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Federated Learning is a distributed and privacy-preserving machine learning
technique that allows local clients to learn a model without sharing their
own data by coordinating with a global server. In this work, we present the
Adaptive Federated Learning (AdaFed) algorithm, which aims at improving
the training performance of deep neural networks in Federated Learning set-
tings by: (i) dynamically weighting the local models in the model averaging
procedure; (ii) by adapting the loss function used by the federation at every
communication round. We discuss the specialisation of AdaFed for both
classification and regression tasks, providing several validation examples.
Due to its adaptive design, the AdaFed algorithm showed a robust behaviour
against unbalanced data distributions and adversarial clients.
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1 INTRODUCTION

Federated Learning (FL) is a distributed learning solution to address
Machine Learning (ML) problems without the need of collecting
the available data in a single data center. FL finds application in
scenarios in which the data are distributed over a multitude sources
that, for privacy or communication constraints, cannot share it
among them or with a centralised entity. The need of analysing data
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locally becomes of crucial importance when dealing with personal
data (e.g., collected by smartphones) or sensitive information (e.g.,
regarding the customers of a company).
FL is then a technology enabler to analyse data in heavily regu-

lated fields such as healthcare [1], connecting the fragmented data
sources while preserving privacy [2]. Several studies in the liter-
ature underline the potential of deep learning methodologies in
identifying complex models in the medical field, with numerous
applications, e.g., in radiology, pathology, genomics [3]. The identi-
fication and availability of sufficiently large and diverse data sets,
necessary for the training of the model, is a considerable challenge
in medicine and can rarely be met by single institutions. On the
other hand, multi-institutional collaborations based on centrally-
shared patient data face difficulties in terms of data privacy and
ownership, especially in international collaborations, and are also
not suitable for cases where there are the number of institutions
is large. As a result, the knowledge generated around the world
remains distributed across multiple institutions, raising the need
for seeking alternative approaches: due to its privacy preserving
characteristics, FL represents a collaborative learning approach en-
abling multi-institutional collaborative learning tasks for intelligent
healthcare applications. In other words, given a network of hos-
pitals, instead of training a neural network on the clinical data of
all the hospitals gathered in a single server, with FL it is sufficient
to share the knowledge acquired by the single hospital model to
improve the model of the entire federation. While the first solution
has privacy related issues, the latter can be made GDPR compliant.
In FL, the server’s model, is updated at every communication

round by averaging the models of the federated clients, trained on
their locally available data. In this work, we propose the ADAptive
Federated Learning algorithm, AdaFed, a two-step procedure to
improve both the model averaging and the local training processes
by i) dynamically weighting the client models contributions to the
federation based on their performance, and ii) adapting the feder-
ated loss function depending the global model performance at each
communication round.
For the sake of presentation clarity, the proposed solution is

designed to extend the formulation and results of original FL algo-
rithm Federated Averaging (FedAvg) [4], but the concepts behind
the proposed innovations are independent of the specific implemen-
tation and may be seamlessly translated to other algorithms such
as FedProx [5]. The evaluation of of AdaFed in terms of versatil-
ity, performance improvements and capability of addressing new
challenging scenarios is illustrated by comparison with FedAvg on
different tasks involving several different data-sets.
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The remainder of this paper is organized as follows: In Section 2
we present an overview of related work. In Section 3 we present our
framework, AdaFed, specialising it for classification and regression
tasks, in Section 3.1 and 3.2, and discussing its limitations in Section
3.3. Some validation experiments are presented in Section 4, while
Section 5 draws the conclusions and highlights future work.

2 RELATED WORKS AND MAIN CONTRIBUTIONS

FL was introduced in 2016 by the authors of [6] and, in its origi-
nal formulation [4; 6], FL was proposed specifically to address the
collaboration among a group of smartphones and consisted in an
iterative model-averaging procedure. According to such procedure,
local model updates, independently computed by the smartphones,
were gathered and averaged by a centralised server that then propa-
gated the updated global model in the network, as depicted in Figure
1.

