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Adaptive Pseudoinverse Observers for Output
Redundant Discrete-Time Linear Systems

Andrea Cristofaro , Senior Member, IEEE, and Luca Zaccarian , Fellow, IEEE

Abstract—We address the problem of output redundancy
in discrete-time linear systems, with the aim of obtaining
an optimized combination of sensors for structurally reject-
ing certain disturbances.We frame our goal as the design
problem of a nonlinear observer consisting in a linear Lu-
enberger structure augmented with an adaptive weighted
pseudoinverse combination of the available measurements.
A novel optimization algorithm is proposed for the update
of the dynamic weights of the pseudoinverse, together with
a selector that overrides the optimizer whenever the pseu-
doinverse becomes close to being singular. Numerical sim-
ulations on the case study of a discrete-time mechanical
system support and validate the proposed architecture.

Index Terms—Adaptive systems, linear system ob-
servers, optimization algorithms, output redundancy.

I. INTRODUCTION AND MOTIVATION

THE presence of redundant inputs and outputs in a control
system allows considering secondary objectives, handling

critical conditions such as faults or loss of power, and coping
with operational or physical constraints. Input redundancy has
been widely investigated, to a large extent in the framework of
control allocation [1], [2], which is a modular setup where the
properties of a redundant set of inputs are exploited in order
to formulate a constrained optimization scheme that incorpo-
rates both primary and secondary control objectives, see, for
instance, [3], [4], [5], [6], [7], [8], and the references therein.
Fault-tolerant control allocation methods have been proven to
be fairly efficient. In particular, having additional degrees of
freedom in the control design might be a key advantage in the
presence of faults because the generation of the commanded
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input can be redistributed on healthy devices [9], [10], [11],
[12], [13].

Differently, output allocation, or dual redundancy, is a less
explored problem yet interesting and insightful [14]. Methods
like the Kalman filter and the extended Kalman filter [15],
which aim at the minimization of the covariance error, natu-
rally benefit from the presence of redundant outputs. However,
such redundancy is typically left unexploited and just implicitly
used without a quantitative advantage. On the other hand, in
the case of actuator redundancy, the clever use of redundant
outputs might facilitate the accommodation of sensor faults and
or the compensation for biased measurements. In this perspec-
tive, some interesting results pertaining safety and reliability of
autonomous marine systems have been proposed in [16].

Sensor fault diagnosis is universally recognized as a challeng-
ing problem, since no unquestionable methods exist to establish
whether a sensor is faulty or not, based on the measured output.
Several approaches have been proposed [17], such as robust
observers [18], [19], consensus-based schemes [20], adaptive
approximation [21], [22], [23], or statistical methods [24]. Ro-
bust observers are typically designed for systems with structured
faults by exploiting underlying geometric properties that may
lead to a complete fault decoupling, whereas the basic idea of
consensus-based approaches is to regard as more trustworthy
measurements on which the largest group of sensors agree.

The approach discussed in this article arises from a somewhat
naive observation: among all the possible combinations of a
redundant set of outputs, there are certain ones that result in
being less sensitive or even insensitive to a given constant
bias, or even any time-varying bias preserving the direction
in the output space with nonconstant amplitude (e.g., due to
electromagnetically induced noise with constant coupling but
time-varying amplitude). On the other hand, as the bias signal is
typically unknown and hardly predictable, such optimal combi-
nations are likely to be unknown too. In general, when neither
faults nor external perturbations are present, an equivalent and
full-rank lower dimensional output model can be extracted us-
ing a weighted pseudoinverse, whose weights account for the
contribution of each individual sensor. The goal of the article is
to design an adaptation scheme for such weights, with the aim
of asymptotically zeroing or, at least, minimizing the resulting
effect of the unknown bias in the output estimation error of a
given state observer. A similar paradigm has been introduced
in [25], where local results are proposed for continuous-time
systems, while a preliminary and partial solution to the discrete-
time case has been presented in [26]. As compared to [26],
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here, we provide a new architecture with a new optimizer and
a new selector dynamics, for which we can prove asymptotic
unbiased estimation and structural rejection. Our architecture is
based on the synthesis of two observers to be used in cascade: the
first one is responsible for estimating the bias, while the second
one reconstructs the state of the system by performing the output
allocation based on a novel line-search optimization algorithm
for a quadratic function whose global minimum encodes the
best selection of weights in the pseudoinverse. While our main
results are stated for the case of a constant bias, our solution is
shown to be readily capable of handling different kinds of output
perturbations, such as sensor faults or outliers [27], as shown in
our numerical results. It is also worth stressing that a separation
principle naturally holds for the proposed observer when used
in combination with a feedback controller, allowing to shape
separately the closed-loop performances of the feedback control
system and of the estimation error.

The rest of this article is organized as follows. In Section II,
the problem is formally stated, and the design of the asymptotic
bias estimator is addressed in Section III. A general architecture
for an observer using dynamic output allocation is exploited
in Section IV, while a specific minimization algorithm that
converges to the optimal weights is formulated in Section V-A.
The description and characterization of the overall observation
scheme are reported in Section VI. In Section VII, some numer-
ical examples illustrate the proposed solution and validate the
theoretical results. Finally, Section VIII concludes this article.

Notations: Symbol R (R≥0) denotes the (nonnegative) real
numbers, and symbol Z (Z≥0) denotes the (nonnegative) integer
numbers. Rp denotes the p-dimensional Euclidean space and
ei, i = 1, . . ., p, denote the vectors of the canonical basis of
R

p. The symbol 1n1×n2
indicates the matrix in R

n1×n2 whose
entries are all 1, while In stands for the identity matrix of
dimension n even though the subscript n is often omitted. Given
a matrix M , rk(M) denotes its rank and Im(M) denotes its
image. The n-dimensional unit sphere and the open unit ball are
indicated, respectively, with S

n and B
n with

S
n := {ζ ∈ R

n+1 : |ζ| = 1}
B
n := {ζ ∈ R

n : |ζ| < 1}

so that Sn−1 = ∂Bn. Given a vector v = [v1 · · · vn1
]T ∈ R

n1

we denote by diag(v) ∈ R
n1×n1 the diagonal matrix whose en-

tries are the elements of v. For a discrete time system, we denote
x+ = f(x) as a shortcut notation for x(k + 1) = f(x(k)), with
discrete time k ∈ Z≥0. This shortcut notation allows omitting
the explicit dependence on (discrete) time k, except for when it
helps the clarity of exposition.

II. PROBLEM DEFINITION

Let us consider the linear time-invariant discrete-time plant

x+ = Ax+Bu

y = Cx+ ϕ (1)

where x ∈ R
n, u ∈ R

m, and y ∈ R
p are the state, input, and

output of the plant, respectively. A, B, and C are matrices of
appropriate dimensions and ϕ ∈ R

p is an unknown but constant
bias affecting the output.

For plant (1), we assume that the output y is redundant, in
the sense that some measurements are linear combinations of
the other ones. We also assume that the state of the plant is
detectable from y (otherwise no state estimation could be possi-
ble). Finally, we assume that the constant bias/fault ϕ can be
detected from output y, which corresponds to requiring that
matrix A cannot generate constant responses (namely, it has
no eigenvalues equal to 1). These assumptions are formalized
below.

Assumption 1: Plant (1) is such that the following holds.
1) Output redundancy: the output is redundant, namely,

there exists an integer q such that q = rk(C) < p.
2) Detectability of x: pair (C,A) is detectable.
3) Detectability of ϕ: matrix A− I is nonsingular (namely,

matrix A has no eigenvalues equal to 1).
While the first property (redundancy) characterizes the pecu-

liar feature exploited in the scheme proposed in this article, and
is not necessary for estimating x and ϕ, we emphasize that the
two subsequent items in Assumption 1 are indeed necessary to
build a finite-time or asymptotic observer of x in the presence of
the unknown constant bias ϕ. In fact, condition 2) is necessary
due to standard observability theory for linear systems, while
condition 3) is necessary due to linear observability conditions
applied to the plant (1) augmented with an exosystem generating
a constant output (namely, having an eigenvalue equal to 1) and
realizing that item 3 is a necessary condition for detectability.

Under item 1 of Assumption 1, there exist matricesY ∈ R
p×q ,

H ∈ R
q×n such that

q := rk(C) = rk(H), and C = Y H. (2)

In particular, since q < p, there exists an infinite number of pairs
(Y,H) withC = Y H . For our design, we require the following
property on the selection (Y,H).

Assumption 2: Selection (Y,H) satisfies C = Y H and the
following two properties:

1) Unitary condition: the columns of Y are unitary and
satisfy Y TY = Iq;

2) Nonalignment condition: for each i = 1, . . ., p, it holds
that ei /∈ Im(Y ).

