → U

uniformly on the compact subsets of Q. Arguing as in step (α1) it is shown that U
is a viscosity solution of problem (N+) with initial data U0.

Similarly, let u ∈ C([0, T ];L1(Ω)) be the unique entropy solution of problem

(D)+ with the same m1 as in (N)+ and initial data u0 = U ′
0 ∈ L1

loc(Ω). Let u0,j =
U ′

0,j , thus u0,j → U ′
0 in L1

loc(Ω) as j →∞. Let uj be the entropy solution of

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut + [H(u)]x = 0 in (a, bj) × (0, T )
u(a, t) =m1, u(bj , t) =m2 if t ∈ (0, T )
u = u0,j in (a, bj) × {0}

with m1 = ±∞ given and m2 = ±∞ fixed as above. Then (up to subsequences) uj → u

in L∞(0, T ;L1(Ω̃)) for all open intervals Ω̃ ⊂⊂ Ω (see the proof of [5, Theorem 6.3]).

Since Ω̃ is bounded, it follows from step (α2) that for all j large enough there holds

Uj(x, t) = −∫
t

0
H(uj(x, s))ds +U0,j(x) , (Uj)x(x, t) = uj(x, t)

for a.e. (x, t) ∈ Ω̃ × (0, T )), and ∥(Uj)t∥L∞(Q) ≤ ∥H∥∞. Then letting j → ∞, it is

easily seen that U ∈W 1,1
loc (Q) and equality (5.22) follows. ◻

When (H2)-(H3) hold, we set Ij = (xj−1, xj) for j = 2, . . . , p, I1 = (a, x1), Ip+1 =
(xp, b), Qj = Ij × (0, T ) (j = 1, . . . , p + 1). We denote by (Dj) problem (D) stated

in Qj with initial data u0,j = u0 ⌞ Ij ∈ L1(Ij), and by (Nj) problem (N) stated in

Qj with initial data U0,j = U0 ⌞ Ij ∈ C(Ij). The proof of the following result can be
found in [5, Proposition 5.8].

Proposition 5.4. Let (H1)-(H3) hold.
(i) For every j = 2, . . . , p + 1, let uj be the entropy solution of (Dj) with m1 = ±∞.
Then there exists f±x+j−1 ∈ L

∞(0, T ) such that for any β ∈ Cc(0, T )

(5.29) ess lim
x→x+j−1

∫
T

0
H(uj(x, t))β(t)dt = ∫

T

0
f±x+j−1(t)β(t)dt .
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(ii) For every j = 1, . . . , p let uj be the entropy solution of (Dj) with m2 = ±∞.
Then there exists f±x−j ∈ L

∞(0, T ) such that for any β ∈ Cc(0, T )

(5.30) ess lim
x→x−j

∫
T

0
H(uj(x, t))β(t)dt = ∫

T

0
f±x−j (t)β(t)dt .

Moreover, for a.e. t ∈ (0, T ) there holds

(5.31a) lim sup
u→∞

H(u) ≤ f+x+j−1(t) ≤ sup
u∈R

H(u),

(5.31b) inf
u∈R

H(u) ≤ f−x+j−1(t) ≤ lim inf
u→−∞ H(u),

(5.31c) inf
u∈R

H(u) ≤ f+x−j (t) ≤ lim inf
u→∞ H(u),

(5.31d) lim sup
u→−∞

H(u) ≤ f−x−j (t) ≤ sup
u∈R

H(u).

Remark 5.2. By standard density arguments, from (5.29)-(5.30) we get

(5.32) ess lim
x→x+j−1

∫
T

0
H(uj(x, t))ζ(x, t)dt = ∫

T

0
f±x+j−1(t)ζ(xj−1, t)dt

for all ζ ∈ C1([0, T ];C1
c ([xj−1, xj)), ζ(⋅,0) = ζ(⋅, T ) = 0 in Ij , and

(5.33) ess lim
x→x+j

∫
T

0
H(uj(x, t))ζ(x, t)dt = ∫

T

0
f±x−j (t)ζ(xj , t)dt

for all ζ ∈ C1([0, T ];C1
c ((xj−1, xj]), ζ(⋅,0) = ζ(⋅, T ) = 0 in Ij .

The following result is an easy consequence of Propositions 5.3-5.4.

Lemma 5.5. Let (H1)-(H3) hold.
(i) Let j = 2, . . . , p + 1, let Uj be the viscosity solution of (Nj) with m1 = ±∞
(and m2 = ±∞ if j = 2, . . . , p) and initial condition Uj(⋅,0) = U0,j. Let uj be the
entropy solution of problem (Dj) with the same boundary conditions and initial data
u0,j = U ′

0,j. Let f±x+j−1 ∈ L
∞(0, T ) be given by Proposition 5.4. Then

(5.34) Uj(xj−1, t) = −∫
t

0
f±x+j−1(s)ds +U0,j(xj−1) for all t ∈ (0, T ].

(ii) Let j = 1, . . . , p, let Uj be the viscosity solution of (Nj) with m2 = ±∞ (and
m1 = ±∞ if j = 2, . . . , p) and initial condition Uj(⋅,0) = U0,j. Let uj be the entropy
solution of problem (Dj) with the same boundary conditions and initial data u0,j =
U ′

0,j. Let f±x−j ∈ L
∞(0, T ) be given by Proposition 5.4. Then

(5.35) Uj(xj , t) = −∫
t

0
f±x−j (s)ds +U0,j(xj) for all t ∈ (0, T ].

Proof. We only prove (i) with m1 =∞. Since U0,j ∈ C(Ij) and u0,j ∈ L1(Ij), (5.34)
follows from Proposition 5.3, (5.29) and the essential limit x→ x+j−1 in (see (5.22))

Uj(x, t) = −∫
t

0
H(uj(x, s))ds +U0,j(x) for a.e. x ∈ (xj−1, xj).

�
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Proof of Theorem 4.1. We rewrite (H2) as follows:

u0s =
p+

∑
j=1

c+j δx′j −
p−

∑
j=1

c−j δx′′j (c±j ≡ [cj]± > 0, p+ + p− = p) .

