
1

Asynchronous Optimization over Graphs: Linear
Convergence under Error Bound Conditions

Loris Cannelli, Francisco Facchinei∗, Gesualdo Scutari∗, and Vyacheslav Kungurtsev

Abstract—We consider convex and nonconvex constrained
optimization with a partially separable objective function: agents
minimize the sum of local objective functions, each of which is
known only by the associated agent and depends on the variables
of that agent and those of a few others. This partitioned setting
arises in several applications of practical interest. We propose
what is, to the best of our knowledge, the first distributed,
asynchronous algorithm with rate guarantees for this class of
problems. When the objective function is nonconvex, the algo-
rithm provably converges to a stationary solution at a sublinear
rate whereas linear rate is achieved under the renowned Luo-
Tseng error bound condition (which is less stringent than strong
convexity). Numerical results on matrix completion and LASSO
problems show the effectiveness of our method.

Index Terms—Asynchronous algorithms; error bounds; linear
rate; multi-agent systems; nonconvex optimization.

I. INTRODUCTION

WE study distributed, nonsmooth, nonconvex optimiza-
tion with a partially separable sum-cost function.

Specifically, consider a set of N agents, each of them control-
ling/updating a subset of the n variables x ∈ Rn. Partitioning
x = (xT1 , . . . ,x

T
N)T , xi ∈ Rni is the block of variables owned

by agent i ∈ N , {1, . . . , N}, with
∑
i ni = n. All agents

cooperatively aim at solving the following problem:

min
xi∈Xi,i∈N

V (x) ,
N∑
i=1

fi(xNi)︸ ︷︷ ︸
,F (x)

+

N∑
i=1

gi(xi)︸ ︷︷ ︸
,G(x)

,
(P)

where Ni denotes a small subset of N including the index
i and xNi , [xj]j∈Ni denotes the column vector containing
the blocks of x indexed by Ni; Xi ⊆ Rni is a closed convex
set; fi is a smooth (nonconvex) function that depends only on
xNi ; and gi is a convex (nonsmooth) function, instrumental to
encode structural constraints on the solution, such as sparsity.
Both fi and gi are assumed to be known only by agent i.

The above formulation is motivated by a variety of applica-
tions of practical interest. For instance, loss functions arising
from many machine learning problems have the “sparse”

∗Facchinei and Scutari contributed equally to this paper.
Cannelli is with Istituto Dalle Molle di studi sull’Intelligenza Artificiale
(IDSIA), USI/SUPSI, Lugano, Switzerland, and with the School of
Industrial Engineering, Purdue University West-Lafayette, IN, USA;
email: loris.cannelli@idsia.ch. Scutari is with the School of
Industrial Engineering, Purdue University, West-Lafayette, IN, USA;
email: gscutari@purdue.edu. Facchinei is with the Dept. of
Computer, Control, and Management Engineering, University of Rome La
Sapienza, Rome, Italy; email: francisco.facchinei@uniroma1.it.
Kungurtsev is with the Dept. of Computer Science, Czech
Technical University in Prague, Prague, Czech Republic; email:
vyacheslav.kungurtsev@fel.cvut.cz.
The work of Cannelli and Scutari was supported by the USA NSF under
Grants CIF 1719205, and CMMI 1832688; and the ARO under the Grant
W911NF1810238. Kungurtsev was supported by the OP VVV project
CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics”.

pattern of V in (P): n and N are both very large but each fi
depends only on a small number of components of x, i.e., each
subvector xNi contains just a few components of x. The same
partitioned structure in (P) is suitable also to model networked
systems wherein agents are connected through a physical
communication network and can communicate only with their
immediate neighbors. In this setting, often Ni represents the
set of neighbors of agent i (including agent i itself). Examples
of such applications include resource allocation problems and
network utility maximization [1], state estimation in power
networks [2], cooperative localization in wireless networks [3],
and map building in robotic networks. Some concrete instances
of Problem (P) are discussed in Sec. II.

A. Major contributions
We focus on the design of distributed, asynchronous algo-

rithms for (P), in the following sense: i) Agents can update
their block-variables at any time, without any coordination;
and ii) when updating their own variables, agents can use a
delayed out-of-sync information from the others. No constraint
is imposed on the delay profiles: delays can be arbitrary,
possibly time-varying (but bounded). This model captures
several forms of asynchrony: some agents execute more itera-
tions than others; some agents communicate more frequently
than others; and inter-agent communications can be unreliable
and/or subject to unpredictable, unknown, time-varying delays.

While several forms of asynchrony have been studied in
the literature–see Sec. I-B for an overview of most relevant
results–we are not aware of any distributed scheme that is
compliant to the asynchronous model (i)-(ii) and tailored
to the partitioned (nonconvex) distributed formulation (P).
This paper fills this gap and proposes a general distributed,
asynchronous algorithmic framework for convex and noncon-
vex instances of (P). The algorithm builds on Successive
Convex Approximation (SCA) techniques: agents solve asyn-
chronously [in the sense (i) and (ii) above] strongly convex
approximations of the original problem (P) by using (possibly)
outdated information on the variables and the gradients of the
other agents. No specific activation mechanism for the agents’
updates, coordination, or communication protocol is assumed,
but only some mild conditions ensuring that information used
in the updates does not become infinitely old. For nonconvex
instances of V , we prove that i) every limit point of the se-
quence generated by the proposed asynchronous algorithm is a
stationary solution of (P); and ii) a suitable measure of station-
arity vanishes at a sublinear rate. When V further satisfies the
Luo-Tseng error bound condition [4], [5], both the sequence
and the objective value converge at an R-linear rate (when
V is nonconvex, convergence is to stationary solutions). This
error bound condition is weaker than strong convexity and it is

ar
X

iv
:2

01
0.

09
05

7v
1

 [
m

at
h.

O
C

]
 1

8
O

ct
 2

02
0

2

satisfied by a variety of problems of interest, such as LASSO,
Group LASSO, and Logistic Regression, just to name a few
(cf. Sec. III-A). While linear convergence under error bounds
has been proved for many centralized algorithms [4], [6]–[9],
we are not aware of any such a result in the distributed setting;
current works require strong convexity to establish linear rate
of synchronous and asynchronous distributed algorithms (see,
e.g., [10]–[12] and references therein). As a byproduct, our
results provide also a positive answer to the open question
whether linear convergence could be proved for distributed
asynchronous algorithms solving highly dimensional empirical
risk minimization problems, such as LASSO and Logistic
Regression, a fact that was empirically observed but, to our
knowledge, never proved.

B. Related Works

Since the seminal work [13], asynchronous parallelism has
been applied to several centralized solution methods, including
(randomized) block-coordinate descent schemes [6], [13]–[17],
and stochastic gradient algorithms [18], [19]. However, those
methods are not applicable to Problem (P), since they would
require each agent to know the entire objective function V .

Distributed schemes exploring (some form of) asynchrony
have been studied in [20]–[39]; next, we group them based
upon the asynchrony features (i) and (ii).
(a) Random activation and no delays [20]–[27], [40]: While
substantially different in the form of the updates performed
by the agents, these schemes are all asynchronous in the
sense of feature (i) only. Agents (or edge-connected agents)
are randomly activated but, when performing their compu-
tations/updates, they must use the current information from
their neighbors. This means that no form of delay is allowed.
Furthermore, between two activations, agents must be in idle
mode (i.e., able to continuously receive information). Some
form of coordination is thus needed to enforce the above
conditions. All the schemes in this group but [26] can deal
with convex objectives only; and none of the above works
provide a convergence rate or complexity analysis.
(b) Synchronous activation and delays [28]–[33]: These
schemes consider synchronous activation/updates of the
agents, which can tolerate fixed computation delays (e.g.,
outdated gradient information) [28], [29] or fixed [30], [33]
or time-varying [31], [32] communication delays. However
delays cannot be arbitrary, but must be such that no loss can
ever occur in the network: every agent’s message must reach
its intended destination within a finite time interval. Finally,
all these algorithms are applicable only to convex problems.
(c) Random/cyclic activations and some form of delay [34]–
[39], [41]–[44]: These schemes allow for random [34]–[37],
[41] or deterministic uncoordinated [38], [39], [42]–[45] acti-
vation of the (edge-based) agents, together with the presence of
some form of delay in the updates/computations. Specifically,
[34], [35], [38] can handle link failures–the information sent
by an agent to its neighbors either gets lost or received with
no delay–but cannot deal with other forms of delay (e.g.,
communication delays). In [36], [37], [41] a probabilistic
model is assumed whereby agents are randomly activated and

update their local variables using possibly delayed informa-
tion. The model requires that the random variables modeling
the activation of the agents are i.i.d and independent of the
delay vector used by the agent to perform its update. While this
assumption makes the convergence analysis possible, in reality
there is a strong dependence of the delays on the activation
index, as also noted by the same authors [36], [37]; see [15] for
a detailed discussion on this issue and some counter examples.
Closer to our setting are the asynchronous methods in [10],
[36], [39], [42]–[45]. These models however assume that each
function fi depends on the entire vector x. As a consequence,
a consensus mechanism on all the optimization variables is
employed among the agents at each iteration. Because of that,
a direct application of these consensus-based algorithms to
the partitioned formulation (P) would lead to very inefficient
schemes calling for unnecessary computation and communi-
cation overheads. Furthermore, the ADMM-like schemes [39],
[41]–[45] can be implemented only on very specific network
architectures, such as star networks or hierarchical topologies
with multiple master and worker nodes. Finally, notice that,
with the exception of [10], [35], [39], [41]–[45] (resp. [38]),
all these schemes are applicable to convex problems (resp.
undirected graphs) only, with [34] further assuming that all
the functions fi have the same minimizer.

The rest of the paper is organized as follows: Section II dis-
cusses some motivating applications. The proposed algorithm
is introduced and analyzed in Section III. Finally, numerical
results are presented in Section IV.

II. MOTIVATING EXAMPLES

We discuss next two instances of Problem (P), which
will be also used in our numerical experiments to test our
algorithms (cf. Sec. IV). The first case study is the matrix
completion problem–an example of large-scale nonconvex
empirical risk minimization. We show how to exploit the
sparsity pattern in the data to rewrite the problem in the form
(P), so that efficient asynchronous algorithms levering multi-
core architectures can be developed. The second example
deals with learning problems from networked data sets; in
this setting data are distributed across multiple nodes, whose
communication network is modeled as a (directed) graph.
Example #1 –Matrix completion: The matrix completion prob-
lem consists of estimating a low-rank matrix Z ∈ RM×N from
a subset Ω ⊆ {1, . . . ,M} × {1, . . . , N} of its entries. Postu-
lating the low-rank factorization Z = XTY, with X ∈ Rr×M
and Y ∈ Rr×N , the optimization problem reads [46]:

min
X∈Rr×M
Y∈Rr×N

V (X,Y) ,
1

2

∥∥(XTY − Z)Ω

∥∥2

F
+
λ

2
‖X‖2F+

ξ

2
‖Y‖2F ,

(1)
where ‖ · ‖F is the Frobenius norm; (·)Ω is the projection
operator, defined as [(X)Ω](i,j) = X(i,j), if (i, j) ∈ Ω; and
[(X)Ω](i,j) = 0 otherwise; and λ, ξ > 0 are regularization
parameters. In many applications, the amount of data is so
large that storage and processing from a single agent (e.g.,
core, machine) is not efficient or even feasible. The proposed
approach is then to leverage multi-core machines by first
casting (1) in the form (P), and then employing the parallel
asynchronous framework developed in this paper.