In the following sections, we will develop a line-search op-
timization algorithm along the coordinate directions ei, i =
1, . . ., p. Bearing this in mind, the nonalignment condition is
specifically meant to avoid possible saddle-points in the opti-
mization process. In this regard, it is important to stress that
Assumption 2 can always be ensured for a suitable selection
of Y , under Assumption 1, possibly by recombining the mea-
surements y and redefining matrix C. Indeed, starting from any
selection (Y◦, H◦) such thatY◦ is full column rank, the following
simple procedure can be applied:

1) let us define the unitary vectorn := p−
1
21p×1 and observe

that the space n⊥ contains none of the coordinate axis by
construction;
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2) pick an orthogonal transformation1 Σ mapping any given
unitary vector of Y ⊥ into n;

3) define H = (Y T
◦ Y◦)

1
2H◦ and Y = ΣY◦(Y T

◦ Y◦)
− 1

2 .
With such a modified selection ofH and Y , it is immediately

evident that Assumption 2 holds for a modified output matrix
Cmod = ΣC. Note also that the detectability of (C,A) coincides
with the detectability of (Cmod, A) because Σ is square and full
rank.

Example 1: To better illustrate the previous output transfor-
mation procedure, let us consider the output matrix

C =

⎡
⎢⎣1 0 0 0

0 1 0 0

1 −1 0 0

⎤
⎥⎦ . (3)

An intuitive decomposition for the output matrix is given by the
selection (Y◦, H◦) with

Y◦ =

⎡
⎢⎣1 0

0 1

1 −1

⎤
⎥⎦ , H◦ =

[
1 0 0 0

0 1 0 0

]

whereH◦ essentially keeps the two independent output channels
decoupled. Such a simple selection does not meet the unitary
condition, but performing the transformation

Y = Y◦(Y T
◦ Y◦)

− 1
2 =

[
3+

√
3

6
3−√

3
6

1√
3

3−√
3

6
3+

√
3

6 − 1√
3

]T

(4a)

H = (Y T
◦ Y◦)

1
2H◦ =

[
3+

√
3

2
√
3

−3+
√
3

2
√
3

0
−3+

√
3

2
√
3

3+
√
3

2
√
3

0

]
(4b)

we are guaranteed to deal with a selection (Y,H) where the
matrix Y satisfies Assumption 2.

For any selection of H satisfying (2), since we assume
detectability in item 2 of Assumption 1, then pair (H,A) is
also detectable and, in the absence of the bias ϕ, a full order
Luenberger observer can be designed

x̂+ = Ax̂+Bu+ L(Hx−Hx̂) (5)

where Hx can be obtained from y = Cx by premultiplication
with any pseudoinverse of Y and where L is a suitable output
error injection gain ensuring that any solution satisfies |xk −
x̂k| → 0 as k tends to +∞.

The scope of this article is to develop a design procedure for
an unbiased observer, i.e., an observer that, using the injection of
the redundant output y, guarantees the same performance as the
nominal observer (5), despite the presence of the fault/bias ϕ.

III. ASYMPTOTIC BIAS ESTIMATION

As a first ingredient of our scheme, we exploit Assumption 1
to design an asymptotic estimate ϕ̂ of the bias ϕ. To this end,
we first observe that ϕ always admits a decomposition of the

1A simple algorithm can be designed by operating on the singular value
decomposition of Y .

following form:

ϕ = Y wϕ + ϕo (6)

with wϕ ∈ R
p and where ϕo ∈ [Im(Y )]⊥ satisfies Y Tϕo = 0.

Vector ϕo can be readily extracted from the output by projecting
measurement y onto [Im(Y )]⊥ at any time k ∈ Z≥0, as follows:

ϕo = (I − Y PY )y, PY :=
(
Y TY

)−1
Y T

where PY can be well seen as projectionlike matrix. Thanks to
item 2 of Assumption 1, we can select a Luenberger gain M
such that A−MH is a Schur matrix (namely, its eigenvalues
have a magnitude smaller than one). Using this output injection
gain, we introduce an observer with the scope of estimating wϕ

ξ+ = Aξ +Bu+MPY (y − Cξ). (7a)

The asymptotic estimate ϕ̂ of ϕ can be then determined as
follows:

η := PY y −Hξ (7b)

ϕ̂ := Y (I +H(I −A)−1M)η + (I − Y PY )y (7c)

where the output gain in (7c) is well defined due to item 3
of Assumption 1. The effectiveness of (7) at estimating ϕ is
established in the next proposition.

Proposition 1: Under Assumption 1, if matrix A−MH is
Schur, then the difference ϕ̂− ϕ converges exponentially to zero
for (7).

Proof: Let us introduce the estimation error ε := x− ξ. The
error dynamics reads as

ε+ = (A−MH︸ ︷︷ ︸
:=Acl

)ε−Mwϕ. (8)

Based on the variation of constants formula (see, e.g., [28, p.
51]), and keeping in mind that Acl := A−MH being Schur
implies that

∑k
i=0A

i
cl converges exponentially (as k tends to

∞) to (I −Acl)
−1, we obtain the following form for the explicit

solution to (8):

εk = Ak
clε0 −

k−1∑
i=0

Ai
clMwϕ

= Ak
clε0+

( ∞∑
i=0

Ai
cl −

k−1∑
i=0

Ai
cl

)
Mwϕ−(I −Acl)

−1Mwϕ

= − (I −Acl)
−1Mwϕ + δk (9)

where δk := Ak
clε0 + (

∑∞
i=0A

i
cl −

∑k−1
i=0 A

i
cl)Mwϕ con-

verges exponentially to zero because Acl is Schur.
Let us also observe that, using C = Y H and (6), output η in

(7b) can be expressed as a function of ε as follows:

η = (Y TY )−1Y T (Y Hx+ ϕ︸ ︷︷ ︸
y

)−Hξ

= Hε+ (Y TY )−1Y T (Y wϕ + ϕo) = Hε+ wϕ (10)
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Fig. 1. Block diagram of the proposed estimation scheme based on
parametric pseudoinverses.

where we used Y Tϕo = 0. The identity above can be combined
with (9) to obtain

η = (I −H(I −Acl)
−1M)wϕ +Hδ := Cηwϕ +Hδ (11)

where matrix Cη can be suitably partitioned, using Woodbury’s
matrix inversion lemma, and using invertibility of I −A (from
item 3 of Assumption 1) to obtain

Cη = I −H(I −A+MH)−1M = (I +H(I −A)−1M)−1.
(12)

Combining this identity with the output equation (7c) and ex-
pression (10), we get

ϕ̂ = Y C−1
η (Cηwϕ +Hδ) + (I − Y PY )y

= Y C−1
η Hδ + Y wϕ + ϕo = Y C−1

η Hδ + ϕ

where we used (6) and where the sequence k 	→ δk converges
exponentially to zero, thus, completing the proof. �

Remark 1: Under the stronger requirement of full observ-
ability of the pair (A,H) the bias estimator may also be made
deadbeat, with σ(A−MH) = {0}. This could be a desir-
able feature to accelerate the convergence but, as a drawback,
the accuracy might deteriorate when the measurements are noisy.
As a general rule of thumb, supported by the good performances
obtained in our simulation tests, it might be preferable to shape
the bias estimator with a faster dynamics than the one of the state
observer. In this respect, one needs to bear in mind that, in order
to avoid peaks during the transient when a fast observer is used,
it might also be wise to enhance the design with an antipeaking
mechanism (see, for example, [29] and [30]). ◦

IV. OBSERVER USING ADAPTIVE PSEUDOINVERSES

In this section, we investigate the design of enhanced ob-
servers by using the estimate ϕ̂ of bias ϕ given by (7) and
simultaneously exploiting the sensor redundancy with the aim
of reducing the effect of noisy measurements and bias variations
on the estimation performance.

The proposed scheme, represented in Fig. 1 corresponds to
the cascade interconnection of the asymptotic bias estimator
presented in Section III and a nonlinear estimator based on a
parametric pseudoinverse. This second estimator is based on
the cascaded interconnection between an optimizer, having state
z ∈ R

p, followed by a selector, having state s ∈ R
p, and finally,

the observer dynamics, whose state x̂ is the unbiased estimate
of the plant state x.

A. Observer Architecture and Error System

Similar to (5), given any gain matrix L such that A− LH is
Schur, we construct the following asymptotic observer:

x̂+ = Ax̂+Bu+ LΠ(s)(y − ŷ)

ŷ = Cx̂. (13)

The additional state s ∈ R
p, whose dynamics is specified below,

is selected to perform an on-line adaptation of matrix function
Π, which corresponds to the weighted pseudoinverse

Π(s) := R(s)−1Γ(s) := (Y T diag(s)Y︸ ︷︷ ︸
=:R(s)

)−1 Y T diag(s)︸ ︷︷ ︸
=:Γ(s)

.

(14)
The goal in the selection of s is to ensure that it automatically
extracts the “best” information content among the redundant
measurements y through Π(s). To this end, we first observe that
Π(s) is scale invariant, i.e., Π(s) = Π(μs) for any scalar μ 
= 0,
and for this reason it is helpful to restrict the vector s to lie on
the unit sphere S

p−1. Moreover, we observe that map Π in (14)
is only well defined if matrix R is invertible. As a consequence,
we choose s as the output of a so-called “selector” dynamics
(see Fig. 1) whose state s is constrained to only evolve in the
following set:

Sε := {s ∈ S
p−1 : | det(R(s))| ≥ ε} (15)

which is compact because it is the intersection between the
compact set Sp−1 and a closed unbounded set.