As discussed in the recent surveys [7–9], since its introduction FL
was extended to different architectures and uses cases, with several
works focusing on enhancing its privacy preserving and security
related characteristics [10–13] to prevent direct or indirect data
leakage [14], and on reducing the communication cost associated
to the distributed training [15–17]. FL found application in several
domains, spacing from smartphones/Internet of Things tasks such
as Natural Language Processing (NLP) [18–20], image analysis [21;
22] and distributed sensing and computing [8; 23], to scenarios
in which organisations and institutions cooperate to obtain better
models to analyse complex and highly confidential data, as typical
in the healthcare domain [24–26]. Contrary to federated database
systems, in which data can be distributed freely by a central entity,
the typical scenario for a FL application is characterised by the need
of analysing data partitioned as given, implying that FL algorithms
need to be able to cope with data that are:

• non-IID and imbalanced, as the geographical dislocation of
the federated organisations or data sources may significantly
affect the data distribution and collecting procedures;
• extremely distributed, as in scenarios in which the federated
entities are smart connected devices their number is likely
to be orders of magnitude more than the quantity of their
individual data samples.

This work explores the concept of associating to each client a
different weight in the model averaging procedure depending on
their contribution to the federation. Several other works explore this
research direction, as the FOCUS algorithm [27] where the authors
design a procedure to determine the weighting factors based on a
credibility score assigned to each client. Such credibility score aims
at minimizing the sensitivity of the federation model to a possible
disparity in the labeling quality of the clients’ datasets, hence ad-
dressing two of the main implications of considering distributed
data sources: the different collecting procedures and human fac-
tors. The FOCUS algorithm relies on the idea that the combination
of the performance of the global model on the clients’ datasets
and the performance of the clients’ models on the server dataset
(which is assumed to be correctly labeled) provides an indicator
of the quality of the clients’ labelling. The framework proposed
by AdaFed is not specifically designed for providing robustness

to labelling quality disparity, and focuses more on the evaluation
of the clients’ model instead of inferring the quality of their data.
Furthermore, FOCUS determines its credibility scores under the
assumption that a correctly labeled client dataset is IID with the
one available to the server (Theorem 1 in [27]), whereas, as we will
show in the simulations, AdaFed does not make any assumption
on the clients’ data. In fact, AdaFed will be shown to be an enabler
approach to allow FL algorithms to cope with scenarios in which
data are distributed in extremely unbalanced ways and even in the
presence of malicious/compromised clients. A similar approach is
followed by [28], where a federated way to estimate the Shapey
Value (SV) [29], that captures the value of the clients’ data for the
federation, is proposed. The federated estimation of the SV allows
several useful properties, as the detection of poor/noisy labelling,
malicious clients and communication minimisation. The main idea
behind the algorithm in [28] is to sort the clients according to their
SV (i.e., their contribution to the federation) and then let only the
most contributing ones participate to the model averaging. AdaFed,
on the other hand, performs a weighted model averaging, where
the weights given to all the clients are dynamically adapted based
on their model performance, reducing the impact of - or even ex-
cluding - the low performing/malicious ones. We mention that a
federated version of SV was also explored in [30], where a similar
metric is developed to allow the distribution of revenue/profits to
the clients depending on their contribution to the federation. In
this sense, a future work may explore the combination of feder-
ated SV estimation with the adaptive model averaging included in
AdaFed by utilising the SV values as clients’ weights. One of the
most promising contribution in the FL field was made by the authors
of [5] with the so-called FedProx algorithm. FedProx, similarly to
AdaFed, builds on top of FedAvg formulation to cope with some
of its limitations, and in particular proposes two improvements to
deal with systems’ heterogeneity (i.e., significant differences in the
optimisation capabilities of the federation clients) and statistical
heterogeneity (i.e., significant non-IID nature of the data distribu-
tion). FedProx archives its properties by proposing an extended
loss function that includes a so-called proximal term that limits the
impact of different local training settings (e.g., epochs number, opti-
miser settings, ...) and non-IID local data distribution on the clients’
models. In principle, AdaFed may be deployed on a federation that
utilises a loss function with the structure proposed by FedProx, but
the impact of the adaptive features of AdaFed on the convergence
properties of FedProx should be explored in detail in a future work.

Another contribution of this work is in the direction of combining
FL with the recent research trend of adaptive loss functions [31–34],
that showed promising results in problems characterised by com-
plex loss functions. An example is multi-objective learning, where
the models are required to optimize multiple loss functions at the
same time seeking a Pareto-like optimality [32]. Complex loss func-
tions are also found in computer vision [31; 34; 35] where they are
commonly used in solutions such as You-Only-Look-Once (YOLO)
[35] or Single-Image-Super-Resolution (SISR) [36]. The fundamental
idea at the basis of adaptive loss approaches is that the loss function
itself evolves during training depending on the recent intra-training
performances of the model. FL, due to its iterative nature, provides
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Fig. 1. Graphical representation of the architecture for “horizontal Feder-

ated Learning” [9] employed by the FedAvg algorithm presented in [4].

an ideal setting for such an updating solution, as the models’ loss
function can be adapted at every communication round.
A summary of the main contributions of the paper follows:

(1) This work introduces a new adaptive federated learning al-
gorithm, AdaFed, in which two mechanisms drive and speed
up the learning process

(a) by dynamically weighting the contributions of the clients’
models in the server’s model based on their performance
(over a representative test set), and

(b) by modifying the local training with an adaptive update of
the loss functions of the clients’ models at each communi-
cation round, depending on the performance achieved by
the server’s model on its test set.