Since u0 = U ′
0, by (H3) there holds (see (1.5))

cj = J0(xj) ∶= U0(x+j ) −U0(x−j ) = U0,j+1(xj) −U0,j(xj) (j = 1, . . . , p) .

For every j = 1, . . . , p such that cj = J0(xj) > 0 set

(5.36) C+
j (t) ∶= [ cj − ∫

t

0
(f+x+j (s) − f

+
x−j

(s))ds ]
+

(t ∈ [0, T ]) ,

with f+x+j satisfying (5.29) and f+x−j satisfying (5.30); observe that by (5.31a) and

(5.31c)

(5.37) f+x+j (s) − f
+
x−j

(s) ≥ 0 for a.e. s ∈ (0, T ) .

Similarly, for every j = 1, . . . , p such that cj = J0(xj) < 0 set

(5.38) C−
j (t) ∶= [ cj − ∫

t

0
(f−x+j (s) − f

−
x−j

(s))ds ]
−

(t ∈ [0, T ]) ,

with f−x+j satisfying (5.29) and f−x−j satisfying (5.30); observe that by (5.31b) and

(5.31d)

(5.39) f−x+j (s) − f
−
x−j

(s) ≤ 0 for a.e. s ∈ (0, T ) .

Moreover, by Proposition 5.3 and (5.34)-(5.35) there holds

(5.40) C±
j (t) = [Uj+1(xj , t) −Uj(xj , t) ]± (t ∈ [0, T ]) .

Let j = 1, . . . , p and set

(5.41) τ1 ∶= min{t̄1, . . . , t̄p} , where t̄j ∶= sup{t ∈ [0, T ] ∣C±
j (t) > 0}.

Then τ1 > 0, since t̄j > 0 and C±
j (0) = c±j > 0. By (5.37)-(5.39) C±

j is nonincreasing

in (0, T ), whence C±
j > 0 in [0, t̄j) and, if t̄j < T , there holds C±

j = 0 in [t̄j , T ].
Set Qτ1 ∶= Ω×(0, τ1), Qj,τ1 ∶= Ij ×(0, τ1). Arguing as in the proof of Theorem 3.2

(see [5, Theorem 3.5]) shows that the unique entropy solution u ∈ C([0, τ1]; M(Ω))
of problem (D) in Qτ1 has the following features:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

in Q1,τ1 ur is the entropy solution of (D1) with m2 = ±∞ if c1 ≷ 0 ;

in Qj,τ1 (j = 2, . . . , p) ur is the entropy solution of (Dj):
- with m1 =m2 =∞ if min{cj−1, cj} > 0,

- with m1 =m2 = −∞ if max{cj−1, cj} < 0,

- with m1 =∞, m2 = −∞ if cj−1 > 0 > cj ,
- with m1 = −∞, m2 =∞ if cj−1 < 0 < cj ;
in Qp+1,τ1 ur is the entropy solution of (Dp+1) with m1 = ±∞ if cp ≷ 0 ;

(5.42) us(⋅, t) =
r

∑
j=1

C+
j (t)δx′j −

s

∑
j=1

C−
j (t)δx′′j =

p

∑
j=1

[Uj+1(xj , t) −Uj(xj , t) ] δxj
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(see (5.40)). Similarly, by the proof of [6, Theorem 3.4] (see also [6, Lemma 5.2]),
the unique viscosity solution U of problem (N) in Qτ1 with the same boundary
conditions has the following features:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

in Q1,τ1 U is the viscosity solution of (N1) with m2 = ±∞ if J0(x1) ≷ 0 ;

in Qj,τ1 (j = 2, . . . , p) U is the viscosity solution of (Dj):
- with m1 =m2 =∞ if min{J0(xj−1), J0(xj)} > 0,

- with m1 =m2 = −∞ if max{J0(xj−1), J0(xj)} < 0,

- with m1 =∞, m2 = −∞ if J0(xj−1) > 0 > J0(xj),
- with m1 = −∞, m2 =∞ if J0(xj−1) < 0 < J0(xj);
in Qp+1,τ1 U is the viscosity solution of (Dp+1) with m1 = ±∞ if J0(xp) ≷ 0 .

Then, by Proposition 5.3 and (5.42),

- equality (1.3) holds a.e. in Ω for any t ∈ [0, τ1],
- the second equality in (1.4) holds for any t ∈ [0, τ1].

Let ρ ∈ C1
c (Ω) and t ∈ (0, τ1). Since

∫
Ω
U(x, t)ρ′(x)dx = −∫

t

0
∫

Ω
H(ur(x, s))ρ′(x)dxds − ⟨u0, ρ⟩Ω

(see (1.3)) and

⟨u0 − u(t), ρ⟩Ω = −∫
t

0
∫

Ω
H(ur(x, s))ρ′(x)dxds

(the above equality easily follows by a proper choice of the test function ζ in the
weak formulation (3.2)), we get ∫ΩU(x, t)ρ′(x)dx = − ⟨u(t), ρ⟩Ω. Hence

∬
Qτ1

U(x, t)ρ′(x)h(t)dxdt = −∫
τ1

0
h(t) ⟨u(t), ρ⟩Ω dt = − ⟨u,hρ⟩Qτ1

for all h ∈ C1
c ((0, τ1)), which implies that Ux = u in D′(Qτ1). If τ1 = T , the proof

is complete. Otherwise, we can repeat the above argument with a lesser number of
discontinuities (possibly zero). Hence the conclusion follows. ◻

6. Comparison: proof of Theorem 4.2

The proof of Theorem 4.2 relies on some preliminary definitions and results.