To complete our observation scheme, we embed in the system
a further dynamical system, the “optimizer” in Fig. 1, whose
state z ∈ S

p−1 is the result of an online optimization aimed
at providing a desirable candidate for the parameter s of the
weighted pseudoinverse, as long as it belongs to the setSε where
s is allowed to evolve.

More specifically, the dynamics of the optimizer and the
selector blocks in Fig. 1 are chosen as the following inclusions:

z+ ∈ Gz(z, ϕ̂) (16)

s+ ∈ Gs(s, z) :=

⎧⎪⎨
⎪⎩
z, if z /∈ Sp−1 \ Sε

s, if z /∈ Sε

{s, z}, otherwise.

(17)

Let us first comment on the selector dynamicsGs in (17), which
selects the optimizer output z whenever z belongs to the interior
of Sε relative to S

p−1 [the notation in the first case of (17)
essentially excludes the boundary of the set in (15) relative to
S
p−1]. When z is not in the allowable set Sε for s, then the state
s remains unchanged across the jump. Finally, the third case in
(17) ensures that Gs is outer semicontinuous because it allows
for both selections of s and z at the boundary. Outer semicon-
tinuity is desirable because it induces the well-posedness of the
dynamics, thus enabling us to exploit reduction theorems [31]
in our proofs.

Let us now focus on the optimizer, whose goal is to con-
verge to a value of z ∈ S

p−1 that is in the kernel of Γ(ϕ),
as clarified below. First, we observe that for any pair v1, v2 ∈
R

p the following identity holds diag(v1)v2 = diag(v2)v1, and
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therefore:

Γ(s)ϕ = Γ(ϕ)s (18)

where Γ has been defined in (14).
By developing the output injection term in (13), we may then

appreciate the importance of the product Γ(s)ϕ. Indeed, we get,
also using (18)

LΠ(s)(y − ŷ) = LR(s)−1Γ(s)(Y Hx+ ϕ− Y Hx̂)

= LR(s)−1Γ(s)Y H(x− x̂) + LR(s)−1Γ(s)ϕ

= L(Hx−Hx̂) + LR(s)−1Γ(ϕ)s (19)

where we used R(s)−1Γ(s)Y = R(s)−1Y T diag(s)Y = I .
Combining (19) with observer (13) and plant (1), we can

introduce the error dynamics of the pseudoinverse observer,
whose states comprise the estimation error e := x− x̂, and the
optimizer and selector states z ∈ S

p−1 and s ∈ Sε, and reads

e+ = (A− LH)e+ LR(s)−1Γ(ϕ)s
s+ ∈ Gs(s, z),
z+ ∈ Gz(z, ϕ̂)

(e, s, z) ∈ E (20)

with E := R
n × Sε × S

p−1 being the (forward invariant) set
where the state (e, s, z) is allowed to evolve, and with the input
ϕ̂ ∈ R

p coming from observer (7).

B. Stability of the Error Dynamics

The error dynamics (20) illustrates the effectiveness of the
proposed solution in terms of providing an observer that, in
the presence of the unknown bias ϕ, structurally recovers the
estimation error transient experienced with the unbiased dynam-
ics (5). Such a recovery is, however, only possible if the fault
effectR(s)−1Γ(ϕ)s becomes zero, at least asymptotically. This
is achieved here by ensuring two goals: on the one hand that
the optimizer converges to an asymptotic value z� satisfying
Γ(ϕ)z� = 0, and on the other hand that such an optimal z�

is asymptotically assumed by s, through the selector dynamics
(17).

The first goal of asymptotically obtaining Γ(ϕ)z = 0 moti-
vates defining the following subset of Sp−1:

Z� := {z ∈ S
p−1 : Γ(ϕ)z = 0} (21)

and introducing a useful property of the set-valued function Gz

in (16). This property will be guaranteed, under Assumptions 1
and 2 by the construction proposed later in Section V.

Property 1: The set-valued map Gz in (16) is nonempty, lo-
cally bounded, and outer semicontinuous relative to S

p−1 × R
p.

Moreover, the following decrease condition holds:

z+ ∈ Gz(z, ϕ) ⇒ (Γ(ϕ)z+ = 0) or (|Γ(ϕ)z+| < |Γ(ϕ)z|).
(22)

Property 1 ensures that, as long as G is fed with the correct
bias signal ϕ, it produces a set of possible selections for the
next value of z, that leads to an improvement of the filtering
action in (19), unless its value is already zero. This corresponds
to ensuring a decreasing distance to the set Z� in (21).

Let us now discuss the second goal that, asymptotically, the
value z� provided by the optimizer is actually assumed by the
selector state s through dynamics (17). To this end, it is enough
to assume that the closed complement of (15), relative to S

p−1 is
disjoint from the desirable setZ�, asymptotically approached by
z. This is clarified in the next property, whose validity is studied
in various cases characterized in Section VI.

Property 2: The two closed sets Z� and Sp−1 \ Sε (both
subsets of Sp−1) are disjoint.

Since the second set considered in Property 2 coincides with
the set mentioned at the first item of the dynamics in (17), then
Property 2 ensures that for any z ∈ Z�, the inclusion in (17)
selects z rather than s for the next value s+.

Based on Properties 1 and 2, we can now state the follow-
ing result, which is a second important baseline result for the
proposed scheme. Its proof is reported in Section IV-C.

Proposition 2: If Properties 1 and 2 hold, then for any L
ensuring that A− LH is Schur, the compact set

Ae := {(e, s, z) ∈ R
n × Sε × S

p−1 :

z∈Z�,Γ(ϕ)s = 0, e = 0} (23)

is globally asymptotically stable for the error dynamics (20)
driven by ϕ̂k = ϕ for all k.

Note that dynamics (20) becomes an autonomous system
when ϕ̂k = ϕ, so that asymptotic stability of Ae is in the
classical sense.

Our main theorem below follows from Propositions 1 and 2.
Before its statement, let us revisit the error dynamics (8) and
notice that, whenever A−MH is Schur, ε converges exponen-
tially to the unique equilibrium

ε� := −(I − (A−MH))−1Mwϕ. (24)

Then, following Proposition 1 and using (10), we also obtain
that ε = ε� implies:

ϕ̂ = Y (I +H(I −A)−1M)(PY yk −Hξk) + ϕo

= Y C−1
η (wϕ +Hε�) + ϕo

= Y C−1
η (wϕ −H(I −A+MH)−1Mwϕ) + ϕo

= Y C−1
η Cηwϕ + ϕo = Y wϕ + ϕo = ϕ

where we adopted the notation in (12).
Based on the above derivations, our goal is to focus on the

following compact set:

A := {(ε, e, s, z) ∈ R
n × R

n × Sε × S
p−1 :

s = z,Γ(ϕ)z = 0, ε = ε�, e = 0} (25)

whose desirable stability properties are established in the main
result below, proven in the next section.

Theorem 1: Under Assumption 1, consider any pair of gains
M and L such that A− LH and A−MH are Schur. If Prop-
erties 1 and 2 hold, then the compact set A in (25) is globally
asymptotically stable for the ensuing error dynamics (8), (20).
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C. Proofs of Proposition 2 and Theorem 1

The proofs exploit the intrinsic cascaded structure of the
proposed observers. In particular, we will use the following
corollary of [31, Corollary 4.8].

Lemma 1: Consider a constrained nonlinear difference inclu-
sion

ξ+ ∈ Ḡ(ξ), ξ ∈ D (26)

where D is a closed subset of R
s, and Ḡ : Rs ⇒ R

s is outer
semicontinuous, locally bounded and nonempty relative to D.
Assume that

1) a closed set M ⊂ R
s is stable and globally attractive

(therefore strongly forward invariant) for (26);
2) the compact setM◦ ⊂ M is stable and globally attractive

for (26) relative toM (namely, for the restricted dynamics
ξ+ ∈ Ḡ(ξ), ξ ∈ M).

Then the set M◦ is asymptotically stable for (26), with basin
of attraction coinciding with the largest set of initial conditions
from which all solutions are bounded. In particular, if all solu-
tions are bounded, then the set M◦ is globally asymptotically
stable for (26).