(2) It also illustrates the versatility of AdaFed in learning dif-
ferent models, including convolutional neural networks for
both classification and regressions tasks, also in the transfer
learning setting.

(3) It discusses through simulations the performance improve-
ment that the proposed method is able to achieve in various
scenarios with respect to one of the most common baseline
FL algorithm, FedAvg [4].

3 ADAFED: ADAPTIVE FEDERATED LEARNING

The proposed solution for FL draws inspiration from the well known
ensemble learning algorithm ADAptive Boosting (AdaBoost) [37].
In AdaBoost, a weak learner is trained at each epoch (commonly in
the form of a decision stump for classification tasks) and the data
samples are associated with a weighting factor proportional to their
contribution to the loss attained by the learner. Consequently, at the
next epoch, the new learner will focus more on the miss-evaluated
data.

The AdaFed algorithm pseudo-code is written in the Algorithm 1
table. Differently from AdaBoost solutions, AdaFed does not involve
ensemble learners and, instead, aims at making the model averaging
procedure at the backbone of FL an adaptive process to improve
the performance of the global model learned by the federation.
This result is pursued by the following two step-procedure, that

Algorithm 1 AdaFed: Performance-Based Adaptive Federated
Learning algorithm

1: SERVER’S UPDATE:
2: for each round 𝑡 = 1, 2, ..., 𝑅 do
3: ClientsUpdate
4: for each client 𝑖 = 1, 2, ..., 𝐾 do
5: receive the client’s model𝑤𝑖

6: evaluate𝑤𝑖 on the server test set
7: use the evaluation to determine the weight 𝑝𝑖
8: end for
9: update the server’s model𝑤𝑆 ←

∑𝑛𝑐
𝑖=1 𝑤𝑖𝑝𝑖∑𝑛𝑐
𝑖=1 𝑝𝑖

10: evaluate its performance 𝑝𝑆 on the server test set
11: adapt the loss function 𝑙 depending on 𝑝𝑆
12: propagate𝑤𝑆 and 𝑙 to the clients
13: end for

14: ClientsUpdate:
15: for each client 𝑖 = 1, 2, ..., 𝐾 do
16: 𝑤𝑖 ← 𝑤𝑆

17: for each local epoch 𝑗 = 1, 2, ..., 𝐸 do
18: for each mini-batch 𝑏 of size 𝐵 do
19: 𝑤𝑖 ← 𝑤𝑖 − 𝜂∇𝑙 (𝑤,𝑏)
20: end for
21: end for
22: return𝑤𝑖 to server
23: end for

will be specialised for classification problems in section 3.1 and for
regression problems in section 3.2:

(1) Weighted Model Average: during the server update (lines
4-9 of Algorithm 1), the collected models are evaluated on a
common test set and are weighted according to their perfor-
mance for averaging. The performance metric can in principle
be any quantity that captures how well the model performs
for the given task (e.g., accuracy for classification tasks), or
may even be set to a quantity such as the SV to evaluate the
client’s contribution to the federation.

(2) Adaptive Loss: the server propagates to the federation both
the updatedmodel and a new loss function, whichwas adapted
to the performance of the server own model on a dedicated
test set according to a use-case dependant metric (e.g., up-
date class weights for classification tasks depending on recall)
(lines 10-12 of Algorithm 1).

We formulated the Algorithm 1 similarly to FedAvg, as this allows
for a clearer presentation of its innovations. We mention that pri-
vacy preserving features, communication minimization policies (e.g.,
random selection of clients for each averaging) and other enhance-
ments (e.g., the heterogeneity reduction approa-ches of FedProx)
may be included in the AdaFed formulation as long as they are
compatible with the standard FL algorithm structure of iterative
local updates and centralised model averaging.

