
Computers & Operations Research 167 (2024) 106679

A
0
n

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

A MaxSAT approach for solving a new Dynamic Discretization Discovery
model for train rescheduling problems
Anna Livia Croella a,∗, Bjørnar Luteberget b, Carlo Mannino b,c, Paolo Ventura d

a Sapienza University of Rome, Rome, Italy
b SINTEF, Oslo, Norway
c University of Oslo, Oslo, Norway
d Istituto di Analisi dei Sistemi ed Informatica (IASI) del CNR, Rome, Italy

A R T I C L E I N F O

Keywords:
Train rescheduling
Dynamic discretization discovery
Maximum SATisfiability problem

A B S T R A C T

Train scheduling is a critical activity in rail traffic management, both off-line (timetabling) and on-line (dis-
patching). Time-Indexed formulations for scheduling problems are stronger than other classical formulations,
like Big-𝑀 . Unfortunately, their size grows usually very large with the size of the scheduling instance, making
even the linear relaxation hard to solve. Moreover, the approximation introduced by time discretization can
lead to solutions which cannot be realized in practice. Dynamic Discretization Discovery (DDD), recently
introduced by Boland et al. (2017) for the continuous-time service network design problem, is a technique
to keep at bay the growth of Time-Indexed formulations and their response times and, at the same time,
ensures the necessary modelling precision. By exploiting the DDD paradigm, we develop a novel approach
to train dispatching and, more in general, to job-shop scheduling. The algorithm implemented represents the
first application of a Maximum SATisfiability problem approach to the field. In our comparisons on real-life
instances of train dispatching, our restricted Time-Indexed formulation solves faster on piece-wise constant
objective functions, while the Big-𝑀 approach maintains the lead on linear continuous objectives.
1. Introduction

When trains move through a railway network, they occupy a se-
quence of rail resources, such as track segments, platforms, stations,
etc. Roughly speaking, train scheduling amounts to establishing the
time in which each train enters and exits the resources encountered
on its path (Cacchiani and Toth, 2018). Train scheduling is central in
various phases of traffic planning. and in strategic and tactical planning
- performed from 5 years to months or even to few hours before the
actual movements. In the operational phase, when trains finally move
through the railway, the original schedule must be adjusted in real-time
to factor in erratic train delays, small or large network disruptions,
missing crews, etc. This real-time activity is called train rescheduling
or train dispatching (Lamorgese et al., 2018) - the latter typically also
includes the possibility of rail path changes. There may be different
objectives, depending on the planning phase. For instance, in the
strategic and tactical phase, one is interested in producing timetables
maximizing some service requirement (e.g. the number of running
trains Lamorgese et al. (2018)), or some robustness measures (Cacchi-
ani and Toth, 2018; Croella et al., 2022; Fischetti and Monaci, 2009).

∗ Corresponding author.
E-mail addresses: annalivia.croella@uniroma1.it (A.L. Croella), bjornar.luteberget@sintef.no (B. Luteberget), carlo.mannino@sintef.no (C. Mannino),

paolo.ventura@iasi.cnr.it (P. Ventura).

At the operational level, in contrast, one typically wants to minimize
some measure of the deviation of the actual schedule from the official
timetable (Lamorgese and Mannino, 2015). Also, we mention here some
competitions that have recently been set (SBB Swiss Federal Railways,
2019, 2020, The 2023 RAS Problem Solving Competition, 2023) for
solving real-world rail scheduling problems and that gave the impulse
for developing interesting solution approaches (Abels et al., 2021).
However, the considered problems are quite different from the one we
tackle here.

From the optimization theory standpoint, train scheduling is a gen-
eralization of job-shop (with blocking and no-wait constraints, Mascis
and Pacciarelli, 2002) and thus of machine scheduling, and as such it
can benefit from a vast body of literature. Even if we limit ourselves
to the scientific literature specifically devoted to train scheduling, the
number of studies has grown exponentially in the past decades. In our
literature discussion, we will focus on a few of the most relevant papers,
and refer the interested reader to recent surveys (Cacchiani and Toth,
2018; Fang and Yao, 2015; Lamorgese et al., 2018).
vailable online 26 April 2024
305-0548/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.cor.2024.106679
Received 13 June 2023; Received in revised form 16 April 2024; Accepted 22 Apri
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

l 2024

https://www.elsevier.com/locate/cor
https://www.elsevier.com/locate/cor
mailto:annalivia.croella@uniroma1.it
mailto:bjornar.luteberget@sintef.no
mailto:carlo.mannino@sintef.no
mailto:paolo.ventura@iasi.cnr.it
https://doi.org/10.1016/j.cor.2024.106679
https://doi.org/10.1016/j.cor.2024.106679
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computers and Operations Research 167 (2024) 106679A.L. Croella et al.
There are of course different approaches to train scheduling, but
here we are interested in those based on MILP, which are the most
adopted in the literature (Lamorgese et al., 2018). The main issue that
such approaches must face is how to represent the fact that two trains
cannot occupy the same track segment (or other pairs of incompatible
railway resources) simultaneously. Then, in any feasible schedule, one
of the conflicting trains must use the contended resource before the
other train, and this gives rise to a disjunctive constraint on the
scheduling variables. Mainly, two classes of MILP models are adopted in
the literature on train scheduling (Harrod, 2012): Big -𝑀 formulations
and Time-Indexed (TI) formulations (see Queyranne and Schulz, 1994
for theoretical insights). In Big-𝑀 formulations, the time a train 𝑖 enters
a given resource 𝑟 on its path is described by a continuous variable
𝑡𝑖𝑟. In order to represent a disjunctive constraint, one must introduce a
binary variable and two constraints which contain the notorious Big-𝑀
term, which is a very large coefficient. In TI formulations the planning
horizon is subdivided in time intervals and a binary variable 𝑥𝑖𝑟𝑝 will be
1 if train 𝑖 enters resource 𝑟 at time 𝑝. The fact that two trains 𝑖, 𝑗 cannot
occupy the same resource 𝑟 implies that, if train 𝑖 enters a resource 𝑟
at time 𝑝 then, depending on the running times of the two trains, train
𝑗 cannot enter 𝑟 at some times 𝑞. In turn, this translates into packing
constraints of the type

𝑥𝑖𝑟𝑝 + 𝑥𝑗𝑟𝑞 ≤ 1. (1)

When used in a branch-and-bound approach, Big-𝑀 formulations
typically return poor bounds, which in turn causes large branching
trees. In contrast, TI formulations return better bounds and smaller
trees. However, depending on the width of the interval in the dis-
cretized horizon, TI formulations have two main drawbacks:

1. Oversize. When intervals are small and many, TI formulations
typically contain a very large number of variables and con-
straints. This fact tends to slow down the solution time in each
branching node by a factor which is usually (much) larger than
the reduction in the tree size. In the few comparative experi-
ments available in the literature, the comparison is by far in
favour of the Big-𝑀 alternative (Mannino and Mascis, 2009).

2. Bad approximation. Larger and fewer intervals result in fewer
variables and constraints, but poorer approximation. As a conse-
quence, feasible solutions in the model may prove infeasible in
practice on the field, or feasible field schedules may be cut off
by the TI model (Harrod, 2011; Boland and Savelsbergh, 2019).

For the above reasons, there are indeed not too many examples in
the literature of TI formulations devoted to train scheduling. Most of
them are devoted to the off-line version (i.e. timetabling, see Cacchiani
and Toth, 2018 for a survey) and only very few to dispatching (such
as Bettinelli et al., 2017; Caimi et al., 2012; Meng and Zhou, 2014;
Reynolds et al., 2020). In any case, because the complete formulation
would be too large to handle, all these papers resort to delayed column
generation procedures (Desaulniers et al., 2006). The idea is to start
with only a subset of the variables (and constraints), solve this re-
stricted problem and then iteratively identify and add missing variables
and/or constraints, and solve again. The process is iterated until some
conditions are satisfied, and typically the final instance is much smaller
than the full TI instance. An alternative search path is solving the
Integer Linear Program (ILP) relaxation of the full TI formulations, both
through the exploitation of Lagrangian relaxation models (for example,
with alternating direction method of multipliers algorithms - Gao and
Niu, 2021; Zhan et al., 2021) and/or its dual problem combined with
branch-and-price techniques (see Lusby et al., 2011, 2013). In any
case, despite the complexity and ingenuity of the most recent solution
algorithms, TI formulations do not seem to perform better than a
standard Big-𝑀 formulation, solved by a standard commercial solver.
For instance, compare the behaviour of a recent TI approach presented
in Reynolds et al. (2020) for a medium-size station (Doncaster) with the
experiments over a large junction performed in Pellegrini et al. (2014)
2

with a Big-𝑀 model at a microscopic network level and an almost
10-year-old technology.

On the other hand, it would be very handy to be able to solve large
instances of train scheduling with TI rather than Big-𝑀 formulations.
Indeed, TI formulations are more flexible than the Big-𝑀 counterparts
in expressing and manipulating complicated constraints and non-linear
objectives as the ones occurring in the train dispatching framework.

Dynamic Discretization Discovery (DDD) is a technique to solve
TI formulations recently introduced by Boland et al. (2017) and then
further extended in Hewitt (2019), Marshall et al. (2021), Scherr et al.
(2020) and Vu et al. (2020). DDD was developed to cope with the
size and approximation issues above discussed. The main idea applied
in this paper is similar to the bucket discretization described in Dash
et al. (2012) and the method presented in Wang and Regan (2002). We
consider for each train 𝑖 and given resource 𝑟 a partition of the time
horizon into intervals 𝜆1,… , 𝜆𝑛 of different widths. We hence construct
an integer linear program, called Interval Assignment Problem (IAP),
with binary variables 𝑥 (see the forthcoming Section 3.2). Then 𝑥𝑖𝑟𝑝 is 1
if and only if train 𝑖 enters resource 𝑟 at some time 𝑡𝑖𝑟 ∈ 𝜆𝑝 during the
𝑝th interval (that is, not necessarily at the beginning of the interval, as it
is in the full TI formulation). As a consequence, the packing constraint
(1) is introduced only if, for every choice of 𝑡𝑖𝑟 ∈ 𝜆𝑝 and 𝑡𝑗𝑟 ∈ 𝜆𝑞 ,
trains are in conflict on resource 𝑟. Finally, the cost of each variable
is chosen in such a way that the value of the optimal solution to the
DDD formulation is a lower bound on the cost of the optimal solution
to the original problem.

In the DDD approach, intervals and associated variables are gener-
ated iteratively, by further subdividing intervals generated in previous
iterations. At the end of each iteration 𝑘, the optimal solution 𝑥∗𝑘 to
the current 0,1 formulation is calculated. If we can associate 𝑥∗𝑘 with a
feasible schedule 𝑡𝑘, and the cost of 𝑡𝑘 is not larger than the cost of 𝑥∗𝑘,
then we are done. Otherwise, we iterate.

Different DDD approaches differ in the way intervals are iteratively
generated, how costs are defined and how feasible solutions to the
original problem are constructed from the current TI solution. Although
the idea of a dynamic discovery is fairly natural, there are many
possible ways to implement it and engineering the algorithm is one
of the most delicate phases of its design. In the present work, we
present a viable implementation of the DDD for the train scheduling
problem. As we will show in more detail in the following sections,
such implementation fulfils all three components of the DDD paradigm,
as introduced in Boland and Savelsbergh (2019). A crucial component
of our solution methodology is the way the IAP is solved at each
iteration of the DDD approach. In this work, we transform it into
the problem of satisfying a family of logic clauses (SAT problem). It
turned out that solving IAPs incrementally by means of an open-source
SAT solver is dramatically more efficient than using a state-of-the-
art MILP solver. Note that similar behaviour was observed in the
work of Leutwiler and Corman (2022) and Matos et al. (2021). In the
former, the authors compared a MILP and a SAT version of specific
binary programs, reporting significant improvements with the SAT
formulation. The latter study combines SAT and machine learning
approaches to address periodic timetabling problems, outperforming
state-of-the-art algorithms, including MILP and heuristics. Formulations
with disjunctive precedence constraints (such as Big-𝑀 formulations)
make use of continuous variables, and cannot be directly translated into
a SAT problem (in Leutwiler and Corman, 2022 this problem is solved
by using a Satisfiability Modulo Theories (SMT) approach). However,
with a TI formulation the MILP contains only binary variables and
all the constraints can be directly translated into SAT. The objective
function can also be handled in a MaxSAT problem — the optimization
version of the SAT problem.

MaxSAT solvers implemented on top of standard SAT solvers have
been very successful lately (Bacchus et al., 2019). In this paper, we
successfully used the RC2 algorithm (Ignatiev et al., 2019) to solve DDD

formulations of the train scheduling problem.

Computers and Operations Research 167 (2024) 106679A.L. Croella et al.
Fig. 1. Schematic representation of a railway infrastructure. Stations are depicted as filled rectangles.
A preliminary version of the ideas developed in this work was
presented in Croella et al. (2021) and in Croella (2022).

In the end, by our version of the DDD approach plus the trans-
formation into a SAT problem of the associated binary programs, we
were able to obtain speed-ups over our efficient implementation of
the Big-𝑀 formulation. In particular, this is true for linear rounded or
stepwise objective functions. On the other hand, for the case of linear
objective functions, the Big-𝑀 formulation still has, on average, better
computational performances.