3

Consider a distributed environment composed of N agents,
and assume that the known entries zmn, (m,n) ∈ Ω, are parti-
tioned among the agents. This partition along with the sparsity
pattern of (Z)Ω induce naturally the following splitting of the
optimization variables X and Y across the agents. Let xm
and yn denote the m-th and the n-th column of X and Y,
respectively; the agent owning zmn will control/update the
variables xm (or yn), and it is connected to the agent that
optimizes the column yn (or xm). By doing so, we minimize
the overlapping across the block-variables and, consequently,
the communications among the agents. Problem (1) can be
then rewritten in the multi-agent form (P), setting

fi((X,Y)Ni) =
1

2

∑
(m,n)∈Ωi

(xTm yn − zmn)2 (2)

and

gi ({xm}m∈Xi , {yn}n∈Yi) =
λ

2

∑
m∈Xi

‖xm‖22 +
ξ

2

∑
n∈Yi

‖yn‖22,

(3)
where Ωi ⊆ Ω contains the indices associated to the compo-
nents of (Z)Ω owned by agent i, and Xi (resp. Yi) is the set
of the column indexes of X (resp. Y) controlled by agent i.
Example #2 – Empirical risk minimization over networks:
Consider now a network setting where data are distributed
across N geographically separated nodes. As concrete exam-
ple, let us pick the renowned LASSO problem [47]:

min
x=(xT1 ,...,x

T
N)T∈Rn

‖Ax− b‖22 + λ‖x‖1, (4)

where A ∈ Rm×n,b ∈ Rm, and λ > 0 is a regularization
parameter. Note that (4) easily falls into Problem (P); for each
i ∈ N , it is sufficient to set fi(x) = ‖Aix + bi‖22, with
Ai ∈ Rm×n and bi ∈ Rm such that A =

∑N
i=1 Ai and

b =
∑N
i=1 bi; and gi = ‖xi‖1. Ai and bi represent in fact the

data stored at agent i’s side. Under specific sparsity patterns
in the data, the local matrices Ai may be (or constructed to
be) such that each local function fi depends only on some
of the block variables xi. These dependencies will define the
sets Ni associated to each agent i. Note that Ni need not
coincide with the neighbors of agent i in the communication
network (graph). That is, the graph modeling the dependence
across the block-variables–the one with node set N and edge
set E = {(i, j) : j ∈ Ni, for some i∈N}–might not coincide
with the communication graph. This can be desirable, e.g.,
when the communication graph is populated by inefficient
communication links, which one wants to avoid using.

III. DISTRIBUTED ASYNCHRONOUS ALGORITHM

In the proposed asynchronous model, agents update their
block-variables without any coordination. Let k be the iteration
counter: the iteration k → k + 1 is triggered when one agent,
say i, updates its own block xi from xki to xk+1

i . Hence,
xk and xk+1 only differ in the i-th block xi. To perform its
update, agent i minimizes a strongly convex approximation of∑
j∈Ni fj−the part of V that depends on xi−using possibly

outdated information collected from the other agents j ∈ Ni.
To represent this situation, let x

k−dkj (i,i)

j , j ∈ Ni\{i}, de-
note the estimate held by agent i of agent j’s variable xkj ,

where dkj (i, i) is a nonnegative (integer) delay (the reason for
the double index (i, i) in dkj will become clear shortly). If
dkj (i, i) = 0, agent i owns the most recent information on

the variable of agent j, otherwise x
k−dkj (i,i)

j is some delayed
version of xkj . We define as dk(i, i) , [dkl (i, i)]l∈Ni the delay
vector collecting these delays; for ease of notation dk(i, i)
contains also the value dki (i, i), set to zero, as each agent has
always access to current values of its own variables. Using the
above notation and recalling that fi depends on xNi , agent i at
iteration k solves the following strongly convex subproblem:

x̂ki , arg min
xi∈Xi

{
f̃i

(
xi;x

k−dk(i,i)
Ni

)
+ (5)

∑
j∈Ni\{i}

〈
∇xifj

(
x
k−dk(i,j)
Nj

)
,xi−xki

〉
+ gi(xi)

}
,

where we defined x
k−dk(i,j)
Nj , [x

k−dkl (i,j)
l]l∈Nj , j ∈ Ni.

The term f̃i in (5) is a strongly convex surrogate that
replaces the nonconvex function fi known by agent i; an
outdated value of the variables of the other agents is used,
x
k−dk(i,i)
Ni , to build this function. Examples of valid surrogates

are discussed in Sec. III-A. The second term in (5) approx-
imates

∑
j∈Ni\{i} fj by replacing each fj by its first order

approximation at (possibly outdated) x
k−dk(i,j)
Nj (with ∇xifj

denoting the gradient of fj with respect to the block xi), where
dk(i, j) ,

[
dkl (i, j)

]
l∈Nj

, with dkl (i, j) ≥ 0 representing
the delay of the information that i knows about the gradient
∇xifj . This source of delay on the gradients is due to two
facts, namely: i) agents j ∈ Ni \ {i} may communicate to
i its gradient ∇xifj occasionally; and ii) ∇xifj is generally
computed at some outdated point, as agent j itself may not
have access of the last information of the variables of the
agents in Nj \ {j}.

Once x̂ki has been computed, agent i sets

xk+1
i = xki + γ

(
x̂ki − xki

)
, (6)

where γ ∈ (0; 1] is suitably chosen stepsize (cf. Sec. III-A).
The proposed distributed asynchronous algorithm, termed

Distributed Asynchronous FLexible ParallEl Algorithm
(DAsyFLEXA), is formally described in Algorithm 1. We set
xti = x0

i , for all t < 0 and i ∈ N , without loss of generality.

Algorithm 1 Distributed Asynchronous FLexible ParallEl
Algorithm (DAsyFLEXA)

Initialization:k=0; x0∈X,
∏
i Xi; xt=x0, t<0;γ ∈ (0; 1].

while a termination criterion is not met do
(S.1): Pick agent ik and delays {dk(ik, j)}j∈N

ik
;

(S.2): Compute x̂kik according to (5);
(S.3): Update xkik according to (6);
(S.4): Update the global iteration counter k ← k + 1;

end while

We stress that agents need know neither the iteration counter
k nor the vector of delays. No one “picks agent ik and the
delays {dk(ik, j)}j∈N

ik
” in (S.1). This is just an a posteri-

ori view of the algorithm dynamics: all agents asynchronously

4

and continuously collect information from their neighbors and
use it to update xi; when one agent has completed an update
the iteration index k is increased and ik is defined.

A. Assumptions

Before studying convergence of Algorithm 1, we state the
main assumptions on Problem (P) and the algorithmic choices.
On Problem (P). Below, we will use the following conven-
tions: When a function is said to be differentiable on a certain
domain, it is understood that the function is differentiable on
an open set containing the domain. We say that fi is block-
LC1 on a set if it is continuously differentiable on that set
and ∇xjfi are locally Lipschitz. We say V is coercive on
X =

∏
i Xi, if lim

‖x‖→+∞,x∈X
V (x) = +∞; this is equivalent

to requiring that all level sets of V in X are compact.
Assumption A (On Problem (P)):
(A1) Each set Xi ⊆ Rni is nonempty, closed, and convex;
(A2) At least one of the following conditions is satisfied

(a) L0 , {x ∈ X : V (x) ≤ V (x0)} is compact and all
fi are block-LC1 on XNi , Π

j∈Ni
Xj ;

(b) All fi are C1 and their gradients ∇xjfi, j ∈ Ni, are
globally Lipschitz on XNi ;

(A3) Each gi : Xi → R is convex;
(A4) Problem (P) has a solution;
(A5) The communication graph G is connected.

The above assumptions are standard and satisfied by many
practical problems. For instance, A2(a) holds if V is coercive
on X and all fi are block-LC1 on XNi . Note that Example
#2 satisfies A2(b); A2(a) is motivated by applications such
as Example #1, which do not satisfy A2(b). A3 is a common
assumption in the literature of parallel and distributed methods
for the class of problems (P); two renowned examples are
gi(xi) = ‖xi‖1 and gi(xi) = ‖xi‖2. Finally, A4 is satisfied
if, for example, V is coercive or if X is bounded.
Remark 1. Extensions to the case of directed graphs or the
case where each agent updates multiple block-variables are
easy, but not discussed here for the sake of simplicity.

The aim of Algorithm 1 is to find stationary solutions of
(P), i.e. points x? ∈ X such that

〈∇F (x?) + ξ,y − x?〉+G(y)−G(x?) ≥ 0, ∀y ∈ X .

Let X ? ⊆ Rn denote the set of such stationary solutions.
On an error bound condition. We prove linear convergence
of Algorithm 1 under the Luo-Tseng error bound condition,
which is stated next. Recall the definition: given α > 0,

proxαG(z) , arg min
y∈X

{
αG(y) +

1

2
‖y − z‖22

}
.

Furthermore, given x ∈ Rn, let

d(x,X ?) , min
x?∈X?

‖x−x?‖2, PX?(x) , argmin
x?∈X?

‖x−x?‖2.

Note that PX?(x) 6= ∅, as X ? is closed.
Assumption B (Luo-Tseng error bound):
(B1) For any η > min

x∈X
V (x), there exist ε, κ > 0 such that:

V (x) ≤ η,
‖x− proxG (∇F (x)− x) ‖2 ≤ ε

}
⇒

d(x,X ?) ≤ κ ‖x− proxG (∇F (x)− x)‖2 ;

(B2) There exists δ > 0 such that

x,y ∈ X ∗,
V (x) 6= V (y)

}
⇒ ‖x− y‖2 ≥ δ.

B1 is a local Lipschitzian error bound: the distance of x
from X ? is of the same order of the norm of the residual
x − proxG (∇F (x)− x) at x. It is not difficult to check,
that x ∈ X ? if and only if x − proxG (∇F (x)− x) = 0.
Error bounds of this kind have been extensively studied in
the literature; see [4], [7] and references therein. Examples
of problems satisfying Assumption B include: LASSO, Group
LASSO, Logistic Regression, unconstrained optimization with
smooth nonconvex quadratic objective or F (Ax), with F
being strongly convex and A being arbitrary. B2 states that the
level curves of V restricted to X ? are “properly separated”.
B2 is trivially satisfied, e.g., if V is convex, if X is bounded,
or if (P) has a finite number of stationary solutions.

On the subproblems (5). The surrogate functions f̃i satisfy
the following fairly standard conditions (∇f̃i denotes the
partial gradient of f̃i w.r.t. the first argument).
Assumption C Each f̃i : Xi ×XNi → R is chosen so that

(C1) f̃i(·;y) is C1 and τ -strongly convex on Xi, for all y ∈
XNi ;

(C2) ∇f̃i(yi;yNi) = ∇yifi(yNi), for all y ∈ X ;

(C3) ∇f̃i(y; ·) is Li-Lipschitz continuous on XNi , for all
y ∈ Xi.

A wide array of surrogate functions f̃i satisfying Assumption
C can be found in [48]; three examples are discussed next.
• It is always possible to choose f̃i as the first-order approx-
imation of fi: f̃i(xi;yNi) = 〈∇xif(yNi),xi − yi〉+ c‖xi −
yi‖22, where c is a positive constant.
• If fi is block-wise uniformly convex, instead of linearizing
fi one can exploit a second-order approximation and set
f̃i(xi;yNi) = fi(yNi) + 〈∇xifi(yNi),xi − yi〉 + 1

2 (xi −
yi)

T∇2
xixifi(yNi)(xi − yi) + c‖xi − yi‖22, for any y ∈ X ,

where c is a positive constant.
• In the same setting as above, one can also better pre-
serve the partial convexity of fi and choose f̃i(xi;yNi) =
fi(xi,yNi\{i}) + c‖xi − yi‖22, for any y ∈ X .

On the asynchronous/communication model. The way agent
i builds its own estimates x

k−dk(i,i)
Ni and ∇xifj

(
x
k−dk(i,j)
Nj

)
,

j ∈ Ni\{i}, depends on the particular asynchronous model
and communication protocol under consideration and it is
immaterial to the convergence of Algorithm 1. This is a
major departure from previous works, such as [20], [22], [26],
which instead enforce specific asynchrony and communication
protocols. We only require the following mild conditions.
Assumption D (On the asynchronous model):

(D1) Every block variable of x is updated at most every B ≥
N iterations, i.e., ∪k+B−1

t=k it = N , for all k;

5

(D2) ∃D ∈ [0, B], such that every component of dk(i, j),
i ∈ N , j ∈ Ni, is not greater than D, for any k ≥ 0.1

Assumption D is satisfied virtually in all practical scenarios.
D1 controls the frequency of the updates and is satisfied, for
example, by any essentially cyclic rules. In practice, it is auto-
matically satisfied, e.g., if each agent wakes up and performs
an update whenever some internal clock ticks, without any
centralized coordination. D2 imposes a mild condition on the
communication protocol employed by the agents: information
used in the agents’ updates can not become infinitely old.
While this implies agents communicate sufficiently often, it
does not enforce any specific protocol on the activation/idle
time/communication. For instance, differently from several
asynchronous schemes in the literature [20]–[23], [26], [27],
[34], agents need not be always in “idle mode” to continu-
ously receive messages from their neighbors. Notice that time
varying delays satisfying D2 model also packet losses.