As in [27],AdaFed aims at evaluating the contribution level of the
various clients to determine their weights in the model averaging,
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and to do so AdaFed assumes the availability of a representative
server test set on which its is possible to evaluate the performance of
the various clients’ models for the given task, without any significant
increase in the training complexity.
The combination of a dynamic weighted model averaging pro-

cedure with an adaptive loss function allows the federation to: i)
give more weight to better performing clients, while reducing or
preventing the negative influence of malicious/noisy ones (by low-
ering or setting to 0 their weights) and ii) give more attention to
data samples needed to improve the model performance, as in the
case of the most rare/harder to discern labels in classification tasks.
As mentioned, in the remainder of the paper, we will neglect

aspects linked to communication efficiency and privacy preserving
solution, as they are already well documented in the works [4; 7; 9;
17] and are beyond the scope of the present work, which instead
focuses on the model averaging and adaptive loss aspects.

3.1 Application: AdaFed for Classification Tasks

Multi-class classification is one of the most common ML task exam-
ples. A typical choice for the loss function utilised in this setting is
the categorical cross-entropy:

𝑙 (𝑋,𝑌 ) = − 1
𝑀

𝐶∑
𝑐=1

𝑀∑
𝑚=1

𝑦𝑐𝑚𝑙𝑜𝑔(𝑦𝑐𝑚), (1)

where 𝑥𝑚 ∈ 𝑋 and 𝑦𝑚 ∈ 𝑌 are the 𝑚-th data sample and label,
respectively, in the dataset (𝑋,𝑌 ), 𝑀 and 𝐶 are respectively the
number of data samples and classes, 𝑦𝑐𝑚 and 𝑦𝑐𝑚 denote the 𝑐-th
component of the vectors 𝑦𝑚 and 𝑦𝑚 and are respectively the true
and predicted labels for the sample𝑚 regarding class 𝑐 . Note that
𝑦𝑐𝑚 is typically produced, for single-label problems, by a deep neu-
ral network with a softmax output activation function and can be
interpreted as the probability of correctness for the given label.
As it is, the categorical cross-entropy does not compensate for

imbalanced class distributions, that in our reference scenarios are
likely to characterise the datasets available to the various clients.
A typical solution to improve the learning process in this kind of
scenarios is to utilise a weighted categorical cross-entropy of the
form

𝑙 (𝑋,𝑌 ) = − 1
𝑀

𝐶∑
𝑐=1

𝑀∑
𝑚=1

𝜅𝑐𝑦𝑐𝑚𝑙𝑜𝑔(𝑦𝑐𝑚), (2)

where 𝜅𝑐 is a class-dependent weight. In [38] the 𝜅𝑐 were set as pro-
portional to the inverse of the number of data samples available for
each class, while in Focal Loss [39] a complex weight is associated
to each class based on its classification difficulty. To the best of the
authors knowledge, the weighting approaches available in litera-
ture either introduce static, rule based, coefficients or consider the
weights as hyper parameters, which is in contrast to what was re-
cently proposed for regression in [31], where the loss is dynamically
modified during training.

Inspired by [31; 38; 39], we choose the class dependent weight 𝜅𝑐
to be inversely proportional to the performance 𝑝𝑆 obtained by the
server model on the server test set with respect to its corresponding
class, expressed by means of its F𝑐1-score, e.g. 𝜅

𝑐 = 1/(F𝑐1 +𝜖), where

𝜖 < 1 is a design parameter to limit 𝜅𝑐 . Note that this choice is
however arbitrary as other metrics to evaluate 𝑝𝑆 can be chosen, as
shown in Section 4. The rationale behind this adaptive loss logic is
to encourage the clients to focus, during their training phase, on
classes which are misclassified by the global model.
Referring to Algorithm 1, this choice translates in having 𝑝𝑆 =

{F𝑐1, for 𝑐 = 1, ...,𝐶} (line 10) and updating the loss function 𝑙 with
the new weights 𝜅𝑐 derived from the F𝑐1-scores (line 11).

The same idea is used in the Weighted Model Average step. Note
that, in principle, the weight 𝑝𝑖 of the 𝑖-th client can be computed via
the performance of its model over the server test set with a different
metric than the one used for the Adaptive Loss step, so instead of
the F1 score one may utilise for example the model accuracy or the
diagnostic odds ratio, depending on the specific use case

3.2 Application 2: AdaFed for Regression Tasks

The same principles discussed in section 3.1 can be directly adapted
to regression tasks. For example, as it will be discussed in the simu-
lation section, for model averaging in regression problems it may
be suitable to select an application-dependent metric not directly re-
lated to the loss. In our example (simulation 3), where the objective
is to estimate the number of cells in a given microscope photo, we
will consider the mean absolute percentage error on the counting of
cells, whereas the models’ loss will be related to the mean squared
error between a target image and the image generated by the deep
neural network. Furthermore, it is in principle possible to consider
a loss function as the one presented in [31] and adapt or tune its
hyper parameters at each communication round, depending on the
server’s model performance on its dataset.