2. Time-indexed formulation for the train re-scheduling problem

The main purpose of this paper is to show how the DDD mechanism
can be exploited in order to make TI formulations competitive with
the classic Big-𝑀 formulation for train scheduling. To this end, in
our developments and comparisons, we focus on a basic version of
the problem, which corresponds to finding a plan for a macroscopic
approximation of the rail network (Hansen and Pachl, 2014) in which
stations are collapsed into simple nodes and routing is omitted. Note
that this is also a usual practice in manual train scheduling, and
also the master problem in advanced decomposition approaches (see,
e.g., Bešinović et al., 2016; Lamorgese et al., 2016, 2017; Schlechte
et al., 2011). Accordingly, in our experiments, we will make use of
macroscopic real-life instances.

We look at the operational version of the train scheduling problem,
also called train dispatching or train rescheduling, and, for simplicity, we
do not include the possibility of rerouting. Note that the model can
be extended to cope with multiple routes, for instance as in Leutwiler
and Corman (2022) and Mannino and Nakkerud (2023). In this version
of the problem, we are given a reference timetable (i.e. the timetable
which is published either for passengers or for the railway personnel),
and the position of the trains at the current time. Note that trains may
be delayed with respect to the reference timetable. Additionally, two
trains cannot occupy the same section of track simultaneously (i.e. have
a conflict). Depending on the subsequent scheduling decisions, particu-
larly those involving meet or pass locations between trains, some trains
may experience a reduction in delay at their destination, while others
may encounter an increase. Due to the real-time nature of the problem,
a solution must be computed within a very short timeframe, typically
not exceeding 10 s. The goal is to find a conflict-free schedule for the
next hours for all trains, minimizing the sum measure of the delays.
In real-life railway systems, such a solution is typically formulated by
human dispatchers, and imposed on trains by scheduling signals and
switch changes, and communicated to drivers. Regardless, once a solu-
tion is implemented, trains will continue their movements, potentially
deviating from the intended schedule. Consequently, a new (snapshot)
instance is generated and resolved every 10 s.

We next introduce our main modelling choices and formalism.

2.1. Problem definition

Networks, trains and rail paths. In Fig. 1 we show a schematic section
of a railway infrastructure which comprises a number of sub-networks,
called lines. Each line is schematized as an alternating sequence of
3

stations and interconnecting tracks. Stations are special groups of tracks
where trains can stop and perform some activities (such as embark-
ing/disembarking passengers, refuelling, etc.). Tracks are further sub-
divided into (one or more) tracks segments or block sections, that can
accommodate at most a train at a time. Tracks are either bidirectional,
i.e. they can be traversed from in both directions or unidirectional. We
let 𝑅 be the set of all track segments.

In the example, train 𝑖 travels from west to east reaching station 𝛽,
while train 𝑗 is departing from station 𝛾 running west. Note that 𝑗 can
either proceed on its current line and reach station 𝛽 and station 𝛼, or
change to the lower line and proceed to 𝜑.

If train 𝑗 continues on the current track, at some point, it will
encounter train 𝑖. Since train 𝑖 and 𝑗 are running in opposite directions,
they are called crossing trains. Trains running in the same directions and
on the same sequence of tracks are called trailing trains.

In the Train Re-scheduling Problem (TRP) addressed in this paper,
we are given a set of trains 𝐼 and we assume their path across the
network is given.

Definition 1. A rail path is the sequence of contiguous track segments
of the line traversed by a train from its origin to its destination. The
direction of the train depends on the ordering of its track segments,
either west-bound or east-bound.

For each train 𝑖 ∈ 𝐼 , we let 𝑅𝑖 be the ordered set of track segments of
its rail path. We therefore have that 𝑅 = ∪𝑖∈𝐼𝑅𝑖. Moreover, we assume
that each track segment is traversed only once. Hence, for 𝑟, 𝑞 ∈ 𝑅𝑖, we
use the notation 𝑟 ≺𝑖 𝑞 if 𝑟 precedes 𝑞 in the rail path of 𝑖. For 𝑟 ∈ 𝑅𝑖,
we also let 𝑙𝑟𝑖 ∈ Q+ be the minimum amount of time 𝑖 needs to traverse
track segment 𝑟 (running time of 𝑖 on 𝑟). For the sake of clarity of the
exposition and without loss of generality, in the following, we assume
𝑙𝑟 to be integer. Moreover, if no confusion arises, in the following we
use 𝑙𝑟 for 𝑙𝑟𝑖 . Trains may also stop in any station 𝑟, and we include the
value of this given wait or dwell time in the amount 𝑙𝑟.

Next, for each train 𝑖 ∈ 𝐼 and each track segment 𝑟 ∈ 𝑅𝑖 of its rail
path, we let 𝑡𝑖𝑟 denote the earliest time 𝑖 can enter a track segment.
This parameter is either the one specified in the reference timetable,
suitably augmented in its first track segment when 𝑖 is delayed, or it is
derived by using the minimum running times on the track segments.

Schedule and conflicts. A train schedule is a vector 𝑡𝑖 ∈ Q|𝑅𝑖|, where
component 𝑡𝑖𝑟 denotes the time when 𝑖 enters track segment 𝑟 ∈ 𝑅𝑖.
The (full) schedule will be thus the vector 𝜏 = {𝑡𝑖𝑟 ∣ 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖}. For
physical or safety reasons, certain track segments cannot be occupied
by two trains simultaneously. In particular, for each pair of trains 𝑖, 𝑗
let us denote by 𝑖𝑗 ⊆ 𝑅𝑖 ×𝑅𝑗 the set of rail paths pairs (𝑟 ∈ 𝑅𝑖, 𝑞 ∈ 𝑅𝑗)
such that either 𝑖 enters 𝑟 before 𝑗 enters 𝑞 or 𝑗 enters 𝑞 before 𝑖 enters
𝑟. Let 𝑙𝑟𝑞𝑖𝑗 be the minimum amount of time that, for safety and business
rules, train 𝑖 needs to wait for occupying the track segment 𝑟 after train
𝑗 used track segment 𝑞 (again, if no confusion arises, we use 𝑙𝑟𝑞 for 𝑙𝑟𝑞𝑖𝑗).
Hence, we either have 𝑡𝑗𝑞 ≥ 𝑡𝑖𝑟 + 𝑙𝑟𝑞 or 𝑡𝑖𝑟 ≥ 𝑡𝑗𝑞 + 𝑙𝑞𝑟, respectively.

Definition 2. A schedule 𝜏 = {𝑡𝑖𝑟 ∣ 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖} is feasible if it satisfies
the following constraints:

(i) (lower bound constraints) 𝑡𝑖𝑟 ≥ 𝑡𝑖𝑟, for each 𝑖 ∈ 𝐼 , and 𝑟 ∈ 𝑅 ;
𝑖

Computers and Operations Research 167 (2024) 106679A.L. Croella et al.
(ii) (train-rail path precedences) 𝑡𝑖𝑞 ≥ 𝑡𝑖𝑟 + 𝑙𝑟, for each 𝑖 ∈ 𝐼 , and each
distinct pair 𝑟, 𝑞 ∈ 𝑅𝑖 with 𝑟 ≺𝑖 𝑞;

(iii) (disjunctive precedences) either 𝑡𝑗𝑞 ≥ 𝑡𝑖𝑟 + 𝑙𝑟𝑞 or 𝑡𝑖𝑟 ≥ 𝑡𝑗𝑞 + 𝑙𝑞𝑟, for
each distinct 𝑖, 𝑗 ∈ 𝐼 and each (𝑟, 𝑞) ∈ 𝑖𝑗 .

If a schedule violates (𝑖𝑖𝑖) for a (𝑟, 𝑞) ∈ 𝑖𝑗 , then we say that it
contains a conflict (associated with (𝑟, 𝑞)); otherwise the schedule is said
to be conflict-free. We assume that any movement (i.e. a train entering
a track segment) must happen before time 𝑀 , where 𝑀 is a suitably
large integer number, i.e., 𝑡𝑖𝑟 ≪ 𝑀 for each 𝑖 ∈ 𝐼 , and 𝑟 ∈ 𝑅𝑖.

Objective function. We say that a schedule is optimal if it minimizes the
delays of trains along their path. We consider separable cost functions.
For each 𝑖 ∈ 𝐼 , 𝑟 ∈ 𝑅𝑖, the delay of train 𝑖 entering track segment 𝑟 at
time 𝑡 is defined as:

𝑑𝑖𝑟(𝑡) = max(0, 𝑡 − 𝑡𝑖𝑟).

Then, the cost function is defined as 𝛴𝑖∈𝐼𝛴𝑟∈𝑅𝑖
𝑐𝑖𝑟(𝑡𝑖𝑟), and we

consider three cases:

1. Linear continuous: 𝑐𝑖𝑟(𝑡) = 𝑑𝑖𝑟(𝑡). In the Big-𝑀 formulation, this
objective is implemented by introducing one continuous variable
and one linear inequality for each 𝑡𝑖𝑟.

2. Linear rounded: 𝑐𝑖𝑟(𝑡) = ⌊𝑑𝑖𝑟(𝑡)∕𝑄⌋, where 𝑄 is a constant.
We use 𝑄 = 180, i.e., 3 min. This objective is similar to the
stepwise function described below, except that it does not have
a maximum cost.
In the Big-𝑀 formulation, this objective is implemented by
introducing one integer variable and one linear constraint for
each 𝑡𝑖𝑟.

3. Stepwise: Each train has its finite sequence of steps valid for
specific delay ranges. For example (see also Fig. 2):

𝑐𝑖𝑟(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

3 360 < 𝑑𝑖𝑟(𝑡)
2 180 < 𝑑𝑖𝑟(𝑡) ≤ 360
1 0 < 𝑑𝑖𝑟(𝑡) ≤ 180
0 𝑑𝑖𝑟(𝑡) = 0

In the Big-𝑀 formulation, this objective is implemented through
the introduction of one binary variable.
The use of stepwise objective functions is inspired by the of-
ficial performance indicators that railway administrations use
to report their punctuality, including the Norwegian railways.
This can be considered to be the high-level goal of railway
dispatching. Typically, small deviations are not counted in this
performance indicator, and instead, punctuality is defined as the
percentage of trains that were less than e.g. 5 min delayed.
It is also interesting to note that, since this cost function has
a maximum cost per train if a train has exceeded the highest
delay threshold, then any additional delay has no additional
cost, and the train can hold at the station as long as necessary to
reduce other trains delays. This models the real-world dispatcher
behaviour of making a train cancelled in case of large traffic
disruptions. In practical use, finding an optimal solution where a
train has exceeded the highest delay threshold can be interpreted
as a suggestion to cancel that train.

2.2. A full TI formulation

For ease of reference, we now present a full TI formulation for
the TRP. For each 𝑖 ∈ 𝐼 and 𝑟 ∈ 𝑅𝑖, we call feasibility interval the
time interval [𝑡𝑖𝑟,𝑀) in which train 𝑖 can enter track segment 𝑟, i.e. its
planning horizon. Let 𝑤 be the time-intervals width, we divide each
feasibility interval into sub-intervals of the type:

[

𝑝, 𝑝 +𝑤
)

with 𝑝 ∈ 𝛱 𝑖𝑟 = {𝑡𝑖𝑟, 𝑡𝑖𝑟 +𝑤, 𝑡𝑖𝑟 + 2𝑤,… , 𝑡𝑖𝑟 +

⌊

𝑀 − 𝑡𝑖𝑟
⌋

⋅𝑤} .
4

𝑤

Fig. 2. Example of a stepwise linear convex function considered to cost the delay (in
seconds) of a generic train.

We then let 𝛱 = {𝛱 𝑖𝑟 ∶ 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖} and define the following set of
binary variables:

𝑥𝑖𝑟𝑝 =
{

1 if train 𝑖 enters 𝑟 at time 𝑝
0 otherwise 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖, 𝑝 ∈ 𝛱 𝑖𝑟 .

The full TI formulation is hence given as follows:

min
∑

𝑖∈𝐼
∑

𝑟∈𝑅𝑖

∑

𝑝∈𝛱 𝑖𝑟 𝑐𝑖𝑟(𝑝) ⋅ 𝑥𝑖𝑟𝑝
𝑠.𝑡.
(1)

∑

𝑝∈𝛱 𝑖𝑟 𝑥𝑖𝑟𝑝 = 1, 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖

(2) 𝑥𝑖𝑟𝑝 + 𝑥𝑗𝑞𝑝′ ≤ 1, 𝑝 ∈ 𝛱 𝑖𝑟 incompatible with 𝑝′ ∈ 𝛱 𝑗𝑞

𝛱 𝑖𝑟,𝛱 𝑗𝑞 ∈ 𝛱 and (𝑖, 𝑟, 𝑝) ≠ (𝑗, 𝑞, 𝑝′)
𝑥𝑖𝑟𝑝 ∈ {0, 1} 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖, 𝑝 ∈ 𝛱 𝑖𝑟 .

(TI)

The first group of constraints states that 𝑥 defines a (full) train schedule,
whereas the second imposes schedule feasibility. In particular, looking
at Definition 2, there is a packing constraint of type (2)

• between two variables 𝑥𝑖𝑟𝑝 and 𝑥𝑖𝑞𝑝′ , with 𝑟 ≺𝑖 𝑞, if and only if
𝑝′ < 𝑝 + 𝑙𝑟 (they violate condition 2.𝑖𝑖);

• between two variables 𝑥𝑖𝑟𝑝 and 𝑥𝑗𝑞𝑝′ , with (𝑟, 𝑞) ∈ 𝑖𝑗 , if and only if
𝑝′ < 𝑝 + 𝑙𝑟𝑞 and 𝑝 < 𝑝′ + 𝑙𝑞𝑟 (they violate condition 2.𝑖𝑖𝑖).