B. Convergence Analysis

We are now in the position to state the main convergence
results for DAsyFLEXA. For nonconvex instances of (P),
an appropriate measure of optimality is needed to evaluate
the progress of the algorithm towards stationarity. In order
to define such a measure, we first introduce the following
quantities: for any k ≥ 0 and i ∈ N ,

̂̄xki , arg min
xi∈Xi

{
f̃i
(
xi;x

k
Ni
)

+ (7)

∑
j∈Ni\{i}

〈
∇xifj

(
xkNj

)
,xi−xki

〉
+ gi(xi)

}
,

where ̂̄xki is a “synchronous” instance of x̂ki [cf. (5)] wherein
all dk(i, j) = 0. Convergence to stationarity is monitored by
the following merit function:

MV (xk) , ‖̂̄xk − xk‖22, with ̂̄xk ,
[̂̄xki]

i∈N
. (8)

Note that MV is a valid measure of stationarity, as MV is
continuous and MV (xk) = 0 if and only if xk ∈ X ?.

The following theorem shows that, when agents use a suffi-
ciently small stepsize, the sequence of the iterates produced by
DAsyFLEXA converges to a stationary solution of (P), driving
MV (xk) to zero at a sublinear rate. In the theorem we use
two positive constants, L and C1, whose definition is given
in Appendix V-B and V-C3 [cf. (28)], respectively. Suffices
to say, here, that L is essentially a Lipschitz constant for
the partial gradients ∇xifi whose definition varies according
to whether A2(a) or A2(b) holds. In the latter case, L is
simply the largest global Lipschitz constant for all ∇xjfi’s.
In the former case, the sequences {xk} and {x̂k}, with
x̂k ,

[
x̂ki
]
i∈N , are proved to be bounded [cf. Theorem

2(c)]; L is then the Lipschitz constant of all ∇xjfi’s over
the compact set confining these sequences.

1While (S.2) in Algorithm 1 is defined once dk(ik, j), j ∈ Nik is given,
here we extend the definition of the delay vectors dk(i, j) to all i, j ∈ N ,
whose values are set to the delays of the information known by the associated
agent on the variables and gradients of the others, at the time agent ik performs
its update. This will simplify the notation in some of the technical derivations.

Theorem 2. Given Problem (P) under Assumption A; let {xk}
be the sequence generated by DAsyFLEXA, under Assumptions
C, and D. Choose γ ∈ (0, 1] such that γ < 2τ

L(2+ρ2D2) , with
ρ , maxi∈N |Ni|. Then, there hold:
(a) Any limit point of {xk} is a stationary solution of (P);
(b) In at most Tε iterations, DAsyFLEXA drives the station-

arity measure MV (xk) below ε, ε > 0, where

Tε =

⌈
C1

(
V (x0)−min

x∈X
V (x)

)
· 1

ε

⌉
,

where C1 > 0 is a constant defined in Appendix V-C3
[cf. (28)], which depends on ρ, Li, i ∈ N , L, τ, γ,N,B,
and D.

(c) If, in particular A2(a) is satisfied, {xk} is bounded.

Proof. See Appendix V-C.
Theorem 2 provides a unified set of convergence conditions

for several algorithms, asynchronous models and communica-
tion protocols. Note that when D = 0, the condition on γ,
reduces to the renowned condition used in the synchronous
proximal-gradient algorithm. The term D2 in the denominator
of the upper-bound on γ should then be seen as the price
to pay for asynchrony: the larger the possible delay D, the
smaller γ, to make the algorithm robust to asynchrony/delays.

Theorem 3 improves on the convergence of DAsyFLEXA,
when V satisfies the error bound condition in Assumption
B. Specifically, convergence of the whole sequence {xk}
to a stationary solution x? is established (in contrast with
subsequence convergence in Theorem 2 (b)], and suitable
subsequences that converge linearly are identified.
Theorem 3. Given Problem (P) under Assumptions A and B,
let {xk} be the sequence generated by DAsyFLEXA, under
Assumptions C and D. Suppose that γ/τ > 0 is sufficiently
small. Then, {xt+kB} and {V (xt+kB)}, t ∈ {0, . . . , B − 1},
converge at least R-linearly to some x?∈ X ? and V ? ,
V (x?), respectively, that is

V (xt+kB)− V ? = O
(
λt+kB

)
,

‖xt+kB − x?‖ = O
(√

λt+kB
)
,

where λ ∈ (0; 1) is a constant defined in Appendix V-D [cf.
(38)], which depends on ρ, Li, i ∈ N , L, τ, γ,N,B, and D.
Proof. See Appendix V-D.

In essence, the theorem proves a B-steps linear convergence
rate. To the best of our knowledge, this is the first (linear)
convergence rate result in the literature for an asynchronous
algorithm in the setting considered in this paper.

IV. NUMERICAL RESULTS

In this section we report some numerical results on the two
problems described in Section II. All our experiments were
run on the Archimedes1 cluster computer at Purdue University,
equipped with two 22-cores Intel E5-2699Av4 processors (44
cores in total) and 512GB of RAM. Code for the LASSO
problem was written in MATLAB R2019a; code for the Matrix
Completion problem was written in C++ using the OpenMPI
library for parallel and asynchronous operations.

6

A. Distributed LASSO
Problem setting. We simulate the (convex) LASSO problem
stated in (4). The underlying sparse linear model is generated
as follows: b = Ax? + e, where A∈ R15000×30000. A, x?

and e have i.i.d. elements, drawn from a Gaussian N (0, σ2)
distribution, with σ = 1 for A and x?, and σ = 0.1 for the
noise vector e. Entries of A are then normalized by ‖A‖. To
impose sparsity on x? and A, we randomly set to zero 95%
of their components. Finally, in (4), we set λ = 1.
Network setting. We consider a fixed, undirected network
composed of 50 agents; x ∈ R30000 is partitioned in 50 block-
variables xi ∈ R600, i ∈ {1, . . . , 50}, each of them controlled
by one agent. We define the local functions fi and gi as
described in Sec. II (cf. Ex. #2); each Ai (resp. bi) is all
zeros but its ith row (resp. component), which coincides with
that of A (resp. b). This induces the following communication
pattern among the agents: each agent i is connected only to
the agents js owning the xjs corresponding to the nonzero
column-entries of Ai.
Algorithms. We simulated the following algorithms:
• DAsyFLEXA: we used the surrogate functions

f̃i

(
xi;x

k−dk(i,i)
Ni

)
(9)

=
〈
∇xifi

(
x
k−dk(i,i)
Ni

)
,xi − xki

〉
+
τi
2
‖xi − xki ‖22,

where τi > 0 is a tunable parameter, which is updated
following the same heuristic used in [49]. The stepsize γ is
set to 0.9. Note that, using (9), problem (5) has a closed-form
solution via the renowned soft-thresholding operator.
• PrimalDual asynchronous algorithm [36]: this seems

to be the distributed asynchronous scheme closest to
DAsyFLEXA. Note that there are some important differences
between the two algorithms. First, the PrimalDual algorithm
[36] does not exploit the sparsity pattern of the objective
function V ; every agent instead controls and updates a local
copy of the entire vector x, which requires employing a
consensus mechanism to enforce an agreement on such local
copies. This leads to an unnecessary communication overhead
among the agents. Second, no explicit estimate of the gradients
of the other agents is employed; the lack of this knowledge is
overcome by introducing additional communication variables,
which lead to contribute to increase the communication cost.
Third, the PrimalDual algorithm does not have convergence
guarantees in the nonconvex case. In our simulations we tuned
the stepsizes of [36] by hand in order to obtain the best
performances; specifically we set α = 0.9, and ηi = 1.5 for
i = 1, . . . , 50 (see [36] for details on these parameters).
•AsyBADMM: this is a block-wise asynchronous ADMM,

introduced in [41] to solve nonconvex and nonsmooth opti-
mization problems. Since AsyBADMM requires the presence
of master and worker nodes in the network, to implement it on
a meshed networks, we selected uniformly at random 5 nodes
of the network as servers while the others acting as workers.
The parameters of the algorithm (see [41] for details) are tuned
by hand in order to obtain the best performances; specifically
we set γ = 0.06, C = 104, and ρij = 50, for all (i, j).

All the algorithms are initialized from the same randomly
chosen point, drawn from N (0, 1).

Asynchronous model. We simulate the following asyn-
chronous model. Each agent is activated periodically, every
time a local clock triggers. The agents’ local clocks have the
same frequency but different phase shift, which are selected
uniformly at random within [5, 50]. Based upon its activation,
each agent: i) performs its update and then broadcasts its
gradient vector ∇xifi together with its own block-variable xi
to the agents in Ni\{i}; and ii) modifies the phase shift of its
local clock by selecting uniformly at random a new value.

Figure 1 plots relative error (V (xk)− V ?)/V ? of the differ-
ent methods versus the number of iterations. Figure 2 shows
the same function versus the number of message exchanges
per agent; each scalar variable sent from an agent to one of
its neighbor is counted as one message exchanged. All the
curves are averaged over 10 independent realizations.

Fig. 1: LASSO problem: Relative error vs. # of iterations.

Fig. 2: LASSO problem: Relative error vs. # of message exchanges.

DAsyFLEXA outperforms the PrimalDual scheme [36] and
AsyBADMM [41]. Also, as anticipated, PrimalDual requires
much more communications than DAsyFLEXA.

B. Distributed Matrix Completion

In this section we consider the Distributed Matrix Com-
pletion problem (1). We generate a 2200 × 2200 matrix Z
with samples drawn from N (0, 1); and we set λ = ξ = 1 and
r = 4. Each core of our cluster computer represents a different
agent; the columns of X and Y are equally partitioned across
the 22 cores, and those of Y uniformly among the other 11
cores; and all cores access a shared memory where the data are
stored. We sampled uniformly at random 10% of the entries

7

Fig. 3: Matrix completion: stationarity distance vs. # CPU time (in seconds).

of Z, and distributed these samples zmn to the agents owing
the corresponding column xm of X or yn of Y, choosing
randomly between the two.

We applied the following instance of DAsyFLEXA to (1).
Consider one of the agents that optimizes some columns of
X, say agent i. Since each fi is biconvex in X and Y, the
following surrogate function satisfies Assumption C:

f̃i

(
{xm}m∈Xi ; (X,Y)

k−dk(i,i)
Ni

)
(10)

=
1

2

∑
(m,n)∈Ωi

(
xTmy

k−dkj(n)(i,i)
n −zmn

)2

+
τi
2

∑
(m,n)∈Ωi

‖xm−xkm‖22;

where j(n) is the index j ∈ Ni of the agent that controls yn,
and τi > 0 is updated following the same heuristic used in [49]
(the surrogate function for the agents that update columns of
Y is the same as (10), with the obvious change of variables).
Note that (10) preserves the block-wise convexity present in
the original function fi, which contrasts with the common
approach in the literature based on the linearization of fi.
Problem (5) with the surrogate (10) has a closed-form solution.

We compare our algorithm with the decentralized ADMM
version of ARock, as presented in [37]. Even if this method
has convergence guarantees for convex problems only, its
performances on this experiment appeared to be good. For
ARock we fixed ηk = 0.9, for all k, and γ = 10, which are the
values that gave us the best performances in the experiments.

The rest of the setup is the same as that described for the
LASSO problem. Figure 3 and Figure 4 plot ‖x̂k − xk‖∞
(a valid measure of stationarity), with x̂i defined as in (5),
obtained by DAsyFLEXA and the PrimalDual algorithm [36]
versus the CPU time (measured in seconds) and message
exchanges per agent. On our tests, we observed that all the
algorithms converged to the same stationary solution. The
results confirm the behavior observed in the previous section
for convex problems: DAsyFLEXA has better performances
than PrimalDual, and the difference is mostly significant is
terms of communication cost. DAsyFLEXA is also more
efficient than ARock, which suffers from a similar drawback
of PrimalDual for what concerns the number of message
exchanges; this is due to the fact that ARock requires the use
of dual variables, which cause a communication overhead.

Fig. 4: Matrix completion: stationarity distance vs. # of message exchanges.

V. APPENDIX

In this Appendix we prove Theorems 2 and 3.
A. Notation

Vectors x
k−dk(i,j)
Nj have different length. It is convenient

to replace them with equal-length vectors retaining of course
the same information. This is done introducing the following
(column) vectors xk(i, j) , (xkl (i, j))Nl=1 ∈ X , defined as:

[xkl (i, j)]l∈Nj , x
k−dk(i,j)
Nj , (11a)

xkl (i, j) = xkl , l /∈ Nj . (11b)

In words, the blocks of xk(i, j) indexed by Nj coincide with
x
k−dk(i,j)
Nj whereas the other block-components, irrelevant to

the proofs, are conveniently set to their most up-to-date values.
We will use the shorthand xkNj (i, j) , [xkl (i, j)]l∈Nj .