3.3 Limitations

The main limitation of the proposed framework is the availability of
a server test set that is qualitatively and quantitatively representative
of the learning task. While its numerosity is not required to be
particularly high, on certain scenarios it may not be possible to
assume the existence of such a set. A possible solution would be to
share the local models in the network and collect their performance
on the distributed test set available to the various clients. By properly
averaging the collected performance it is then possible to determine
the various performance weights 𝑝𝑖 and obtain the updated global
model. This procedure may be iterated again for adapting the loss
function 𝑙 . Note that this approach, besides adding a significant
communication overhead, may be sensitive to adversarial attacks
as a level of trust in the evaluations of the clients is required if
no adversary detection strategy is implemented. An alternative
approach could be imposing to every member of the federation to
share a small portion of their data, selected randomly, so that the
resulting dataset may be representative for all the data available to
the federation.

4 EXPERIMENTS

In this section, AdaFed is tested and compared to FedAvg in differ-
ent scenarios. The focus of the experiments is on the performance of
the server’s model, neglecting communication efficiency arguments
for the sake of the results clarity. Nevertheless, in principle AdaFed
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Fig. 2. Simulation 1.A (MNIST): Evolution of the server model accuracy over

communication rounds, evaluated on the separated test set of the server.

can be seamlessly modified to accommodate for the differential
privacy and communication efficiency improvements proposed in
literature to extend FedAvg. For these reasons, in the following, we
consider that all the clients send their model to the server at each
communication round.

4.1 Simulation 1 - MNIST and OARF Classification Tasks

In the first simulationwe train ourmodels on theMNIST [40] dataset
to better evaluate the effect of each of the proposed enhancements.
The MNIST dataset consists in a set of 60k+10k labeled images of
handwritten digits (from 0 to 9), and represents one of the most
common baselines for classification tasks. Simulation 1.A will dis-
cuss the benefit of the Weighted Model Average step, Simulation
1.B will detail the effects of the Adaptive Loss step, and Simulation
1.C will validate the robustness of the federation against adversarial
clients. For the MNIST simulations, we set the parameters of the
Algorithm 1 (Table 1) as 𝐸 = 5 (number of epochs in the clients’
update), 𝐵 = 100 (batch size) and 𝑅 = 20 (number of communica-
tion rounds). The server test set is composed by the whole MNIST
test set, whereas clients’ data are distributed as described in the
following sections. Simualtion 1.D considers a binary sentiment
analysis classification task from the benchmark suite OARF [41],
further highlighting the capabilities of AdaFed to cope with poorly
distributed data. The parameters were set as 𝐸 = 3, 𝐵 = 100 and
𝑅 = 5.

4.1.1 Simulation 1.A (MNIST) - Validation of Weighted Model Av-
eraging. In this experiment, we consider a federation constituted
by 𝐾 = 6 clients. The first five clients have access to 5500 samples
from two classes only, with no overlapping, except for classes 0 and
5 which have 100 and 200 samples only, while the sixth one has
500 samples from each classes. The model of each client is a simple
deep convolutional neural network from the official documentation
of Keras [42], composed by two 2-D convolutional layers followed
by two dense layers. The performance weight 𝑝𝑖 of the 𝑖-th client
for AdaFed is computed as its accuracy times the number of its
available data samples, i.e., 𝑝𝑖 = accuracy𝑖 × #training-data𝑖 .
Figure 2 shows that AdaFed starts with a higher accuracy from

the very first communication round, thus attaining a faster conver-
gence rate compared to FedAvg. The reason behind this behaviour
is the presence of a client whose dataset is IID with respect to the
server test set; despite its limited amount of data, the sixth agent
exhibits from the start a better accuracy compared to the other
clients which have visibility only on two different classes, meaning
that its performance weight its significantly higher than the others

Fig. 3. Simulation 1.B (MNIST): Evolution of the server model accuracy over

communication rounds, evaluated on the separated test set of the server.

Fig. 4. Simulation 1.B (MNIST): Evolution of the server model macro F1-

score over communication rounds, evaluated on the separated test set of

the server.

Fig. 5. Simulation 1.B (MNIST): Per-class evolution of the server model

F1-scores over communication rounds, evaluated on the separated test set

of the server.

in the model averaging procedure. Starting the next round with a
better baseline model, AdaFed achieves, from the second round, an
accuracy level achieved by FedAvg only after twelve rounds.