Note that condition 𝑖 of Definition 2 is trivially satisfied by taking a
planning horizon equal to the feasibility interval [𝑡𝑖𝑟,𝑀). We highlight
that TI models allow to express complicated (non-linear) objectives: any
𝑐 function introduced in the previous section can be translated into the
sum of the costs realized by each chosen interval.

3. The dynamic discretization discovery method

In this section we describe the DDD paradigm (according to Boland
and Savelsbergh, 2019) and how we re-interpret it in the context of the
TRP. The paradigm includes:

• the construction of a sequence of (small) approximated models
of the original scheduling problem, that are easier to solve than
the full problem. As anticipated in the introduction, the models
𝐷1, 𝐷2,… are TI formulations (for job-shop scheduling), where
the discretization intervals have different widths. The value of an
optimal solution 𝑥∗𝑘 to the 𝑘th model in the sequence provides
a lower bound on the optimal solution value to the original
problem.

• a function 𝛷 which associates with solution 𝑥𝑘 a (possibly infea-
sible) schedule for the original problem. If the schedule 𝛷(𝑥∗𝑘) is
feasible for the original problem, then it is optimal.

• a heuristic mechanism which ‘‘repairs’’ an infeasible schedule
for the original problem and returns a feasible schedule which
provides an upper bound on the optimal solution value to the
original problem (see, e.g. Vu et al., 2022).

• a dynamic discovery mechanism that allows, when the schedule
is not feasible, to refine the previous model by further discretizing
time intervals.

Computers and Operations Research 167 (2024) 106679A.L. Croella et al.

𝑐

s

b
s

D
𝜆

Fig. 3. Generalized flowchart of the DDD paradigm.
v
f

𝑟

𝜆

D
t

a

A schematic representation of the DDD paradigm is given in Fig. 3.
Observe that the optimal solution 𝑥∗𝑘 of the current partial model 𝐷𝑘
provides a lower bound for the original problem. If the associated
schedule 𝛷(𝑥∗𝑘) is not feasible for the original TRP, at step 3 we apply a
heuristic mechanism for ‘‘repairing’’ the solution, i.e. for generating a
feasible solution 𝜏𝑘 by exploiting 𝛷(𝑥∗𝑘). In this way, an upper bound on
the optimal value of the solution is also provided. We then refine the
time discretization at step 4, making 𝑥∗𝑘 infeasible for the new partial
model 𝐷𝑘+1. The process is halted when the optimal solution is found
or, possibly, if the optimality gap is smaller than a given threshold. We
remark that several factors, ranging from the way the new refinements
are generated to the efficiency of the algorithm used to solve the partial
models, affect the performance of the DDD paradigm.

We are now ready to introduce our approximated model, namely
the Interval Assignment Problem (IAP), whose optimal solution defines a
lower bound for the optimal solution of the TRP.

3.1. The 𝛬-Interval Assignment Problem

Given, for each 𝑖 ∈ 𝐼 and 𝑟 ∈ 𝑅𝑖, the feasibility interval [𝑡𝑖𝑟,𝑀), let
𝛬𝑖𝑟 = {𝜆𝑖𝑟1 , 𝜆

𝑖𝑟
2 ,… , 𝜆𝑖𝑟

𝑛𝑖𝑟
} be a partition of the feasibility interval such that

𝜆𝑖𝑟𝑝 = [ℎ𝑖𝑟𝑝 , ℎ
𝑖𝑟
𝑝+1), for 1 ≤ 𝑝 < 𝑛𝑖𝑟, ℎ𝑖𝑟1 = 𝑡𝑖𝑟, and 𝜆𝑖𝑟

𝑛𝑖𝑟
= [ℎ𝑖𝑟

𝑛𝑖𝑟
,𝑀). Also, let

̄𝑖𝑟(𝜆𝑖𝑟𝑝) = 𝑐𝑖𝑟(ℎ𝑖𝑟𝑝) be the cost associated with the interval 𝜆𝑖𝑟𝑝 . That is, the
cost of the interval is the cost of train 𝑖 entering track segment 𝑟 at the
beginning of the interval. We finally let 𝛬 = {𝛬𝑖𝑟 ∶ 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅} be the
et of all partitions.

Note first that, for 𝜆 ∈ 𝛬𝑖𝑟, 𝑡𝑖𝑟 ∈ 𝜆 implies that 𝑡𝑖𝑟 satisfies the lower
ound condition (2.(i)). Now, let 𝑖 ∈ 𝐼 and 𝑟, 𝑞 ∈ 𝑅𝑖 be distinct track
egments, with 𝑟 ≺𝑖 𝑞.

efinition 3 (Rail Path Incompatible Intervals). Two distinct intervals
𝑖𝑟 ∈ 𝛬𝑖𝑟 and 𝜆𝑖𝑞 ∈ 𝛬𝑖𝑞 are rail path incompatible if condition (2.(ii)) is
5

𝑝 𝑝′
iolated for every 𝑡𝑖𝑟 ∈ 𝜆𝑖𝑟𝑝 and every 𝑡𝑖𝑞 ∈ 𝜆𝑖𝑞𝑝′ . That is, assuming 𝑟 ≺𝑖 𝑞,
or every 𝑡𝑖𝑟 ∈ 𝜆𝑖𝑟𝑝 and every 𝑡𝑖𝑞 ∈ 𝜆𝑖𝑞𝑝′ , we have 𝑡𝑖𝑞 < 𝑡𝑖𝑟 + 𝑙𝑟.

Corollary 1. The two intervals 𝜆𝑖𝑟𝑝 = [ℎ𝑖𝑟𝑝 , ℎ
𝑖𝑟
𝑝+1) and 𝜆

𝑖𝑞
𝑝′ = [ℎ𝑖𝑞𝑝′ , ℎ

𝑖𝑞
𝑝′+1), with

, 𝑞 ∈ 𝑅𝑖 and 𝑟 ≺𝑖 𝑞, are rail path incompatible if and only if ℎ𝑖𝑟𝑝 +𝑙𝑟 > ℎ𝑖𝑞𝑝′+1.

In other words, if there is no way for train 𝑖 to enter 𝑟 during interval
𝑖𝑟
𝑝 and to enter 𝑞 during time interval 𝜆𝑖𝑞𝑝′ .

efinition 4 (Conflict Incompatible Intervals). Let 𝑖, 𝑗 ∈ 𝐼 be two distinct
rains, and let 𝑟 ∈ 𝑅𝑖, and 𝑞 ∈ 𝑅𝑗 . We say that the intervals 𝜆𝑖𝑟𝑝 and 𝜆𝑗𝑞𝑝′

are conflict incompatible if condition (2.(iii)) is violated for every 𝑡𝑖𝑟 ∈ 𝜆𝑖𝑟𝑝
nd every 𝑡𝑗𝑞 ∈ 𝜆𝑗𝑞𝑝′ . That is, for every 𝑡𝑖𝑟 ∈ 𝜆𝑖𝑟𝑝 and every 𝑡𝑗𝑞 ∈ 𝜆𝑗𝑞𝑝′ , we

have both 𝑡𝑖𝑟 < 𝑡𝑗𝑞 + 𝑙𝑞𝑟 and 𝑡𝑗𝑞 < 𝑡𝑖𝑟 + 𝑙𝑟𝑞 .

Namely, train 𝑖 cannot enter track 𝑟 in interval 𝜆𝑖𝑟𝑝 if train 𝑗 is
entering track 𝑞 in time interval 𝜆𝑗𝑞𝑝′ .

Corollary 2. Two intervals 𝜆𝑖𝑟𝑝 = [ℎ𝑖𝑟𝑝 , ℎ
𝑖𝑟
𝑝+1) and 𝜆𝑗𝑞𝑝′ = [ℎ𝑗𝑞𝑝′ , ℎ

𝑗𝑞
𝑝′+1),

with 𝑖 ≠ 𝑗, 𝑟 ∈ 𝑅𝑖 and 𝑞 ∈ 𝑅𝑗 , are conflict incompatible if and only if
ℎ𝑗𝑞𝑝′ + 𝑙𝑞𝑟 > ℎ𝑖𝑟𝑝+1 and ℎ𝑖𝑟𝑝 + 𝑙𝑟𝑞 > ℎ𝑗𝑞𝑝′+1.

Fig. 4 shows an example for the rail path incompatibility and
one for the conflict incompatibility. For both (rail path and conflict)
incompatibilities the following holds.

Remark 1. Let 𝜆, 𝜆′ be two incompatible intervals and let 𝜆̄, 𝜆′ be two
intervals such that 𝜆̄ ⊆ 𝜆 and 𝜆′ ⊆ 𝜆′. Then 𝜆̄ and 𝜆′ are incompatible
intervals.

Note the difference in the definitions of interval incompatibility: in
the full time-indexed formulation (TI), two intervals are incompatible

exactly if the start times of the intervals are incompatible (i.e. in

Computers and Operations Research 167 (2024) 106679A.L. Croella et al.
Fig. 4. Example of intervals that are rail path incompatible 4(a) and conflict incompatible 4(b).
𝑐

t
i
[
s
𝛬

t
o

violation of the constraints of Definition 2). In contrast, in the IAP’s def-
inition, two intervals are incompatible if all pairs of time points in the
Cartesian product of the intervals are incompatible (wrt. Definition 2).

In an attempt to construct a feasible schedule 𝜏, we will first find
a set of partitions 𝛬, then assign an interval 𝜆𝑖𝑟 ∈ 𝛬𝑖𝑟 for each 𝑖 ∈ 𝐼
and 𝑟 ∈ 𝑅𝑖, and finally choose 𝑡𝑖𝑟 ∈ 𝜆𝑖𝑟. This motivates the following
definition:

Definition 5 (𝛬-Interval Assignment). Let 𝛺 be the set of all pairs (𝑖, 𝑟)
with 𝑖 ∈ 𝐼 and 𝑟 ∈ 𝑅𝑖. A 𝛬-interval assignment 𝑆 is a function 𝑆 ∶ 𝛺 → 𝛬
that assigns each couple (𝑖, 𝑟) ∈ 𝛺 an interval 𝑆(𝑖, 𝑟) ∈ 𝛬𝑖𝑟. Moreover, we
say that 𝑆 is feasible if 𝑆(𝑖, 𝑟) and 𝑆(𝑗, 𝑞) are not incompatible according
to Definitions 3 and 4, for each (𝑖, 𝑟) and (𝑗, 𝑞) ∈ 𝛺.

Given a set of partitions 𝛬, we define the IAP as the problem of
finding a 𝛬-feasible assignment 𝑆 of minimum cost 𝑐(𝑆) =

∑

𝑖∈𝐼
∑

𝑟∈𝑅𝑖
∑

𝜆𝑖𝑟𝑝 ∈𝛬𝑖𝑟∩𝑆 𝑐𝑖𝑟(𝜆𝑖𝑟𝑝).
We can indeed formally prove the following theorem:

Theorem 1. If the TRP admits an optimal solution 𝜏 = {𝑡𝑖𝑟 ∣ 𝑖 ∈ 𝐼, 𝑟 ∈
𝑅𝑖}, then the IAP admits an optimal solution 𝑆∗, and 𝑐(𝑆∗) ≤ 𝑐(𝜏), where
𝑐(𝜏) =

∑

𝑖∈𝐼
∑

𝑟∈𝑅𝑖
𝑐𝑖𝑟(𝑡𝑖𝑟).

Proof. Let 𝜏 = {𝑡𝑖𝑟 ∣ 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖} be a feasible schedule, and let 𝛹𝛬
be the function which associates the unique interval 𝛹𝛬(𝑡𝑖𝑟) = 𝜆𝑖𝑟𝑝 ∈ 𝛬𝑖𝑟

such that 𝑡𝑖𝑟 ∈ 𝜆𝑖𝑟𝑝 . Note that the function is well-defined, since 𝑡𝑖𝑟 ∈
[𝑡𝑖𝑟,𝑀] and 𝛬𝑖𝑟 is a partition of [𝑡𝑖𝑟,𝑀]. We extend the notation by
denoting with 𝛹𝛬(𝜏) the complete set of intervals {𝛹𝛬(𝑡𝑖𝑟) ∣ 𝑖 ∈ 𝐼, 𝑟 ∈
𝑅𝑖}. We prove that 𝛹𝛬(𝜏) is 𝛬-feasible. Suppose not, then there exist
two distinct intervals 𝜆𝑖𝑟𝑝 , 𝜆

𝑗𝑞
𝑝′ which are incompatible.

If 𝑖 = 𝑗 then the intervals are rail path-incompatible. Assume 𝑟 ≺𝑖 𝑞.
Then we must have that 𝑡𝑖𝑞 < 𝑡𝑖𝑟+𝑙𝑟 for every 𝑡𝑖𝑟 ∈ 𝜆𝑖𝑟𝑝 and every 𝑡𝑖𝑞 ∈ 𝜆𝑖𝑞𝑝′ ,
a contradiction since 𝜏 is feasible and thus 𝑡𝑖𝑞 ≥ 𝑡𝑖𝑟 + 𝑙𝑟.