Based on Lemma 1 we may now prove Proposition 2.
Proof of Proposition 2: Let us first apply Lemma 1 to dynam-

ics (20) with the following selections of D and M:

D1 =
{
(e, s, z) : e ∈ R

2n, s ∈ Sε, z ∈ Z�
}

M1 =
{
(e, s, z) : e ∈ R

2n, s, z ∈ Z� ∩ Sε

}
, M◦ = Ae

(27)

whereAe has been introduced in (23). Let us prove the two items
of Lemma 1 for selection (27). Item 1: first notice that due to
Property 2, we have

Z� = Z� ∩ Sε. (28)

Due to Property 2, z ∈ Z� implies z+ ∈ Z�, namely, Z� is for-
ward invariant for the dynamics of z. Moreover, due to (28),Gs

always returns z, so that s ∈ Z� after one time step, thus proving
item 1 of Lemma 1. Item 2: Since in M1 we have Γ(ϕ)s = 0,
then the dynamics of e in (20) is unperturbed and linear, and the
assumption that A− LH be Schur implies item 2 of Lemma 1.
Boundedness of solutions finally follows from the fact that z and
s are bounded because they evolve in (subsets of) the bounded
set Sp−1, and the dynamics of e is linear exponentially stable
affected by a bounded perturbation. Indeed, the forcing term
LR(s)−1Γ(ϕ)s is bounded from boundedness of s and from the
fact that the determinant of R is lower bounded by ε in the set
Sε, which results in uniform boundedness of R(s)−1. Finally,
standard discrete-time BIBO stability properties of the linear
dynamics implies boundedness of e. Since all the properties of
Lemma 1 hold, then set M◦ is globally asymptotically stable
for the dynamics (20) restricted to D1 in (27).

As a second step, let us now apply Lemma 1 to dynamics (20)
with the following selections of D and M:

D2 =
{
(e, s, z) : e ∈ R

2n, s ∈ Sε, z ∈ S
p−1

}
M2 = D1, M◦ = Ae (29)

with D1 as in (27) and Ae as in (23) (notice that M◦ is
unchanged). For the selections in (29), we prove the two items
of Lemma 1. Since M2 = D1 and M◦ is the same as in (27),
then item 2 corresponds to proving GAS ofM◦ for the dynamics
restricted to D1 = M2 and it has been shown in the first part of
this proof (by the first application of Lemma 1). For proving item
1 of Lemma 1, consider the Lyapunovlike function |Γ(ϕ)z|2,
which is positive definite with respect toZ� in (21) relative to the
compact setSp−1. From compactness ofZ� andSp−1, Property 1
clearly implies a uniform decrease of this Lyapunov function
and then the discrete-time Lyapunov theorem implies global
asymptotic stability of Z� for dynamics z+ ∈ Gz(z, ϕ), thus,
proving item 1 of Lemma 1. Finally, boundedness of solutions
is proven by following the same steps as the previous iteration
of Lemma 1.

The global asymptotic stability result established by this
second iteration of Lemma 1 coincides with the statement of
the proposition, thus, completing the proof. �

Proof of Theorem 1: The proof follows very similar argu-
ments to those of the previous proof by performing a third
iteration of Lemma 1.

In particular, we first notice that, from the properties estab-
lished in Proposition 1, the vector ε� introduced in (24) is such
that the ensuing coordinate shift ε̃ := ε− ε� obeys dynamics

ε̃+ = (A−MH)ε̃

ϕ̃ := ϕ̂− ϕ = Y C−1
η ε̃ := C̃ε̃. (30)

As a result, we may prove the theorem by focusing on the dynam-
ics arising from combining (30) with the remaining dynamics
arising from (20)

e+ = (A− LH)e+ LR(s)−1Γ(ϕ)s

s+ ∈ Gs(s, z)

z+ ∈ Gz(z, ϕ+ C̃ε̃). (31)

To this end, the attractor A in (25) can be expressed as

A := {(ε̃, e, s, z) ∈ R
2n × Sε × S

p−1 :

s, z ∈ Z� ∩ Sε, e = 0, ε̃ = 0}
with the compact set Z� and Sε defined in (21) and (15),
respectively.

To prove GAS of A we apply again Lemma 1, with the
selections M◦ = A and

D3 = R
n × R

n × Sε × S
p−1

M3 = {(ε̃, e, s, z) : s ∈ Sε, z ∈ S
p−1, e ∈ R

n, ε̃ = 0} (32)

where we see that M3 = {0} × D2, while D3 is the set of all
allowable values of the error variables.

With this third selection in (32) item 1 of Lemma 1 follows
from the linearity of the error dynamics in (30), while item 2
follows from Proposition 2. Finally, the fact that all solutions
are bounded can be proven following identical steps to those of
the proof of Proposition 2. �
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D. Robustness, Scale Invariance, and Low-Pass Filtering

In a practical scenario, it is unreasonable to assume that the
observation scheme of Fig. 1 only operates in the nominal condi-
tions considered in Theorem 1. In fact, the potential fragility of
nonlinear observation schemes has been long known as a prob-
lematic issue, a matter well characterized in [32, Sec. 5], where
input-to-state stability (ISS) properties of the error dynamics
are emphasized as being a desirable property. Exploiting the in-
trinsic robustness of well-posed dynamical systems established
in [33, Ch. 7], we prove here ISS properties of the error dynamics
(8), (20) when including a generic perturbation d = (dx, dy) in
the plant dynamics (1) as follows:

x+ = Ax+Bu+ dx, y = Cx+ ϕ+ dy (33)

thus establishing robustness of the result of Theorem 1.
Theorem 2: Under Assumption 1, consider any pair of gains

M and L such that A− LH and A−MH are Schur. If Prop-
erties 1 and 2 hold, then there exists a class KL function β◦ and
a class K function γ◦ such that the solutions ξ = (ε, e, s, z) of
the error dynamics (8), (20) resulting from a perturbed plant, as
in (33), enjoy the ISS bound

|ξ(j)|A ≤ β◦(|ξ(0)|A) + γ(‖d‖∞) (34)

with the compact set A as in (25), and where ‖d‖∞ =
supj≥0 |d(j)|.

Proof: Due to the linearity of the error dynamics character-
ized in (30) for the linear observer (7), exponential stability
implies finite-gain ISS from the perturbation d to the estimation
error ε̃ and the output error ϕ̃ = ϕ̂− ϕ. Let us now study
the effect of these nonzero errors ε̃, ϕ̃ on the remaining dif-
ference inclusion (31), where we recall that the corresponding
state (e, s, z) evolves in the set Rn × Sε × S

p−1. Since the set
A is compact, and the right-hand side of (31) is well posed in
the sense of [33, Assumption 6.5] (it is nonempty, outer semi-
continuous, and locally bounded), then the global asymptotic
stability established in Theorem 1 implies semiglobal practical
asymptotic stability, as per [33, Lemma 7.20]. Considering
dynamics (31), since s and z are bounded (they evolve in the
bounded set Sε × S

p−1) and since A− LH is Schur and the
perturbation term LR(s)−1Γ(ϕ)s is bounded, then semiglobal
practical asymptotic stability implies global practical asymptotic
stability. Global practical asymptotic stability corresponds to a
specific notion of small-signal ISS of A, namely, there exist
functions β◦ ∈ KL and γ◦ ∈ K and a (typically small) d > 0
such that for any signal d satisfying ‖d‖∞ ≤ d, the ISS bound
(34) holds.

Let us now focus on a global extension of the bound. For each
selection of d such that ‖d‖∞ > d, both the substates ε̃ and e
in the error dynamics (30) and (31) remain bounded because
A− LH and A−MH are Schur, and the perturbation term
LR(s)−1Γ(ϕ)s is bounded too. Moreover, the remaining states
s and z are bounded by definition. This implies that functions
β◦ and γ◦ can be extended to a global bound, thus completing
the proof. �

While the robustness result established in Theorem 2 allows
for generic perturbations d acting on the plant dynamics as in

Algorithm 1: Scaling and Filtering.

i) Project ϕ̂k onto the closed unit ball Bp ∪ S
p−1:

ϕ̂∗
k := ϕ̂k/max{|ϕ̂k|, εϕ},

where εϕ > 0 is any regularization constant.
ii) Low-pass filter the signal ϕ̂∗

k:

ϕ̂∗∗
k = (1− τ)ϕ̂∗∗

k−1 + τϕ̂∗
k,

where τ ∈ (0, 1) is a tunable filter parameter.
iii) Feed the processed signal ϕ̂∗∗

k to the output allocator in
(13):

zk+1 ∈ G(zk, ϕ̂
∗∗
k ).

(33), we would like now to exploit the fact that the weighted
pseudoinverse Π(z) is invariant under scaling of z. In particular,
if Π(z) is the optimal pseudoinverse forϕ, i.e., Π(z)ϕ = 0, then
Π(z) is optimal for the whole subspace Im(ϕ). Such a feature of
the output allocation-based observer (13) is a further advantage
compared to the injection corrected observer (7), introduced in
Section II, in terms of transient performances.

To illustrate this fact, bearing in mind that the robustness result
of Theorem 2 applies to any (bounded) time-varying selection of
ϕ, let us consider a nominal selection of the biasϕwith constant
direction ϕ̄ and time-varying magnitude gk, as follows:

ϕk = gkϕ̄, gk ∈ R \ {0} ∀k ∈ N. (35)

Due to the presence of the time-varying factor gk, the auxiliary
observer ξk is no longer capable of ensuring convergence of ϕ̂k

to ϕ. Moreover, since the gain M of a fast observer is typically
large, some overshoots are likely to arise in the estimated bias ϕ̂k,
with a potential inaccuracy of observer (13) and the associated
output allocator. This problem might be partially overcome
by following the heuristic approach of filtering the estimate
ϕ̂k provided by (7) before this signal is fed to the observer
(13) and the output allocator, in order to reduce the effect of
high-frequency components of the factor gk on the computation
of the optimal weights zk. In the case where ϕ is constant, so
that also ϕ̂ is exponentially converging, this additional filtering
stage does not destroy the cascaded argument in the proof of
Theorem 1. Instead, for the case in (35), whenever gain M
characterizes a fast observer, we may expect ϕ̂ not to be too
different from ϕ in (35) and the filtering procedure given below
may be effective.