4.1.2 Simulation 1.B (MNIST) - Validation of adaptive loss function.
In this experiment, we want to evaluate the impact of adapting the
clients loss function after each communication round. The scenario
is similar to the one of Simulation 1.A, with data now randomly
distributed in a less uniform way, as shown in Table 1.

The weighted categorical cross-entropy loss 2 of the clients is up-
dated after each communication round according to the servermodel
F1 scores for the various classes. In particular, the class weights 𝜅𝑐
are set to be equal to 1/(F𝑐1 + 0.1). The logic behind this choice is to
increase the contribution to the loss for the classes that are more
commonly miss-classified (i.e., F𝑐1 → 0) by a factor of 10, whereas
the weights of the better recognised classes (i.e., F𝑐1 → 1) are slightly
lowered.
Figure 3 reports the accuracy evolution of FedAvg compared

with two different AdaFed federations, one implementing both the
weighted averaging and the adaptive loss procedure described above,
and another that only implements the weighted model averaging.
Note that, in this simulation and in the following ones, for simplicity
we set for AdaFed 𝑝𝑖 = accuracy𝑖 .
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Both the AdaFed implementations are able to offset the FedAvg
one by about 3%; moreover the adaptive loss one attains convergence
faster. The reason for this different behaviour can be seen in Figure
4, which reports the Macro F1-scores (i.e. the arithmetic mean of
the F𝑐1-scores of all the classes). The adaptive loss implementation
of AdaFed outperforms the others, meaning that it is able to better
discern classes for which limited samples are available. Figure 5
details the F𝑐1-scores for all the ten classes of the datasets, and it is
clear that AdaFed performs better in this sense, with the adaptive
loss significantly contributing in having the scores of the classes
evolve more uniformly and converge more rapidly.

4.1.3 Simulation 1.C (MNIST) - Robustness to adversarial actors.
Considering the same data distribution of Simulation 1.B, we show
in this experiment the resiliency of Ada-Fed to adversarial clients
that try to lower the federation performances. To this end, we now
add two additional clients 7 and 8 (i.e., 𝐾 = 8) with the same data
distribution of clients 3 and 4 but with incorrect labeling for respec-
tively 50% and 100% of their samples. Furthermore, the malicious
clients also discard the federated model they receive from the server
and update their model only on the basis of their own data.
Figures 6 and 7 show that AdaFed (implemented with the adap-

tive loss and weighted averaging as in the previous simulation) is
practically unaffected by the presence of the new malicious clients
(the difference with respect to the previous simulation is about 0.01%
in accuracy and 0.015 in the in the macro F1 score), while on the con-
trary FedAvg shows a significant drop in both accuracy (about 2%)
and in the macro F1-score (about 0.1). We note that, in more complex
cases, a different strategy may be followed for AdaFed to select the
weights 𝑝𝑖 (e.g. a quadratic or cubic function of the accuracy) to
further decrease or annihilate the weights of bad performing (and
hence potentially adversarial) clients, as will be demonstrated in
the following simulation.

4.1.4 Simulation 1.D (OARF) - Robustness to unfavourable data
distributions and/or adversarial actors. The results obtained for Sim-
ulation 1.D are applicable also in scenarios in which the data are
distributed in an extremely unfavorable way. In this simulation, we
consider the sentiment analysis dataset from the benchmark suite
Open Application Repository for Federated Learning (OARF) [41],
consisting in 50k entries from the Amazon Movie Review dataset
proposed in [43] for a binary classification task. We assume the
data to be partitioned among 𝐾 = 5 clients, as follows: 1 client only
has access to ∼ 5k samples from the negative class (i.e., negative
review), 2 clients have access to a total of ∼ 15k samples from the

Table 1. Simulation 1.B - Data distribution among clients

Client Classes
1 10 0 30 10 30 50 20 20 10 10
2 10 0 0 500 100 0 0 500 100 500
3 0 0 30 500 100 150 500 0 0 500
4 0 0 30 0 100 0 500 500 100 0
5 0 10 30 500 0 0 500 500 0 500
6 0 10 10 10 10 100 10 0 10 3000

Fig. 6. Simulation 1.C (MNIST): Evolution of the server model accuracy over

communication rounds, evaluated on the separated test set of the server.

Fig. 7. Simulation 1.C (MNIST): Evolution of the server model accuracy over

communication rounds, evaluated on the separated test set of the server.