If 𝑖 ≠ 𝑗 then the intervals are conflict-incompatible. We arrive at a
6

contradiction again by using a similar argument as above.
So, 𝛹𝛬(𝜏) is 𝛬-feasible. Now, since 𝑐 is non-decreasing, we have that:

̄(𝛹𝛬(𝜏)) ∶=
∑

𝑖∈𝐼

∑

𝑟∈𝑅𝑖

𝑐𝑖𝑟(𝛹𝛬(𝑡𝑖𝑟)) ≤
∑

𝑖∈𝐼

∑

𝑟∈𝑅𝑖

𝑐(𝑡𝑖𝑟) = 𝑐𝑖𝑟(𝜏).

□

Let 𝛷 be the function that assigns to each time interval [ℎ, ℎ+) the
ime instant 𝑡 = ℎ. Moreover, we extend such a definition to a set of
ntervals 𝑆 ⊆ 𝛬, so to let 𝜏 = 𝛷(𝑆) be the schedule {𝑡𝑖𝑟 = ℎ𝑖𝑟𝑝 ∣ 𝜆𝑖𝑟𝑝 =
ℎ𝑖𝑟𝑝 , ℎ

𝑖𝑟
𝑝+1) ∈ 𝑆}. Therefore, because of Theorem 1, if 𝑆∗ is a 𝛬-feasible

et of intervals of minimum cost, with respect to every given partition
, and 𝜏∗ = 𝛷(𝑆∗) is feasible, then 𝜏∗ is also optimal for the TRP.

3.2. A 0,1-LP for the Interval Assignment Problem

We now present a 0,1 Linear Program (0,1-LP) for the IAP. We are
given the set of partitions 𝛬 = {𝛬𝑖𝑟 ∶ 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖}, and we want
o find a complete interval assignment 𝑆 of non-incompatible intervals
f minimum cost 𝑐(𝑆). To this end, we introduce the following set of

binary variables:

𝑥𝑖𝑟𝑝 =
{

1 if interval 𝜆𝑖𝑟𝑝 ∈ 𝑆
0 otherwise

𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖, 𝜆
𝑖𝑟
𝑝 ∈ 𝛬𝑖𝑟 .

Hence, the IAP can be formulated as follows:

min
∑

𝑖∈𝐼
∑

𝑟∈𝑅𝑖

∑

𝜆𝑖𝑟𝑝 ∈𝛬𝑖𝑟 𝑐𝑖𝑟(𝜆𝑖𝑟𝑝) ⋅ 𝑥
𝑖𝑟
𝑝

𝑠.𝑡.
(1)

∑

𝜆𝑖𝑟𝑝 ∈𝛬𝑖𝑟 𝑥𝑖𝑟𝑝 = 1, 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖

(2) 𝑥𝑖𝑟𝑝 + 𝑥𝑗𝑞𝑝′ ≤ 1, 𝜆𝑖𝑟𝑝 ∈ 𝛬𝑖𝑟 incompatible with

𝜆𝑗𝑞𝑝′ ∈ 𝛬𝑗𝑞

𝛬𝑖𝑟, 𝛬𝑗𝑞 ∈ 𝛬 and
(𝑖, 𝑟, 𝑝) ≠ (𝑗, 𝑞, 𝑝′)

𝑥𝑖𝑟𝑝 ∈ {0, 1} 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖, 𝜆𝑖𝑟𝑝 ∈ 𝛬𝑖𝑟.

(IAP)

Computers and Operations Research 167 (2024) 106679A.L. Croella et al.

t
(
i
T

O
a
c
o
c

3

i
v
a

B
𝑦

b

n
c
2
S
p

𝑠
(
(

(

Constraints (1) ensure that 𝑥 is the incidence vector of a complete
interval assignment 𝑆, whereas constraints (2) guarantee that the in-
tervals in 𝑆 are mutually non-incompatible. Also observe that if all
the intervals 𝜆𝑖𝑟𝑝 have unit length, then the formulation (IAP) reduced
o a full TI formulation for the TRP with interval width 𝑤 = 1
see formulation (TI) given in Section 2). In turn, if, as assumed, all
nvolved constants are integers (e.g. number of seconds), then the full
I formulation is exact.

Therefore, the following holds:

bservation 1. If the set of partitions 𝛬 is such that ℎ𝑖𝑟𝑝+1 = ℎ𝑖𝑟𝑝 + 1, for
ll 𝑖 ∈ 𝐼 , 𝑟 ∈ 𝑅𝑖, 𝑝 ∈ {1,… , 𝑛𝑖𝑟 − 1}, then exactly one of the following
laims holds: (i) IAP and TRP are both infeasible; (ii) the value of an
ptimal solution of the IAP equals the value of an optimal solution of the
orresponding TRP.

.3. A basic MaxSAT formulation for the Interval Assignment Problem

Although ILP (and MILP) formulations are commonly used for solv-
ng train scheduling problems, the IAP formulation uses only binary
ariables, which opens up the possibility of translating the problem into
Boolean satisfiability (SAT) problem.

A SAT problem is usually formulated in logical terms, where a
oolean variable 𝑦 can take values true or false. A literal 𝓁 is a variable
or its negation 𝑦. A clause 𝑐 = 𝓁1 ∨ 𝓁2 ∨…∨ 𝓁𝑛 contains one or more

distinct variables and is satisfied if it has at least one literal assigned to
true. A conjunctive normal form (CNF) formula 𝜙 = 𝑐1 ∧ 𝑐2 ∧⋯ ∧ 𝑐𝑚 is
a conjunction of clauses. Given a CNF formula, the SAT asks whether
there exists an assignment to the variables that satisfies all the clauses.
The optimization version of the SAT problem is the so-called (partial)
weighted MaxSAT problem: given a CNF, we have that only a (possibly
empty) subset of its clauses (hard clauses) must be satisfied, whereas
each of the remaining (soft) clauses is given a weight. The goal is to
find an assignment of values to the Boolean variables such that all
hard clauses are satisfied and the sum of the weights of the satisfied
soft clauses is maximized. Exact MaxSAT solvers have made large
advances in the last decade, and are applied to industrial problems
in scheduling, timetabling, decision trees, and computer hardware and
software verification (Bacchus et al., 2019; Li and Manyà, 2021).

It is straightforward to see that MILP problems are a generalization
of SAT problems, but for readers who are unfamiliar with logic nota-
tion, we show here a simple transformation of a SAT problem into a
MILP feasibility problem. Namely, we introduce a binary variable 𝑥𝑖
for each Boolean variable 𝑦𝑖. Assigning value 1 (0) to 𝑥𝑖 corresponds to
assigning value True (False) to 𝑦𝑖. Next, for each clause 𝑐 = 𝑦1 ∨ 𝑦2 ∨
… ∨ 𝑦𝑘 ∨ 𝑦𝑘+1 ∨… ∨ 𝑦𝑛, where the first 𝑘 literals are positive variables
whereas the remaining are negated, we introduce the constraint

𝑥1 +⋯ + 𝑥𝑘 + (1 − 𝑥𝑘+1) +⋯ + (1 − 𝑥𝑛) ≥ 1 (2)

Then the CNF formula is satisfiable if and only if there exists a
inary vector 𝑥 which satisfies all constraints (2).

The opposite direction, converting MILPs to SAT problems, does
ot have a corresponding simple transformation (though several spe-
ial cases have been studied extensively, see Roussel and Manquinho,
021). In the following, we show that the IAP can be converted into
AT. Indeed, we will show how to formulate the IAP as a MaxSAT
roblem. Consider the 0,1-LP (IAP) restated in a more compact form:

min
∑

𝑖∈𝑉 𝑤𝑖𝑥𝑖
.𝑡.
𝑖)

∑

𝑖∈𝑄 𝑥𝑖 = 1, 𝑄 ∈ 
𝑖𝑖) 𝑥𝑖 + 𝑥𝑗 ≤ 1, {𝑖, 𝑗} ∈ 𝐸

𝑥𝑖 ∈ {0, 1} 𝑖 ∈ 𝑉 .

(IAP-compact)

There are two types of constraints: partitioning constraints (𝑖), and
edge) packing constraints (𝑖𝑖). Note that  is a set of subsets of 𝑉 ,

and 𝐸 is a set of unordered pairs of 𝑉 .
7

The 0,1-LP (IAP-compact) can be reduced to (partial) MaxSAT by
constructing an equivalent CNF formula. In particular, each binary
variable corresponds to a Boolean variable, each term in the objective
function corresponds to a soft clause, and each constraint corresponds
to a hard clause or a conjunction of hard clauses (see Li and Manyà,
2021).

First, for 𝑖 ∈ 𝑉 , we associate a Boolean variable 𝑦𝑖 with each binary
variable 𝑥𝑖, and its negation 𝑦𝑖 with 1 − 𝑥𝑖.

• Each term 𝑤𝑖𝑥𝑖 in the objective function of (IAP-compact) is
represented by a soft clause 𝑐 = 𝑦𝑖 (a unit disjunction) with weight
𝑤𝑖.

• Each edge packing constraint (𝑖𝑖) is first represented as the equiv-
alent edge covering constraint: (1 − 𝑥𝑖) + (1 − 𝑥𝑗) ≥ 1, to which
corresponds the clause

𝑦𝑖 ∨ 𝑦𝑗 . (3)

• Each partitioning constraint (𝑖) is first transformed into the con-
junction of a covering constraint ∑

𝑖∈𝑄 𝑥𝑖 ≥ 1 and a packing
constraint ∑

𝑖∈𝑄 𝑥𝑖 ≤ 1. The covering constraint is immediately
reduced into the clause ⋁

𝑖∈𝑄 𝑦𝑖. As for the packing constraint, we
first replace it with an equivalent conjunction of a set of edge
packing constraints: 𝑥𝑖 +𝑥𝑗 ≤ 1, for 𝑖, 𝑗 ∈ 𝑄, 𝑖 ≠ 𝑗. Then, as for the
constraint (𝑖𝑖), each edge packing constraint is transformed into
the clause (3).

There are, in general, multiple ways of converting various types of
constraints into clause form, with different trade-offs (see Björk, 2011).
Especially for the at-most-one constraint and its generalization, at-most-
𝑘, many different algorithms and techniques have been studied. The
pairwise encoding (3) is presented here for simplicity, but any of the
alternative at-most-one encodings can be used (see Prestwich, 2021).

3.4. A MaxSAT reformulation using lower bound variables

It is well known that reformulations of SAT and MaxSAT problems
can have a huge impact on solver performance (see Björk, 2011). Even
different formulations that are deemed equally strong in the linear
programming sense (such as those corresponding to an affine trans-
formation) may exhibit widely different performance characteristics.
Motivated by this observation, we reformulated the MaxSAT encoding
of IAP. In this reformulation, variables 𝑦𝑖𝑟𝑝 , corresponding to intervals
𝜆𝑖𝑟𝑝 ∈ 𝛬𝑖𝑟, are true not only for the selected interval but also for all
preceding intervals in 𝛬𝑖𝑟. This implies that interval 𝜆𝑖𝑟𝑝 is selected if
𝑦𝑖𝑟𝑝 = 1 and 𝑦𝑖𝑟𝑝+1 = 0. The constraints for the problem are then as follows:

• To ensure that there is exactly one interval 𝜆𝑖𝑟𝑝 ∈ 𝛬𝑖𝑟 s.t. 𝑦𝑖𝑟𝑝 = 1
and 𝑦𝑖𝑟𝑝+1 = 0, we need for each 𝑝 and each 𝛬𝑖𝑟,

𝑦𝑖𝑟𝑝+1 ∨ 𝑦𝑖𝑟𝑝 (4)

• To exclude incompatible intervals 𝜆𝑖𝑟𝑝 and 𝜆𝑗𝑞𝑝′ , we need

𝑦𝑖𝑟𝑝 ∨ 𝑦𝑖𝑟𝑝+1 ∨ 𝑦𝑗𝑞𝑝′ ∨ 𝑦𝑗𝑞𝑝′+1 (5)

Note that for rail path incompatibilities, this can be simplified to

𝑦𝑖𝑟𝑝 ∨ 𝑦𝑖𝑞𝑝′ .

This reformulation offers the advantage that iteratively subdividing
intervals, as described in the algorithmic framework below, can be done
without invalidating any constraints. Specifically, we start from the
partition

𝛬𝑖𝑟 =
{

𝜆𝑖𝑟1 ,… , 𝜆𝑖𝑟𝑝 ,… , 𝜆𝑖𝑟𝑛
}

and we then subdivide interval 𝑝 into two new intervals in positions 𝑝
and 𝑝 + 1 to get

𝛬̃𝑖𝑟 =
{

𝜆̃𝑖𝑟,… , 𝜆̃𝑖𝑟, 𝜆̃𝑖𝑟 ,… , 𝜆̃𝑖𝑟
}

1 𝑝 𝑝+1 𝑛+1

Computers and Operations Research 167 (2024) 106679A.L. Croella et al.

a

T
r
f
b
i
w
s
b
b

4

2
t

a
T
s

r

𝐺
{
f
n

4

f
[

4

d

O
H
b

t

Fig. 5. Lower bound variables representation for selecting interval 𝜆𝑖𝑟𝑝 . All preceding intervals in 𝛬𝑖𝑟 are set to 1 and all subsequent intervals are set to 0.
t
p

Now, Eq. (4) for 𝜆𝑖𝑟𝑝+1 becomes, in the new partition 𝛬̃𝑖𝑟,

𝑦̃𝑖𝑟𝑝+2 ∨ 𝑦̃𝑖𝑟𝑝 ,

nd Eq. (5) for 𝜆𝑖𝑟𝑝 and 𝜆𝑗𝑞𝑝′ becomes

𝑦̃𝑖𝑟𝑝 ∨ 𝑦̃𝑖𝑟𝑝+2 ∨ 𝑦̃𝑗𝑞𝑝′ ∨ 𝑦̃𝑗𝑞𝑝′+1.

hese equations remain valid within the new partition 𝛬̃𝑖𝑟 but are
edundant. However, keeping these redundant constraints can be bene-
icial when solving a sequence of IAP problems, as detailed in Section 4
elow. This approach ensures that only the task of adding constraints
s required (i.e., we do not need to remove or modify any constraints)
hen moving from one iteration to the next. This enables the solver to

tart the solving process using the valid derived constraints and lower
ounds from the previous iteration, providing potential performance
enefits (see Fig. 5).