Since at each iteration k ≥ 0 only one block of xk is
updated, and because of Assumption D2, it is not difficult
to check that the delayed vector xk(i, j) can be written as

xk(i, j) = xk +
∑

l∈Kk(i,j)

(xl − xl+1), (12)

where Kk(i, j) is a subset of {k − D, . . . , k − 1} whose
elements depend on which block variables have been updated
in the window [max{0, k−D},max{0, k− 1}]. Recall that it
is assumed xt = x0, for t < 0.

Finally, notice that the notation x̂ki for the best-response
map (5) is a shorthand for the formal expression x̂i(x̃

k(i)),
where x̃k(i) ,

[
x
k−dk(i,j)
Nj

]
j∈Ni

. Similarly, ̂̄xki (resp. ̂̄xk)

in (7) is a shorthand for x̂i(x̄
k(i)) (resp. x̂(x̄k)), where

x̄k(i) ,
[
xkNj

]
j∈Ni

(resp. x̄k ,
[
x̄k(i)

]
i∈N). We also define

the following shorthands:

∆x̂k ,
[
∆x̂ki

]
i∈N , ∆x̂ki , x̂ki − xki . (13)

Table I summarizes the main notation used in the paper. On
the constant L. The proofs rely on some Lipschitz properties
of ∇xjfi’s. To provide a unified proof under either A2(a) or
A2(b), we introduce a constant L > 0 whose value depends
on whether A2(a) or A2(b) hold. Specifically:
• A2(a) holds: the gradients∇xjfi’s are not globally Lipschitz
on the sets XNi ’s; our approach to study convergence is to
ensure that they are Lipschitz continuous on suitably defined
sets containing the sequences generated by Algorithm 1. We

8

define these sets as follows. Define first the set Cube ,
{w ∈ X : ‖w‖∞ ≤ U}, where U is positive constant that
ensures L0 ⊆ Cube (note that U < +∞ because L0 is
bounded). Then, we define a proper widening L̄0 of L0:
L̄0 ,

(
L0 + ψB

)
∩X , where B is the unitary ball centered in

the origin, and ψ > 0 is a finite positive constant defined as

ψ , max
i∈N

max
w̃(i),[wNj (j)]j∈Ni

w(j)∈Cube

‖x̂i (w̃(i))−wi(i)‖2. (14)

Note that L̄0 is compact, because L0 is bounded and ψ <
+∞ [given that Cube is bounded and x̂(·) is continuous,
due to (5), A2, A3, and C3]. Consider now any vector x ∈
L̄0. A2(a) and compactness of L̄0 imply that the gradients
∇xjfi’s are globally Lipschitz over the sets containing the
subvectors xNi ’s, with L being the maximum value of the
Lipschitz constant of all the gradients over these sets.
• A2(b) holds: In this case, L is simply the global Lipschitz
constant ∇xifi over the whole space.

Symbol Definition
V (x), cf. (P) F (x) + G(x)

F (x), cf. (P) N∑
i=1

fi (xNi)

G(x), cf. (P) N∑
i=1

gi (xi)

x, cf. (P) Optimization variable
xi, cf. (P) Block-variable of agent i

xNi , cf. (P) Block-variables of agent i’s set of
neighbors: [xj]j∈Ni

x
k−dk(i,j)
Nj

Agent i’s local copy of agent j’s
vector xk

Nj , possibly delayed

xk(i, j), cf. (11) Same as x
k−dk(i,j)
Nj , with the addition

of slack elements to fix dimensionality
x̂k
i /x̂i(x̃

k(i)), cf. (5) Solution of subproblem (5)

x̃k(i)

Agent i’s local copies of his neighbors
vectors [xk

Nj]j∈Ni , possibly delayed:[
x
k−dk(i,j)
Nj

]
j∈Ni

x̄k Collection of all the x̃k(i)’s:[
x̄k(i)

]
i∈N̂̄xk

i /x̂i(x̄
k(i)), cf. (7)

Solution of subproblem (5) wherein all
the delays are set to 0

x̄k(i)
Same structure of x̃k(i) wherein all

the delays are set to 0

x̄k Collection of all the x̄k(i)’s:[
x̄k(i)

]
i∈N

TABLE I: Table of notation

Remark 4. To make sense of the complicated definition of L
under A2(a), we anticipate how this constant will be used. Our
proof leverages the decent lemma to majorize V (xk+1). To do
so, each ∇xjfi needs to be globally Lipschitz on a convex
set containing xk and xk+1. This is what the convex set L̄0

is meant for: xk and xk+1 belong to L̄0 and thus ∇xjfi is
L-Lipschitz continuous.

B. Preliminaries

We summarize next some properties of the map x̂ki in (5).

Proposition 5. Given Problem (P) under Assumption A, let
{xk} be the sequence generated by DAsyFLEXA, under As-
sumptions B and C. Suppose also that xk ∈ L̄0 for all k.
There hold:
(a) [Optimality] For any i ∈ N and k ≥ 0,∑

j∈Ni

〈
∇xifj(x

k
Nj (i, j)),∆x̂ki

〉
+ gi(x̂

k
i)− gi(xki) ≤ −τ‖∆x̂ki ‖22; (15)

(b) [Lipschitz continuity] For any i ∈ N and k, h ≥ 0,

‖x̂ki − x̂hi ‖2 ≤
Lm
τ
‖xk(i, i)− xh(i, i)‖2

+
L

τ

∑
j∈Ni\{i}

‖xk(i, j)− xk(i, j)‖2, (16)

where Lm , max
i∈N

Li;

(c) [Fixed-points] x̂(x̄k) = xk if and only if xk is a
stationary solutions of Problem (P) (recall the definition
of x̄k in Table I);

(d) [Error bound] For any k ≥ 0,

‖xk − proxG
(
xk −∇F (xk)

)
‖2

≤ (1 + L+NLm)‖x̂(x̄k)− xk‖2. (17)

Proof. We prove only (d); the proof of (a)-(c) follows similar
steps of that in [48, Proposition 8], and thus is omitted.
Invoking the optimality of x̂(x̄k), we have〈

∇f̃i
(
x̂i(x̄

k(i));xkNi
)

+
∑

j∈Ni\{i}

∇xifj

(
xkNj

)
,

x̂i(x̄
k(i))− zi

〉
+ gi(x̂i(x̄

k(i)))− gi(zi) ≤ 0,

for all z ∈ X and i ∈ N . Setting x̌k ,
proxG

(
xk −∇F (xk)

)
, and invoking the variational charac-

terization of the proximal operator, we have〈
∇xF (xk) + x̌k − xk, x̌k −w

〉
+G(x̌k)−G(w) ≤ 0,

for all w ∈ X . Summing the two inequalities above, with
z = x̌k, w = x̂(x̄k), and using C1 and C2, yields

τ‖x̂(x̄k)− xk‖22 + ‖x̌k − xk‖22

≤ ‖x̌k − xk‖2‖x̂(x̄k(i))− xk‖2 +

N∑
i=1

〈
∇f̃i(x̂i(x̄k(i));xkNi)

−∇f̃i(xki ;xkNi), x̌
k
i − xki

〉
A2,C2−C3

≤ ‖xk − x̌k‖2
(
(1 + L+NLm)‖x̂(x̄k)− xk‖2

)
.

C. Proof of Theorem 2

The proof is organized in the following steps:
Step 1–Lyapunov function & its descent: We define an
appropriate Lyapunov function Ṽ and prove that it is mono-
tonically nonincreasing along the iterations. This also proves
Theorem 2(c);

9

Step 2–Vanishing x-stationarity: Building on the de-
scent properties of the Lyapunov function, we prove
limk→+∞ ‖x̂(x̄k)− xk‖2 = 0 [Theorem 2(a)];
Step 3–Convergence rate: We prove the sublinear conver-
gence rate of {MV (xk)} as stated in Theorem 2(c).
The above steps are proved under Assumptions A, C, and D.

1) Step 1–Lyapunov function & its descent: Introduce the
following Lyapunov-like function:

Ṽ (xk, . . . ,xk−D) , V (xk) +
DLρ2

2

(
k−1∑

l=k−D

(
l − (k − 1)

+D
)
‖xl+1 − xl‖22

)
,

(18)

where L is defined in Sec.V-A. Note that

Ṽ ? , min
[yi∈X]D+1

i=1

Ṽ (y1, . . . ,yD+1) = min
x∈X

V (x).

The following lemma establishes the descent properties of
Ṽ and also proves Theorem 2(c).

Lemma 6. Given Ṽ defined in (18), the following hold:
(a) For any k ≥ 0:

Ṽ (xk+1 . . . ,xk+1−D) (19)

≤ Ṽ (xk, . . . ,xk−D)− γ

(
τ − γ

L
(
2 +D2ρ2

)
2

)
‖∆x̂kik‖

2
2.

(b) If, in particular, A2(a) is satisfied: xk ∈ L0, for all k ≥ 0.

Proof. We prove the two statements by induction. For k = 0,

V (x1) =

N∑
i=1

fi(x
1
Ni) + gi0(x1

i0) +
∑
i 6=i0

gi(x
1
i)

(6)
=

N∑
i=1

fi(x
1
Ni) + gi0(x1

i0) +
∑
i 6=i0

gi(x
0
i)

(a)
≤

N∑
i=1

fi(x
0
Ni) + γ

∑
j∈Ni0

〈
∇xi0

fj(x
0
Nj)

+∇xi0
fj

(
x0
Nj (i

0, j)
)
−∇xi0

fj

(
x0
Nj (i

0, j)
)
,∆x̂0

i0

〉
+
γ2L

2
‖∆x̂0

i0‖22 + gi0(x1
i0) +

∑
i6=i0

gi(x
0
i)

A3
≤

N∑
i=1

fi(x
0
Ni) + γ

〈 ∑
j∈Ni0

∇xi0
fj

(
x0
Nj (i

0, j)
)
,∆x̂0

i0

〉

+ γ
〈 ∑
j∈Ni0

(
∇xi0

fj(x
0
Nj)

−∇xi0
fj

(
x0
Nj (i

0, j)
))

,∆x̂0
i0

〉
+
γ2L

2
‖∆x̂0

i0‖22

+

N∑
i=1

gi(x
0
i) + γgi0(x̂0

i0)− γgi0(x0
i0)

(15),A2

≤ V (x0)− γ
(
τ − γL

2

)
‖∆x̂0

i0‖22

+ γL‖∆x̂0
i0‖2

∑
j∈Ni0

‖x0 − x0(i0, j)‖2

(b)
≤ V (x0)− γ (τ − γL) ‖∆x̂0

i0‖22

+
Lρ

2

∑
j∈Ni0

‖x0 − x0(i0, j)‖22︸ ︷︷ ︸
term I

, (20)

where (a) follows from the descent lemma and the definition
of L; and in (b) we used Young’s inequality. Note that in (a)
we used the fact that x0 and x1 belong to L̄0 (cf. Remark 4).

We now bound term I in (20). It is convenient to study
the more general term ‖xk − xk(ik, j)‖22, j ∈ Nik . There
holds:

‖xk − xk(ik, j)‖22
(12)
≤

(
k−1∑

l=k−D

‖xl+1 − xl‖2

)2

≤ D
k−1∑

l=k−D

‖xl+1 − xl‖22

= D

(
k−1∑

l=k−D

(l − (k − 1) +D) ‖xl+1 − xl‖22

−
k∑

l=k+1−D

(l − k +D)‖xl+1 − xl‖22

)
+D2‖xk+1 − xk‖22.

(21)

Combining (20) and (21) one can check that state-
ments (a) and (b) of the lemma hold at k = 0,
that is, Ṽ

(
x1, . . . ,x0

)
≤ Ṽ

(
x0, . . . ,x0

)
, and V (x1) ≤

Ṽ
(
x1, . . . ,x0

)
≤ Ṽ

(
x0, . . . ,x0

)
= V (x0), respectively.