6.1. Sub- and supersolutions of (D) with regular initial data. We intro-
duce the notions of sub and supersolutions of problem (D) if u0 is a summable
function. If Ω = (a, b) and −∞ < a < b < ∞, problem (D) stands for four different
initial-boundary value problems, which we denote by (D+

+), (D−
−), (D−

+) and (D+
−)

according to the four choices m1 = m2 =∞, m1 = m2 = −∞, m1 =∞,m2 = −∞ and
m1 = −∞,m2 =∞.

Definition 6.1. Let −∞ < a < b <∞, Ω = (a, b) and u0 ∈ L1(Ω), and let (H1) hold.
Let u ∈ C([0, T ];L1(Ω)) satisfy

lim
t→0+

∫
Ω
[u(x, t) − u0(x)]+ dx = 0

and, for all k ∈ R and ζ ∈ C1
c (Q), ζ ≥ 0 in Q,

∬
Q
{[u − k]+ζt + sgn+(u − k) [H(u) −H(k)]ζx} dxdt ≥ 0.

Then u is an entropy subsolution of:
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(i) problem (D+
+);

(ii) problem (D−
−) if for all k ∈ R, β ∈ C1

c (0, T ), β ≥ 0,

(6.1a) ess lim
ξ→a+ ∫

T

0
sgn +(u(ξ, t) − k) [H(u(ξ, t)) −H(k)]β(t)dt ≤ 0 ,

(6.1b) ess lim
η→b− ∫

T

0
sgn +(u(η, t) − k) [H(u(η, t)) −H(k)]β(t)dt ≥ 0 ;

(iii) problem (D−
+) if (6.1b) holds for all k ∈ R, β ∈ C1

c (0, T ), β ≥ 0;
(iv) problem (D+

−) if (6.1a) holds for all k ∈ R, β ∈ C1
c (0, T ), β ≥ 0.

Definition 6.2. Let −∞ < a < b <∞, Ω = (a, b) and u0 ∈ L1(Ω), and let (H1) hold.
Let u ∈ C([0, T ];L1(Ω)) satisfy

lim
t→0+

∫
Ω
[u(x, t) − u0(x)]+ dx = 0

and, for all k ∈ R and ζ ∈ C1
c (Q), ζ ≥ 0 in Q,

∬
Q
{[u − k]−ζt + sgn−(u − k) [H(u) −H(k)]ζx} dxdt ≥ 0.

Then u is an entropy supersolution of:
(i) problem (D−

−);
(ii) problem (D+

+) if for all k ∈ R and β ∈ C1
c (0, T ), β ≥ 0,

(6.2a) ess lim
ξ→a+ ∫

T

0
sgn −(u(ξ, t) − k) [H(u(ξ, t)) −H(k)]β(t)dt ≤ 0 ,

(6.2b) ess lim
η→b− ∫

T

0
sgn −(u(η, t) − k) [H(u(η, t)) −H(k)]β(t)dt ≥ 0 ;

(iii) problem(D−
+) if (6.2a) holds for all k ∈ R, β ∈ C1

c (0, T ), β ≥ 0;
(iv) problem (D+

−) if (6.2b) holds for all k ∈ R, β ∈ C1
c (0, T ), β ≥ 0.

If u ∈ C([0, T ];L1(Ω)) is both an entropy subsolution and supersolution of (D),
it is an entropy solution in the sense of Definition 3.3. In fact u satisfies the entropy
inequalities and it is also a weak solution (see [5, Remark 5]).

Similar definitions hold when Ω is a half-line and u0 ∈ L1
loc(Ω) (see [5]).

For problem (D) with locally L1-initial data the following comparison result
holds (see [5, Theorem 5.7]).

Theorem 6.1. Let (H1) hold and let u0 ∈ L1
loc(Ω). Let u, u ∈ C([0, T ];L1

loc(Ω)) be
an entropy sub- and supersolution of (D) with the same boundary conditions. Then
u ≤ u a.e. in Q. In particular, there exists at most one entropy solution of (D).

6.2. Proof of the main result. We prove Theorem 4.2 for problem (D). The
proofs for problems (D)± and (CL) are similar.

Proposition 6.2. Let (H1) hold. Let u0, v0 ∈M(Ω) satisfy (H2), and let suppu±0s =
supp v±0s. Let u, v ∈ C([0, T ];M(Ω)) be the entropy solutions of (D) with initial
data u0, v0 which satisfy the compatibility condition and given by Theorem 3.2. Let
τ ∈ (0, T ] be so small that

(6.3) suppu±s(⋅, t) = supp v±s (⋅, t) = suppu±0 = supp v±0 if 0 ≤ t < τ.

(i) If u0r ≤ v0r a.e. in Ω, then ur ≤ vr a.e. in Qτ = Ω × (0, τ).
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(ii) Let fx±j , gx
±

j
∈ L∞(0, τ) be the functions in Proposition 3.3, related to u and v,

respectively. If u0r ≤ v0r a.e. in Ij (j = 1, . . . , p + 1), then

(6.4) fx+j−1 ≥ gx+j−1 for j = 2, . . . , p + 1 , fx−j ≤ gx−j for j = 1, . . . , p, a.e. in (0, τ) .

Proof. (i) By the compatibility conditions (3.9), in each Qj,τ ∶= Ij × (0, τ), with
Ij = (xj−1, xj) (j = 1, . . . , p + 1; x0 = a, xp+1 = b), ur,j ∶= ur ⌞ Qj,τ (resp. vr,j ∶=
vr ⌞Qj,τ ) is the unique entropy solution of (D) with initial data u0r,j ∶= u0r ⌞ Ij
(resp. v0r,j ∶= v0r ⌞ Ij) and m1 = ±∞,m2 = ±∞ according to the sign of the initial
Dirac masses at xj−1 and xj (j = 2, . . . , p). Since, by (6.3), ur,j and vr,j satisfy the
same boundary conditions and u0r,j ≤ v0r,j a.e. in Ij , the conclusion follows from
Theorem 6.1.