. The algorithmic framework

In the following, we describe our implementation of the Step 1, Step
, and Step 3 of the DDD paradigm, exploiting the definition of the IAP
hat we gave in the previous section.

We propose an algorithm, named DDD-TRP, that iteratively solves
IAP instance 𝐷𝑘 defined on a partition set 𝛬𝑘 = {𝛬𝑖𝑟

𝑘 ∶ 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖}.
hen, we prove that the DDD-TRP terminates after a finite number of
teps, returning the optimal solution of the original TRP.

Note that, for each iteration 𝑘, the set 𝛬𝑘 is always more refined with
espect to the partition set 𝛬𝑘−1 defined at the previous iteration.

We can also associate with each set of partitions 𝛬𝑘 a IAP graph
𝑘(𝑉𝑘, 𝐸𝑘). In particular, we have that 𝑉𝑘 ∶=

⋃

𝑖∈𝐼,𝑟∈𝑅𝑖
𝛬𝑖𝑟
𝑘 , with 𝛬𝑖𝑟

𝑘 =
𝜆𝑖𝑟1 , 𝜆

𝑖𝑟
2 ,… , 𝜆𝑖𝑟

𝑛𝑖𝑟
}, while the set 𝐸𝑘 contains an edge of the type {𝜆𝑖𝑟𝑝 , 𝜆

𝑗𝑞
𝑝′ }

or each incompatible couple of intervals in 𝛬𝑘 (with 𝑖, 𝑗 and 𝑟, 𝑞 not
ecessarily distinct).

.1. Initialize the DDD-TRP (Step 1)

We define the initial problem 𝐷0 of the IAP by just considering,
or each track segment used by each train, its feasibility interval 𝜆𝑖𝑟1 =
𝑡𝑖𝑟,𝑀). Thus, we set 𝛬0 = {𝛬𝑖𝑟

𝑘 = {𝜆𝑖𝑟1 } ∶ 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖}.

.2. Solve the IAP (Step 2)

Observe that, for all 𝑖 ∈ 𝐼 and 𝑟 ∈ 𝑅𝑖, the set of nodes of 𝛬𝑖𝑟
𝑘 ∈ 𝛬𝑘

efines a clique in the graph 𝐺𝑘. We denote such cliques as resource
assignment cliques. Moreover, we can identify a second type of clique:
given two consecutive track segments 𝑟 and 𝑞 traversed by a train 𝑖,
such that 𝑟 ≺𝑖 𝑞, for each 𝜆𝑖𝑟𝑝 in the considered partition 𝛬𝑘, we can
write a single fixed precedence clique constraint defined by the rail path
incompatibilities (see Definition 3) as follows:

𝑥𝑖𝑟𝑝 +
∑

𝜆𝑖𝑞
𝑝′
∣ℎ𝑖𝑞

𝑝′
<ℎ𝑖𝑟𝑝 +𝑙𝑟

𝑥𝑖𝑞𝑝′ ≤ 1 𝑖 ∈ 𝐼, 𝑟, 𝑞 ∈ 𝑅𝑖 with 𝑟 ≺𝑖 𝑞, 𝜆𝑖𝑟𝑝 ∈ 𝛬𝑖𝑝
𝑘 .

(6)

ne can visualize an example of a fixed precedence clique in Fig. 4(a).
ere all intervals of 𝛬𝑖𝑞 highlighted in cyan belong to the clique defined
y 𝜆𝑖𝑟𝑝 .

Resuming, the IAP 𝐷𝑘 associated with 𝛬𝑘, and solved at Step 2 of
he DDD-TRP, reduces to find a minimum weighted set 𝑆∗

𝑘 of the IAP
8

graph 𝐺𝑘 that intersects:
• each resource assignment clique exactly once,
• each fixed precedence clique at least once,
• and each incompatible couple of intervals at least once.

4.3. Repair an infeasible schedule (Step 3)

Let 𝜏 = {𝑡𝑖𝑟 ∶ 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖} be the (infeasible) schedule we want
o repair to (possibly) get a feasible schedule for TRP. We build the LP
rogram 𝐿𝑃0 with variables 𝑡𝑖𝑟, lower bound constraints 𝑡𝑖𝑟 ≥ 𝑡𝑖𝑟 ∶ 𝑖 ∈

𝐼, 𝑟 ∈ 𝑅𝑖 and all the time precedence constraints associated with the
train-rail path (i.e. with Constraints 2.ii). We let the objective be the
sum of the delays. Then, let 𝜏0 = 𝑡𝑖𝑟0 ∶ 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖 be the optimal
solution of 𝐿𝑃0 and 𝑗 ∶= 1.

At the 𝑗th iteration, if 𝜏𝑗−1 = {𝑡𝑖𝑟𝑗−1 ∶ 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖} is feasible
for the TRP, we are done. Otherwise, we build the linear program
𝐿𝑃𝑗 from 𝐿𝑃𝑗−1 by (a) replacing the lower bound constraints with
the constraints 𝑡𝑖𝑟 ≥ 𝑡𝑖𝑟𝑗−1 ∶ 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅𝑖 and (b) including one
additional time precedence constraint. Indeed, since 𝜏𝑗−1 is infeasible
and all train-rail path precedence constraints are satisfied, there exists
at least one disjunctive constraint of type 2.iii which is violated by
𝜏𝑗−1. We add the one with the smallest left-hand side, i.e. the ‘‘first
violated’’ in chronological order. Then we generate the new linear
program by adding one of the two terms of the disjunction, namely
the one that produces the smallest increase in the objective function of
TRP. We solve again and obtain a new schedule 𝜏𝑗+1 and iterate until
the schedule is feasible or the current linear program is infeasible. Note
that since the number of disjunctive constraints is finite, the repairing
mechanism always terminates.

4.4. Refine the IAP (Step 4)

Let 𝛬𝑘 be the set of partitions defined at iteration 𝑘 of the DDD-TRP,
𝐺𝑘 be the corresponding IAP graph, and let 𝑆∗

𝑘 be the optimal set of 𝐺𝑘
(i.e. the optimal solution of the IAP 𝐷𝑘 associated with 𝛬𝑘). Now, as
already noticed, if 𝜏∗𝑘 = 𝛷(𝑆∗

𝑘) is a feasible schedule then it defines
an optimal solution to the TRP and we are done. So, assume 𝜏∗𝑘 is not
feasible. This means that 𝑆∗

𝑘 contains two intervals, say 𝜆𝑖𝑟𝑝 = [ℎ𝑖𝑟𝑝 , ℎ
𝑖𝑟
𝑝+1)

and 𝜆𝑗𝑞𝑠 = [ℎ𝑗𝑞𝑠 , ℎ𝑗𝑞𝑠+1) that are compatible (since 𝑆∗
𝑘 is 𝛬𝑘-feasible) but

such that 𝑡𝑖𝑟 = ℎ𝑖𝑟𝑝 and 𝑡𝑗𝑞 = ℎ𝑗𝑞𝑠 violate either constraint (𝑖𝑖) or constraint
(𝑖𝑖𝑖) of Definition 2. We consider separately the two cases.
A train-rail path precedence is violated. In this case, 𝑖 = 𝑗 and we can
assume, w.l.o.g., that 𝑟 ≺𝑖 𝑞. Since 𝑡𝑖𝑟 and 𝑡𝑖𝑞 violate a train-rail path
precedence, then 𝑡𝑖𝑟 + 𝑙𝑟 > 𝑡𝑖𝑞 . Moreover, as 𝜆𝑖𝑟𝑝 and 𝜆𝑖𝑞𝑠 are compatible
in 𝑆∗

𝑘 , then 𝑡𝑖𝑟 + 𝑙𝑟 < ℎ𝑖𝑞𝑠+1. Therefore, we construct 𝛬𝑘+1 from 𝛬𝑘 (and
then 𝐺𝑘+1 from 𝐺𝑘) by replacing the interval 𝜆𝑖𝑞𝑠 with the two smaller
intervals 𝜆𝑖𝑞𝑠′ = [ℎ𝑖𝑞𝑠 , 𝑡𝑖𝑟 + 𝑙𝑟) and 𝜆𝑖𝑞𝑠′′ = [𝑡𝑖𝑟 + 𝑙𝑟, ℎ𝑖𝑞𝑠+1).

Observe that, in 𝛬𝑘+1, the intervals 𝜆𝑖𝑟𝑝 and 𝜆𝑖𝑞𝑠′ are incompatible and,
as a consequence, the optimal set 𝑆∗

𝑘+1 (hence the optimal schedule
𝜏∗𝑘+1) that will be calculated at the next iteration of the DDD-TRP cannot
contain both 𝜆𝑖𝑟𝑝 and 𝜆𝑖𝑞𝑠′ (𝑡𝑖𝑟 = ℎ𝑖𝑟𝑝 and 𝑡𝑖𝑞 = ℎ𝑖𝑞𝑠). This is equivalent
to adding a vertex for the new interval 𝜆𝑖𝑞𝑠′′ and an edge {𝜆𝑖𝑟𝑝 , 𝜆

𝑖𝑞
𝑠′} in

the set 𝐸𝑘+1. In other words, we are inserting a term 𝑥𝑖𝑞𝑠′ to the fixed
precedence clique associated with 𝑥𝑖𝑟𝑝 . Concurrently, we also add a new
fixed precedence clique relative to the interval 𝜆𝑖𝑞𝑠′′ itself. Fig. 6 shows
how starting from a violated train-rail path precedence (Fig. 6(a)), new

𝑖𝑞 𝑖𝑞
intervals 𝜆𝑠′ and 𝜆𝑠′′ are generated (Fig. 6(b)).

Computers and Operations Research 167 (2024) 106679A.L. Croella et al.
Fig. 6. Example of resolution of a violated train-rail path precedence at Step 3 of the DDD-TRP.
Fig. 7. Example of resolution of a violated disjunctive precedence at Step 3 of the DDD-TRP.
A disjunctive precedence is violated. In this case, we have that 𝑖 ≠ 𝑗,
𝑡𝑗𝑞 < 𝑡𝑖𝑟 + 𝑙𝑟𝑞 and 𝑡𝑖𝑟 < 𝑡𝑗𝑞 + 𝑙𝑞𝑟. Since 𝜆𝑖𝑟𝑝 and 𝜆𝑗𝑞𝑠 are compatible in 𝑆∗

𝑘 ,
we have that 𝑡𝑖𝑟 + 𝑙𝑟𝑞 < ℎ𝑗𝑞𝑠+1 and 𝑡𝑗𝑞 + 𝑙𝑞𝑟 < ℎ𝑖𝑟𝑝+1. We obtain 𝛬𝑘+1 from
𝛬𝑘 by breaking 𝜆𝑖𝑟𝑝 into 𝜆𝑖𝑟𝑝′ = [ℎ𝑖𝑟𝑝 , 𝑡

𝑗𝑞 + 𝑙𝑗𝑞𝑞𝑟) and 𝜆𝑖𝑟𝑝′′ = [𝑡𝑗𝑞 + 𝑙𝑗𝑞𝑞𝑟 , ℎ𝑖𝑟𝑝+1),
and 𝜆𝑗𝑞𝑠 into 𝜆𝑗𝑞𝑠′ = [ℎ𝑗𝑞𝑠 , 𝑡𝑖𝑟 + 𝑙𝑟𝑞) and 𝜆𝑗𝑞𝑠′′ = [𝑡𝑖𝑟 + 𝑙𝑟𝑞 , ℎ𝑗𝑞𝑠+1).

Again here, we observe that the newly generated intervals 𝜆𝑖𝑟𝑝′ and
𝜆𝑗𝑞𝑠′ are now incompatible. This implies adding an edge {𝜆𝑖𝑟𝑝′ , 𝜆

𝑗𝑞
𝑠′ } to 𝐸𝑘+1

since 𝜏∗𝑘+1 = 𝛷(𝑆∗
𝑘+1) cannot contain the couple (𝑡𝑖𝑟 = ℎ𝑖𝑟𝑝 , 𝑡

𝑗𝑞 = ℎ𝑗𝑞𝑠).
Also, note that other conflicts and rail path incompatibilities may be
generated by the definition of the new intervals. Consequently, the new
incompatibilities should be added to the set 𝐸𝑘+1. In Fig. 7 we visually
present the generation of the new intervals.