Fig. 8. Simulation 1.D (OARF Sentiment Analysis): Evolution of the server

model Macro F1-score over communication rounds, evaluated on the sepa-

rated test set of the server.

positive class (i.e., positive review), while the remaining two clients
have ∼ 10k and ∼ 6k samples equally distributed over the two
classes. Each agent employs a two-layer Long-Short-Term-Memory
(LSTM) [44] neural network, with the same characteristics and data
preprocessing employed in [41] and made available in [45]. The
particular distribution of data makes so that all the clients that only
have a single class available will tend to not generalise correctly,
as always predicting the same class (even without considering the
input data) will minimize their loss and let them reach a 100% accu-
racy. This in turn implies that their contribution to the federation
will be questionable, if not negative, as the model they will forward
for the averaging procedure will tend to be insensible to the input.
To address such scenario, we propose for this simulation a different
rule to compute the model weights 𝑝𝑖 for the averaging procedure.
Namely, we determine the weights as the accuracy percentage ex-
ceeding 55%, meaning that random models that reach an accuracy
level of about 50% are associated to a 0 weight. Figure 8 reports a
comparison of the accuracies attained byAdaFed and FedAvg in the
described scenario, evaluated on the entire test set of the Amazon
database. It is possible to note that AdaFed (orange) reaches an
overall accuracy of 80% from the very first iterations, in line with
[41], while FedAvg (blue) fails to converge and overs around 50%,
which is the accuracy level expected from a random agent.
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Fig. 9. Simulation 2 (CIFAR10): Evolution of the server model accuracy over

communication rounds, evaluated on the separated test set of the server.

Fig. 10. Simulation 2 (CIFAR10): Evolution of the server model macro F1-

score over communication rounds, evaluated on the separated test set of

the server.

4.2 Simulation 2 (CIFAR10) - Transfer Learning

Having validated the effect of the two proposed modifications, we
now test AdaFed on a more complex classification problem. The
dataset considered for this simulation is the well-known CIFAR10
(Canadian Institute for Advanced Research) [46], and to further
show the flexibility of the proposed approach we consider in this
section a federated Transfer Learning [47] [48] solution. This case
study is of particular importance, as transfer learning significantly
reduces the number of trainable parameters by starting the training
process with a neural network that was already trained to solve a
similar task. The usage of such a network as the basis for the new
predictor, effectively allows for a knowledge transfer between the
previosuly solved probelm and the new one (e.g., a typical solution in
specialised computer vision task is to employ transfer learning with
a general purpose image classifier that was trained on a complex
- yet general - dataset such as ImageNet [49]). The reduction of
the number of the trainable parameter leads directly impacts the
training complexity and communication overhead needed to sustain
the federation, making the combination of FL and transfer learning
an efficient and effective solution.

We also utilise this simulation to test AdaFed on a more complex
task in a more general scenario that was not designed to stress any
particular feature of the proposed algorithm.
Being the dataset constituted by ∼ 60k 32x32 color images of 10

different classes, we consider 𝐾 = 8 clients divided in two groups:
the first four clients were given between 300 and 600 samples for
each of the ten classes, while the remaining four only had data
from five classes. The transfer learning model was constituted by
the VGG19 [50] network trained for ImageNet [49] and attached to
four dense layers with respectively 1024, 512, 256 and 128 neurons
and ReLU [51] activation functions. The same adaptive loss and
weighted averaging procedures as in simulation 1 were employed.
We also set 𝐸 = 5, 𝐵 = 100, 𝑅 = 20.

Fig. 11. Simulation 3.A (NIH malaria dataset): Example of dataset images.

Fig. 12. Simulation 3.A (NIH malaria dataset): Evolution of the server model

accuracy over communication rounds, evaluated on the separated test set

of the server.

Looking at Figure 9, it is clear that AdaFed outperforms FedAvg
starting from the 4th round, while the latter reaches the perfor-
mance of the former as late as the 19th communication round. This
behaviour can be partially explained by Figure 10, which shows
that AdaFed has an overall better F1 score performance, and by its
improved weighted averaging rule, namely its ability to increase the
weight of clients that have a more balanced dataset at their disposal.

4.3 Simulation 3 - Medical Imaging

As introduced, for its privacy preserving features, one of the most
promising applications of FL is in the healthcare domain [52]. In fact,
over the last few years several disruptive ML solutions have been
developed to support medical operators and caretakers, but their
development and training typically required a complex and expen-
sive data collection campaign subject to several strict regulations
such as GDPR.

The FL framework provides an opportunity to enable the collab-
oration among clinical institutions by abolishing any confidential
data exchanges. In this section, we will utilise two different medical
datasets to demonstrate some additional characteristics of ADAFED.