Assume now that the two statements hold at iteration k. It
is easy to check that the analogous of (20) also holds at
iteration k + 1 with the term

∑
j∈N

ik

‖xk − xk(ik, j)‖2 in

the analogous of term I at iteration k, majorized using
(21). Combining (20) at k + 1 with (21) one can check that
statement (a) of the lemma holds at k + 1. We also get:

V (xk+1) ≤ Ṽ
(
xk+1, . . . ,xk+1−D) (20)

≤ Ṽ
(
xk, . . . ,xk−D

)
≤

Ṽ
(
x0, . . . ,x0

)
= V (x0), which proves statement (b) of the

lemma at k + 1. This completes the proof.
2) Step 2 – Vanishing x-stationarity: It follows from A4

and Lemma 6 that, if γ < 2τ
L(2+ρ2D2) , {Ṽ (xk−D, . . . ,xk)}

and thus {V (xk)} converge. Therefore,

lim
k→+∞

‖∆x̂kik‖2 = 0. (22)

The next lemma extends the vanishing properties of a single
block ∆x̂kik to the entire vector ∆x̂k.

Lemma 7. For any i ∈ N , k ≥ 0, and h, t ∈ [k, k + B − 1],
there hold:

‖x̂i(x̃t(i))− x̂i(x̃
h(i))‖22 ≤ C2

k+B−2∑
l=k−D

‖∆x̂lil‖
2
2, (23)

‖∆x̂h‖22 ≤ 2
(
NC2 + 1

) k+B−1∑
l=k−D

‖∆x̂lil‖
2
2. (24)

with

C2 ,
3γ2(B + 2D −N + 1)ρ

(
L2
m + (ρ− 1)L2

)
τ2

.

10

Proof. See Section V-E.

Using (24) and (22) yields

lim
k→+∞

‖∆x̂k‖2 = 0. (25)

Furthermore, invoking (22), (23), and (25) together with
‖x̂(x̄k)− xk‖2 ≤ ‖∆x̂k‖2 + ‖x̂(x̄k)− x̂k‖2, leads to

lim
k→+∞

‖x̂(x̄k)− xk‖2 = 0, (26)

which, together with Proposition 5(c), proves Theorem 2(a).
3) Step 3 – Convergence rate: We use the Lyapunov

function Ṽ to study the vanishing rate of {MV (xk)}. Due to
(26) and the definition of MV , we know that MV is converging
to 0. Therefore Tε is finite. Using MV (xk) > ε, for all
k ∈ {0, . . . , Tε − 1}, we have

Tεε ≤
Tε−1∑
k=0

MV (xk) ≤ 2

Tε−1∑
k=0

(
‖∆x̂k‖22 + ‖x̂(x̄k)− x̂k‖22

)
(16),(24)
≤ 2

Tε−1∑
k=0

(
2 (NC2 + 1)

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

+

N∑
i=1

(
L2
mρ

τ2
‖xk(i, i)− xk‖22

+
L2ρ

τ2

∑
j∈Ni\{i}

‖xk(i, j)− xk‖22

))
(12)
≤ 2

(
2 (NC2 + 1) +

DC2

3(B + 2D −N + 1)

)
·
Tε−1∑
k=0

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

(a)

≤ C3

Tε−1∑
k=0

k+B−1∑
l=k−D

(
Ṽ
(
xl, . . . ,xl−D

)
− Ṽ

(
xl+1, . . . ,xl+1−D))

= C3

Tε−1∑
k=0

(
Ṽ
(
xk−D, . . . ,xk−2D

)
− Ṽ

(
xk+B , . . . ,xk+B−D))

≤ C3(B +D − 1)

(
V (x0)−min

x∈X
V (x)

)
, (27)

where in (a) we used (19) and defined C3 as

C3 ,
4
(

2 (NC2 + 1) + DC2

3(B+2D−N+1)

)
γ (2τ − γL (2 +D2ρ2))

.

Statement (b) of the theorem follows readily by defining

C1 , C3(B +D − 1). (28)

D. Proof of Theorem 3

We study now convergence of Algorithm 1 under the
additional Assumption B.

First of all, note that one can always find η, ε, κ > 0 such
that B1 holds. In fact, i) by Lemma 6, there exist some η and
sufficiently small γ/τ such that V (xk) ≤ η, for all k ≥ 0; and
ii) since ‖xk − proxG

(
∇F (xk)− xk

)
‖2 is asymptotically

vanishing [Proposition 5(d) and (26)], one can always find
some ε > 0 such that ‖xk − proxG

(
∇F (xk)− xk

)
‖2 ≤ ε,

for all k ≥ 0.
The proof proceeds along the following steps. Step 1: We

first show that the liminf of
{
V (xk)

}
is a stationary point V ?,

see (33). Step 2 shows that
{
V (xk)

}
approaches V ? linearly,

up to an error of the order O

(
k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

)
, see (37).

Finally, in Step 3 we show that the term
k+B−1∑
l=k−D

‖∆x̂lil‖
2
2 is

overall vanishing at a geometric rate, implying the convergence
of
{
V (xk)

}
to V ? at a geometric rate.

1) Step 1: Pick any vector x?(xk) ∈ PX?(xk), where
PX?(x) , arg minx?∈X?‖x− x?‖2, x ∈ Rn. Note that:

d(xk,X ?)=‖x?(xk)−xk‖2
B1
≤κ‖xk−proxG

(
∇xF (xk)−xk

)
‖2.

(29)
Using (29), (26), and (17), yields

lim
k→+∞

‖x?(xk)− x?(xk+1)‖ = 0. (30)

This, together with B2, imply that there exists an index k̄ ≥ 0
and a scalar V ? such that

V (x?(xk)) = V ?, ∀ k ≥ k̄. (31)

By the Mean Value Theorem, there exists a vector ξk =
βkx?(xk) + (1 − βk)xk, for some βk ∈ (0; 1), such that,
for any k ≥ k̄,

V ? − V (xk) =
〈
∇xF (ξk),x?(xk)− xk

〉
+G(x?(xk))

−G(xk) ≤
〈
∇xF (ξk)−∇xF (x?(xk)),x?(xk)− xk

〉
(a)

≤ N(ρ2L2 + 1)

2
‖x?(xk)− xk‖22

(17),(29)
≤ Nκ(ρ2L2 + 1)(1 + L+NLm)

2
‖x̂(x̄)k − xk‖2,

(32)

where (a) follows from A2 and ‖ξk − x?(xk)‖22 =
‖βkx?(xk) + (1− βk)xk − x?(xk)‖22 ≤ ‖x?(xk)− xk‖22.

By invoking (32), together with (26), we obtain

lim inf
k→+∞

V (xk) ≥ V ?. (33)

2) Step 2: We next show that V (xk) approaches V ? at a
linear rate.

To this end, consider (20) with 0 and 1 replaced by k and
k + 1 respectively; we have the following:

V (xk+1) ≤ V (xk)− γ (τ − γL) ‖∆x̂ik‖22

+
Lρ

2

∑
j∈N

ik

‖xk − xk(ik, j)‖22
(12)
≤ V (xk)

− γ (τ − γL) ‖∆x̂ik‖22 +
γ2DLρ2

2

k−1∑
l=k−D

‖∆x̂lil‖
2
2. (34)

11

Is easy to see that, for any k ≥ k̄, (34) implies:

V (xk+B)− V ? ≤ V (xk)− V ?

− γ
(
τ − γL(2 +BDρ2)

2

) k+B−1∑
l=k

‖∆x̂lil‖
2
2

+
Bγ2DLρ2

2

k−1∑
l=k−D

‖∆x̂lil‖
2
2. (35)

To prove the desired result we will combine next (35) with
the following lemma.

Lemma 8. For any k ≥ 0, there holds:

V (xk+B)− V (x?(xk)) ≤ (1− γ)
(
V (xk)− V (x?(xk))

)
+ γ (Nα1 + (B −N)α2)

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2, (36)

where α1 and α2 are two positive constants defined in Ap-
pendix V-E [see (61) and (63), respectively].

Proof. See Section V-E.

Multiplying the two sides of (35) and (36) by (Nα1 +(B−
N)α2) and τ −γL(2+BDρ2)/2 respectively, and adding the
two inequalities together, yields

V (xk+B)− V ? ≤ θ
(
V (xk)− V ?

)
+ ζ

k−1∑
l=k−D

‖∆x̂lil‖
2
2,

(37)

for all k ≥ k̄, where

θ,
(1− γ)(2τ − γL(BDN 2

m + 2)) + 2Nα1 + 2(B −N)α2

2τ − γL(BDN 2
m + 2) + 2Nα1 + 2(B −N)α2

,

and

ζ,
(Nα1 + (B −N)α2)(2τ + γL(BDρ2(γ − 1) + 2))

2τ − γL(BDN 2
m + 2) + 2Nα1 + 2(B −N)α2

.

3) Step 3: We can now apply Lemma 4.5 in [6] by noticing
that (35), (33), and (37) correspond, respectively, to (4.21),
(4.22), and to the first inequality after (4.23) in [6]. Theorem
3 readily follows, setting

λ ,1− γ2

2

2τ − γL(BDρ2 + 2)

2Nα1 + 2(B −N)α2

·
+γ(2− γ)(2τ − γL(BDρ2 + 2))

. (38)

E. Miscellanea results

This section contains the proofs of Lemma 7 and Lemma 8.

Proof of Lemma 7: (i) Assume without loss of generality
that t ≤ h. We have

‖x̂i(x̃t(i))− x̂i(x̃
h(i))‖22

(16)
≤ ρL2

m

τ2
‖xt(i, i)− xh(i, i)‖22

+
ρL2

τ2

∑
j∈Ni\{i}

‖xt(i, j)− xh(i, j)‖22

(12),(6)
≤

(
3ρ
(
L2
m + (ρ− 1)L2

)
τ2

)(
γ2(B −N + 1)

h−1∑
l=t

‖∆x̂lil‖
2
2 +Dγ2

(
t−1∑

l=t−D

‖∆x̂lil‖
2
2 +

h−1∑
l=h−D

‖∆x̂lil‖
2
2

))
.

(ii) Define rh,ki , arg min
t∈[k;k+B−1]:it=i

|t− h|. We have:

‖∆x̂h‖22 ≤ 2
N∑
i=1

(
‖x̂hi − x̂

rh,ki
i ‖22 + ‖∆x̂

rh,ki
i ‖22

)
(39)

(23)
≤ 2

N∑
i=1

(
C2

k+B−2∑
l=k−D

‖∆x̂lil‖
2
2 + ‖∆x̂

rh,ki
i ‖22

)
.

Proof of Lemma 8: Define T ki + 1 as the number of
times agent i performs its update within [k, k + B − 1];
let lki,0, . . . , l

k
i,Tki

,be the iteration indexes of such updates.

By the Mean Value Theorem, there exists a vector ξk =
βkx?(xk) + (1− βk)xk, for some βk ∈ (0, 1), such that

V (xk+B)− V (x?(xk)) =
〈
∇xF (ξk),xk+B − x?(xk)

〉
+G(xk+B)−G(x?(xk))

=

N∑
i=1

(〈
∇xiF (ξk),x

lki,1
i − x?i (x

k)

〉
︸ ︷︷ ︸

term II

+

Tki −1∑
t=1

〈
∇xiF (ξk),x

lki,t+1

i − x
lki,t
i

〉
︸ ︷︷ ︸

term III

+

〈
∇xiF (ξk),xk+B

i − x
lk
i,Tk
i

i

〉
︸ ︷︷ ︸

term IV

)

+G(xk+B)−G(x?(xk)). (40)

To prove (36), it is then sufficient show that term II,
term III, and term IV in (40) converge at a geometric

rate up to an error of the order O

(
k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

)
. To do

this, we first show that term II, term III, and term IV
converges at a geometric rate up to the error terms aki,4, bki,t,4,
and cki,4, respectively [see (41), (44), and (47)]. Then, we prove

that each of these errors is of the order O

(
k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

)
,

as desired [see (60), and (62)].