(ii) First we prove that fx+j−1 ≥ gx+j−1 a.e. in (0, τ). Let ζ ∈ C1([0, τ];C1
c ([xj−1, xj)),

ζ(⋅,0) = ζ(⋅, τ) = 0 in Ij . Arguing as in the proof of [4, Lemma 4.4], we find that

(6.5) ∬
Qj,τ

{(ur−k) ζt+[H(ur)−H(k)]ζx}dxdt = −∫
τ

0
[fx+j−1(t)−H(k)] ζ(xj−1, t)dt.

Similarly, if ζ ≥ 0 in Qj,τ it follows from the entropy inequality that

∬
Qj,τ

{∣ur − k∣ ζt + sgn (ur − k) [H(ur) −H(k)] ζx}dxdt ≥(6.6)

≥ −ess lim
x→x+j−1

∫
τ

0
sgn (ur(x, t) − k) [H(ur(x, t)) −H(k)] ζ(x, t)dt .

for all k ∈ R. Analogous inequalities hold for vr.
Since sgn (u) = 1 + 2 sgn −(u) and sgn (u) = −1 + 2 sgn +(u), summing (6.5) and

(6.6) it follows from Remark 5.2 that

∬
Qj,τ

{ [ur − k]+ ζt + sgn +(ur − k)[H(ur) −H(k)] ζx}dxdt ≥(6.7)

≥ −1

2
(ess lim

x→x+j−1
∫

τ

0
sgn (ur(x, t) − k) [H(ur(x, t)) −H(k)] ζ(x, t)dt +

+∫
τ

0
[fx+j−1(t) −H(k)] ζ(xj−1, t)dt) =

= − ess lim
x→x+j−1

∫
τ

0
sgn −(ur(x, t) − k) [H(ur(x, t)) −H(k)] ζ(x, t)dt −

−∫
τ

0
[fx+j−1(t) −H(k)] ζ(xj−1, t)dt .

Similarly, using again that sgn (u) = −1 + 2sgn +(u), we obtain

∬
Qj,τ

{ [ur − k]+ ζt + sgn +(ur − k)[H(ur) −H(k)] ζx}dxdt ≥(6.8)

≥ − ess lim
x→x+j−1

∫
τ

0
sgn +(ur(x, t) − k) [H(ur(x, t)) −H(k)] ζ(x, t)dt .

On the other hand, if we subtract (6.5) from (6.6), we get

∬
Qj,τ

{ [ur − k]− ζt + sgn −(ur − k)[H(ur) −H(k)] ζx}dxdt ≥(6.9)

≥ − ess lim
x→x+j−1

∫
τ

0
sgn −(ur(x, t) − k) [H(ur(x, t)) −H(k)] ζ(x, t)dt ,
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and

∬
Qj,τ

{ [ur − k]− ζt + sgn −(ur − k)[H(ur) −H(k)] ζx}dxdt ≥(6.10)

≥ − ess lim
x→x+j−1

∫
τ

0
sgn +(ur(x, t) − k) [H(ur(x, t)) −H(k)] ζ(x, t)dt +

+∫
τ

0
[fx+j−1(t) −H(k)] ζ(xj−1, t)dt .

Now let cj−1 > 0. From (6.7), (6.9) and the compatibility condition (3.9a) (with
j − 1 instead of j) we get

∬
Qj,τ

{ [ur − k]+ ζt + sgn +(ur − k)[H(ur) −H(k)] ζx}dxdt ≥(6.11a)

≥ −∫
τ

0
[fx+j−1(t) −H(k)] ζ(xj−1, t)dt ,

∬
Qj,τ

{ [ur − k]− ζt + sgn −(ur − k)[H(ur) −H(k)] ζx}dxdt ≥ 0 .(6.11b)

Suppose instead that cj−1 < 0. Then from (6.8), (6.10) and the compatibility con-
dition (3.9a) (with j − 1 instead of j) we get

∬
Qj,τ

{ [ur − k]+ ζt + sgn +(ur − k)[H(ur) −H(k)] ζx}dxdt ≥ 0 ,(6.12a)

∬
Qj,τ

{ [ur − k]− ζt + sgn −(ur − k)[H(ur) −H(k)] ζx}dxdt ≥(6.12b)

≥ ∫
τ

0
[fx+j−1(t) −H(k)] ζ(xj−1, t)dt .

Obviously, analogous inequalities hold for vr and gx+j−1 .

Now we proceed as in the proof of [4, Theorem 3.2] using the Kružkov method
of doubling variables. If cj−1 > 0 we use (6.11a) and the inequality for vr = vr(y, s)
analogous to (6.11b), namely

(6.13) ∬
Qj,τ

{ [vr − l]− ξs + sgn −(vr − l)[H(vr) −H(l)] ξy}dyds ≥ 0

with l ∈ R and ξ ∈ C1([0, τ];C1
c ([xj−1, xj)), ξ(⋅,0) = ξ(⋅, τ) = 0 in Ij , ξ ≥ 0 in Qj,τ .

