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A B S T R A C T

Operational modal analysis methods have been proven especially useful to identify existing
structures and infrastructures under serviceability conditions. However, the installation of
sensing systems for monitoring continuously an ever larger number of existing constructions
has motivated significant efforts towards the automation of the available methods.

Within this framework, the present paper introduces a new paradigm for the automatic
output-only modal identification of linear structures under ambient vibrations, namely the
intelligent automatic operational modal analysis (i-AOMA). It exploits the covariance-based
stochastic subspace (SSI-cov) algorithm for the output-only identification of the modal pa-
rameters and its workflow consists of two main phases. Initially, quasi-random samples of
the control parameters for the SSI-cov algorithm are generated. Once the SSI-cov algorithm
is performed for each sample, the corresponding stabilization diagrams are processed in order
to prepare a database for training the intelligent core of the i-AOMA method. This is a machine
learning technique (namely a random forest algorithm) that predicts which combination of
the control parameters for the SSI-cov algorithm is able to provide good modal estimates.
Afterward, new quasi-random samples of the control parameters for the SSI-cov algorithm are
generated repeatedly until a statistical convergence criterion is achieved. If the generic sample is
classified as feasible by the intelligent core of the i-AOMA method, then the SSI-cov algorithm
is performed. Finally, stable modal results are distilled from the stabilization diagrams and
relevant statistics are computed to evaluate the uncertainty level due to the variability of the
control parameters.

The proposed i-AOMA method has been applied to identify the modal features of the Al-
Hamra Firduos Tower, an iconic 412.6 m tall building located in Kuwait City (Kuwait). The
final results well agree with a previous experimental study, and it was also possible to identify
two new vibration modes of the structure. The implemented open-source Python code is made
freely available.

. Introduction

The growing use of structural health monitoring (SHM) requires efficient solutions that aim at automatizing the extraction of the
odal parameters (viz., natural frequencies, mode shapes, and damping ratios) from the recorded dynamic response of the structures.
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This need originated the development of some strategies able to facilitate the identification of the modal parameters under free or
ambient vibrations, in such a way to mitigate the influence of analyst’s decisions on the whole elaboration process [1,2].

Within this framework, the stochastic subspace identification (SSI) algorithm [3,4] is often considered for the automatic
perational modal analysis (AOMA) of linear structures subjected to ambient vibrations. Specifically, the automatic identification
ia SSI algorithm is commonly performed either from the covariances of the outputs (SSI-cov) [5–13] or directly from time series
ollected at the tested structure by means of projections (SSI-data) [14–19]. Regardless the specific version, the implementation of
roper strategies is required to make fully automatic each elaboration phase of the general workflow of the SSI algorithm, namely:

• definition of the set of control parameters;
• estimation of the system poles by means of the SSI algorithm;
• interpretation of the stabilization diagram (SD);
• confidence level assessment of the results.

Although the proper operation of the SSI algorithm largely depends on several control parameters, few efforts have been spent
itherto to avoid a manual selection. In fact, these control parameters are often fixed a priori as constant values or are obtained
fter a sensitivity analysis within given intervals, and their definition is ultimately based on subjective evaluations or personal
xperiences [e.g.6–8,14,20–24]. However, there are also some recent works that attempted to provide rationale guidelines for tuning
utomatically the control parameters of the SSI algorithm. For example, Priori et al. [25] proposed some rules to select the optimal
alues of the number of block rows and columns of the Hankel matrix collecting the output data as well as those for the number of
lock rows of the past output subpartition and the number of block rows of the future output subpartition in the SSI-data algorithm.
articularly, the minimum number of block rows of the Hankel matrix has been related to the number of cycles of the fundamental
requency. Next, the minimum number of block rows of the future output subpartition is associated with the modal characteristics
f the structure and the sampling frequency. The proper setting of the lower bounds of the remaining control parameters is finally
ased on the amount of information that the algorithm takes into account for identifying the system (upper and lower bounds of
he model order are instead assigned a priori, and the final value is defined as the minimum order at which the largest number
f modes appear to be stable). Recently, Zini et al. [11] proposed a procedure to define the number of block rows in the Hankel
atrix gathering all the output data and the range of variation of the model order in the SSI-cov algorithm. Herein, the minimum
odel order is first assumed as twice the number of modes estimated from a preliminary spectral analysis, and further increased by
eans of an amplifying coefficient. The maximum model order is calculated as the product between the minimum model order and

n overmodelling coefficient. The maximum model order is then employed to estimate the upper and lower bounds of the number
f block rows of the Hankel matrix. The final number of block rows in the Hankel matrix is obtained from a sensitivity analysis,
nd the maximum model order is also validated.