Due to the continuity properties of the scaling and filtering
actions in Algorithm 1, combined with the abovementioned
invariance to scaling of Π(z) and linearity (implying ISS) of the
low-pass filter in item (ii), the robustness result in Theorem 2
readily extends to the estimation scheme endowed with the
extensions in Algorithm 1, as stated in the following corollary
of Theorem 2.

Corollary 1: Under the assumptions of Theorem 2, with a
perturbed plant as in (33), the estimation scheme (7), (13), (16),
(17) endowed with the scaling and filtering action of Algorithm 1
is associated with an input-to-state stable error dynamics.
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The second example in Section VII-A illustrates, through
numerical simulations, the beneficial effect of Algorithm 1 in
a reasonable scenario.

V. SELECTION OF THE OPTIMIZER MAP Gz

Our main result, stated in Theorem 1 establishes a desirable
structural rejection of the bias ϕ when the adaptation map Gz

satisfies Property 1. A possible algorithm for the selection of
Gz satisfying this property is given in this section, providing an
important ingredient of our design.

A. Line-Search-Based Optimization Algorithm

For wanting to prove the implication in Property 1, for a
fixed ϕ, we focus on minimizing the cost |Γ(ϕ)z|2 over the
set z ∈ S

p−1, by defining a suitable difference inclusion for z
iteratively minimizing |Γ(ϕ)z|2 along the projection on S

p−1

of rank-one increments of z. More specifically, denoting by
ei, i = 1, . . ., p, the vectors of the canonical basis of R

p, we
focus on the following optimization problem, parametrized by
z ∈ S

p−1:

min
z∈Sp−1

zTS(ϕ)z := zTΓT (ϕ)Γ(ϕ)z, subject to (36a)

z =
z + ζei
|z + ζei| , ζ ∈ R := [−∞,+∞] (36b)

where we consider the extended real numbers R for ζ, be-
cause we consider z = ±ei for the cases ζ = ±∞, respec-
tively (both of them providing the same value of the quadratic
cost): a straightforward extension if one rewrites (36b) as z =
ζ−1z + ei
|ζ−1z + ei| .

The next lemma provides an explicit expression of the op-
timizer of (36). Lemma 2: Fix any i ∈ {1, . . . , p}, define the
following quantities:

β0 := eTi (I − zzT )S(ϕ)z (37a)

β1 := eTi S(ϕ)ei − zTS(ϕ)z (37b)

β2 := zT (eie
T
i − I)S(ϕ)ei. (37c)

Then it holds thatγ := β2
1 − β2β0 ≥ 0. Moreover, the set valued

map G�
i : Sp−1 × R

p ⇒ S
p−1 defined as

G�
i (z, ϕ) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sgn(β2)
zβ2+(

√
γ − β1)ei

|zβ2+(
√
γ−β1)ei| , if β2 
= 0

z − zT ei

2 ei(
1− zT ei

2

)2 , if β2 = 0, β1 > 0

{±ei}, if β2 = 0, β1 ≤ 0.

(37d)

yields optimizers for the minimization problem (36) and is outer
semicontinuous.

We are finally ready to introduce the map Gz satisfying
Property 1, which stems from selecting the optimal value of all

the rank-one-based optimizers G�
i (z, ϕ), i = 1, . . . , p, namely

Gz(z, ϕ) := argmin
z∈{G�

1(z,ϕ),...,G�
p(z,ϕ)}

zTS(ϕ)z. (37e)

We close this section by stating the next result, which is a
fundamental ingredient for our observer design, whose proof is
reported in Section V-C.

Proposition 3: Under Assumptions 1 and 2, the function Gz

defined in (37e) satisfies Property 1.
Remark 2: The computational complexity of the proposed

optimization algorithm (37), which consists in the explicit solu-
tion to a multiple line-search, isO(p), where p is the dimension
of the redundant output. In this sense, the algorithm is suitable
for real-time implementation as its complexity scales linearly
with the number of outputs, irrespective of the number of states.
Furthermore, at each iteration of the algorithm, the optimizer is
selected among a finite number of candidates that are expressed
in the closed-form (37d). ◦

B. Proof of Lemma 2

Before proceeding with the proof of Lemma 2, we state
and prove the following fact, pertaining outer semicontinuous
properties of optimizers.

Fact 1: Let functionψ : Rp × R
s → R be continuous and let

K : Rp ⇒ R
s be an outer semicontinuous and locally bounded

set-valued mapping with nonempty values. Then the set-valued
mapping Q : Rp ⇒ R

s defined by

Q(ϑ) = arg min
z∈K(ϑ)

ψ(ϑ, z) (38)

has nonempty values and is outer semicontinuous and locally
bounded.

Proof of Fact 1: The result follows from [34, Th. 1.17], parts
of which are restated in the language of set-valued mappings
in [34, Example 5.22] (see also [35, Ths. 3B.3, 3B.5]). Indeed,
the function fK : Rp × R

s → R ∪ {∞} defined by fK(ϑ, z) =
ψ(ϑ, z) if z ∈ K(ϑ), fK(ϑ, z) = ∞ otherwise, is lower semi-
continuous, because f is continuous and K is outer semicontin-
uous, and level-bounded in z, locally uniformly in ϑ, because
K is locally bounded. Thus, [34, Th. 1.17] applies. In fact,
nonemptiness of Q(ϑ) is elementary, as a continuous function
z 	→ ψ(ϑ, z) is minimized over the compact set Q(ϑ), and so is
local boundedness ofQ becauseQ(ϑ) ⊂ K(ϑ). SinceQ(ϑ) 
= ∅
and f is continuous, the functionm(ϑ) := minz∈K(ϑ) ψ(ϑ, z) is
continuous, by [34, Th. 1.17 (c)]. Then, [34, Th. 1.17 (b)] implies
outer semicontinuity of Q. �

Let us now proceed with the proof of Lemma 2. Expanding γ
yields

γ=
(
eTi S(ϕ)ei

)2
+

(
zTS(ϕ)z

)2 − 2
(
eTi S(ϕ)ei

) (
zTS(ϕ)z

)
− (

zT (eie
T
i − I)S(ϕ)ei

) (
eTi (I − zzT )S(ϕ)z

)
.

Using the simplified notation a := eTi S(ϕ)ei, b := zTS(ϕ)z,
c := zTS(ϕ)ei, d := zTei with |d| < 1 because z, ei ∈ S

p−1,
after some algebraic manipulations, the expression of γ reads as

γ = a2 + b2 + c2 − 2ab− dbc− dac+ d2ab.
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Using the trivial identities

a2 =
d2a2

2
+

(
1− d2

2

)
a2, b2 =

d2b2

2
+

(
1− d2

2

)
b2

c2 =
c2

2
+
c2

2

the terms appearing in γ can be arranged as γ = γ1 + γ2 + γ3
with

γ1 :=
d2a2

2
+
c2

2
− dac =

(
da√
2
− c√

2

)2

≥ 0

γ2 :=
d2b2

2
+
c2

2
− dbc =

(
db√
2
− c√

2

)2

≥ 0

γ3 :=

(
1− d2

2

)
(a2 + b2) + (d2 − 2)ab

=

(
1− d2

2

)
(a− b)2 ≥ 0

thus showing that the claimed condition γ ≥ 0 holds true.
Let us now show that (37d) always returns minimizers. To this

end, denote by f(ζ) the function optimized in (36a) subject to
(36b). Differentiating with respect to ζ yields

f ′(ζ) =
β2ζ

2 + 2β1ζ + β0
|z + ζei|4 . (39)

Consider first the case where z 
= ±ei, so that the denominator
in (39) is never zero. When β2 
= 0, the zeros of f ′ are given by

ζ± =
−β1 ±√

γ

β2
. (40)

We show below that, in this case of β2 
= 0 and due to (40), the
minimum of f(ζ) is achieved for ζ = ζ+.

In fact, first notice that f(+∞) = f(−∞) =
eTi Γ

T (ϕ)Γ(ϕ)ei, so that the minimum must occur at some finite
stationary point. For β2 > 0 the numerator of f ′(ζ) in (39) is a
convex parabola whose farthest right root must be the unique
minimizer, because the function is decreasing (f ′ is negative)
between the two roots). In fact, the right root coincides with
ζ+. Conversely, for β2 < 0, the numerator of f ′ is a concave
parabola so that the unique minimizer of f(ζ) corresponds to
farthest left root (the function f is increasing between the two
roots), this being again ζ+ in this case. Evaluating (36b) for
ζ = ζ+ yields the top expression at the right-hand side of (37d).