Choose ψ = ψ(x, t, y, s), ψ ≥ 0 such that ψ(⋅, ⋅, y, s), ψ(x, t, ⋅, ⋅) ∈ C1([0, τ];C1
c ([xj−1, xj)),

and ψ(⋅,0, ⋅, ⋅) = ψ(⋅, τ, ⋅, ⋅) = ψ(⋅, ⋅, ⋅,0) = ψ(⋅, ⋅, ⋅, τ) = 0 in Ij . Setting in (6.11a)
k = vr(y, s), ζ = ψ(⋅, ⋅, y, s) we have

∬
Qj,τ

{sgn +(ur(x, t) − vr(y, s))[H(ur(x, t)) −H(vr(y, s))]ψx(x, t, y, s) +

+[ur(x, t)−vr(y, s)]+ ψt(x, t, y, s)}dxdt ≥

≥ −∫
τ

0
[fx+j−1(t) −H(vr(y, s))]ψ(xj−1, t, y, s)dt ,

whereas from (6.13) with l = ur(x, t), ξ = ψ(x, t⋅, ⋅), using the identities [u]− = [−u]+,
sgn −(−u) = −sgn +(u) we get

∬
Qj,τ

{sgn +(ur(x, t) − vr(y, s))[H(ur(x, t)) −H(vr(y, s))]ψy(x, t, y, s) +

+[ur(x, t)−vr(y, s)]+ ψs(x, t, y, s)}dyds ≥ 0 .
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Now choose

ψ(x, t, y, s) = η (x + y
2

,
t + s

2
)ρε(x − y)ρε(t − s)

where η ∈ C1([0, τ];C1
c ([xj−1, xj)), η ≥ 0, η(⋅,0) = η(⋅, τ) = 0 in Ij , and ρε (ε > 0) is

a symmetric mollifier in R. Arguing as in the proof of [4, Theorem 3.2], from the
above inequalities we get

∬
Qj,τ

{sgn +(ur(x, t) − vr(x, t))[H(ur(x, t)) −H(vr(x, t))]ηx +(6.14)

[ur(x, t)−vr(x, t)]+ ηt}dxdt ≥ −
1

2
∫

τ

0
[fx+j−1(t) − gx+j−1(t))]η(xj−1, t)dt .

Recalling that if u0r,j+1 ≤ v0r,j+1 a.e. in Ij then, by part (i), ur,j+1 ≤ vr,j+1 a.e. in
Qj,τ , we obtain from (6.14) and the arbitrariness of η that fx+j−1 ≥ gx+j−1 a.e. in (0, τ).

If cj−1 < 0 we use (6.12a) and the inequality for vr = vr(y, s) analogous to (6.12b),

∬
Qj,τ

{ [vr − l]− ξs + sgn −(vr − l)[H(vr) −H(l)] ξy}dyds ≥(6.15)

≥ ∫
τ

0
[gx+j−1(s) −H(l)] ξ(xj−1, s)ds

with l ∈ R and ξ as above. Choosing in (6.12a) k = vr(y, s), ζ = ψ(⋅, ⋅, y, s) with ψ
as above gives

∬
Qj,τ

{sgn +(ur(x, t) − vr(y, s))[H(ur(x, t)) −H(vr(y, s))]ψx(x, t, y, s) +

+[ur(x, t)−vr(y, s)]+ ψt(x, t, y, s)}dxdt ≥ 0 .

On the other hand, from (6.15) with l = ur(x, t), ξ = ψ(x, t⋅, ⋅), using again the
identities [u]− = [−u]+, sgn −(−u) = −sgn +(u) we get

∬
Qj,τ

{sgn +(ur(x, t) − vr(y, s))[H(ur(x, t)) −H(vr(y, s))]ψy(x, t, y, s) +

+[ur(x, t)−vr(y, s)]+ ψs(x, t, y, s)}dyds ≥

≥ ∫
τ

0
[gx+j−1(s) −H(ur(x, t))]ψ(xj−1, t, y, s)ds .

Then arguing as in the proof of (6.14) we get inequality (6.14) for any η as above,
whence fx+j−1 ≥ gx+j−1 a.e. in (0, τ).

Concerning the inequalities fx−j ≤ gx−j (j = 1, . . . , p) a.e. in (0, τ), the proof relies

on the following counterpart of (6.5)-(6.6):

∬
Qj,τ

{(ur − k) ζt + [H(ur) −H(k)] ζx}dxdt = ∫
τ

0
[fx−j (t) −H(k)] ζ(xj , t)dt ,

∬
Qj,τ

{∣ur − k∣ ζt + sgn (ur − k) [H(ur) −H(k)] ζx}dxdt ≥

≥ ess lim
x→x−j

∫
τ

0
sgn (ur(x, t) − k) [H(ur(x, t)) −H(k)] ζ(x, t)dt

where ζ ∈ C1([0, τ];C1
c ((xj−1, xj]), ζ ≥ 0, ζ(⋅,0) = ζ(⋅, τ) = 0 in Ij , and on the

compatibility condition (3.9b). We leave the details to the reader. �

Now we can prove Theorem 4.2.

Proof of Theorem 4.2. Let

τ = sup{t ∈ (0, T ); suppus(t) = suppu0s, supp vs(t) = supp v0s}.
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Set

suppu0s ∪ supp v0s ≡ {y1, . . . , yr} with y1 < y2 < . . . < yr,

u0s =
r

∑
k=1

ĉkδyk , v0s =
r

∑
k=1

d̂kδyk

with ĉk, d̂k ∈ R, at least one of ĉk, d̂k different from zero, ĉk ≤ d̂k; observe that

ĉkd̂k ≠ 0 ⇔ yk ∈ suppu0s ∩ supp v0s (k = 1, . . . , r) .

Also set Ik = (yk−1, yk), with y0 = a, yr+1 = b, Qk,τ = Ik × (0, τ), and u0r,k = u0r ⌞ Ik,
v0r,k = v0r ⌞ Ik, ur,k = ur ⌞Qk,τ , vr,k = vr ⌞Qk,τ (k = 1, . . . , r + 1).

By assumption there holds u0r ≤ v0r a.e. in Ik for any k. We claim that

(6.16) ur ≤ vr in Qk,τ for all k = 1, . . . , r + 1.

Observe that at each point yk there holds either ĉkd̂k ≤ 0, or ĉkd̂k > 0. If ĉkd̂k =
u0s({yk}) v0s({yk}) ≤ 0, by (3.5) there holds us(⋅, t)({yk}) ≤ 0 ≤ vs(⋅, t)({yk}) for
any t ∈ (0, τ), thus in this case

(6.17) us(⋅, t) ⌞ {yk} ≤ vs(⋅, t) ⌞ {yk} for any t ∈ (0, τ) .

