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Fig. 7  Correlation of the micro- and macrofacies displaying the ichnofabric characteristics in each paleoenvironmental interval
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of west-central Argentina (Toscano et al. 2018). The ich-
nofabrics in this interval represent a pre-depositional suite 
of trace fossils, i.e., the burrows formed prior to event 
deposition (Uchman and Wetzel 2012). The top of this 
interval is characterized by Planolites IF, which reflects 
increasing sedimentation rates and commonly indicates 
fluctuations in oxygen and nutrient contents. The inferred 
water depth of T4 might still fit at a similar level as previ-
ously proposed (interval T4; Figs. 7, 8).

The interval T5 is characterized by the sudden disap-
pearance of all body and trace fossils; the only occurrences 
seen in the thin sections consist of rare small LBF tests and 
mollusk fragments. This nearly barren condition is difficult 
to explain, as organisms should be thriving both on and 
beneath the seafloor in shallow-water settings. Enhanced 
sedimentation as well as hypoxic conditions in bottom 
waters should not be considered because such intervals 
enhance the preservation of pelagic and planktonic fauna 
that settles to the seafloor in the absence of scavengers and 
bioturbators (e.g., Savrda and Bottjer 1991; Wilby et al. 
2004; Smith and McGowan 2008). Thus, a possible expla-
nation could be linked to intense hydrodynamic conditions 
at the seafloor with still enhanced turbidity in the top layers 
of the water column; this might strongly affect the benthic 
community, removing all eventually available taxa from that 
portion of the seafloor. We assume that the river's frontal 
position favored an increased supply of terrigenous mate-
rial, displacing all taxa out of the area and causing a bar-
ren scenario (interval T5; Figs. 7, 8). Possible variation in 
salinity produced by riverine supply may be considered a 
stressful factor for the biota, as recorded in this interval (e.g., 
Tomanek 2014).

This scenario changes completely in interval T6, where 
both micro- and macrofauna (diverse LBF taxa, gastro-
pods, corals, SBF, and PF) are recorded again in the sedi-
mentary succession. LBF tests are commonly dispersed 
in the matrix, but sporadically they are accumulated in 
irregular patterns, as is typical for the effects of sediment 
bioturbation. In a few cases, iso-oriented tests may indi-
cate a mild seafloor current and the traction carpet effect 
(Racey 2001; Gingras et al. 2011, 2015; Kövecsi et al. 
2022). Such evidence fits with an active deltaic system 
where hyperpycnal flows may have similar impacts on sea-
floors rich in nummulitic tests or may be the consequence 
of subtidal currents that have similar effects (interval T6; 
Figs. 7, 8). The sea floor must have been again favorable 
for a new development of the fauna, but the water depth 
must have become much deeper within the photic zone, 

which in this scenario could have been placed at 50 to 60 
m of water depth, as evidenced by the presence of thin and 
flat Assilina without other LBF (Hottinger 1983; Coletti 
et al. 2021).

The interval T7 is characterized by an alternation of 
calcisiltite, biocalcisiltite, calcarenite, and biocalcarenite 
beds with several marly horizons. Biocalcisiltite and bio-
calcarenite beds have erosive basal contacts and are rich 
in LBF tests, mostly broken or abraded, thus making them 
almost nummulithoclastic deposits, here interpreted as 
high-energy transportation events. These events displaced 
LBF tests, coming from the more proximal portion of the 
ramp, into a much deeper setting (interval T7; Figs. 7, 8). 
The marly sediments are rich in pelagic and planktonic 
organisms and are therefore interpreted as background 
sedimentation in deeper and calmer depositional settings.

Trace fossils that are produced very close to the sedi-
ment surface tend to be preserved only when they are 
partly scoured and cast (Uchman and Wetzel 2012); there-
fore, the absence of the ‘coarse-fill burrows’ IF suggests 
that gravity flows were weaker and therefore more distal. 
Consequently, they might have had not enough energy to 
preserve shallow-tier burrows, thus confirming the deepen-
ing trend suggested by body fossils and sedimentological 
features (Ferrando et al. 2021) (interval T7; Figs. 7, 8).