Once the control parameters are selected, the poles of the identified linear system are computed for each model order using the
SI algorithm (e.g., either SSI-cov or SSI-data). The estimated poles of the system are usually presented in a stabilization diagram
SD). Some poles will represent stable (i.e., physical) modes while others will correspond to spurious (i.e., numerical) modes. Indeed,
purious modes will inevitably appear owing to the fact that parametric models attempt to fit the noisy data as best as possible for
n imposed conservative over-specification of the model order [3]. Since the amount of collected data from continuous monitoring
an be very large, the manual interpretation of estimated poles is unfeasible and automatic procedures are required.

Most of the recent approaches for the automated interpretation of the SD are mainly based on a clustering technique that joints
ogether stable poles with similar properties. This is by far the most investigated aspect within AOMA. Hierarchical clustering and
artition clustering methods are the most common in the current literature. The hierarchical clustering technique considers all stable
odes as separate clusters, and then groups two adjacent clusters in order to produce a new one. This procedure is repeated until

he distances between the rest clusters are larger than a user-specified threshold. Partition clustering techniques tend to divide the
table modes into several clusters [26]. On the one hand, a critical issue in the application of hierarchical clustering methods is the
election of the threshold value of the distances between the rest clusters for which the iterative procedure is stopped. On the other
and, a critical issue in the application of partition clustering techniques is attributable to the fact that the number of clusters must
e assigned in advance.

For instance, the clustering-based approach proposed by Reynders et al. [7] for the automated interpretation of the SD consists of
he following steps: (i) a pre-cleaning stage by means of a classification of all the identified modes as possible physically or certainly
purious; (ii) hierarchical clustering of the possible physical modes for the automatic detection of vertical lines in the SD; (iii)
inal classification of the formed clusters. Some applications of the hierarchical clustering method for the automatic interpretation
f the SD have been reported by Magalhaes et al. [6], de Almeida Cardoso et al. [16], Zonno et al. [27], and Garcia-Macias
nd Ubertini [28], among the others. Zini et al. [11] also proposed a statistical approach to define the cut-off threshold in the
ierarchical clustering technique. As regards the partition clustering techniques, the 𝑘-means clustering (where the clusters are

mutually exclusive) [7] and the fuzzy 𝑐-means clustering (where the clusters overlap) [5,9,19,29,30] have been adopted. For the
sake of completeness, it is pointed out that hybrid clustering approaches have been also proposed [10,31]. For example, Mugnaini
et al. [32] proposed the application of the 𝑘-means clustering to separate the poles that exhibit high stability from those that show
low stability. Subsequently, hierarchical clustering was used to create clusters of poles with similar features. The 𝑘-means clustering
was then applied once again to discern between highly and sparsely populated clusters, and the latter are discarded. Short reviews
about clustering techniques for AOMA have been presented by Hasan et al. [33] as well as Chauhan and Tcherniak [34]. As a matter
of fact, all these works that implement a clustering algorithm are instances of machine learning applications in AOMA. A different
2
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way to integrate machine learning and AOMA has been presented recently by Liu et al. [35]. It is based on two neural networks [36]:
while the first neural network is employed to determine the model order, the second one is used to identify the modal parameters.

Whichever way the identification is performed, the uncertainties at the origin propagate throughout the workflow and affect the
inal evaluation of the modal parameters as pointed out by Reynders et al. [37], who also provided a partial list of the sources of
ncertainty. Some uncertainties are somehow irreducible, such as those due to nonlinearities and nonstationarity. The uncertainties
ue to the control parameters setting are reducible, but cannot be removed at all. Since the identification of the exact modal
arameters is utopistic, it is thus important to assess the confidence in the final estimates (e.g., in terms of bounds, distributions, or
tatistical moments). Pintelon et al. [38] as well as Reynders et al. [37,39] are among the few who addressed this issue. To this end,
hey employ the first-order perturbation analysis to quantify how uncertainties propagate into the final results of the output-only
odal analysis of structures. These studies, however, are not intended for automated applications. In this regard, because of the
igh influence of the control parameters on the final modal estimates, it would be especially important to also evaluate how the
ncertainty inherent to their definition propagates in the AOMA.