On the other hand, if ĉkd̂k > 0, there holds either ĉk > 0, d̂k > 0, or ĉk < 0, d̂k < 0.
By Proposition 3.4, for any t ∈ (0, τ) there holds

(6.18) us(⋅, t) ⌞ {yk} = Ck(t)δyk , vs(⋅, t) ⌞ {yk} =Dk(t)δyk ,

where Ck are defined by (3.16), and Dk are the analogous quantities for vs. Assum-
ing ur ≤ vr in Qk,τ and arguing as in the proof of Proposition 6.2(ii), it is easily
seen that inequalities (6.4) hold (with x+k instead of x+j−1) for any t ∈ (0, τ), whence

in both cases ĉk, d̂k > 0 or ĉk, d̂k < 0 we get

(6.19) Ck(t) ≤Dk(t) for all t ∈ [0, τ) .

From (6.18) and (6.19) we obtain (6.17) also in this case. Then by (6.16) and (6.17)
there holds u(⋅, t) ≤ v(⋅, t) in M(Ω) for any t ∈ [0, τ].

If τ = T the proof is complete. Otherwise, we can repeat the above arguments in
Ω × [τ, T ], since we proved that u(⋅, τ) ≤ v(⋅, τ) in M(Ω). In a finite time of steps
the conclusion follows.

It remains to prove the claim (6.16). We only consider the case that k = 2, . . . , r,
the proof being simpler for k = 1 or r + 1. We distinguish the following cases:

(a) ĉk−1d̂k−1 > 0, ĉkd̂k > 0. In this case ur and vr are solutions of the same
problem (Dk) ≡ (D) in Qk,τ . Since by assumption there holds u0r ≤ v0r

a.e. in Ik, (6.16) follows from Proposition 6.2.

(b) ĉk−1d̂k−1 > 0, ĉkd̂k ≤ 0. We consider two subcases:

(b1) ĉk < 0, d̂k ≥ 0. In this case ur solves problem (D−
±) in Qk,τ , depending

on ±ĉk−1 > 0. Since in both cases d̂k > 0 or d̂k = 0 it can be easily
checked that vr is an entropy supersolution of problem (D−

±) in Qk,τ ,
depending on ±ĉk−1 > 0 (see Definition 6.2(ii) and (iii)), hence (6.16)
follows from Theorem 6.1.

(b2) ĉk ≤ 0, d̂k > 0. In this case vr solves problem (D+
±) in Qk,τ , depending

on ±ĉk−1 > 0. In both cases ĉk < 0 or ĉk = 0, we get that ur is an
entropy subsolution of problem (D+

±) in Qk,τ , depending on ±ĉk−1 > 0
(see Definition 6.1(i) and (iv)), and (6.16) follows from Theorem 6.1.

(c) ĉk−1d̂k−1 ≤ 0, ĉkd̂k > 0. This case is analogous to (b); we omit the details.
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(d) ĉk−1 < 0, d̂k−1 = 0, ĉk = 0, d̂k > 0. It is easily checked that ur is an entropy
subsolution and vr is an entropy supersolution of problem (D+

−) in Qk,τ (see
Definitions 6.1(iv) and 6.2(iv)). Again (6.16) follows from Theorem 6.1.

(e) ĉk−1 = 0, d̂k−1 > 0, ĉk < 0, d̂k = 0. This case is analogous to (d). ◻

7. Waiting time for global solutions of (HJ) and (CL): Proofs

In this section we prove the results about the waiting times listed in Section 4.3.
We observe that Theorem 4.4 is an immediate consequence of (3.31).

Proof of Theorem 4.5. We only adress the case that J0(xj) > 0. Observe that
until the waiting time τj ∈ (0,+∞], the jump discontinuity at xj has a barrier
effect in the following sense: by [6, Lemma 5.2], U1 = U ⌞ ((xj ,∞) × (0, τj)) and
U2 = U ⌞ ((−∞, xj) × (0, τj)) are the viscosity solutions of the problems

(7.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U1t +H(U1x) = 0 in (xj ,∞) × (0, τj)
U1x =∞ in {xj} × (0, τj)
U1 = U0 ⌞ (xj ,∞) in (xj ,∞) × {0}

and

(7.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U2t +H(U2x) = 0 in (−∞, xj) × (0, τj)
U2x =∞ in {xj} × (0, τj)
U1 = U0 ⌞ (−∞, xj) in (−∞, xj) × {0}.

In view of assumption (H4)-(i), we consider the case that for all M > 0 there
exists kM > M such that H(kM) > H+ (if H(kM) < H+ the proof is similar). By
(A1) we have that ∣U0(x)∣ ≤ Aj +B∣x − xj ∣, where Aj = A +B∣xj ∣). We set, for all
k > B such that H(k) >H+,

v(x, t) ∶= Ck + k(x − xj) −H(k)t for (x, t) ∈ (xj ,∞) × (0, τj) ,

where Ck is chosen such that

(7.3) v(x,0) ≥ Aj +B(x − xj) ≥ (U0)∗(x) for all x ≥ xj .

By (3.21) and the envelope properties we have that (U0)∗(x) = U∗(x,0) ≥ U∗
1 (x,0)

for all x ≥ xj , thus inequality (7.3) gives

(7.4) v(x,0) ≥ U∗
1 (x,0) for all x ≥ xj .

Since v is a viscosity supersolution of (7.1) (see [6, Definition 3.2]), by the compar-
ison principle in [6, Theorem 3.1] and (7.4) we get

(7.5) (U1)∗(x, t) ≤ v(x, t) for all (x, t) ∈ [xj ,∞) × [0, τj) .