The presence of repeated gravity flows may have been 
favored by global climatic and environmental variations that 
are well known through the MECO (Zachos et al. 2001): in 
fact, the sudden increase in temperature could have enhanced 
precipitations and the hydrological cycle with consequences 
on the terrigenous flow, as seen already in different basins 
of the NW Tethys (Held and Soden 2006; Chou et al. 2013; 
Marvel and Bonfils 2013; Baatsen et al. 2020). This climate 
variation is known to have caused an alternation between 
arid and humid conditions, which seems typical of the 
MECO (e.g., Turkey: Rego et al. 2018; Spain: Peris Cabré 
et al. 2023; Tunisia: Messaoud et al. 2023; Italy: Gandolfi 
et al. 2023; Briguglio et al. 2024). In shallow-marine set-
tings, the prolonged warming of the atmosphere and ocean 
system triggered sediment production despite the underly-
ing transgressive phase, thus registering variations in ter-
rigenous supply along the Provençal Domain (Giammarino 
et al. 2009; Dallagiovanna et al. 2012a, b). The MECO event 
coincides with the drowning of the Eocene ramp, which is a 
regional event in NW Tethys that correlates with the Franco-
Italian Maritime Alps and eastern Switzerland sections 
(Sayer 1995; Sinclair et al. 1998; Allen et al. 2001; Varrone 
and Clari 2003; Gandolfi et al. 2023). The rapid subsidence 
of the basin is not only the most important factor that favored 
the regional drowning ramp, but also the increase in nutrient 
supply might reduce the productivity of the carbonate ramp 
because of the renewal of terrigenous input into the distal 
part of the basin (Hallock and Schlager 1986; Sayer 1995).

Fig. 8  Paleoenvironmental evolution of the carbonate ramp at the 
Olivetta San Michele section, showing the benthic and planktonic 
communities in the different intervals of time (from T1 to T7) during 
the Bartonian

◂
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Conclusions

The studied sedimentary succession of Olivetta SM is char-
acteristic of a carbonate ramp that formed during the middle 
Eocene (Bartonian) in the western Tethys, representing a 
transgressive phase of the basin in the Provençal Domain.

The lower part of the Olivetta SM section is dominated 
by photosymbiont-bearing organisms that indicate high irra-
diation and low turbidity in the water column with minimal 
disturbance by the deltaic system. Gradually, the increase in 
the terrigenous input firstly favored the proliferation of the 
filter feeders, then produced a barren interval. Toward the 
top of the section, the MECO event is registered and can be 
recognized as an alternation of gravity flows, with a higher 
diversity of organisms (including LBF) and silty marls, 
which are barren of macrofossils but rich in foraminifera, 
especially planktonic.

The retrieved data have shown with high resolution how 
environmental changes had a direct impact on the benthic 
community of the NW Tethys: the constant enhancement of 
riverine inputs that supplied nutrients increased water tur-
bidity and reduced the penetration of solar radiation. These 
factors, coupled with the general transgressive trend, led to 
the complete collapse of the benthic carbonate producers. 
The MECO event in shallow-water sediments does not imply 
a significant increase in temperature as it does in deeper 
settings, but it still had a major impact on the benthic com-
munity as it triggered precipitations and thus increased the 
sedimentation rate.

We recognize that identifying global climatic events in 
shallow-water deposits seems much harder than in deeper 
settings; only a combination of different field data may shed 
light on the event occurrence and its effect on the biota. 
Microfacies analysis, outcrop scale observation, and ichno-
fabric distribution have proven to be robust enough to accu-
rately describe the effect of MECO on the biota in a shallow-
water depositional scenario. This opens new research goals 
and perspectives because shallow-water settings are those 
more affected by the ongoing climatic perturbation, and 
more data are needed from the fossil record during climatic 
analogs, especially in the Cenozoic.
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