12

Term II can be upper bounded as〈
∇xiF (ξk),x

lki,1
i − x?i (x

k)

〉
A2
≤
〈
∇xiF

(
x̂l
k
i,0

)
,x
lki,1
i − x?i (x

k)

〉
+ ρL

∥∥∥x̂lki,0 − ξk
∥∥∥

2

∥∥∥∥xlki,1i − x?i (x
k)

∥∥∥∥
2︸ ︷︷ ︸

,aki,1

A2,C2,C3

≤

〈
∇f̃i

(
x̂
lki,0
i ;x

lki,0
Ni (i, i)

)

+
∑

j∈Ni\{i}

∇xifj

(
x
lki,0
Nj (i, j)

)
,x
lki,1
i − x?i (x

k)

〉

+

∥∥∥∥xlki,1i − x?i (x
k)

∥∥∥∥
2

(
Li

∥∥∥∥x̂lki,0Ni − x
lki,0
Ni (i, i)

∥∥∥∥
2

+ L
∑

j∈Ni\{i}

∥∥∥∥x̂lki,0Nj − x
lki,0
Nj (i, j)

∥∥∥∥
2

)
+ aki,1

(a)

≤ (γ − 1)

〈
∇f̃i

(
x̂
lki,0
i ;x

lki,0
Ni (i, i)

)

+
∑

j∈Ni\{i}

∇xifj

(
x
lki,0
Nj (i, j)

)
,∆x̂

lki,0
i

〉
+ gi

(
x?i (x

k)
)

− gi
(
x̂
lki,0
i

)
+ aki,2

C2
≤ gi(x

?
i (x

k))− gi
(
x̂
lki,0
i

)
+ (γ − 1)

〈∑
j∈Ni

∇xifj

(
x
lki,0
Nj (i, j)

)
,∆x̂

lki,0
i

〉

+ (1− γ)

∥∥∥∥∥∇f̃i
(
x̂
lki,0
i ;x

lki,0
Ni (i, i)

)
−∇f̃i

(
x
lki,0
i ;x

lki,0
Ni (i, i)

)∥∥∥∥∥
2

·
∥∥∥∥∆x̂

lki,0
i

∥∥∥∥
2

+ aki,2
(b)

≤ gi
(
x?i (x

k)
)
− gi

(
x̂
lki,0
i

)
+

1− γ
γ

(
V
(
xl
k
i,0

)
− V

(
xl
k
i,0+1

))
+ (1− γ)

∥∥∥∥∥∥
∑
j∈Ni

(
∇xifj

(
x
lki,0
Nj

)
−∇xifj

(
x
lki,0
Nj (i, j)

))∥∥∥∥∥∥
2

·
∥∥∥∥∆x̂

lki,0
i

∥∥∥∥
2

+
Lγ(1− γ)

2

∥∥∥∥∆x̂
lki,0
i

∥∥∥∥2

2

+ aki,3

+ (1− γ)

(
gi

(
x̂
lki,0
i

)
− gi

(
x
lki,0
i

))
(c)
=

1− γ
γ

(
V
(
xl
k
i,0

)
− V

(
xl
k
i,0+1

))
+ gi

(
x?i (x

k)
)

+ (γ − 1)gi

(
x
lki,0
i

)
− γgi

(
x̂
lki,0
i

)
+ aki,4; (41)

where the quantities aki,2 in (a), and aki,3 in (b) are defined
in (42) and (43) at the bottom of the next page, respectively;
furthermore in (b) we used the descent lemma, and in (c) we
defined

aki,4 , aki,3 +
Lγ(1− γ)

2

∥∥∥∥∆x̂
lki,0
i

∥∥∥∥2

2

+ (1− γ)

·

∥∥∥∥∥∥
∑
j∈Ni

(
∇xifj

(
x
lki,0
Nj

)
−∇xifj

(
x
lki,0
Nj (i, j)

))∥∥∥∥∥∥
2

∥∥∥∥∆x̂
lki,0
i

∥∥∥∥
2︸ ︷︷ ︸

term VII

.

Term III can be upper bounded as: for any i and t ∈
[1, T ki − 1],〈
∇xiF (ξk),x

lki,t+1

i − x
lki,t
i

〉
A2
≤
〈
∇xiF

(
x̂l
k
i,t

)
,x
lki,t+1

i − x
lki,t
i

〉
+ ρL

∥∥∥x̂lki,t − ξk
∥∥∥

2

∥∥∥∥xlki,ti − x
lki,t+1

i

∥∥∥∥
2︸ ︷︷ ︸

,bki,t,1

A2,C2,C3

≤

〈
∇f̃i

(
x̂
lki,t
i ;x

lki,t
Ni (i, i)

)

+
∑

j∈Ni\{i}

∇xifj

(
x
lki,t
Nj (i, j)

)
,x
lki,t+1

i − x
lki,t
i

〉

+

∥∥∥∥xlki,ti − x
lki,t+1

i

∥∥∥∥
2

(
Li

∥∥∥∥x̂lki,tNi − x
lki,t
Ni (i, i)

∥∥∥∥
2

+ L
∑

j∈Ni\{i}

∥∥∥∥x̂lki,tNj − x
lki,t
Nj (i, j)

∥∥∥∥
2

)
+ bki,t,1

(a)

≤ (γ − 1)

〈
∇f̃i

(
x̂
lki,t
i ;x

lki,t
Ni (i, i)

)

+
∑

j∈Ni\{i}

∇xifj

(
x
lki,t
Nj (i, j)

)
,∆x̂

lki,t
i

〉
+ gi

(
x
lki,t
i

)

− gi
(
x̂
lki,t
i

)
+ bki,t,2

C2
≤ gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

)
+ (γ − 1)

〈∑
j∈Ni

∇xifj

(
x
lki,t
Nj (i, j)

)
,∆x̂

lki,t
i

〉

+ (1− γ)

∥∥∥∥∇f̃i(x̂lki,ti ;x
lki,t
Ni (i, i)

)
−∇f̃i

(
x
lki,t
i ;x

lki,t
Ni (i, i)

)∥∥∥∥
2

·
∥∥∥∥∆x̂

lki,t
i

∥∥∥∥
2

+ bki,t,2
(b)

≤ gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

)
+

1− γ
γ

(
V
(
xl
k
i,t

)
− V

(
xl
k
i,t+1

))
+ (1− γ)

∥∥∥∥∥∥
∑
j∈Ni

(
∇xifj

(
x
lki,t
Nj

)
−∇xifj

(
x
lki,t
Nj (i, j)

))∥∥∥∥∥∥
2∥∥∥∥∆x̂

lki,t
i

∥∥∥∥
2

+
Lγ(1− γ)

2

∥∥∥∥∆x̂
lki,t
i

∥∥∥∥2

2

+ bki,t,3

+ (1− γ)

(
gi

(
x̂
lki,t
i

)
− gi

(
x
lki,t
i

))
=

1− γ
γ

(
V
(
xl
k
i,t

)
− V

(
xl
k
i,t+1

))
+ γ

(
gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

))
+ bki,t,4; (44)

13

where the quantities bki,t,2 in (a), and bki,t,3 in (b) are defined
in (45) and (46) at the bottom of the next page, respectively;
furthermore in (b) we used the descent lemma, and in (c) we
defined

bki,t,4 , bki,t,3 +
Lγ(1− γ)

2

∥∥∥∥∆x̂
lki,t
i

∥∥∥∥2

2

+ (1− γ)

·

∥∥∥∥∥∥
∑
j∈Ni

(
∇xifj

(
x
lki,t
Nj

)
−∇xifj

(
x
lki,t
Nj (i, j)

))∥∥∥∥∥∥
2

∥∥∥∥∆x̂
lki,t
i

∥∥∥∥
2︸ ︷︷ ︸

term VII

.

Following similar steps, we can bound term IV, as〈
∇xiF (ξk),xk+B

i − x
lk
i,Tk
i

i

〉
A2
≤

〈
∇xiF

(
x̂
lk
i,Tk
i

)
,xk+B
i − x

lk
i,Tk
i

i

〉

+ ρL

∥∥∥∥x̂lki,Tki − ξk
∥∥∥∥

2

∥∥∥∥∥xl
k

i,Tk
i

i − xk+B
i

∥∥∥∥∥
2︸ ︷︷ ︸

cki,1

A2,C2,C3

≤

〈
∇f̃i

(
x̂
lk
i,Tk
i

i ;x
lk
i,Tk
i

Ni (i, i)

)

+
∑

j∈Ni\{i}

∇xifj

(
x
lk
i,Tk
i

Nj (i, j)

)
,xk+B
i − x

lk
i,Tk
i

i

〉

+

∥∥∥∥∥xl
k

i,Tk
i

i − xk+B
i

∥∥∥∥∥
2

(
Li

∥∥∥∥∥x̂l
k

i,Tk
i

Ni − x
lk
i,Tk
i

Ni (i, i)

∥∥∥∥∥
2

+ L
∑

j∈Ni\{i}

∥∥∥∥∥x̂l
k

i,Tk
i

Nj − x
lk
i,Tk
i

Nj (i, j)

∥∥∥∥∥
2

)
+ cki,1

(a)

≤ (γ − 1)

〈
∇f̃i

(
x̂
lk
i,Tk
i

i ;x
lk
i,Tk
i

Ni (i, i)

)

+
∑

j∈Ni\{i}

∇xifj

(
x
lk
i,Tk
i

Nj (i, j)

)
,∆x̂

lk
i,Tk
i

i

〉
+ gi

(
x
lk
i,Tk
i

i

)

− gi

(
x̂
lk
i,Tk
i

i

)
+ cki,2

C2
≤ gi

(
x
lk
i,Tk
i

i

)
− gi

(
x̂
lk
i,Tk
i

i

)

+ (γ − 1)

〈∑
j∈Ni

∇xifj

(
x
lk
i,Tk
i

Nj (i, j)

)
,∆x̂

lk
i,Tk
i

i

〉

+ (1− γ)

∥∥∥∥∥∇f̃i
(
x̂
lk
i,Tk
i

i ;x
lk
i,Tk
i

Ni (i, i)

)
−

∇f̃i

(
x
lk
i,Tk
i

i ;x
lk
i,Tk
i

Ni (i, i)

)∥∥∥∥∥
2

∥∥∥∥∥∆x̂
lk
i,Tk
i

i

∥∥∥∥∥
2

+ cki,2
(b)

≤ gi

(
x
lk
i,Tk
i

i

)

− gi

(
x̂
lk
i,Tk
i

i

)
+

1− γ
γ

(
V

(
x
lk
i,Tk
i

)
− V

(
x
lk
i,Tk
i

+1
))

+ (1− γ)

∥∥∥∥∥∥
∑
j∈Ni

(
∇xifj

(
x
lk
i,Tk
i

Nj

)
−∇xifj

(
x
lk
i,Tk
i

Nj (i, j)

))∥∥∥∥∥∥
2∥∥∥∥∥∆x̂

lk
i,Tk
i

i

∥∥∥∥∥
2

+
Lγ(1− γ)

2

∥∥∥∥∥∆x̂
lk
i,Tk
i

i

∥∥∥∥∥
2

2

+ cki,3

+ (1− γ)

(
gi

(
x̂
lk
i,Tk
i

i

)
− gi

(
x
lk
i,Tk
i

i

))

=
1− γ
γ

(
V

(
x
lk
i,Tk
i

)
− V

(
x
lk
i,Tk
i

+1
))

+ γ

(
gi

(
x
lk
i,Tk
i

i

)
− gi

(
x̂
lk
i,Tk
i

i

))
+ cki,4; (47)

where the quantities cki,2 in (a), and cki,3 in (b) are defined in
(48) and (49) at the bottom of the next page, respectively;
furthermore in (b) we used the descent lemma, and in (c) we
defined

cki,4 , cki,3 +
Lγ(1− γ)

2

∥∥∥∥∥∆x̂
lk
i,Tk
i

i

∥∥∥∥∥
2

2

+ (1− γ)

·

∥∥∥∥∥∥
∑
j∈Ni

(
∇xifj

(
x
lk
i,Tk
i

Nj

)
−∇xifj

(
x
lk
i,Tk
i

Nj (i, j)

))∥∥∥∥∥∥
2

∥∥∥∥∥∆x̂
lk
i,Tk
i

i

∥∥∥∥∥
2︸ ︷︷ ︸

term VII

.