4.3.1 Simulation 3.A (NIH malaria). In this simulation we test our
algorithm on the NIH malaria dataset [53] that consists in 27,558
cell images (of which 10% were reserved for the test set). The task
associated to this dataset is a binary classification one and consists
in discerning whether the depicted cell is infected. Figure 11 reports
an example of images contained in the dataset.
We considered 𝐾 = 5 clients, figuratively representing five dif-

ferent medical institutions, and we divided uniformly the dataset
among them. The neural network we used consisted in a stack of
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Fig. 13. Simulation 3.B (VGG-Cell): Example of dataset image

convolutional layers of 32,32,64,64,128,128 filters of size 3 × 3 fol-
lowed by a fully connected layer of 128 neurons, all with ReLu
activation functions and a dropout of 0.15. The output layer of the
network consisted in a layer with a single sigmoid neuron. The loss
considered was, as customary for binary classification tasks, the
binary cross-entropy and it was minimized by an ADAM optimizer
initialized with the standard Keras parameters. All other parameters
were the same as in the first simulation.

The neural network architecture performs very well when trained
on the entirety of the dataset, fast reaching a classification accuracy
on the test set of over 95% in about three epochs. Conversely, due
to the significant level of dropout and the relatively high number of
parameters, the same network performed poorly on the individual
clients, often becoming insensitive to the input and returning, as
prediction, always the (slightly) more common label in the avail-
able dataset. This phenomenon compromises the performance of
FedAvg, as shown in Figure 12 (blue line), where the federation does
not manage to outperform a random agent. On the contrary,AdaFed
is able to discard the models that show this unfavourable behaviour
and, by propagating a neural network that combines only the prop-
erly trained ones, is able to reach the centralised performance (95%)
after about five communication rounds.
As already shown in the test on the OARF classification task

(section 4.1.4), AdaFed demonstrated robustness against adversar-
ial/unfavourable clients, allowing the federation to solve the task at
hand.

4.3.2 Simulation 3.B (VGG-Cell) - Regression. In this final exper-
iment we consider a regression problem, consisting in counting
the number of cells that appear in a microscope image. For this
task, in [54] the VGG-cell dataset was proposed, consisting of 200
simulated images (e.g., see Figure 13). The considered federation
is formed by 𝐾 = 4 clients (once again representing different med-
ical institutions) with evenly distributed data. The client’s model
implemented is the deep autoencoder [55] proposed in [56], that
is characterised by over 3M parameters. The autoencoder is to be
trained to reconstruct an image that identifies the centers of the
cells, so that the image integral (pixel-wise sum) is equal to the cell
count. For both AdaFed and FedAvg, for the training of the clients
we implemented a data augmentation procedure that rotated and
flipped each sample, obtaining eight times the original data. We set
𝐸 = 3, 𝐵 = 50 and 𝑅 = 10. The evaluation of the model performance
and loss is carried out on a separated test set consisting in 10% of
the original data, which was also augmented as described above.

In this simulation, the model averaging procedure is conducted
based on a different performance index with respect to the pixel-
wise mean-squared error loss of the models, and it is set as the mean
absolute percentage error (MAPE) of the cell counting.

Figures 14 and 15 show that also for this regression task AdaFed
is able to outperform the FedAvg: the model loss decreases faster
and, after 10 rounds, the loss value is 150.6 for AdaFed and 152.6
for FedAvg; the cell count MAPE reaches a value of about 6% at
the fourth communication round while FedAvg needs 7 rounds to
reach the same value. The main reason behind this behaviour is
that AdaFed emphasizes the better performing clients, enabling a
more efficient knowledge sharing through the federation. On the
contrary, FedAvg gives the same importance to clients that are
currently failing the task, consequently affecting and slowing down
the convergence of the overall federated model.

5 CONCLUSIONS

In a federated learning setting, AdaFed envisages the dynamic
update at every communication round of the clients’ models loss
functions, depending on the performance achieved by the server’s
model, combined with a weighted model averaging procedure that
depends on the individual clients’ model evaluation.
AdaFed allows to deal with non-IID, imbalanced and extremely

distributed data also in the presence of malicious/bad performing
federation members. The proposed solution was shown to achieve
good performance in both classification and regression tasks, also
in transfer learning settings.
Future research directions involve the explicit inclusion of com-

munication efficiency and privacy-related features in the framework.
More extensive tests are also required to evaluate the algorithm in
heavily distributed settings with hundreds of clients.
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