In both cases, once a new interval is defined, we can propagate
the new time points discovered along the train rail path to ensure
9

a time consistency with the intervals belonging to subsequent train
track segments. With some abuse of notation in the following, given
a track segment 𝑟 traversed by a train 𝑖, we indicate the subsequent
track segment on the rail path of 𝑖 with the index (𝑟 + 1). Then, said
𝜆𝑖𝑟𝑝 = [ℎ𝑖𝑟𝑝 , ℎ

𝑖𝑟
𝑝+1) a newly generated interval and 𝜆𝑖(𝑟+1)𝑠 = [ℎ𝑖(𝑟+1)𝑠 , ℎ𝑖(𝑟+1)𝑠+1) =

𝑚𝑎𝑥{𝛬𝑖(𝑟+1)
𝑘 ∋ 𝜆𝑖(𝑟+1)𝑠 ∶ ℎ𝑖(𝑟+1)𝑠 < ℎ𝑖𝑟𝑝 + 𝑙𝑟}, we define two new intervals

of the type 𝜆𝑖(𝑟+1)𝑠′ = [ℎ𝑖(𝑟+1)𝑠 , ℎ𝑖𝑟𝑝 + 𝑙𝑟) and 𝜆𝑖(𝑟+1)𝑠′′ = [ℎ𝑖𝑟𝑝 + 𝑙𝑟, ℎ𝑖(𝑟+1)𝑠+1).
This procedure allows us to identify a lower bound ℎ𝑖(𝑟+1)𝑠′′ for (𝑟 + 1)
that avoids the violation of the rail path constraints. The propagation
is thus recursively applied on 𝜆𝑖(𝑟+1)𝑠′ until the final destination track
segment is reached. Along with the creation of these intervals, we need
to add every rail path and/or conflict incompatibility arising between
the intervals in 𝛬𝑘+1.

Summarizing, said 𝐺𝑘(𝑉𝑘, 𝐸𝑘) the IAP graph at a generic iteration

𝑘, the DDD-TRP follows the steps reported below. Note that, since

Computers and Operations Research 167 (2024) 106679A.L. Croella et al.

i
t
g
p
s
c
t
t
f

T
t

P
we apply a rail path time consistency each time we propagate a new
interval, the feasibility check on the associated schedule 𝜏∗𝑘 can be
limited to the disjunctive constraints.

DDD-TRP 𝑘-𝑡ℎ iteration
Data: Graph 𝐺𝑘(𝑉𝑘 ∶= 𝛬𝑘, 𝐸𝑘), functions 𝛷(𝑆) ∶ 𝛬𝑘 → IR+ and 𝑐(𝑆) ∶ 𝛬𝑘 →

IR+.

Solve the IAP (Step 2)
Find 𝑆∗

𝑘 on 𝐺𝑘(𝑉𝑘, 𝐸𝑘) and compute 𝜏∗𝑘 = 𝛷(𝑆∗
𝑘)

♢Check for solution optimality
For each 𝑖, 𝑗 ∈ 𝐼 , 𝑖 ≠ 𝑗, and 𝑟 ∈ 𝑅𝑖, 𝑞 ∈ 𝑅𝑗 with {𝑟, 𝑞} ∈ 
If 𝑡𝑖𝑟, 𝑡𝑗𝑞 ∈ 𝜏∗𝑘 violate a disjunctive precedence (Defini-
tion 2.(iii)) Then

(i) from 𝜆𝑖𝑟𝑝 ∈ 𝑆∗
𝑘 define 𝜆𝑖𝑟𝑝′ = [ℎ𝑖𝑟

𝑝 , 𝑡
𝑗𝑞 + 𝑙𝑗𝑞𝑞𝑟) and 𝜆𝑖𝑟𝑝′′ =

[𝑡𝑗𝑞 + 𝑙𝑗𝑞𝑞𝑟 , ℎ𝑖𝑟
𝑝+1), set 𝛬𝑖𝑟

𝑘 = 𝛬𝑖𝑟
𝑘 ⧵ {𝜆𝑖𝑟𝑝 } ∪ {𝜆𝑖𝑟𝑝′ , 𝜆

𝑖𝑟
𝑝′′};

(ii) from 𝜆𝑗𝑞𝑠 ∈ 𝑆∗
𝑘 define 𝜆𝑗𝑞𝑠′ = [ℎ𝑗𝑞

𝑠 , 𝑡𝑖𝑟 + 𝑙𝑟𝑞) and 𝜆𝑗𝑞𝑠′′ =
[𝑡𝑖𝑟 + 𝑙𝑟𝑞 , ℎ𝑗𝑞

𝑠+1), set 𝛬𝑗𝑞
𝑘 = 𝛬𝑗𝑞

𝑘 ⧵ {𝜆𝑗𝑞𝑠 } ∪ {𝜆𝑗𝑞𝑠′ , 𝜆
𝑗𝑞
𝑠′′};

(iii) set 𝐸𝑘 = 𝐸𝑘 ∪ {𝜆𝑖𝑟𝑝′ , 𝜆
𝑗𝑞
𝑠′ }.

If ∄ violated disjunctive precedence Then
Stop. 𝜏∗ = 𝜏∗𝑘 with value 𝑐(𝜏∗) = 𝑐(𝑆∗

𝑘).

Repair the IAP solution (Step 3)
Find 𝜏𝑘 by repairing 𝜏∗𝑘 .

♢Check for solution optimality
If 𝑐(𝜏𝑘) − 𝑐(𝑆∗

𝑘) < 𝜖 Then
Stop. 𝜏∗ = 𝜏𝑘 with value 𝑐(𝜏𝑘).

Refine the IAP (Step 4)
For each newly defined interval 𝜆𝑖𝑟𝑝

(i) update resource assignment clique: for each 𝜆𝑖𝑟𝑝′ ∈ 𝛬𝑖𝑟
𝑘 ⧵ {𝜆𝑖𝑟𝑝 } set

𝐸𝑘 = 𝐸𝑘 ∪ {𝜆𝑖𝑟𝑝 , 𝜆
𝑖𝑟
𝑝′};

(ii) update fixed precedence clique (Definition 3): for each 𝜆𝑖𝑞𝑠 ∈ 𝛬𝑖𝑞
𝑘

with (𝑞+1) = 𝑟 such that ℎ𝑖𝑞
𝑠 +𝑙𝑖𝑞 > ℎ𝑖𝑟

𝑝+1 add a new edge {𝜆𝑖𝑟𝑝 , 𝜆
𝑖𝑞
𝑠 }

to 𝐸𝑘;
(iii) update conflict incompatibility (Definition 4): for each 𝜆𝑖𝑞𝑠 ∈ 𝛬𝑖𝑞

𝑘
with 𝑖 ≠ 𝑗, {𝑟, 𝑞} ∈ , such that ℎ𝑖𝑟

𝑝+1 < ℎ𝑗𝑞
𝑝′ + 𝑙𝑞𝑟 and ℎ𝑗𝑞

𝑝′+1 <
ℎ𝑖𝑟
𝑝 + 𝑙𝑟𝑞 add a new edge {𝜆𝑖𝑟𝑝 , 𝜆

𝑗𝑞
𝑠 } to 𝐸𝑘;

(iv) propagate along the train rail path: if exists (𝑟 + 1) ∈ 𝑅𝑖,
let 𝜆𝑖(𝑟+1)𝑠 = 𝑚𝑎𝑥{𝛬𝑖(𝑟+1)

𝑘 ∋ 𝜆𝑖(𝑟+1)𝑠 | ℎ𝑖(𝑟+1)
𝑠 < ℎ𝑖𝑟

𝑝 + 𝑙𝑟}, define
𝜆𝑖(𝑟+1)𝑠′ = [ℎ𝑖(𝑟+1)

𝑠 , ℎ𝑖𝑟
𝑝 + 𝑙𝑟) and 𝜆𝑖(𝑟+1)𝑠′′ = [ℎ𝑖𝑟

𝑝 + 𝑙𝑟, ℎ𝑖(𝑟+1)
𝑠+1), set 𝛬𝑖(𝑟+1)

𝑘 =
𝛬𝑖(𝑟+1)

𝑘 ⧵ {𝜆𝑖(𝑟+1)𝑠 } ∪ {𝜆𝑖(𝑟+1)𝑠′ , 𝜆𝑖(𝑟+1)𝑠′′ }.

Set 𝑉𝑘+1 = 𝑉𝑘 and 𝐸𝑘+1 = 𝐸𝑘
𝑘 = 𝑘 + 1

4.5. Convergence of the algorithm

We now show that the DDD-TRP converges to the optimal solution
n a finite number of steps. We remark that our approach for solving
he TRP can be also seen as a dual procedure with both row and column
enerations. At each iteration 𝑘, a restricted relaxation of the basic
roblem is solved, if the solution cannot be converted into a feasible
olution for the original formulation (at least) a row is added to the
onstraints groups and (at least) a new variable is generated and added
o the problem 𝐷𝑘+1. Otherwise, Theorem 1 ensures that a solution of
he same value can be obtained for the TRP. In particular, we prove the
ollowing:

heorem 2. The DDD-TRP terminates providing the optimal solution of
he TRP or proving that the problem is infeasible.
10
roof. Theorem 1 shows that at each iteration 𝑘 of the DDD-TRP, the
value of the optimal solution 𝑆∗

𝑘 defines a lower bound on the value of
the optimal solution of the TRP. At the first iteration of the algorithm,
if the heuristic mechanism fails to produce a feasible solution at step
3, we can conclude that the problem is infeasible. Otherwise, each
partition 𝛬𝑖𝑟 is defined by one interval (see Section 4.1). As shown
in Section 4.4, at each iteration 𝑘, we add at least one interval to
the current set 𝛬𝑘. Since the running time values 𝑙𝑟𝑡 are assumed to
be integral, the maximum number of intervals that can be defined for
each resource 𝑟 ∈ 𝑅𝑖 is then 𝑀 . Therefore, Observation 1 implies that,
after at most ∑

𝑖∈𝐼 |𝑅𝑖|𝑀 iterations, the DDD-TRP terminates either
providing the optimal solution for the TRP. □

5. Computational experiments

In this section, we report the results of the computational exper-
iments conducted to assess the performance of the DDD approach in
the train re-scheduling context and compare it with alternative ap-
proaches, especially the Big-𝑀 approach, which is the main alternative
competitor.

We solve the DDD-TRP using both a MILP solver and a MaxSAT
solver to compare their effectiveness.

The test set consists of 72 real-life instances derived from two
single-track railroad networks, later named Line A and Line B, of the
Norwegian railway. More details are given below.

5.1. Instances

The instances considered refer to portions of a physical railway
network infrastructure, comprising stations and single-tracks, and in-
cluding junctions between different lines. The lengths of tracks may
vary considerably. A set of trains with different speed classes traverses
the network. For each of them, we are given a desired timetable. At
a given instant in time, the state of the network is provided by the
current position of all trains and their deviations from the scheduled
departure times. Note that when taking a snapshot of the network at a
particular instant, a train may be on time, i.e. its arrival and departure
times adhere to the timetable schedule, or it may be affected by a
delay. Besides, a train can be either positioned at a station (i.e. in
station) or on an open line track (i.e. in connection). In the second case,
the delay refers to the time at which the train entered the last track
segment traversed, i.e. the one it is occupying at that moment. We do
not consider the possibility of accelerating or decelerating the rolling
stock, therefore we consider the train speeds, and consequently the
train travel time, as fixed.

Line A is a 124 km long line for passenger trains and includes 30
stations and 33 track segments. The A-instances present on average
a set of 20 trains with an average of 19 track segments each. Line
B is smaller (115 km, 20 stations and 25 tracks) and is crossed by
commuters and freight trains. The B-instances present, on average, 11
trains and 15 track segments for each scheduled path. See Table D.1 in
Appendix D for more details about the original 24 test instances. We
emphasize that, since the instances of Line A include in most of cases
more trains than those belonging to Line B, the number of potential
conflicting track segments can be significantly higher for them, thus
they will produce more complex models.

The snapshots were extracted from the real-time train information
system of the Norwegian railway. Most of the time, most of the trains
are running on time, which makes the re-scheduling problem easy: sim-
ply follow the prescribed timetable. So, a random sampling of snapshots
would not be an interesting benchmark. Real-time train re-scheduling
optimization systems will have harder challenges and more value to
the dispatchers when many trains have large delays. When large delays
happen, there are many more possible trade-offs to make between de-
lays on different trains, and the optimization search tree becomes much

larger. To simulate a more difficult setting, we first modified all 24

Computers and Operations Research 167 (2024) 106679A.L. Croella et al.

s
S
a

t
o
b
t
c
s
o
r
e
i
6
t
M
i

L
s
f
t
s
a
d
F
a
c

S
p
w
p
i
a

o
i
t
f

instances to have a mandatory dwelling time in the station equal to the
timetable dwelling time. This removes the possibility for trains to catch
up with their delay by shorter dwelling times. Secondly, we created a
third set of 24 instances with increased running time for travelling from
one station to the next, without adjusting the timetable accordingly, to
simulate slow-downs. Such slow-downs may for example be caused by
signalling equipment faults. The problem instances are available (see
https://github.com/luteberget/maxsattrainscheduling).