We now show that the error terms aki,4, bki,t,4, and cki,4, are of

the order O

(
k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

)
. To do so, in the following we

properly upper bound each term inside aki,4, bki,t,4, and cki,4.
We begin noticing that, by the definition of ξk, it follows

‖x̂h − ξk‖2
= ‖(1− βk)xk + βkx?(xk)− x̂h‖2
≤ ‖xk − x?(xk)‖2 + ‖x̂h − xk‖2
≤ ‖xk − x?(xk)‖2 + ‖∆x̂h‖+ ‖xh − xk‖, (50)

for all h ∈ [k; k +B − 1].

aki,2 , aki,1 +

∥∥∥∥xlki,1i − x?i (x
k)

∥∥∥∥
2

Li ∥∥∥∥x̂lki,0Ni − x
lki,0
Ni (i, i)

∥∥∥∥
2

+ L
∑

j∈Ni\{i}

∥∥∥∥x̂lki,0Nj − x
lki,0
Nj (i, j)

∥∥∥∥
2

︸ ︷︷ ︸

term V

(42)

aki,3 , aki,2 + (1− γ)

∥∥∥∥∇f̃i(x̂lki,0i ;x
lki,0
Ni (i, i)

)
−∇f̃i

(
x
lki,0
i ;x

lki,0
Ni (i, i)

)∥∥∥∥
2

∥∥∥∥∆x̂
lki,0
i

∥∥∥∥
2︸ ︷︷ ︸

term VI

(43)

14

1) Bounding aki,1: there holds

aki,1
(a)

≤ 3ρL

2

(
2‖xk − x?(xk)‖22 + (1 + γ2)‖∆x̂l

k
i,0‖22

+ 2‖xl
k
i,0 − xk‖22

)
(b)

≤ 3ρL

(
κ2(1 + L+NLm)2

(
‖∆x̂k‖22

+ C2

k+B−2∑
l=k−D

‖∆x̂lil‖
2
2

)
+ (NC2 + 1)(1 + γ2)

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

+ γ2(B −N + 1)

k+B−2∑
l=k−D

‖∆x̂lil‖
2
2

)
(c)

≤ ρLβ1

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2,

(51)

where in (a) we used (50) and the Young’s inequality; (b)
follows from (23), (24), and the fact that, for any k ≥ 0,

‖xk − x?(xk)‖2
B1
≤ κ‖xk − proxG

(
∇xF (xk)− xk

)
‖2

(17)
≤ κ(1 + L+NLm)‖x̂(x̄k)− xk‖2
≤ κ(1 + L+NLm)

(
‖x̂(x̄k)− x̂k‖2 + ‖∆x̂k‖2

)
; (52)

and in (c) we used (24) and defined

β1 ,C2

(
κ2(1 + L+NLm)2(2N + 1) +N(1 + γ2)

)
+ κ2(1 + L+NLm)2 + 1 + γ2(B −N + 2).

2) Bounding bki,t,1 and cki,1: for t ∈ [1;T ki − 1],

bki,t,1
(a)

≤ ρL

2

(
3‖xk − x?(xk)‖22 + (3 + γ2)‖∆x̂l

k
i,t‖22

+ 3‖xl
k
i,t − xk‖22

) (b)

≤ ρL

2

(
6κ2(1 + L+NLm)2

(
‖∆x̂k‖22

+ C2

k+B−2∑
l=k−D

‖∆x̂lil‖
2
2

)
+ 2(NC2 + 1)(3 + γ2)

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

+ 3γ2(B −N + 1)

k+B−2∑
l=k−D

‖∆x̂lil‖
2
2

)
(c)

≤ ρLβ2

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2,

(53)

where in (a) we used (50) and the Young’s inequality; (b)
follows from (23), (24), (52); and in (c) we used (24) and
defined

β2 ,C2

(
3κ2(1 + L+NLm)2(2N + 1) +N(3 + γ2)

)

+ 6κ2(1 + L+NLm)2 + 3 +
γ2

2
(3B − 3N + 5).

Following the same steps as in (53), it is not difficult to prove:

cki,1 ≤ ρLβ2

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2. (54)

3) Bounding term V : there holds,

term V
(a)

≤ 2‖xk − x?(xk)‖22 + 2γ2

∥∥∥∥∆x̂
lki,0
i

∥∥∥∥2

2

+ (L2
i + L2(ρ− 1))

(
‖∆x̂l

k
i,0‖22 +Dγ2

lki,0−1∑
l=lki,0−D

‖∆x̂lil‖
2
2

))
(b)

≤ β4

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2, (55)

where in (a) we used (12) and the Young’s inequality; and in
(b) we used (23), (24), (52), and defined

β4 ,2C2

(
2κ2(1 + L+NLm)2(2N + 1)

+N
(
L2
m + L2(ρ− 1)

))
+ 2κ2(1 + L+NLm)2

+
(
L2
m + L2(ρ− 1)

)
(1 +Dγ2) + 2γ2.

bki,t,2 , bki,t,1 +

∥∥∥∥xlki,ti − x
lki,t+1

i

∥∥∥∥
2

Li ∥∥∥∥x̂lki,tNi − x
lki,t
Ni (i, i)

∥∥∥∥
2

+ L
∑

j∈Ni\{i}

∥∥∥∥x̂lki,tNj − x
lki,t
Nj (i, j)

∥∥∥∥
2

︸ ︷︷ ︸

term VIII

(45)

bki,t,3 , bki,t,2 + (1− γ)

∥∥∥∥∇f̃i(x̂lki,ti ;x
lki,t
Ni (i, i)

)
−∇f̃i

(
x
lki,t
i ;x

lki,t
Ni (i, i)

)∥∥∥∥
2

∥∥∥∥∆x̂
lki,t
i

∥∥∥∥
2︸ ︷︷ ︸

term VI

(46)

cki,2 , cki,1 +

∥∥∥∥∥xl
k

i,Tk
i

i − xk+B
i

∥∥∥∥∥
2

Li
∥∥∥∥∥x̂l

k

i,Tk
i

Ni − x
lk
i,Tk
i

Ni (i, i)

∥∥∥∥∥
2

+ L
∑

j∈Ni\{i}

∥∥∥∥∥x̂l
k

i,Tk
i

Nj − x
lk
i,Tk
i

Nj (i, j)

∥∥∥∥∥
2

︸ ︷︷ ︸

term IX

(48)

cki,3 , cki,2 + (1− γ)

∥∥∥∥∥∇f̃i
(
x̂
lk
i,Tk
i

i ;x
lk
i,Tk
i

Ni (i, i)

)
−∇f̃i

(
x
lk
i,Tk
i

i ;x
lk
i,Tk
i

Ni (i, i)

)∥∥∥∥∥
2

∥∥∥∥∥∆x̂
lk
i,Tk
i

i

∥∥∥∥∥
2︸ ︷︷ ︸

term VI

(49)

15

4) Bounding term VI : for t ∈ [0, T ki],

term VI
(a)

≤ (L2 + L2
i)‖xl

k
i,t(i, i)− x̂l

k
i,t‖22 +

1

2

∥∥∥∥∆x̂
lki,t
i

∥∥∥∥2

2

(12)
≤ (L2 + L2

i)

2
∥∥∥∆x̂l

k
i,t

∥∥∥2

2
+ 2Dγ2

lki,t−1∑
h=lki,t−D

‖∆x̂hih‖
2
2

+

1

2

∥∥∥∥∆x̂
lki,t
i

∥∥∥∥2

2

(b)

≤ β3

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2, (56)

where in (a) we used A2, B2, B3, and the Young’s inequality;
and in (b) we used (24) and defined

β3 , 2(L2 + L2
m)
(
2NC2 +Dγ2 + 1

)
+

1

2
.

5) Bounding term VII : for t ∈ [0, T ki],

term VII
(a)

≤ 1

2

ρL2
∑
j∈Ni

∥∥∥xlki,t − xl
k
i,t(i, j)

∥∥∥2

2
+

∥∥∥∥∆x̂
lki,t
i

∥∥∥∥2

2

(12)
≤ 1

2

ρ2L2D2γ2

lki,t−1∑
l=lki,t−D

‖∆x̂lil‖
2
2 +

∥∥∥∥∆x̂
lki,t
i

∥∥∥∥2

2

≤ ρ2L2D2γ2 + 1

2

k+B−2∑
l=k−D

‖∆x̂lil‖
2
2, (57)

where in (a) we used A2 and the Young’s inequality.
6) Bounding term VIII and term IX : for t ∈ [1, T ki −1]

term VIII
(a)

≤ γ2

∥∥∥∥∆x̂
lki,t
i

∥∥∥∥2

2

+ (L2
i + L2(ρ− 1))

(∥∥∥∆x̂l
k
i,t

∥∥∥2

2

+Dγ2

lki,t−1∑
l=lki,t−D

‖∆x̂lil‖
2
2

))
(b)

≤ β5

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2, (58)

where in (a) we used (12) and the Young’s inequality; and in
(b) we used (24), and defined

β5 ,
(
L2
m + L2(ρ− 1)

) (
2NC2 +Dγ2 + 2

)
+ γ2.

As done in (58), it is easy to prove that

term IX ≤ β5

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2. (59)

Using the above results, we can bound aki,4, bki,t,4, and cki,4.
According to definition of aki,4, we have

aki,4
(51),(56)−(55)
≤ α1

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2, (60)

where

α1,

(
(1− γ)

(
β3 +

Lγ(ρ2LD2γ + 1) + 1

2

)
+ ρLβ1 + β4

)
.

(61)

For bki,t,4 and cki,4, we have: t ∈ [1, T ki − 1],

bki,i,4; cki,4
(53)−(57),(58),(59)

≤ α2

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2, (62)

where

α2 ,

(
(1− γ)

(
β3 +

Lγ(ρ2LD2γ + 1) + 1

2

)
+ ρLβ2 + β5

)
.

(63)

Combining (40), (41), (44), (47), (60), and (62) yields:

V (xk+B)− V (x?(xk)) ≤ 1− γ
γ

(
V (xk)− V (xk+B)

)
+

N∑
i=1

(
γ

(
gi

(
x
lk
i,Tk
i

i

)
− gi

(
x̂
lk
i,Tk
i

i

))

+ γ

Tki −1∑
t=1

(
gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

))
+ (γ − 1)gi

(
x
lki,0
i

)

− γgi
(
x̂
lki,0
i

)
+ gi

(
xk+B
i

))
+ (Nα1

+ (B −N)α2)

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

A3
≤ 1− γ

γ

(
V (xk)

− V (xk+B)
)

+

N∑
i=1

(
γ

(
gi

(
x
lk
i,Tk
i

i

)
− gi

(
x̂
lk
i,Tk
i

i

))

+ γ

Tki −1∑
t=1

(
gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

))
+ (γ − 1)gi

(
x
lki,0
i

)

− γgi
(
x̂
lki,0
i

)
+ (1− γ)gi

(
x
lk
i,Tk
i

i

)
+ γgi

(
x̂
lk
i,Tk
i

i

))

+ (Nα1 + (B −N)α2))

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

=
1− γ
γ

(
V (xk)− V (xk+B)

)
+

N∑
i=1

(
gi

(
x
lk
i,Tk
i

i

)

+ γ

Tki −1∑
t=1

(
gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

))
+ (γ − 1)gi

(
x
lki,0
i

)
− γgi

(
x̂
lki,0
i

)
+ (Nα1

+ (B −N)α2)

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

A3
≤ 1− γ

γ

(
V (xk)

− V (xk+B)
)

+

N∑
i=1

(
(1− γ)gi

(
x
lk
i,Tk
i
−1

i

)
+ γgi

(
x̂
lk
i,Tk
i
−1

i

)

+ γ

Tki −1∑
t=1

(
gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

))
+ (γ − 1)gi

(
x
lki,0
i

)
− γgi

(
x̂
lki,0
i

)
+ (Nα1 + (B −N)α2)

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2

=
1− γ
γ

(
V (xk)− V (xk+B)

)
+

N∑
i=1

(
gi

(
x
lk
i,Tk
i
−1

i

)

16

+ γ

Tki −2∑
t=1

(
gi

(
x
lki,t
i

)
− gi

(
x̂
lki,t
i

))
+ (γ − 1)gi

(
x
lki,0
i

)
− γgi

(
x̂
lki,0
i

)
+ (Nα1 + (B −N)α2)

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2 ≤

1− γ
γ

(
V (xk)

− V (xk+B)
)

+ (Nα1 + (B −N)α2)

k+B−1∑
l=k−D

‖∆x̂lil‖
2
2. (64)

REFERENCES

[1] R. Carli and G. Notarstefano, “Distributed partition-based optimization
via dual decomposition,” IEEE 52nd Conf. Decis. and Control, pp. 2979–
2984, 2013.

[2] V. Kekatos and G. B. Giannakis, “Distributed robust power system state
estimation,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1617–1626,
2013.

[3] T. Erseghe, “A distributed and scalable processing method based upon
admm,” IEEE Signal Process. Lett., vol. 19, no. 9, pp. 563–566, 2012.

[4] Z.-Q. Luo and P. Tseng, “Error bounds and convergence analysis of
feasible descent methods: a general approach,” Ann. Oper. Res., vol. 46,
no. 1, pp. 157–178, 1993.

[5] ——, “On the linear convergence of descent methods for convex
essentially smooth minimization,” SIAM J. Control Optim., vol. 30, no. 2,
pp. 408–425, 1992.