This work would like to propose a new paradigm for the output-only identification of the modal features of structures and
nfrastructures subjected to ambient vibrations, the intelligent operational modal analysis (i-AOMA). The proposed approach
mplements the SSI-cov algorithm for modal identification and the overall procedure is basically divided into two steps. Quasi-
andom samples of the control parameters for the SSI-cov algorithm are generated during the first step. The SSI-cov algorithm is
hen performed for each sample and the corresponding SDs are elaborated in order to prepare a database for training the intelligent
ore of the i-AOMA method. This is a machine learning technique that predicts which combination of the control parameters for the
SI-cov algorithm is able to provide good modal estimates. In the second step, new quasi-random samples of the control parameters
or the SSI-cov algorithm are generated repeatedly. If the generic sample is classified as feasible by the intelligent core of the i-AOMA
ethod, then the SSI-cov algorithm is performed. Once a convergence criterion is achieved, final stable modal results of interest

re distilled from the SDs, and relevant statistics are computed to evaluate their confidence level.
The current paper is organized as follows. Section 2 provides a brief overview of the SSI-cov algorithm and the role of its control

arameters. The proposed i-AOMA method is then thoroughly presented in Section 3. This also includes the presentation of relevant
mplementation details of the corresponding code, which is made freely available. A preliminary numerical validation is presented
n Section 4. The identification of the iconic Al Hamra Firduos Tower located in Kuwait City has been performed by means of the
roposed i-AOMA method in Section 5. Finally, conclusive remarks about the advantages and limitations of the proposed approach
re highlighted within Section 6.

. Brief review about the stochastic subspace identification

.1. Theoretical background

In agreement with most of the current literature, the SSI algorithm is considered for output-only automatic modal identification of
inear structures under ambient vibrations. Although the proposed approach can be applied with any version, the SSI-cov algorithm
s herein adopted. Actually, since the SSI-cov algorithm is faster and less memory intensive than the SSI-data algorithm [5,9,10,16],
t is deemed especially appropriate in this context because it must be executed several times according to the proposed procedure.
enceforth, a short overview of the SSI-cov algorithm is provided in such a way to better introduce the control parameters that will
e handled through the proposed machine-learning-based approach.

The state–space representation of the output-only vibration-based structural monitoring leads to the following discrete-time
odel:

𝒙𝑟+1 = 𝑨𝒙𝑟 + 𝒗𝑟
𝒚𝑟 = 𝑪𝒙𝑟 +𝒘𝑟

, (1)

where 𝒙𝑟 ∈ R𝑛, 𝒚𝑟 ∈ R𝑙, 𝑨 ∈ R𝑛×𝑛 and 𝑪 ∈ R𝑙×𝑛 are the state vector, the outputs vector, the state transition matrix and the
observation matrix, respectively, for the 𝑟th sample. Moreover, 𝑙 is the number of monitored degrees of freedom (DOFs) while 𝑛 is
the system order. The excitation 𝒗𝑟 is the process noise and 𝒘𝑟 is the measurement noise.

Let 𝒀 ∈ R2𝑖𝑙×𝑗 be the following block Hankel matrix of the output data:

𝒀 = 1
√

𝑗

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒚0 𝒚1 … 𝒚𝑗−1
… … … …
𝒚𝑖−2 𝒚𝑖−1 … 𝒚𝑖+𝑗−3
𝒚𝑖−1 𝒚𝑖 … 𝒚𝑖+𝑗−2
𝒚𝑖 𝒚𝑖+1 … 𝒚𝑖+𝑗−1
𝒚𝑖+1 𝒚𝑖+2 … 𝒚𝑖+𝑗
… … … …
𝒚2𝑖−1 𝒚2𝑖 … 𝒚2𝑖+𝑗−2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2)

By means of Eq. (2), the block Toeplitz matrix 𝑳𝑖 ∈ R𝑖𝑙×𝑖𝑙 is readily obtained as follows:

𝑳𝑖 =

⎡

⎢

⎢

⎢

⎢

𝜦𝑖 𝜦𝑖−1 … 𝜦1
𝜦𝑖+1 𝜦𝑖 … 𝜦2
⋮ ⋮ ⋱ ⋮

⎤

⎥

⎥

⎥

⎥

, (3)
3

⎣

𝜦2𝑖−1 𝜦2𝑖−2 … 𝜦𝑖⎦
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where the entries are the output covariance matrices. The use of the Toeplitz matrix of output covariance matrices can reduce the
computational effort during the modal identification, thereby improving the efficiency of the elaboration.