In the following, we denote the original instance set as O, the
et of instances with mandatory dwelling time added to stations as
, and the set of instances obtained by adding extra time to tracks
s T. We will refer to the instances with the notation 𝑙

𝑛, where, by
𝑙 ∈ {𝐴𝑂,𝐵𝑂,𝐴𝑆,𝐵𝑆,𝐴𝑇 , 𝐵𝑇 } we indicate the line (A,B) and the test
set (O,S,T) to which they belong, and by the subscript 𝑛 ∈ {1,… , 12}
the instance number.

Objective functions. Following the normal practice in the railway in-
dustry, we minimize the delays of trains only at their final destination
stations. We ran the computational experiments using the objective
functions defined in Section 2. To model the three functions, in the Big-
𝑀 formulation we introduced one continuous variable and one linear
inequality for each 𝑡𝑖𝑓 (Linear continuous), one integer variable and
one linear inequality for each 𝑡𝑖𝑓 (Linear rounded), and one binary
variable per step (Stepwise).

The DDD-TRP implements each of these cost functions by simply
evaluating them for each new binary variable that is added to the
problem, and adding the corresponding objective component for the
binary variable.

5.2. Computational results and discussion

This section reports the computational results for the Gurobi Big-
𝑀model, the Gurobi IAP MILP model, and the MaxSAT incremental
RC2 DDD model. A timeout of 2 min was used.

We highlight that the algorithms work by iteratively removing
conflicts (infeasibility) while increasing the lower bound and using the
primal repair heuristic introduced in Section 4.3 to possibly produce
feasible solutions during the search. The repair heuristic is also used in
the Big-𝑀 row generation algorithm, also there taking lower bounds
from the optimal solution of the relaxed problem solved at every itera-
tion. On some instances, both for the DDD and Big-𝑀 implementations,
the heuristic causes the solver to terminate earlier by closing the gap.
On instances where the solvers timed out, the heuristic produced a
feasible solution in all cases, and the remaining optimality gap is
reported in the tables of Appendix D.

For a complete list of all tested combinations of formulations and
solvers, we direct interested readers to Appendix B.

In our experiments, we observe that the number of iterations and
the number of solved conflicts can vary significantly from instance to
instance. Both these indicators affect the overall solution time. In fact,
at each iteration 𝑘, a new IAP has to be solved and its complexity grows
with the number of nodes and edges defined in 𝐺𝑘. We observe that the
DDD-TRP solved with a MaxSAT approach requires a higher number of
iterations before it finishes. This can be explained by two causes: first,
the number includes both refinements of the IAP graph 𝐺𝑘 (when the
SAT solver finds a feasible solution), and refinements of the objective
function (when the SAT solver reports an infeasible problem), due to
how the RC2 algorithm works. Secondly, we implemented only the least
amount of refinement of the graph 𝐺𝑘 required, omitting step 3-(iv)
of DDD-TRP. Because the SAT solver handles incremental additions to
its problem instance well, we believe this to give only a negligible
performance impact (including step 3-(iv)). Both the SAT and MILP
versions of the DDD-TRP spend most of their time in the solving phase
and only a very small fraction of time (<3%) on building, conflicts
11

checking and refining the IAPs.
Table 1
Number of instances solved and average computational times for the three algorithms,
aggregated by objective types and test sets.

Obj Set # Solved Avg time (ms)

Big-𝑀 MILP MaxSAT Big-𝑀 MILP MaxSAT

Cont.

O 24 22 22 181 5,511 1334
S 22 20 19 1285 5,893 349
T 22 18 16 2929 15,041 8524

All 68 60 57 1427 8,497 3024

O 24 22 24 132 722 34

Round.
S 22 21 22 1857 7,505 856
T 22 19 22 2902 8,501 1787

All 68 62 68 1587 5,403 867

O 24 24 24 55 283 14

Step.
S 24 22 24 251 5,768 49
T 24 19 24 347 774 73

All 72 65 72 218 2,283 45

Fig. 8 shows the performance profiles of the three algorithms for
each of the objective types — linear continuous, linear rounded, and
stepwise, respectively. Aggregated statistics for the test instances are
provided in Table 1. For a comprehensive overview of computational
results, please refer to Tables D.2-D.4 within Appendix D.

Linear continuous objective. Examining the performance of the Big-𝑀
formulation with the linear objective, it is observed that the MaxSAT
solver for the DDD-TRP emerges as the fastest approach in 60% of the
problems within the test sets. However, for the remaining instances,
the Big-𝑀 formulation exhibits superior performance. We believe this
o be a general weakness with exact weighted MaxSAT based directly
n standard SAT solvers because such algorithms (including RC2) work
y finding logical conflicts between subsets of components of the objec-
ive and creating cardinality constraints (linear constraints), which are
ostly to translate into SAT. When weights vary a lot, such as a cost of 1-
delay for one train in conflict with a delay of 10 min for another train,
r when conflicts span over a large subset of the objective components,
epresenting this trade-off exactly as SAT constraints is computationally
xpensive. On the contrary, the MILP solver demonstrates superiority
n handling such intricate numerical structures, successfully resolving
0 out of 72 instances. Nevertheless, despite its efficiency in solving,
he MILP solver exhibits significantly slower performance, with the
axSAT solver being on average 20 times faster for the 57 instances

t successfully addressed.

inear rounded objective. When we change the objective function to the
tepwise and linear rounded forms, the picture changes completely in
avour of the MaxSAT. In Table 1, it is observed that when employing
he linear rounded objective, all the problem instances successfully
olved by Big-𝑀 were also resolved by DDD-TRP using the MaxSAT
pproach (68 out of 72 instances). Notably, the MaxSAT approach
emonstrated superior speed, typically ranging from 2x to 10x faster.
urthermore, the MILP solver exceeds the time limit for ten instances
nd consistently exhibits the highest computational time among the
onsidered approaches.

tepwise objective. In the case of the stepwise objective function, com-
utation times are notably lower overall, with all instances solved
ithin the timeout threshold for both the Big-𝑀 and MaxSAT ap-
roaches. In contrast, the MILP solver exceeds the timeout for seven
nstances out of 72. The MaxSAT DDD-TRP is the fastest approach over
ll instances, with a speed-up of 2x-20x over the Big-𝑀 .

In Table 2 we report a comparison of computation times (in millisec-
nds) for the stepwise function, focusing on the ten most challenging
nstances in our set, which demand the most time for the Big-𝑀model
o solve. We can see how employing the MaxSAT solver with a stepwise
unction significantly impacts computation times.

https://github.com/luteberget/maxsattrainscheduling

Computers and Operations Research 167 (2024) 106679A.L. Croella et al.
Fig. 8. Performance profiles based on the CPU times of solved instances.
Table 2
Comparison of the computation times obtained by the Big-𝑀 MILP and MaxSAT
approaches on the 10 hardest instances with a stepwise objective function.

Instance Time (ms) Speed-up

Big-𝑀 MILP MaxSAT Big-𝑀 MILP

𝐴𝑇
1 2204 8 376 188 11.7× 44.6×

𝐴𝑇
2 753 1 997 58 12.9× 34.2×

𝐴𝑇
8 7953 59 085 210 37.9× 281.4×

𝐴𝑇
11 T/O [3% gap] 108 005 396 – 272.8×

𝐴𝑇
12 14 680 63 967 540 27.2× 118.4×

𝐴𝑆
1 10 559 3 901 223 47.4× 17.5×

𝐴𝑆
2 474 1 923 116 4.1× 16.5×

𝐴𝑆
8 4099 7 816 215 19.1× 36.4×

𝐴𝑆
11 18 297 11 073 437 41.9× 25.3×

𝐴𝑆
12 6137 30 737 286 21.4× 107.4×

This suggests a way to extend the DDD-TRP to a dual approach
where the objective function is gradually extended from a single step to
the full linear rounded objective. Simple step function objectives can be
solved much faster and can provide feasible train schedules in case the
exact optimal solution takes too long to compute in a real-time setting.
The model resolution speed is crucial when applied to the dynamic
solution of train dispatching problems. In this case, a new instance is
generated from the field every ten seconds or so (Lamorgese et al.,
2018). Typically instances only slightly change over time; therefore,
one can refine the last instance generated during the previous resolu-
tion process, aiming to generate only a few new intervals. In Mannino
and Sartor (2020) one can observe that this approach proved to be
successful when extending the Path&Cycle formulation to cope with
dynamic instances of the TRP.
12
6. Conclusions and future work

This paper demonstrates how the dynamic discretization paradigm
can be adapted to make TI formulations competitive with the Big-𝑀
formulations in the train dispatching field. When the objective function
is piecewise constant, our approach outperforms the Big-𝑀 formulation
on all the problem instances in our set of real-world models and data.

We achieved better performance using a MaxSAT solver instead
of a MILP solver; we believe this is due to the way that SAT solvers
can solve a sequence of incrementally constructed problem instances
very efficiently. Indeed, this is crucial for many, if not most, industrial
applications of SAT solvers (see Kochemazov et al., 2021). Our DDD-
TRP represents the first application of MaxSAT to train re-scheduling
(some work has been done on periodic railway timetabling, see Reisch,
2021). Going forward, we would like to investigate in more detail how
MILP solvers are affected by small, incremental changes in the problem
instance, and see if there is a way to make MILP solvers work efficiently
with the DDD-TRP.

It follows a very natural road map for future studies and devel-
opments. First, adapt the approach to handle dynamic problems and
re-optimization. The refinement of the interval between one iteration
and the next can be seen as a decomposition, so one can ask how to
fit previously generated resolution cuts to new partial models. Also,
fixed variable values retrieved in the preprocessing (solving) phase (or
previously calculated bounds) can be exploited for those elements that
are not directly ‘‘involved’’ in the conflicts solved at a generic iteration
𝑘. Second, develop techniques to limit the generation of intervals at
each iteration. It can be shown that only a small subset of the intervals
defined for the last IAP solved is sufficient to find an overall feasible
(and thus optimal) solution. Third, it is possible to speed up the algo-
rithm by selecting different and/or multiple time points in the intervals.
Currently, we obtain the optimal solution by assigning each interval
its lower end, but we can also make different choices and possibly

Computers and Operations Research 167 (2024) 106679A.L. Croella et al.
obtain a faster yet feasible solution. Fourth, the described methodology
applies to every job-shop scheduling problem, so it is logical to extend
it to cope with other contexts, such as industrial production or project
scheduling.

CRediT authorship contribution statement

Anna Livia Croella: Writing – review & editing, Writing – original
draft, Visualization, Data curation, Conceptualization. Bjørnar Lute-
berget: Writing – review & editing, Writing – original draft, Software,
Data curation, Conceptualization. Carlo Mannino: Writing – review
& editing, Writing – original draft, Methodology, Formal analysis,
Conceptualization. Paolo Ventura: Writing – review & editing, Writing
– original draft, Methodology, Investigation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The authors confirm that the data supporting the findings of this
study are available within the article and its supplementary materials.
The data do not violate the protection of human subjects, or other valid
ethical, privacy, or security concerns.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.cor.2024.106679.

References

Abels, D., Jordi, J., Ostrowski, M., Schaub, T., Toletti, A., Wanko, P., 2021. Train
scheduling with hybrid answer set programming. Theory Pract. Log. Program. 21
(3), 317–347. http://dx.doi.org/10.1017/S1471068420000046.

Bacchus, F., Järvisalo, M., Martins, R., 2019. MaxSAT evaluation 2018: New devel-
opments and detailed results. J. Satisf. Boolean Model. Comput. 11 (1), 99–131.
http://dx.doi.org/10.3233/SAT190119.

Bešinović, N., Goverde, R.M., Quaglietta, E., Roberti, R., 2016. An integrated
micro–macro approach to robust railway timetabling. Transp. Res. B 87, 14–32.

Bettinelli, A., Santini, A., Vigo, D., 2017. A real-time conflict solution algorithm for the
train rescheduling problem. Transp. Res. B 106, 237–265.

Björk, M., 2011. Successful SAT encoding techniques. J. Satisf. Boolean Model. Comput.
7 (4), 189–201. http://dx.doi.org/10.3233/sat190085.

Boland, N., Hewitt, M., Marshall, L., Savelsbergh, M., 2017. The continuous-time service
network design problem. Oper. Res. 65 (5), 1303–1321.

Boland, N.L., Savelsbergh, M.W., 2019. Perspectives on integer programming for
time-dependent models. Top 27 (2), 147–173.

Cacchiani, V., Toth, P., 2018. Robust train timetabling. In: Handbook of Optimization
in the Railway Industry. Springer, pp. 93–115.

Caimi, G., Fuchsberger, M., Laumanns, M., Lüthi, M., 2012. A model predictive control
approach for discrete-time rescheduling in complex central railway station areas.
Comput. Oper. Res. 39 (11), 2578–2593.

Croella, A.L., 2022. Real-Time Train Scheduling: Reactive and Proactive Algorithms for
Safe and Reliable Railway Networks (Ph.D. thesis). Sapienza University of Rome,
Department of Computer, Control, and Management Engineering Antonio Ruberti
(DIAG), Italy.

Croella, A.L., Mannino, C., Ventura, P., 2021. Dynamic discretization discovery for the
train scheduling problem. In: RailBeijing 2021, the 9th International Conference on
Railway Operations Modelling and Analysis (ICROMA), Beijing, China, November
3 - 7, 2021, Conference Proceedings.

Croella, A.L., Sasso, V., Lamorgese, L., Mannino, C., Ventura, P., 2022. Disruption
management in railway systems by safe place assignment. Transp. Sci. 56, http:
//dx.doi.org/10.1287/trsc.2021.1107.