When instead β2 = 0 and β1 > 0, the numerator of f ′(ζ) is a
line with positive slope and so the only stationary point of f(ζ)
is a minimum, given by

ζ = − β0
2β1

(41)

and thus, proving that the middle condition in (37d) characterizes
the unique minimizer. On the other hand, when β2 = 0 and β1 <
0, the function f(ζ) has no minima and the inf is approached as
ζ → ±∞, which proves that all the minimizers are characterized
by the set-valued optimality condition at the third line of (37d).

Let us now address the degenerate case β1 = β2 = 0. By the
definition in (37b), we have eTi S(ϕ)ei = zTS(ϕ)z, which can

be substituted in (37c) to show that, with β1 = 0, we have β0 =
−β2 = 0. Therefore, f ′(ζ) ≡ 0, thus showing in turn that the
function being optimized is actually constant in this case. In
particular, the vectors {±ei}, corresponding to picking ζ = ±∞
in (36b), are eligible minimizers and the bottom option in (37d)
is consistent.

The last case to be considered is z = ±ei, which also leads to
β0 = β1 = β2 = 0, and for which the only attainable values for
z in (36b) are ±ei, both of them leading to the cost zTS(ϕ)z,
therefore both of them being minimizers, as characterized in the
third line of (37d).

To prove the outer semicontinuity of the map (z, ϕ) 	→
G�

i (z, ϕ) defined in (37d), let us first observe that whenever
z 
= ±ei the feasible set in optimization (36) is the intersec-
tion of S

p−1 with the half plane containing the line L(z) :=
{z + ζei : ζ ∈ (−∞,+∞)} and the origin (the origin does not
belong to L(z) because z 
= ±ei)

z ∈ P(z) :=

{
z + ζei
|z + ζei| , ζ ∈ [−∞,∞]

}
.

Since L is a continuous function of z, so is also P .
Now we apply Fact 1 twice as follows. First, with ϑ = (z, ϕ),

select ψ1(ϑ, z) = zTS(ϕ)z, whose continuity is trivial, and se-
lect K1 as

K1(ϑ) =

{
S
p−1, if β1(ϑ) = β2(ϑ) = 0

P(z), otherwise
(42)

where we explicitly indicated the dependence on ϑ of β1 and β2
in (37b) and (37c). The set-valued map K1 in (42) is globally
bounded (it is a subset of the unit sphere S

p−1) and outer
semicontinuous because it coincides with the continuous map
P almost everywhere, and corresponds to the whole (closed) set
S
p−1 in the closed set where β1(ϑ) = β2(ϑ) = 0 (as established

in [33, Lemma 5.10], outer semicontinuity coincides with a
map having a closed graph). With the selections above, due
to Fact 1, the map Q1(ϑ) = argminz∈K1(ϑ) z

TS(ϕ)z is outer
semicontinuous and, due to the proof of optimality stated above,
coincides with the mapϑ 	→ G�

i (ϑ)defined in (37d) everywhere,
except for the points where β1(ϑ) = β2(ϑ) = 0.

Let us now apply again Fact 1 as follows. Define

K2(ϑ) =

{
S
p−1, if β1(ϑ) = β2(ϑ) = 0

Q1(ϑ), otherwise
(43)

which is once again outer semicontinuous because it is globally
bounded and has a closed graph. Applying again Fact 1 with
the continuous selection ψ(ϑ, z) = 1− |zT ei|, we obtain that
map Q2(ϑ) = argminz∈K2(ϑ) 1− |zT ei| is outer semicontin-
uous. Moreover, Q2(ϑ) = Q1(ϑ) = G�

i (ϑ) everywhere except
for the points where β1(ϑ) = β2(ϑ) = 0. Let us now analyze
these remaining points. Since

β1(ϑ) = β2(ϑ) = 0 ⇒ K2(ϑ) = S
p−1

then the optimizer of ψ(ϑ, z) = 1− |zT ei| is clearly Q2(ϑ) =
±ei, which coincides with the selection of G�

i (ϑ) at the third
line of (37d). This means that Q2(ϑ) = G�

i (ϑ) also when
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β1(ϑ) = β2(ϑ) = 0 and outer semicontinuity of Q2 implies
outer semicontinuity of G�

i , as to be proven. �
Remark 3: Based on the proof of Lemma 2, it is possible

to give a qualitative characterization of the extrema of (36) in
the various cases considered in (37d). In fact, when β2 
= 0 the
function admits both a global minimum and a global maximum.
When β2 = 0 and β1 > 0, the function still admits a global
minimum, whereas its maximum is formally attained at ζ = ±∞
(note that the cost is the same for ζ = +∞ and ζ = −∞). In
the complementary scenario β2 = 0 and β1 < 0, a mirror prop-
erty holds with the minimum attained at ζ = ±∞. In all three
cases, the minimization problem is nontrivial and minima are
strict. Conversely, in the limit case β2 = β1 = 0 (which implies
β0 = 0), the function (36a) reduces to a constant, due to (39)
and the optimization problem (36) becomes trivial. In particular,
such degenerate condition only arises when z = ±ei or, more
generally, when z and ei belong to a common eigenspace for
the matrix S(ϕ).

C. Proof of Proposition 3

Before proceeding with the proof of Proposition 3, we intro-
duce the following lemma, hinging on the properties of Y in
Assumption 2.

Lemma 3: Let Y ∈ R
p×q satisfy Assumption 2, denote

S = diag(ϕ)Y Y T diag(ϕ) as in (36a), and λmin := minσ(S) \
{0} > 0. Then

min
j=1,...,p

eTj Sej < λmin. (44)

Proof: Define Σ = Y T diag(ϕ)2Y ∈ R
q×q, and observe that

σ(Σ) \ {0} = σ(S) \ {0}. (45)

Since Y Y T is a projection and the nonalignment condition in
item 2 of Assumption 2 holds,2 then one has

eTj Y Y
Tej < 1 (46)

eTj Sej = ϕ2
je

T
j Y Y

Tej ≤ ϕ2
j (47)

where the equality in (47) holds if and only if ϕj = 0. Now, let
(λ̄, b) be an arbitrary eigenpair for Σ with λ̄ > 0. Then, using
(46) and item 1 of Assumption 2, one has

bTΣb = bT (Y T diag(ϕ)2Y )b = λ̄bT b = λ̄bTY TY b

which is equivalent to

bTY T (diag(ϕ)2 − λ̄Ip×p)︸ ︷︷ ︸
=:N

Y b = 0.

Since by construction Y b 
= 0, the only way for the latter to be
satisfied is N being either singular or sign indefinite, which,
together with λ̄ > 0, results in

λ̄ ≥ min
j=1,...,p

ϕ2
j . (48)

The latter holds for each nonzero eigenvalue λ̄ of Σ, hence also
for each nonzero eigenvalue λ̄ of S, in view of (45).

2It is easy to check that eTj Y Y T ej = 1 ⇔ ej ∈ Im(Y ).

Now, two cases should be considered: either (i)
minj=1,...,p ϕ

2
j > 0, which means that the right inequality

in (47) is strict, so that combining it with (48) we obtain (44), or
(ii) minj=1,...,p ϕ

2
j = 0, which means (from positivity of λmin)

that λmin > minj=1,...,p ϕ
2
j and the result (44) is proven again,

due to (47), thus, concluding the proof. �
Based on Lemma 3, we are now ready to prove Proposition 3.
Proof of Proposition 3: We first prove the properties of Gz ,

and then we prove the decrease condition (22).
The map Gz(z, ϕ) in (37e) is defined through the minimum

over a finite set of outer semicontinuous maps, and therefore, it
is an outer semicontinuous map itself. Moreover, it is trivially
nonempty because G�

i is never empty, and globally bounded
because its values belong to the compact set Sp−1.

Let us now prove the decrease condition (22). First, note
that the optimal cost in (36a) coincides with |Γ(ϕ)z+|2. Using
optimality of Gz in (37e), let us first address the case where
β0 
= 0 for at least one i ∈ {1, . . . , p}. Under this condition,
we prove next that z /∈ G�

i (z, ϕ) by also leveraging on the
observations reported in Remark 3. Indeed, consider all three
cases in (37d).

1) In the first case, the minimizer z� of (36) is obtained
by selecting ζ = ζ+ [see (40)]: the unique minimum of
zTS(ϕ)z; since β2 
= 0, then ζ+ 
= 0 and z 
= z� so that
z /∈ G�

i (z, ϕ).
2) In the second case, the unique minimizer is ζ as in (41),

which is once again not zero, and again we have z /∈
G�

i (z, ϕ).
3) In the third case, first note that it should be β1 < 0,

because β2 = β1 = 0 would imply β0 = 0 while we are
focusing on β0 
= 0; but β1 < 0 implies z 
= ±ei, while
±ei are the only two optimizers, as discussed in Re-
mark 3. As a consequence, z is not an optimizer, namely,
z /∈ G�

i (z, ϕ).
The fact that z /∈ G�

i (z, ϕ), established above, implies condi-
tion (|Γ(ϕ)z�i | < |Γ(ϕ)z|) for any z�i ∈ G�

i (z, ϕ), due to the
fact that z is not a minimizer of the underlying line-search
problem (while z�i is a minimizer due to Lemma 2). Finally,
the minimum in (37e) ensures that any z� ∈ Gz(z, ϕ) leads to a
value |Γ(ϕ)z�| ≤ |Γ(ϕ)z�i |, thus showing the decrease condition
(22) in Property 2.