The matrix 𝑳𝑖 can be decomposed into the corresponding observability and controllability matrices as follows:

𝑳𝑖 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑪
𝑪𝑨
⋮

𝑪𝑨𝑖−1

⎤

⎥

⎥

⎥

⎥

⎦

[

𝑨𝑖−1𝑮 𝑨𝑖−2𝑮 … 𝑮
]

= 𝑶𝑖𝑪 𝑖, (4)

here 𝑶𝑖 ∈ R𝑖𝑙×𝑛 is the so-called extended observability matrix and 𝑪 𝑖 ∈ R𝑛×𝑖𝑙 is the inversely extended controllability matrix.
It is known that 𝑶𝑖 and 𝑪 𝑖 can be determined from 𝑳𝑖 by reduced singular value decomposition:

𝑳𝑖 = 𝑼𝜮𝑽 ⊤, 𝑶𝑖 = 𝑼𝜮1∕2, 𝑪 𝑖 = 𝜮1∕2𝑽 ⊤, (5)

where 𝑼 ∈ R𝑖𝑙×1, 𝜮 ∈ R𝑖𝑙×𝑖𝑙 and 𝑽 ∈ R𝑖𝑙×1 are the matrix of the left singular vectors, the singular values matrix and the matrix of the
right singular vectors, respectively. Eq. (5) can be obtained by retaining only a given number of singular values and corresponding
singular vectors. To this end, the SD is built by collecting all estimated modes by varying the retained number of singular values in
Eq. (5).

Hence, the system matrices 𝑨 and 𝑪 can be identified as follows:

𝑨 = (𝑺2𝑶𝑖)†(𝑺1𝑶𝑖), (6a)

𝑪 = 𝑺3𝑶𝑖. (6b)

Herein, the symbol † denotes the Moore–Penrose pseudo-inverse whereas 𝑺1, 𝑺2 and 𝑺3 are the following selection matrices:

𝑺1 =
[

𝑶(𝑖−1)𝑙×𝑙 𝑰 (𝑖−1)𝑙
]

, 𝑺2 =
[

𝑰 (𝑖−1)𝑙 𝟎(𝑖−1)𝑙×𝑙
]

, 𝑺3 =
[

𝑰 𝑙 0𝑙×(𝑖−1)𝑙
]

. (7)

The system’s modal parameters (i.e., eigenfrequencies, damping ratios, and mode shapes) can be thus estimated from the identified
system matrices 𝑨 and 𝑪 . First, the eigenvalue decomposition of 𝑨 leads to the diagonal matrix 𝜦 of discrete-time system poles 𝜆𝑢
and corresponding right eigenvectors 𝝍𝑢:

𝑨 = 𝜳𝜦𝜳−1, A𝝍𝑢 = 𝜆𝑢𝝍𝑢, (8)

where 1 ≤ 𝑢 ≤ 𝑚, being 𝑚 the total number of eigenvalues of interest. The undamped eigenfrequencies 𝑓𝑢 and the damping ratios
𝜉𝑢 (in %) are finally determined as follows:

𝜆𝑐𝑢 =
ln(𝜆𝑢)
𝛥𝑡

, 𝑓𝑢 =
|𝜆𝑐𝑢|
2𝜋

, 𝜉𝑢 = −100
Re(𝜆𝑐𝑢)
|𝜆𝑐𝑢|

, (9)

where 𝜆𝑐𝑢 are the continuous-time system poles, 𝛥𝑡 is the sampling interval, | ⋅ | denotes the complex modulus and Re(𝜆𝑐𝑢) is the
eal part of 𝜆𝑐𝑢. The real part of the eigenvectors 𝝍𝑢 instead leads to the experimental mode shapes 𝝓𝑢:

𝝓𝑢 = Re(C𝝍𝑢). (10)

.2. Control parameters

The previous short survey about the SSI-cov algorithm highlights that it is governed by the following control parameters:

• the number of block rows 𝑖 (also known as time shift);
• the length of the data time windows 𝑗;
• the model order 𝑛.

ltimately, the efficiency and accuracy of the SSI-cov algorithm depend on the proper selection of 𝑖, 𝑗, and 𝑛.
It is noted that these control parameters are not independent of each other. Particularly, a system of order 𝑛 can be identified

s far as the following condition is fulfilled [3]:

𝑖𝑙 ≥ 𝑛. (11)

urthermore, it has been shown [40] that the variance of the estimates initially decreases when 𝑖 increases because a larger amount
f noise is rejected. Conversely, splitting phenomena occur for too high values of 𝑖, and the resulting mathematical modes lead
o a bias in the physical pole estimates. Such evidence implies that the value of 𝑖 cannot be set as large as possible. Finally, it is
heoretically required that 𝑗 ←←→ ∞. In reality, this requirement can be only approximated since the output signals are always finite
n length.