Dash, S., Günlük, O., Lodi, A., Tramontani, A., 2012. A time bucket formulation for
the traveling salesman problem with time windows. INFORMS J. Comput. 24 (1),
132–147.

Desaulniers, G., Desrosiers, J., Solomon, M.M., 2006. Column Generation, vol. 5,
Springer Science & Business Media.
13
Fang, W., Yao, X., 2015. A survey on problem models and solution approaches to
rescheduling in railway networks. IEEE Trans. Intell. Transp. Syst. 16, 2997–3016.
http://dx.doi.org/10.1109/TITS.2015.2446985.

Fischetti, M., Monaci, M., 2009. Light robustness. In: Robust and Online Large-Scale
Optimization. Springer, pp. 61–84.

Gao, R., Niu, H., 2021. A priority-based ADMM approach for flexible train schedul-
ing problems. Transp. Res. C 123, 102960. http://dx.doi.org/10.1016/j.trc.2020.
102960.

Hansen, I.A., Pachl, J., 2014. Railway Timetabling & Operations. Eurailpress, Hamburg.
Harrod, S., 2011. Modeling network transition constraints with hypergraphs. Transp.

Sci. 45 (1), 81–97.
Harrod, S., 2012. A tutorial on fundamental model structures for railway timetable

optimization. Surv. Oper. Res. Manag. Sci. 17 (2), 85–96.
Hewitt, M., 2019. Enhanced dynamic discretization discovery for the continuous time

load plan design problem. Transp. Sci. 53 (6), 1731–1750.
Ignatiev, A., Morgado, A., Marques-Silva, J., 2019. RC2: an efficient MaxSAT solver.

J. Satisf. Boolean Model. Comput. 11 (1), 53–64. http://dx.doi.org/10.3233/
SAT190116.

Kochemazov, S., Ignatiev, A., Marques-Silva, J., 2021. Assessing progress in SAT solvers
through the lens of incremental SAT. In: Li, C., Manyà, F. (Eds.), Theory and
Applications of Satisfiability Testing - SAT 2021 - 24th International Conference,
Barcelona, Spain, July 5-9, 2021, Proceedings. In: Lecture Notes in Computer
Science, Vol. 12831, Springer, pp. 280–298. http://dx.doi.org/10.1007/978-3-030-
80223-3_20.

Lamorgese, L., Mannino, C., 2015. An exact decomposition approach for the real-time
train dispatching problem. Oper. Res. 63 (1), 48–64.

Lamorgese, L., Mannino, C., Natvig, E., 2017. An exact micro–macro approach to cyclic
and non-cyclic train timetabling. Omega 72, 59–70.

Lamorgese, L., Mannino, C., Pacciarelli, D., Krasemann, J.T., 2018. Train dispatching.
Handb. Optim. Railw. Ind. 265–283.

Lamorgese, L., Mannino, C., Piacentini, M., 2016. Optimal train dispatching by Benders’
like reformulation. Transp. Sci. 50 (3), 910–925.

Leutwiler, F., Corman, F., 2022. A logic-based benders decomposition for microscopic
railway timetable planning. European J. Oper. Res..

Li, C.M., Manyà, F., 2021. MaxSAT, hard and soft constraints. In: Biere, A., Heule, M.,
van Maaren, H., Walsh, T. (Eds.), Handbook of Satisfiability - Second Edition.
In: Frontiers in Artificial Intelligence and Applications, Vol. 336, IOS Press, pp.
903–927. http://dx.doi.org/10.3233/FAIA201007.

Lusby, R.M., Larsen, J., Ehrgott, M., Ryan, D.M., 2013. A set packing inspired
method for real-time junction train routing. Comput. Oper. Res. 40 (3), 713–724.
http://dx.doi.org/10.1016/j.cor.2011.12.004, URL https://www.sciencedirect.com/
science/article/pii/S0305054811003595, Transport Scheduling.

Lusby, R., Larsen, J., Ryan, D., Ehrgott, M., 2011. Routing trains through railway
junctions: A new set-packing approach. Transp. Sci. 45, 228–245. http://dx.doi.
org/10.1287/trsc.1100.0362.

Mannino, C., Mascis, A., 2009. Optimal real-time traffic control in metro stations. Oper.
Res. 57 (4), 1026–1039.

Mannino, C., Nakkerud, A., 2023. Optimal train rescheduling in Oslo central station.
Omega 116.

Mannino, C., Sartor, G., 2020. An exact (re) optimization framework for real-time traffic
management. optim. Online.

Marshall, L., Boland, N., Savelsbergh, M., Hewitt, M., 2021. Interval-based dynamic
discretization discovery for solving the continuous-time service network design
problem. Transp. Sci. 55 (1), 29–51.

Mascis, A., Pacciarelli, D., 2002. Job-shop scheduling with blocking and no-wait
constraints. European J. Oper. Res. 143 (3), 498–517.

Matos, G.P., Albino, L.M., Saldanha, R.L., Morgado, E.M., 2021. Solving periodic
timetabling problems with SAT and machine learning. 13, (3), pp. 625–648.
http://dx.doi.org/10.1007/s12469-020-00244-,

Meng, L., Zhou, X., 2014. Simultaneous train rerouting and rescheduling on an N-track
network: A model reformulation with network-based cumulative flow variables.
Transp. Res. B 67, 208–234.

Pellegrini, P., Marlière, G., Rodriguez, J., 2014. Optimal train routing and scheduling
for managing traffic perturbations in complex junctions. Transp. Res. B 59, 58–80.

Prestwich, S.D., 2021. CNF encodings. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (Eds.), Handbook of Satisfiability - Second Edition. In: Frontiers in
Artificial Intelligence and Applications, Vol. 336, IOS Press, pp. 75–100. http:
//dx.doi.org/10.3233/FAIA200985.

Queyranne, M., Schulz, A.S., 1994. Polyhedral Approaches to Machine Scheduling.
Citeseer.

Reisch, J., 2021. Railway Timetable Optimization (Ph.D. thesis). Freie Universität
Berlin, URL http://dx.doi.org/10.17169/refubium-30524.

Reynolds, E., Ehrgott, M., Maher, S.J., Patman, A., Wang, J.Y., 2020. A multicommodity
flow model for rerouting and retiming trains in real-time to reduce reactionary
delay in complex station areas. Optim. Online.

Roussel, O., Manquinho, V.M., 2021. Pseudo-Boolean and cardinality constraints. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (Eds.), Handbook of Satisfiability
- Second Edition. In: Frontiers in Artificial Intelligence and Applications, Vol. 336,
IOS Press, pp. 1087–1129. http://dx.doi.org/10.3233/FAIA201012.

2019. SBB swiss federal railways - train schedule optimisation challenge. https://www.
aicrowd.com/challenges/train-schedule-optimisation-challenge.

https://doi.org/10.1016/j.cor.2024.106679
http://dx.doi.org/10.1017/S1471068420000046
http://dx.doi.org/10.3233/SAT190119
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb3
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb3
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb3
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb4
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb4
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb4
http://dx.doi.org/10.3233/sat190085
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb6
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb6
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb6
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb7
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb7
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb7
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb8
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb8
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb8
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb9
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb9
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb9
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb9
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb9
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb10
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb10
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb10
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb10
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb10
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb10
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb10
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb11
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb11
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb11
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb11
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb11
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb11
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb11
http://dx.doi.org/10.1287/trsc.2021.1107
http://dx.doi.org/10.1287/trsc.2021.1107
http://dx.doi.org/10.1287/trsc.2021.1107
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb13
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb13
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb13
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb13
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb13
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb14
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb14
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb14
http://dx.doi.org/10.1109/TITS.2015.2446985
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb16
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb16
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb16
http://dx.doi.org/10.1016/j.trc.2020.102960
http://dx.doi.org/10.1016/j.trc.2020.102960
http://dx.doi.org/10.1016/j.trc.2020.102960
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb18
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb19
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb19
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb19
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb20
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb20
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb20
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb21
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb21
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb21
http://dx.doi.org/10.3233/SAT190116
http://dx.doi.org/10.3233/SAT190116
http://dx.doi.org/10.3233/SAT190116
http://dx.doi.org/10.1007/978-3-030-80223-3_20
http://dx.doi.org/10.1007/978-3-030-80223-3_20
http://dx.doi.org/10.1007/978-3-030-80223-3_20
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb24
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb24
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb24
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb25
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb25
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb25
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb26
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb26
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb26
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb27
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb27
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb27
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb28
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb28
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb28
http://dx.doi.org/10.3233/FAIA201007
http://dx.doi.org/10.1016/j.cor.2011.12.004
https://www.sciencedirect.com/science/article/pii/S0305054811003595
https://www.sciencedirect.com/science/article/pii/S0305054811003595
https://www.sciencedirect.com/science/article/pii/S0305054811003595
http://dx.doi.org/10.1287/trsc.1100.0362
http://dx.doi.org/10.1287/trsc.1100.0362
http://dx.doi.org/10.1287/trsc.1100.0362
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb32
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb32
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb32
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb33
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb33
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb33
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb34
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb34
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb34
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb35
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb35
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb35
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb35
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb35
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb36
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb36
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb36
http://dx.doi.org/10.1007/s12469-020-00244-
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb38
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb38
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb38
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb38
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb38
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb39
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb39
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb39
http://dx.doi.org/10.3233/FAIA200985
http://dx.doi.org/10.3233/FAIA200985
http://dx.doi.org/10.3233/FAIA200985
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb41
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb41
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb41
http://dx.doi.org/10.17169/refubium-30524
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb43
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb43
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb43
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb43
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb43
http://dx.doi.org/10.3233/FAIA201012
https://www.aicrowd.com/challenges/train-schedule-optimisation-challenge
https://www.aicrowd.com/challenges/train-schedule-optimisation-challenge
https://www.aicrowd.com/challenges/train-schedule-optimisation-challenge

Computers and Operations Research 167 (2024) 106679A.L. Croella et al.
2020. SBB swiss federal railways - flatland challenge. https://www.aicrowd.com/
challenges/flatland-challenge.

Scherr, Y.O., Hewitt, M., Saavedra, B.A.N., Mattfeld, D.C., 2020. Dynamic discretization
discovery for the service network design problem with mixed autonomous fleets.
Transp. Res. B 141, 164–195.

Schlechte, T., Borndörfer, R., Erol, B., Graffagnino, T., Swarat, E., 2011. Micro–macro
transformation of railway networks. J. Rail Transp. Plan. Manage. 1 (1), 38–48.

2023. The 2023 RAS problem solving competition. https://connect.informs.org/railway-
applications/new-item3/problem-solving-competition681.

Vu, D.M., Hewitt, M., Boland, N., Savelsbergh, M., 2020. Dynamic discretization
discovery for solving the time-dependent traveling salesman problem with time
windows. Transp. Sci. 54 (3), 703–720.
14
Vu, D.M., Hewitt, M., Vu, D.D., 2022. Solving the time dependent minimum tour dura-
tion and delivery man problems with dynamic discretization discovery. European
J. Oper. Res. 302 (3), 831–846. http://dx.doi.org/10.1016/j.ejor.2022.01.029, URL
https://www.sciencedirect.com/science/article/pii/S0377221722000674.

Wang, X., Regan, A.C., 2002. Local truckload pickup and delivery with hard time
window constraints. Transp. Res. B 36 (2), 97–112.

Zhan, S., Wong, S., Shang, P., Peng, Q., Xie, J., Lo, S., 2021. Integrated railway
timetable rescheduling and dynamic passenger routing during a complete blockage.
Transp. Res. B 143, 86–123. http://dx.doi.org/10.1016/j.trb.2020.11.006, URL
https://www.sciencedirect.com/science/article/pii/S0191261520304264.

https://www.aicrowd.com/challenges/flatland-challenge
https://www.aicrowd.com/challenges/flatland-challenge
https://www.aicrowd.com/challenges/flatland-challenge
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb47
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb47
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb47
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb47
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb47
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb48
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb48
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb48
https://connect.informs.org/railway-applications/new-item3/problem-solving-competition681
https://connect.informs.org/railway-applications/new-item3/problem-solving-competition681
https://connect.informs.org/railway-applications/new-item3/problem-solving-competition681
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb50
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb50
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb50
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb50
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb50
http://dx.doi.org/10.1016/j.ejor.2022.01.029
https://www.sciencedirect.com/science/article/pii/S0377221722000674
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb52
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb52
http://refhub.elsevier.com/S0305-0548(24)00151-5/sb52
http://dx.doi.org/10.1016/j.trb.2020.11.006
https://www.sciencedirect.com/science/article/pii/S0191261520304264

	A MaxSAT approach for solving a new Dynamic Discretization Discovery model for train rescheduling problems
	Introduction
	Time-Indexed formulation for the Train Re-scheduling Problem
	Problem Definition
	A full TI formulation

	The Dynamic Discretization Discovery method
	The Λ-Interval Assignment Problem
	A 0,1-LP for the Interval Assignment Problem
	A basic MaxSAT formulation for the Interval Assignment Problem
	A MaxSAT reformulation using lower bound variables

	The algorithmic framework
	Initialize the DDD-TRP (Step 1)
	Solve the IAP (Step 2)
	Repair an infeasible schedule (Step 3)
	Refine the IAP (Step 4)
	Convergence of the algorithm

	Computational experiments
	Instances
	Computational results and discussion

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A. Supplementary data
	References