Next, observe that Theorem 3.5(a) ensures that U∗
1 (x, t) = U(x, t) for all x > xj

sufficiently close to xj ; here, as in Remark 3.1, we have identified U with its con-

tinuous representative Ũj+1 in the rectangle Qj+1 = (xj , xj+1) × (0, τj). Therefore
taking the limit as x→ x+j in (7.5) gives

(7.6) U(x+j , t) ≤ Ck −H(k)t for any t ∈ (0, τj) .

For all t as above there also holds

(7.7) U(x−j , t) ≥ U0(x−j ) −H+t
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(see inequalities (5.21) in [6] for details). Then from (7.6)-(7.7) we obtain

(H(k) −H+)t ≤ U(x−j , t) −U(x+j , t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

< 0 by (3.30)

+Ck −U0(x−j ) for any t ∈ (0, τj) .

Therefore, letting t→ τ−j , the claim follows from the estimate τj ≤
Ck −U0(x−j )
H(k) −H+ . ◻

Proof of Corollary 4.6. We first prove (4.6). For every x ∈ R, set U0(x) = u0([0, x]),
and let U be the global viscosity solution of (HJ) with initial datum U0. Since U0

satisfies assumption (H3), we can apply the correspondence between u and U stated
in Theorem 4.1. Then (4.6) follows from (4.2) and the identifications in (4.3)-(4.4).

It remains to prove that the waiting time is finite if (A2) is satisfied. Observe
that U0(x) = u0([0, x]) (x ∈ R) satisfies (H3) and (A1), as ∥u0s∥M(R) ≤ C (see (H2))
and u0r satisfies (A2). Applying Theorem 4.5 to the global viscosity solution U of
(HJ) with initial datum U0, the desired results follow from (4.3)-(4.4). ◻

It remains to prove Theorem 4.7, which immediately implies Corollary 4.8. In
the proof we distinguish the two different hypotheses, (H5) and (H6).

Proof of Theorem 4.7 : the case of hypothesis (H5). We only address the case that
cj > 0 and (H5)-(i) is satisfied (when cj < 0 and (H5)-(ii) holds the proof is similar).
Let {kn} be a sequence diverging to ∞ such that

(7.8) lim
n→∞

∣H(kn) −H+∣
Mkn

= lim sup
k→∞

∣H(k) −H+∣
Mk

≥ C+
0 > 0 .

Since Mk = ∥H ′∥L∞(k,∞) → 0 as k →∞, we have that

(7.9) lim
n→∞Mkn = 0 ,

whereas by assumption (H4)-(i), possibly up to a subsequence (not relabeled), there
holds either H(kn) >H+ or H(kn) <H+ for every n. Without loss of generality, we
may assume that H(kn) >H+ for all n.

Let suppu+0s ≡ {x1, . . . , xq} (x1 < x2 < ⋅ ⋅ ⋅ < xq). Below we prove that the waiting
time tq associated to xq is finite. By a recursive argument, it follows that all Dirac
masses of u+0s disappear in finite time.

Arguing by contradiction, we suppose that tq =∞. Let T > 0 be fixed arbitrarily.
Arguing as in the proof of Proposition 6.2(ii) (in particular, see (6.11a)), for every
k > 0 and ζ ∈ C1([0, T ];C1

c ([xq,∞)), ζ ≥ 0, ζ(⋅, T ) = 0, we get

∫
T

0
∫

∞

xq
{[uq − k]+ζt + sgn+(uq − k)[H(uq) −H(k)]ζx} dxdt ≥(7.10)

≥ −∫
R
[u0r − k]+ζ(x,0)dx − ∫

T

0
[fx+q −H(k)]ζ(xq, t)dt .

Let γ > xq be arbitrarily fixed. For every k > 0 and p ∈ N large enough we set

βp(t) ∶= χ[0,T−1/p](t) + p(T − t)χ(T−1/p,T ](t) (t ∈ (0, T ))

ζk,p(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if xq ≤ x ≤ γ +Mk(T − t) − 1
p
,

p [γ +Mk(T − t) − x] if γ +Mk(T − t) − 1
p
< x < γ +Mk(T − t),

0 if x ≥ γ +Mk(T − t)



30 BERTSCH, SMARRAZZO, TERRACINA, AND TESEI

for (x, t) ∈ R × (0, T ). One easily sees that, by the definitions of Mk and ζk,p,

∫
T

0
∫

∞

xq
{[uq − k]+∂tζk,p + sgn+(uq − k)[H(uq) −H(k)]∂xζk,p}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤ 0

βp(t)dxdt ≤ 0.

Choosing ζ(x, t) = ζk,p(x, t)βp(t) in (7.10) and letting p→∞, this implies that

∫
T

0
[fx+q (t) −H(k)]dt + ∫

γ+MkT

xq
[u0r − k]+ dx ≥ ∫

γ

xq
[uq(x,T ) − k]+ dx ≥ 0 ,

whence, by the second inequality in (3.14),

∫
T

0
[fx+q (t) − fx−q (t)] dt + ∫

γ+MkT

xq
[u0r − k]+ dx ≥(7.11)

≥ ∫
T

0
[H(k) − fx−q (t)] dt ≥ [H(k) −H+]T.

Since tq =∞, it follows from (3.16)-(3.17) that

(7.12) ∫
T

0
[fx+q (t) − fx−q (t)] dt ≤ u

+
0s({xq}) for all T > 0.

Let {kn} be any sequence satisfying (7.8)-(7.9) and H(kn) > H+ for all n. From
(7.11)-(7.12) (written with k = kn), for every T > 0 and γ > xq we get

(7.13) [H(kn) −H+]T ≤ u+0s({xq}) + ∫
γ+MknT

xq
[u0r − kn]+ dx .