Indeed, the reliable and efficient execution of the SSI-cov algorithm requires that 𝑖 and 𝑗 are fixed consistently with 𝑛 by taking
lso into account computational effort and memory usage.
4
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3. Intelligent automatic operational modal analysis

3.1. General outline

A machine-learning-based strategy has been conceived in the present work to deal with the output-only automatic modal
dentification of linear structures under ambient vibrations via SSI-cov.

The proposed approach for the intelligent automatic operational modal analysis (i-AOMA) moves from a recent study by Zhou
t al. [41,42], who introduced a Monte Carlo (MC) simulations-based construction of the SD for SSI algorithms. Specifically, MC
imulations are performed by sampling randomly the length of the data time window 𝑗 ∈ [𝑗𝑚𝑖𝑛, 𝑗𝑚𝑎𝑥] and the maximum model order
𝑛 ∈ [𝑛𝑚𝑖𝑛, 𝑛𝑚𝑎𝑥]. The time window 𝑗 is centered symmetrically with respect to a randomly generated time instant 𝑡 ∈ [0, 𝑗𝑚𝑎𝑥]. The
nderlying assumption by Zhou et al. [41,42] is that, in a statistical sense, spurious modes occur occasionally while physical modes
ccur recurrently. Accordingly, a stability check is performed in order to discriminate the poles denoting the physical modes from
hose representing spurious modes over 𝑠 simulations (it is noted that each simulation corresponds to one application of the SSI-cov
lgorithm). The resulting SD is finally processed via the 𝑘-means clustering technique to determine the structural modal parameters.

The methodology proposed by Zhou et al. [41,42] is attractive, but the following issues can also be recognized.

• The time shift 𝑖 is still considered a user-defined parameter. Given the relevance of such control parameter, the manual tuning
of its value is an impediment towards accurate automatic applications.

• The number of MC simulations 𝑠 is a new user-defined parameter that plays a somehow important role. However, neither
motivations nor guidelines are given about its selection.

• The intervals of the control parameters for Monte Carlo simulations must be defined carefully. Otherwise, several random
samplings might result into an ill-conditioned application of the SSI algorithm, also leading to numerical failures or excessive
elaboration time. This, in turn, also reflects on the final results, which can actually be carried out from a too low number of
samples.

• The MC simulations-based construction of the SD is analyzed in order to derive a deterministic estimation of the modal
parameters. So doing, any information about the confidence level of the final estimates due to the different combinations
of the control parameters is lost.

The proposed novel approach relies on the MC simulations-based construction of the SD for SSI algorithms presented by Zhou
t al. [41,42], which is largely revised by means of a machine-learning-driven strategy designed to overcome all these limitations.
n its essence, it is organized as follows.

• Database preparation and training of the intelligent core (i-AOMA Phase 1). Quasi-random samples of the control parameters for
the SSI-cov algorithm are generated. The SSI-cov algorithm is then performed for each sample and the corresponding SDs are
elaborated in order to prepare a database for training the intelligent core of the i-AOMA method. This is a machine learning
technique that predicts which combination of the control parameters for the SSI-cov algorithm is able to provide good modal
estimates.

• Machine-learning-driven automatic identification and uncertainty propagation (i-AOMA Phase 2). New quasi-random samples of the
control parameters for the SSI-cov algorithm are generated repeatedly. If the generic sample is classified as feasible by the
intelligent core of the i-AOMA method, then the SSI-cov algorithm is performed. Once a convergence criterion is achieved,
final stable modal results of interest are distilled from the SDs, and relevant statistics are computed to evaluate their confidence
level.

.2. Analysis of the stabilization diagram via Kernel Density Estimation (i-AOMA Phase 1a)

The Halton technique [43,44] is adopted to generate quasi-random samples of the control parameters for the SSI-cov algorithm
ithin the corresponding ranges. They are the maximum model order 𝑛, the time window length 𝑗, the time target 𝑡 with respect to
hich the time window is centered [42], and the time shift parameter 𝑖. Taking into consideration the existing literature [40,42,45],

he bounded ranges for {𝑛, 𝑗, 𝑡, 𝑖} are defined as follows:

𝑛 ∈
[

𝑛𝑚𝑖𝑛, 𝑛𝑚𝑎𝑥
]