The condition where β0 = 0 for all i ∈ {1, . . . , p} is more
challenging since a decrease of the cost function occurs if and
only if β1 < 0 for at least one i ∈ {1, . . . , p} (whereas due
to β0 = 0, z�i = z for any i ∈ {1, . . . , p} such that β1 ≥ 0).
On the other hand, β0 = 0 for all i = 1, . . ., p implies that
(I − zzT )S(ϕ)z = 0, which corresponds to z being an eigen-
vector of S(ϕ). If the eigenvalue corresponding to the eigenvec-
tor z is zero, then Γ(ϕ)z = 0 and (the left case in) the decrease
condition (22) holds. If instead the eigenvalue corresponding to
the eigenvector z is some λ̄ > 0, then we may invoke Lemma 3,
which establishes that there exists at least one search direction
providing a smaller value of the cost |Γ(ϕ)z+|2. In other words,
Lemma 3 establishes that β1 < 0 for at least one i ∈ {1, . . ., p}
and the decrease condition (22) of Property 1 also holds in this
last case. �
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VI. OVERALL OBSERVATION SCHEME

We combine here the construction in Section IV and the
ensuing Theorem 1 (which relies on Assumption 1) with the
algorithm design in Section V and the ensuing Proposition 3
(which relies on Assumption 2). This combination allows stating
the following corollary pertaining to the observation scheme
represented in Fig. 1 and comprising plant (1), the asymptotic
bias estimator (7), the selector (17), the adaptive pseudoinverse
observer (13), and the optimizer (16) with the choice of Gz

in (37), which leads to the error dynamics (8), (20) derived in
Section IV-A.

Corollary 2: Under Assumptions 1 and 2, consider any pair
of gains M and L such that A− LH and A−MH are Schur.
If Property 2 holds, then the compact set A in (25) is globally
asymptotically stable for the error dynamics (8), (20) associated
with the plant-observer scheme (1), (7), (13), (16), (17), (37).

Corollary 2 clarifies that the only requirement to be clarified
for the effectiveness of the proposed observation scheme stands
in Property 2, which is associated with a nontrivial interplay
between the bias ϕ and the output matrix C, as characterized
by the matrix Y . An interesting defective case providing a
necessary condition involving ϕ and Y corresponds to the
scenario of two identical sensors sharing the same exact bias,
which structurally prevents our idea from being applicable. This
specific case, and its generalization, is characterized in the next
remark.

Remark 4: In the special case where ϕo = 0 in (6), namely,
ϕ ∈ Im(Y ), it is impossible to find a vector z such that R(z) is
invertible and Γ(ϕ)z = Γ(z)ϕ = 0. To see this, since from (6)
we get ϕ = Y wϕ for some wϕ ∈ R

q , one has

R(z)−1Γ(z)ϕ = (Y T diag(z)Y )−1Y T diag(z)Y wϕ = wϕ

which implies that the effect ofϕ (throughwϕ) cannot be filtered
out structurally by the adaptive pseudoinverse. ◦

Besides the necessary conditions for Property 2 discussed in
Remark 4, we instead discuss below two relevant applications
of our results: the first one, requires having one direction of
redundancy, namely p− q = 1 in Assumption 1, which allows
proving Property 2; the second one where, with general redun-
dancy level, we propose an extended scheme overcoming the
need for Property 2 with the drawback of potential reduced
effectiveness of the proposed nonlinear observation scheme.

A. 1-Redundancy Case

We consider here the case where we impose the next 1-
redundancy assumption.

Assumption 3: The integers p (size of y) and q (rank of C) in
Assumption 1 satisfy p− q = 1.

When enforcing Assumption 3, we have the advantage that
matrix Γ(ϕ) has dimension p− 1× p and we may characterize
the case where its kernel has dimension 1. Indeed, the least
dimension of the kernel coincides with the redundancy level
p− q, therefore, this strategy only applies to the 1-redundancy
case.

The proposition below formalizes a convenient characteriza-
tion of scenarios where Property 2 holds, based on the next tech-
nical assumption, which involves easily checkable conditions on
ϕ and Y .

Assumption 4: For matrix Y and vector ϕ it holds that
det(Y T diag(ϕ)2Y ) 
= 0 and there exists j ∈ {1, . . . , p} such
that det(Y T diag(nj(ϕ))Y ) 
= 0, where nj(ϕ) = Ξ(ϕ)ej and

Ξ(ϕ) = I − diag(ϕ)Y
(
Y T diag(ϕ)2Y

)−1
Y T diag(ϕ).

(49)

Proposition 4: Under Assumptions 3 and 4, Property 2 holds
for a sufficiently small ε > 0.

Proof: First note that having det(Y T diag(ϕ)2Y ) 
= 0 from
Assumption 4 implies that Γ(ϕ) is full row rank. Therefore, its
kernel is 1-D and coincides with the image of the projection
matrix Ξ(ϕ) in (49), which is by construction a rank 1 matrix.
Then, any of the nonzero columns nj(ϕ) of Ξ(ϕ), as denoted
in Assumption 4 is a basis vector spanning the 1-D subspace
Z† := {z ∈ R

p : Γ(z)ϕ = 0}. Introduce the singularity set

Zbad := {z ∈ R
p : det(R(z)) = 0} (50)

which by construction is a p− 1 dimensional cone. Due to the
fact that Z† has dimension 1, one and only one of the following
two conditions is fulfilled:

(i)
[Z† ⊂ Zbad

]
OR (ii)

[Z† ∩ Zbad = {0}] (51)

i.e., either the kernelZ† is entirely contained in the singularity set
(50) or it is everywhere away from it, except at the origin. On the
other hand, case (i) can be ruled out by the second requirement in
Assumption 4, entailing that the spanning vector of Z† does not
belong to the singularity set Zbad in (50). Now, observing that
Z� = Z† ∩ S

p−1 = {z◦,−z◦} for some z◦ ∈ S
p−1 and using

condition (ii) in (51), a strictly positive number r̄ > 0 exists,
such that

| det(R(±z◦))| = r̄.

Picking ε < r̄, the pair of antipodal points {z◦,−z◦} belong to
the interior of Sε, thus showing that Property 2 holds in this
case. �

We may now state the following corollary of Corollary 2 and
Proposition 4.

Corollary 3: Under Assumptions 1–4, consider any pair of
gainsM andL such thatA− LH andA−MH are Schur. Then
the compact set A in (25) is globally asymptotically stable for
the error dynamics (8), (20) associated with the plant-observer
scheme (1), (7), (13), (16), (17), (37).

B. Generalized Scheme With a Logic Variable

We discuss here the case where no assumption is imposed on
ϕ nor on the level of output redundancy, to show that our scheme
remains well behaved, even though the structural rejection of ϕ
cannot be always guaranteed as in the previous section. The
idea of this section is to propose a modified scheme that exploits
the knowledge of the situations where the selector map in (17)
disregards z and sticks to the previous value of s, to activate an
injection term in the observer dynamics.
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To this end, we first introduce a logic state variable h ∈ {0, 1}
in our observation scheme, and then modify the selector (17) as
follows:

[
s+

h+

]
∈ Gh(s, z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
z

0

]
, if z /∈ Sp−1 \ Sε[

s

1

]
, if z /∈ Sε{[
s

1

]
,

[
z

0

]}
, otherwise.

(52)

With the logic-enhanced selector (52), variable h is an indicator
of whether the adaptation parameter z is being transferred to s
(in that case we have h = 0) or the variable s is kept constant,
possibly away from the desirable set where the biasϕ is suitably
rejected. Motivated by this second case, variable h = 1 is used
to trigger an additive term in the observer dynamics (13), which
is extended as follows:

x̂+ = Ax̂+Bu+ LΠ(s)(y − ŷ − hϕ̂)

ŷ = Cx̂. (53)

The resulting h-modified observation scheme, referred to as
adaptive pseudoinverse observer with residual injection, com-
prises the dynamics (1), (7), (16), (37), (52), (53), associated
with the error dynamics (8) combined with the following gen-
eralization of the error dynamics (20):

e+ = (A− LH)e+ LR(s)−1Γ(s)(ϕ− hϕ̂)[
s+

h+

]
∈ Gh(s, z),

z+ ∈ Gz(z, ϕ̂)

(e, s, h, z) ∈ Eh

(54)

with Eh := R
n × Sε × {0, 1} × S

p−1 being the (forward invari-
ant) set where the state (e, s, h, z) is allowed to evolve, and with
the input ϕ̂ ∈ R

p coming from observer (7).
The effect of the term hϕ̂ on the dynamics of e in (54) is that

two cases can occur: either h = 0 for a finite number of times,
and then the dynamics eventually is forced by the perturbation
ϕ− ϕ̂, which converges to zero due to the properties of the
asymptotic bias estimator, or h = 0 for an infinite number of
times, which implies that s converges to z and the reduction
argument of Theorem 1 holds, so that convergence to zero of e
is guaranteed. Combining these two cases, we may prove that the
logic-enhanced scheme establishes global asymptotic stability
of the compact set

Ah := {(ε, e, s, h, z) ∈ R
n×R

n × Sε × {0, 1} × S
p−1 :

ε=ε�, e=0} (55)

without the need of enforcing Property 2. This fact is formalized
in the next corollary.