[6] P. Tseng, “On the rate of convergence of a partially asynchronous
gradient projection algorithm,” SIAM J. Optimiz., vol. 1, no. 4, pp. 603–
619, 1991.

[7] P. Tseng and S. Yun, “A coordinate gradient descent method for
nonsmooth separable minimization,” Math. Program., vol. 117, no. 1-2,
pp. 387–423, 2009.

[8] H. Zhang, J. Jiang, and Z.-Q. Luo, “On the linear convergence of a
proximal gradient method for a class of nonsmooth convex minimization
problems,” J. Oper. Res. Soc. China, vol. 1, no. 2, pp. 163–186, 2013.

[9] D. Drusvyatskiy and A. S. Lewis, “Error bounds, quadratic growth, and
linear convergence of proximal methods,” Math. Oper. Res., vol. 43,
no. 3, pp. 919–948, 2018.

[10] Y. Tian, Y. Sun, and G. Scutari, “Achieving linear convergence in
distributed asynchronous multi-agent optimization,” IEEE Trans. on
Autom. Control, 2020.

[11] Y. Sun, A. Daneshmand, and G. Scutari, “Distributed optimization
based on gradient-tracking revisited: Enhancing convergence rate via
surrogation,” arXiv preprint arXiv:1905.02637, 2019.

[12] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order
algorithm for decentralized consensus optimization,” SIAM J. Optimiz.,
vol. 25, no. 2, pp. 944–966, 2015.

[13] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Trans. Autom. Control, vol. 31, no. 9, pp. 803–812, 1986.

[14] J. Liu and S. J. Wright, “Asynchronous stochastic coordinate descent:
Parallelism and convergence properties,” SIAM J. Optimiz., vol. 25, no. 1,
pp. 351–376, 2015.

[15] L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scutari, “Asynchronous
parallel algorithms for nonconvex optimization,” Math. Program., pp. 1–
34, 2019.

[16] D. Davis, B. Edmunds, and M. Udell, “The sound of apalm clapping:
Faster nonsmooth nonconvex optimization with stochastic asynchronous
palm,” Adv. Neural Inf. Process. Syst. 29, pp. 226–234, 2016.

[17] D. P. Bertsekas and J. N. Tsitsiklis, “Parallel and distributed compu-
tation: numerical methods,” Prentice Hall Englewood Cliffs, vol. 23,
1989.

[18] F. Niu, B. Recht, C. Ré, and S. J. Wright, “Hogwild: a lock-free approach
to parallelizing stochastic gradient descent,” Adv. Neural Inf. Process.
Syst. 24, pp. 693–701, 2011.

[19] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic
gradient for nonconvex optimization,” Adv. Neural Inf. Process. Syst. 28,
pp. 2719–2727, 2015.

[20] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asynchronous
distributed optimization using a randomized alternating direction method
of multipliers,” IEEE 52nd Conf. Decis. and Control, pp. 3671–3676,
2013.

[21] E. Wei and A. Ozdaglar, “On the o (1= k) convergence of asynchronous
distributed alternating direction method of multipliers,” IEEE Glob.
Conf. Signal Inf. Process., pp. 551–554, 2013.

[22] P. Bianchi, W. Hachem, and F. Iutzeler, “A coordinate descent primal-
dual algorithm and application to distributed asynchronous optimiza-
tion,” IEEE Trans. Autom. Control, vol. 61, no. 10, pp. 2947–2957,
2016.

[23] K. Srivastava and A. Nedić, “Distributed asynchronous constrained
stochastic optimization,” IEEE J. Sel. Topics Signal Process., vol. 5,
no. 4, pp. 772–790, 2011.

[24] I. Notarnicola and G. Notarstefano, “Asynchronous distributed opti-
mization via randomized dual proximal gradient,” IEEE Trans. Autom.
Control, vol. 62, no. 5, pp. 2095–2106, 2017.

[25] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Convergence of asynchronous
distributed gradient methods over stochastic networks,” IEEE Trans.
Autom. Control, vol. 63, no. 2, pp. 434–448, 2018.

[26] I. Notarnicola and G. Notarstefano, “A randomized primal distributed
algorithm for partitioned and big-data non-convex optimization,” IEEE
55th Conf. Decis. and Control, pp. 153–158, 2016.

[27] A. Nedić, “Asynchronous broadcast-based convex optimization over a
network,” IEEE Trans. Autom. Control, vol. 56, no. 6, pp. 1337–1351,
2011.

[28] H. Wang, X. Liao, T. Huang, and C. Li, “Cooperative distributed
optimization in multiagent networks with delays,” IEEE Trans. Syst.,
Man, Cybern., Syst, vol. 45, no. 2, pp. 363–369, 2015.

[29] J. Li, G. Chen, Z. Dong, and Z. Wu, “Distributed mirror descent method
for multi-agent optimization with delay,” Neurocomputing, vol. 177, pp.
643–650, 2016.

[30] K. I. Tsianos and M. G. Rabbat, “Distributed dual averaging for convex
optimization under communication delays,” IEEE Am. Control Conf.,
pp. 1067–1072, 2012.

[31] ——, “Distributed consensus and optimization under communication
delays,” IEEE 49th Allerton Conf. Commun., Control, and Comput., pp.
974–982, 2011.

[32] P. Lin, W. Ren, and Y. Song, “Distributed multi-agent optimization sub-
ject to nonidentical constraints and communication delays,” Automatica,
vol. 65, pp. 120–131, 2016.

[33] T. T. Doan, C. L. Beck, and R. Srikant, “Impact of communication
delays on the convergence rate of distributed optimization algorithms,”
arXiv preprint arXiv:1708.03277, 2017.

[34] X. Zhao and A. H. Sayed, “Asynchronous adaptation and learning
over networks-part i/part ii/part iii: Modeling and stability analy-
sis/performance analysis/comparison analysis,” IEEE Trans. Signal Pro-
cess., vol. 63, no. 4, pp. 811–858, 2015.

[35] S. Kumar, R. Jain, and K. Rajawat, “Asynchronous optimization over
heterogeneous networks via consensus admm,” IEEE Trans. Signal Inf.
Process. Netw., vol. 3, no. 1, pp. 114–129, 2017.

[36] T. Wu, K. Yuan, Q. Ling, W. Yin, and A. H. Sayed, “Decentralized
consensus optimization with asynchrony and delays,” IEEE Trans. Signal
Inf. Process. Netw., vol. 4, no. 2, pp. 293–307, 2018.

[37] Z. Peng, Y. Xu, M. Yan, and W. Yin, “Arock: an algorithmic framework
for asynchronous parallel coordinate updates,” SIAM J. Sci. Comput.,
vol. 38, no. 5, pp. A2851–A2879, 2016.

[38] N. Bof, R. Carli, G. Notarstefano, L. Schenato, and D. Varagnolo,
“Newton-raphson consensus under asynchronous and lossy communica-
tions for peer-to-peer networks,” arXiv preprint arXiv:1707.09178, 2017.

[39] M. Hong, “A distributed, asynchronous and incremental algorithm for
nonconvex optimization: An admm approach,” IEEE Trans. Control
Netw. Syst., vol. PP, no. 99, 2017.

[40] S. M. Shah and K. E. Avrachenkov, “Linearly convergent asyn-
chronous distributed admm via markov sampling,” arXiv preprint
arXiv:1810.05067, 2018.

[41] R. Zhu, D. Niu, and Z. Li, “A block-wise, asynchronous and dis-
tributed admm algorithm for general form consensus optimization,”
arXiv preprint arXiv:1802.08882, 2018.

[42] T.-H. Chang, M. Hong, W.-C. Liao, and X. Wang, “Asynchronous
distributed admm for large-scale optimization—part i: Algorithm and
convergence analysis,” IEEE Trans. Signal Process, vol. 64, no. 12, pp.
3118–3130, 2016.

[43] M. Ma, J. Ren, G. B. Giannakis, and J. Haup, “Fast asynchronous decen-
tralized optimization: allowing multiple masters,” in IEEE GlobalSIP,
2018, pp. 633–637.

17

[44] R. Zhang and J. Kwok, “Asynchronous distributed admm for consensus
optimization,” in Int. Conf. Mach. Learn., 2014, pp. 1701–1709.

[45] S. Jiang, Y. Lei, S. Wang, and D. Wang, “An asynchronous admm al-
gorithm for distributed optimization with dynamic scheduling strategy,”
in IEEE 21st Int. Conf. HPCC; IEEE 17th Int. Conf. SmartCity; IEEE
5th Int. Conf. DSS, 2019, pp. 1–8.

[46] N. Srebro, J. Rennie, and T. S. Jaakkola, “Maximum-margin matrix
factorization,” in Adv. Neural Inf. Process. Syst. 17, 2005, pp. 1329–
1336.

[47] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. R.
Stat. Soc. Series B (Methodol.), vol. 58, no. 1, pp. 267–288, 1996.

[48] F. Facchinei, G. Scutari, and S. Sagratella, “Parallel selective algorithms
for nonconvex big data optimization,” IEEE Trans. Signal Process.,
vol. 63, no. 7, pp. 1874–1889, 2015.

[49] L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scutari, “Asynchronous
parallel algorithms for nonconvex big-data optimization. part ii: Com-
plexity and numerical results,” arXiv preprint arXiv:1701.04900, 2017.

Loris Cannelli received his B.S. and M.S. in elec-
trical and telecommunication engineering from the
University of Perugia, Italy, his M.S. in electrical
engineering from State University of New York at
Buffalo, NY, and his Ph.D. in industrial engineering
from the Purdue University, West Lafayette, IN,
USA. His research interests include optimization
algorithms, machine learning, and big-data analytics.

Francisco Facchinei received the Ph.D. degree in
system engineering from the University of Rome,
“La Sapienza,” Rome, Italy. He is a Full Professor of
operations research, Engineering Faculty, University
of Rome, “La Sapienza.” His research interests focus
on theoretical and algorithmic issues related to non-
linear optimization, variational inequalities, comple-
mentarity problems, equilibrium programming, and
computational game theory.

Gesualdo Scutari (S’05-M’06-SM’11) received the
Electrical Engineering and Ph.D. degrees (both with
honors) from the University of Rome “La Sapienza,”
Rome, Italy, in 2001 and 2005, respectively. He is
the Thomas and Jane Schmidt Rising Star Associate
Professor with the School of Industrial Engineering,
Purdue University, West Lafayette, IN, USA. He
had previously held several research appointments,
namely, at the University of California at Berkeley,
Berkeley, CA, USA; Hong Kong University of Sci-
ence and Technology, Hong Kong; and University

of Illinois at Urbana-Champaign, Urbana, IL, USA. His research interests
include continuous and distributed optimization, equilibrium programming,
and their applications to signal processing and machine learning. He is a
Senior Area Editor of the IEEE Transactions On Signal Processing and
an Associate Editor of the IEEE Transactions on Signal and Information
Processing over Networks. He served on the IEEE Signal Processing Society
Technical Committee on Signal Processing for Communications (SPCOM).
He was the recipient of the 2006 Best Student Paper Award at the IEEE
ICASSP 2006, the 2013 NSF CAREER Award, the 2015 Anna Maria Molteni
Award for Mathematics and Physics, and the 2015 IEEE Signal Processing
Society Young Author Best Paper Award.

Vyacheslav Kungurtsev received his B.S. in Mathe-
matics from Duke University in 2007, and his PhD in
Mathematics with a specialization in Computational
Science from the University of California - San
Diego, in 2013. He spent one year as postdoctoral
researcher at KU Leuven for the Optimization for
Engineering Center, and since 2014 he has been a
Researcher at Czech Technical University in Prague
working on various aspects of continuous optimiza-
tion.

	I Introduction
	I-A Major contributions
	I-B Related Works

	II Motivating Examples
	III Distributed Asynchronous Algorithm
	III-A Assumptions
	III-B Convergence Analysis

	IV Numerical Results
	IV-A Distributed LASSO
	IV-B Distributed Matrix Completion

	V Appendix
	V-A Notation
	V-B Preliminaries
	V-C Proof of Theorem 2
	V-C1 Step 1–Lyapunov function & its descent
	V-C2 Step 2 – Vanishing x-stationarity
	V-C3 Step 3 – Convergence rate

	V-D Proof of Theorem 3
	V-D1 Step 1
	V-D2 Step 2
	V-D3 Step 3

	V-E Miscellanea results

	References
	Biographies
	Loris Cannelli
	Francisco Facchinei
	Gesualdo Scutari
	Vyacheslav Kungurtsev