=
[

2 ⋅ 𝑙, 𝑖𝑚𝑎𝑥 ⋅ 𝑙
]

, (12)

𝑗 ∈
[

𝑗𝑚𝑖𝑛, 𝑗𝑚𝑎𝑥
]

=
[⌊

2
max{𝑓𝑓 , 1}

⌉

, 𝑗𝑚𝑎𝑥 ⋅ 𝑙
]

, (13)

𝑡 ∈
[

𝑡𝑚𝑖𝑛; 𝑡𝑚𝑎𝑥
]

=
[

0, 𝑗𝑚𝑎𝑥
]

, (14)

𝑖 ∈
[

𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥
]

=
[⌊

𝑓𝑠
2max{𝑓𝑓 , 1}

⌉

, 10
⌊

𝑓𝑠
2max{𝑓𝑓 , 1}

⌉]

, (15)

where ⌊⋅⌉ is the rounding operation to the nearest integer and 𝑓𝑓 the fundamental frequency (which is estimated by means of the
singular value decomposition of the power spectral density as suggested by Zhou and Li [42]).

A database is then prepared for training the intelligent core of i-AOMA. To this end, 𝑠 successful quasi-MC simulations are
performed: each simulation corresponds to an application of the SSI-cov algorithm using a sample of control parameters generated
5
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according to the bounds listed in Eqs. (12)–(15) by means of the Halton technique. This database is prepared by assuming 𝑠 ≥ 100
as suggested by Zhou and Li [42].

It is pointed out that the user’s intervention is limited to roughly defining the ranges of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}, even if
their reasonable definition as per Eqs. (12)–(15) is useful to enhance the efficiency of the i-AOMA. After the training stage, in fact,
the intelligent core of i-AOMA will detect the combinations of the control parameters {𝑛, 𝑗, 𝑡, 𝑖} that are likely to produce satisfactory
esults by means of the SSI-cov algorithm. Similarly, the combinations of the control parameters that cause the premature stop of the
SI-cov algorithm because of numerical failure or excessive elaboration time (herein assumed equal to 30 s) are not discarded since
hey will serve to train the intelligent core of i-AOMA in recognizing unuseful combinations of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}.

Furthermore, only a reasonable value for 𝑠 is required in such a way to properly train the intelligent core of i-AOMA, but an
utomatic procedure will be introduced to determine how many quasi-MC simulations must be carried out in order to get the final
odal estimates and to calculate the corresponding confidence level.

The SDs resulting from the 𝑠 successful quasi-Monte Carlo simulations are then overlapped. So doing, a single comprehensive
D is obtained and, for each pole, a stability check is performed in terms of frequency, damping ratio, and mode shapes, in such a
ay to identify those corresponding to possibly physical modes. The following stability criteria are considered [3]:

𝛥𝑓 =
𝑓𝑎 − 𝑓𝑏
𝑓𝑎

≤ 0.01 (16)

𝛥𝜉 =
𝜉𝑎 − 𝜉𝑏
𝜉𝑎

≤ 0.05 (17)

1 − MAC(𝜓𝑎, 𝜓𝑏) ≤ 0.02 (18)

𝜉𝑎 ≤ 0.1 (19)

here the subscripts 𝑎, 𝑏 represent two whichever poles in the SD, and MAC is the modal assurance criterion (which represents the
easure of the correlation between two modal vectors [3]). Particularly, Eqs. (16)–(18) are denoted as soft criteria (SC) in terms

f frequency, damping, and mode shape, respectively, whereas Eq. (19) is designated as hard criterion (HC) on the damping range
[11].

The extraction of certainly physical poles (i.e., the identification of the most recurrent modes having physical meaning) from
ossibly stable poles (i.e., the poles that fulfill all stability criteria in Eqs. (16)–(19)) is not performed as most common by means
f a traditional clustering procedure. Instead, this is accomplished via Kernel Density Estimation (KDE). The KDE aims at providing
nonparametric estimation of probability density functions (PDFs) directly from data [46]. Specifically, the KDE is an evolution of

ny naive estimator because it is based on a symmetric kernel function 𝐾(−𝑧) = 𝐾(𝑧) that satisfies the following conditions [47,48]:

∫

+∞

−∞
𝐾(𝑧)d𝑧 = 1, (20)

𝐾(𝑧) ≥ 0. (21)

he most common kernel is the Gaussian one [47,48]. In this context, the data consists of all the possible stable poles 𝑁𝑝 within
he comprehensive SD, which are considered as a univariate dataset along the frequency axis only. Therefore, the univariate KDE
ased on a Gaussian kernel can be written as follows:

�̂� = 1
𝑁𝑝ℎ

𝑁𝑝
∑

𝑝=1
𝐾

( 𝑧 − 𝑧𝑝
ℎ

)

, (22)

where

𝐾
( 𝑧 − 𝑧𝑝

ℎ

)

= 1
√

2𝜋ℎ
e−

(𝑧−𝑧𝑝 )2

2ℎ . (23)

The parameter ℎ in Eqs. (22)–(23) is known as bandwidth (BW) or smoothing parameter, and it is normally fixed across the entire
sample [47].