Corollary 4: Under Assumptions 1 and 2, consider any pair of
gainsM andL such thatA− LH andA−MH are Schur. Then
the compact set Ah in (55) is globally asymptotically stable for

Fig. 2. Coupled mass-spring-damper systems.

TABLE I
SYSTEM PARAMETERS USED IN THE SIMULATIONS

the error dynamics (8), (54) associated with the plant-observer
scheme (1), (7), (16), (37), (52), (53).

Note that, Corollary 4 does not imply that solutions asymp-
totically approach the set where Γ(s)ϕ = 0, because a generic
value of s ∈ Sε is allowed for s in Ah of (55). Nevertheless, we
emphasize that whenever z approaches a point in the interior of
Sε, which is therefore feasible for s, the variable q eventually
remains identically zero and the solutions of the logic-enhanced
scheme coincide with those of the original scheme in Corol-
lary 2. As a consequence, one can think of the enhanced scheme
of this section as a clever solution recovering the behavior
established in Corollary 2 whenever Property 2 holds, and also
leading to asymptotic estimation via adaptive pseudoinverses in
the absence of Property 2. In particular, as discussed later in
Section VII-B, the modified scheme (54) is likely to provide
better performances than a scheme with a static pseudoinverse
having fixed weights.

VII. NUMERICAL SIMULATIONS

Let us illustrate by means of numerical simulations the po-
tential of the dynamic output allocation method. We consider
the case-study of coupled mass-spring-damper subsystems as in
Fig. 2, whose (continuous-time) state-space representation is⎡
⎢⎢⎢⎣
ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

0 0 1 0

0 0 0 1

−k1+k2

m1

k2

m1
−d1+d2

m1

d2

m1
k2

m2
− k2

m2

d2

m2
− d2

m2

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=A0

⎡
⎢⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0

0

0
1

m2

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=B0

u.

By applying an exact discretization procedure with sampling
time τ > 0, we get a discrete-time system in compact form

x+ = Ax+Bu

with A = exp(A0τ) and B =
∫ τ

0 exp(A0(τ − σ))B0dσ. The
system parameters for the simulation study have been chosen
according to Table I.

The system is supposed to be controlled by an open-loop
periodic input u. To better highlight the features of the proposed
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Fig. 3. Scenario 1 with constant ϕ: Norm of estimation error (top) and
selector states (bottom).

architecture, two different sensor combinations have been con-
sidered, falling into the 1-redundancy case and the general case,
respectively.

A. First Scenario: p = 3, q = 2

We begin by considering the system equipped with three
sensors, providing: two position measurements for the displace-
ments of the massm1 and the massm2, and a range measurement
for the relative distance between the two masses, with respect to
the first mass. Such (redundant) suite of sensors can be encoded
in the output matrix

C =

⎡
⎢⎣1 0 0 0

0 1 0 0

1 −1 0 0

⎤
⎥⎦

which is the same used in Example 1. In this first scenario, the un-
known vector ϕ has been chosen as ϕ = γ[1 −1.5 0.5]T , where
γ is a possibly time-varying amplitude. Taking the selection
(Y,H) as described in (4a)–(4b), the conditions of Assumption 2
are met. Based on this choice, the gains of the asymptotic bias
estimator and the pseudoinverse observer are selected in order
to assign the eigenvalues according to

spec(A−MH) = {0, 0, 0.01, 0.01}
spec(A− LH) = {0.75, 0.8, 0.85, 0.9}.

Two examples have been considered, with γk = 1 constant and
with γk = 1 + 0.1 sin(100 τk), where k denotes the discrete
time. In the first case, we compare the performance of the
adaptive pseudoinverse observer against an observer based on
a constant pseudoinverse with uniform weights, corresponding
to the choice s ≡ 1√

3
1. The behavior of the estimation error

|x− x̂| is shown in Fig. 3 (top), where the vanishing of the
bias effect thanks to the adaptation law can be appreciated
(see the zoomed box). It must be noticed that, due to the
adaptation, the dynamic pseudoinverse observer is likely to
experience a larger transient. The evolution of the selector s

Fig. 4. Scenario 1 with time-varying ϕ: Norm of estimation error (top)
and selector states (bottom).

is reported in Fig. 3 (bottom). In this case, where Assump-
tions 3 and 4 hold, the selector s coincides with the optimizer z,
thus guaranteeing the optimal adaptation of the pseudoinverse
Π(s) = Π(z) and a perfect cancellation of Π(s)ϕ̂, in light of
Corollary 3.

In the second case with nonconstant γ, considering a larger
number of samples to allow for a correct filtering action, we
have enhanced the proposed adaptive observer with the scaling
and filtering algorithm described in Section IV-D. We propose
in Fig. 4 (top) a comparison of the performance of our adap-
tive observer against a standard observer with injection of the
estimated ϕ̂, defined by

x̂+ = Ax̂+Bu+ L(Y †(Cx− ϕ̂)−Hx̂) (56)

as well as with an enhanced version of the same where
the estimation ϕ̂ is processed by a filter before the injec-
tion. The adaptive observer largely outperforms the observer
(56) with injection without filtering. The comparison with the
observer (56) with injection of the filtered estimation ϕ̂ is
more interesting and meaningful, and one can still appreciate
the improvement provided by the adaptive observer, which
yields a lower steady-state estimation error. The evolution
of the selector states is illustrated in Fig. 4 (bottom): after
an initial highly oscillatory transient, the steady state corre-
sponds to a slight perturbation of the constant steady state of
Fig. 3 (bottom).

B. Second Scenario: p = 4, q = 2

In this second scenario, in addition to the previous sensors,
we consider another range sensor measuring the relative dis-
tance with respect to the two masses as seen by the second
mass. Overall, this corresponds to dealing with the augmented
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Fig. 5. Scenario 2 with constant ϕ: Norm of estimation error (top) and
selector/optimizer states (bottom).

output matrix

C =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

1 −1 0 0

−1 1 0 0

⎤
⎥⎥⎥⎦

for which a decomposition C = Y H with the desired property
can be easily obtained as in the previous case. The vector ϕ is
now supposed to be constant and equal to ϕ = [1 −1.5 0.5 −
0.15]T . Due to the condition p = 4 > 2 = q, we might expect
the intersection Z� ∩ Zbad to be nonempty and, for this rea-
son, we implement the modified scheme with residual injection
described in Section VI-B and defined by (53) and (54). The
corresponding estimation error is depicted in Fig. 5 (top), show-
ing that asymptotic convergence is achieved and proving the
advantage of the proposed scheme against an observer designed
using the pseudoinverse with constant uniform weights, namely,
with s ≡ 1

21. For the sake of completeness, the comparison
with the adaptive observer without residual injection is also
considered. The selector state is prevented from coinciding with
the optimizer state, as evident from Fig. 5 (bottom), because the
latter lies too close to the singularity region Zbad and Property 2
does not hold in this case. Due to such a condition, the adaptive
observer without residual injection, whose evolution is also
depicted in Fig. 5 (top), is not able to deliver an accurate es-
timate, thus confirming the benefit of the modified scheme (53),
(54).

VIII. CONCLUSION

A robust estimation scheme has been proposed based on
adaptive pseudoinverses with dynamic weights coupled with
linear Luenbergerlike observers in the presence of redundant
measurements for discrete-time linear systems. The proposed
architecture, which is based on the cascade interconnection of
two different observers, is proved to be successful at rejecting
constant biases affecting the sensor measurements without the
need for matching conditions or any prior knowledge on the

structure of the perturbations. The first observer is in charge of
estimating the output perturbation signal, whereas the second
uses dynamic pseudoinverses to seek for the best combination
of sensors. Such an optimization scheme hinges on a novel line-
search algorithm for the minimization of positive semidefinite
quadratic forms over the unit sphere. In addition, a selector is
introduced to overrule the optimizer whenever this would drive
the adaptive pseudoinverse too close to singularity.

Extensive simulations illustrate and corroborate the theoret-
ical findings, exploiting several key aspects of the proposed
method through the application to the case study of a discrete-
time mechanical system with redundant sensors.

Future work will be oriented toward obtaining a global,
or semiglobal, solution for the continuous-time case, possibly
introducing hybrid optimization policies based on the results
contained in this article. Moreover, we are currently working
on the application of our line-optimization algorithm to other
problems such as the calibration of cameras and attitude esti-
mation. Finally, it may be worth investigating the extension of
the proposed design scheme to unknown input observers with
redundant outputs.
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