Set Tn ∶=
2u+0s({xq})
C+

0Mkn

. Then from (7.8) we obtain

(7.14) lim
n→∞[H(kn) −H+]Tn = lim

n→∞
2u+0s({xq})∣H(kn) −H+∣

C+
0Mkn

≥ 2u+0s({xq}) .

Moreover, there holds

(7.15) lim
n→∞∫

γ+MknTn

xq
[u0r − kn]+ dx = 0 ,

since γ +MknTn = γ + 2u+0s({xq})/C+
0 and u0r ∈ L1

loc(R). By (7.14)-(7.15), choosing
T = Tn in (7.13) and letting n→∞ we obtain u+0s({xq}) ≤ 0, a contradiction. ◻

Proof of Theorem 4.7 : the case of hypothesis (H6). Let (H6)-(i) be satisfied and

(7.16) H(k) <H+ for k ≥ k (k > 0)
(in case of (H6)-(ii) the proof is similar). Fix xj ∈ suppu+0s and let w ∈ C([0,∞);M+(R))
be the global entropy solution of problem (CL) with initial data

w0 ∶= max{u0r, k} + u+0s ,
satisfying the compatibility conditions in suppw0s = suppu+0s = {x1, . . . , xq}. By the
comparison principle (see Theorem 4.2), it suffices to prove that the waiting time
t̃j associated to each xj (j = 1, . . . , q) is finite.

Since w0r ≥ k a.e. in R and w0s ≥ 0 inM(R), it follows from (3.4), using a proper

sequence of test functions, that wr ≥ k a.e. in S. Hence w also is the global entropy
solution of the Cauchy problem

⎧⎪⎪⎨⎪⎪⎩

wt + [H̃(w)]x = 0 in S = R ×R+

w = w0 in R × {0} ,
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where H̃(w) ∶= H((w − k)+ + k), satisfying the compatibility conditions at every

xj ∈ suppw0s = suppu+0s. By the definition of H̃ and assumption (7.16), there holds

(7.17) lim
u→∞ H̃(u) = sup

u∈R
H̃(u) =H+ .

For every j = 1, . . . , q let hx±j ∈ L∞loc(0,∞) be the functions relative to w given by

Proposition 3.3. Then by (3.12) and (7.17) we get

(7.18) hx+j (t) =H
+ for a.e. t ∈ (0, tj).

By contradiction, let t̃j =∞. Then by (3.16) and (7.18) we get

(7.19) ∫
∞

0
[H+ − hx−j (t)]dt ≤ cj .

Fix any γ < xj such that u+0s ⌞ I = 0, where I ≡ (γ, xj). Consider the singular
Cauchy-Dirichlet problem

(7.20)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vt + [H̃(v)]x = 0 in I × (0,∞)
v =∞ in {γ, xj} × (0,∞)
v = w0r in I × {0} .

By Definition 6.1(i) the restriction w⌞(I×(0,∞)) is a subsolution of (7.20), whereas
by Theorem 3.2(i) there exists a unique global entropy solution v ∈ C([0,∞);L1(I)),
v ≥ 0 of (7.20). Then by Theorem 6.1 we get

(7.21) w ≤ v a.e. in I × (0,∞) .

Let gx−j , gγ+ ∈ L∞loc(0,∞) be the functions relative to v given by Proposition 5.4.

Arguing as for (7.18), from (5.31a) we get

(7.22) gγ+(t) =H+ ≥ gx−j (t) for a.e. t > 0 .

On the other hand, in view of (7.21), arguing as in the proof of Proposition 6.2(ii)
gives

hx−j (t) ≤ gx−j (t) for a.e. t > 0 ,

whence by inequality (7.19)

(7.23) ∫
∞

0
[H+ − gx−j (t)]dt ≤ cj .

Fix any T > 0. From the weak formulation (3.2), by a standard argument we get

(7.24) ∫
I
v(x,T )ρ(x)dx = ∫

I
w0r(x)ρ(x)dx +∬

I×(0,T )
H̃(v(x, t))ρ′(x)dxdt

for every ρ ∈ C1
c (I). By a proper choice of ρ = ρn → χI as n→∞, we get

(7.25) ∥v(⋅, T )∥L1(I) = ∫
I
w0r(x)dx + ∫

T

0
[H+ − gx−j (t)]dt ≤ ∥w0r∥L1(I) + cj =∶D0 ;

here we have used that for all β ∈ Cc(0,∞) (see (5.29)-(5.30)) there holds

lim
x→x−j

∫
∞

0
H̃(v(x, t))β(t)dt = ∫

∞

0
gx−j (t)β(t)dt ,

lim
x→γ+ ∫

∞

0
H̃(v(x, t))β(t)dt = ∫

∞

0
gγ+(t)β(t)dt ,

and (7.22)-(7.23).
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Similarly, for a.e. y ∈ (γ, xj), a suitable choice of ρ = ρn → χ(γ,y) in (7.24) implies

∫
y

γ
v(x,T )dx = ∫

y

γ
w0r(x)dx + ∫

T

0
[H+ − H̃(v(y, t))]dt ,

whence, by integration with respect to y and (7.25),

∫
T

0
(∫

I
[H+ − H̃(v(y, t))] dy) dt ≤ ∫

I
(∫

y

γ
v(x,T )dx) dy ≤D0 ∣I ∣ .

By (7.17), this implies that

∫
T

0
∥H̃(v(⋅, t)) −H+∥L1(I) dt ≤D0 ∣I ∣ .

By the arbitrariness of T , there exists a sequence Tk →∞ such that

∥H̃(v(⋅, Tk)) −H+∥L1(I) → 0 ,

whence (possibly up to a subsequence, not relabeled)

H̃(v(x,Tk))→H+ for a.e. x ∈ I .
In view of (7.17), this implies that

v(x,Tk)→∞ for a.e. x ∈ I ,
whence ∥v(⋅, Tk)∥L1(I) →∞. However, this contradicts estimate (7.25). ◻
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