The optimal choice of the BW is challenging because it rules the spread of the kernel, and thus the complexity of the resultant
density estimate. Its optimal value represents a variance-bias trade-off between over-smoothed densities at high values of BW (which
are not able to capture multi-modality properties) and excessively noisy densities at low values of BW (which present useless spurious
fine structures [47,49]).

Since the BW definition has a significant impact, a user-dependent definition of its value should be avoided in automatic
applications. Therefore, the improved Sheather–Jones (ISJ) algorithm [49,50] is performed to facilitate the automatic definition
of the BW. This method is especially suitable when data are expected to be multimodal and far from Gaussian normality. Moreover,
in order to analyze the performance of any KDE, error criteria are usually set to verify both punctual and global convergence to the
real density 𝜑(⋅) of the density estimation �̂�(⋅;ℎ). An appropriate global indicator of their 2 distance is represented by the mean
integrated squared error (MISE), which is defined as follows [49]:

MISE [�̂�(⋅, ℎ)] = E∫ (�̂�(𝑧;ℎ) − 𝜑(𝑧))2 d𝑧, (24)

where E denotes the expected value.
6
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Fig. 1. Statistical-based criterion for the automatic definition of the prominence threshold and the detection of significant peaks from the normalized KDE.

The ISJ algorithm is mainly based on the minimization of the asymptotic MISE, which recursively produces sequences of BW
estimates [50]. It is highlighted that the direct implementations of the KDE algorithms might be computationally expensive in
the magnitude of (𝑁2

𝑝 ) or even larger [46]. This evidence motivated the development of some approximated implementations in
the past years. Specifically, the adopted KDE algorithm relies on the discrete convolution workflow provided by the Fast Fourier
Transform (FFT-KDE). This is implemented by exploiting the symmetry of the chosen Gaussian kernel function to reduce the
computational effort [51]. Particularly, a uniform discrete grid of 𝑀 points is used to bin the 𝑁𝑝 stable poles, thus achieving
an overall complexity of (𝑁𝑝21 +𝑀 log𝑀) [49]. For better controlling the granularity of the grid, in the current study, 𝑀 is set
equal to ⌊1000 ⋅ 𝑓𝑠∕2⌉, being 𝑓𝑠 the sampling frequency of the signals.

The KDE plays a crucial role in post-processing the overlapped SDs. In fact, it allows detecting recurrent and significant patterns
of stable poles’ alignments only (i.e., certainly physical modes) from possibly stable poles, thus acting as a filter for the actual modal
parameters. Indeed, the actual natural frequencies are located at the 𝑚 peaks of interest in the normalized KDE (which is obtained
by scaling the KDE in such a way that its largest value is equal to one). In order to automatize the extraction of certainly physical
modes, only those stable poles around the 𝑚 peaks of the normalized KDE within a distance equal to 𝑏𝑤 times the BW ℎ are retained,
being 𝑏𝑤 a factor governing the severity of the filtering effect of the poles of interest. The retaining bands are thus defined as follows:

[

𝑓𝑢 − 𝑏𝑤 ⋅ ℎ, 𝑓𝑢 + 𝑏𝑤 ⋅ ℎ
]

𝑢 (with 𝑢 = 1,… , 𝑚), (25)

where 𝑚 is the total number of peaks of interest and 𝑓𝑢 is the natural frequency associated with the 𝑢th peak. The value of 𝑏𝑤 is the
minimum integer number for which all the 𝑚 groups of certainly stable poles are not empty.

A prominence-based criterion is employed to detect the 𝑚 peaks of interest within the normalized KDE. Specifically, only the
peaks above a prominence threshold are considered because they are attributable to physical modes. Conversely, the peaks below
the prominence threshold are discarded. A statistical approach is proposed to setup automatically the prominence threshold value.
By observing that the values of the normalized KDE lie within the bounded range [0, 1], all the peak values are fitted through the
Beta distribution with parameters 𝛼 and 𝛽, denoted as (𝛼, 𝛽). The maximum likelihood estimation algorithm is here employed for
this task. It is noted that the normalized KDE will exhibit a few spiky peaks due to highly recurrent physical modes while it is equal
to or close to zero otherwise: therefore, the fitted (𝛼, 𝛽) is expected to be very squashed towards the zero of the normalized KDE
(i.e. 𝛼 ≪ 𝛽). The adopted statistical-based criterion for the selection of the prominence threshold is illustrated in Fig. 1.

It is worth highlighting that such prominence-based criterion implies a statistically-based discrimination between physical modes
and spurious modes. In fact, let 𝑞 be the generic peak value of the normalized KDE and 𝑞𝑢 the corresponding value associated to a
certainly physical mode 𝑢 (where 1,… , 𝑚 is the set of all the labels associated to the physical modes of interest of the structure).
Then, the proposed prominence-based criterion is equivalent to the application of the following condition:

𝑢(𝑞𝑢) ∈ {1,… , 𝑚} ⟺ ∫

𝑞𝑢

0
𝑓(𝑞; 𝛼, 𝛽)d𝑞 ≥ 1 − 𝑝𝑓 , (26)

where 𝑓 denotes the Beta distribution probability density function. The prominence threshold is ruled by 𝑝𝑓 , which defines the
threshold probability of failure (i.e., the acceptable probability of extracting a spurious mode rather than a physical mode). In the
present work, it is assumed 𝑝𝑓 = 1%, which means that the prominence threshold is the value corresponding to the 99th percentile in
the fitted Beta distribution. This, in turn, implies that the chance of considering a spurious mode within the final set of the physical
modes of interest {1,… , 𝑚} is required to be no larger than 1%. It is evident that the larger 𝑝𝑓 , the larger is 𝑚, but the larger is also
the probability of considering spurious modes within the final set of 𝑚 modes. The vice versa holds for low values of 𝑝𝑓 .

3.3. Training of the intelligent core based on random forest technique (i-AOMA Phase 1b)

The number of successful quasi-MC simulations 𝑠 has been defined arbitrarily. Although this value can be assumed very large to
achieve a predefined convergence criterion, this strategy would be a waste of computational effort because some combinations of
the control parameters are likely to produce poor results. Hence, the outcomes of all the previous simulations (i.e., successful and
7



Mechanical Systems and Signal Processing 201 (2023) 110669M.M. Rosso et al.

S
i
t
n
o
E
s
p

c
t
i
I
a

o
p
p

l
t
a
r
s

aborted simulations) are considered to fill a training database for a random forest (RF) algorithm, which acts as an intelligent core of
the proposed i-AOMA method. Specifically, the RF algorithm will be required to predict whether a new combination of the control
parameters is able to provide enough useful modal information by producing as many certainly stable poles as possible within the
retaining bands defined in Eq. (25).

A suitable metric must be associated with each previous 𝑘-tuple of the control parameters within the database in order to quantify
objectively its goodness. To this end, an information content index IC is thus computed for each previous 𝑘-tuple of the control
parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘. It is defined as the ratio between the number of certainly stable poles 𝑁∗

𝑝,𝑘 (i.e., the number of stable poles
falling within the retaining bands in Eq. (25)) and the total number of stable poles of the 𝑘th SD 𝑁𝑝,𝑘, that is:

IC𝑘 =
𝑁∗
𝑝,𝑘

𝑁𝑝,𝑘
. (27)

o doing, it is possible to associate a quality index IC𝑘 to each previous 𝑘-tuple of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘. In fact, IC𝑘
s equal to one if the 𝑘th set of control parameters provides a SD where all the stable poles are retained because they fall within
he KDE-based retaining bands in Eq. (25). Conversely, it is equal to zero if the set of 𝑘th control parameters provides a SD where
o stable pole falls within the KDE-based retaining bands in Eq. (25) (IC𝑘 is also equal to zero by default for the combinations
f the control parameters that lead to a numerical failure or an excessive elaboration time). The main advantage of the metric in
q. (27) is attributable to its simplicity since the implementation does not require further control parameters and is based on a
imple counting procedure. This avoids growing the computational burden. However, other metrics (or a combination thereof) can
ossibly be adopted.

It is evident that the optimum computational effort is achieved when the analysis is performed for those combinations of the
ontrol parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘 that corresponds to a high value of IC𝑘 while those for which IC𝑘 ≈ 0 are almost useless. It is assumed
hat if IC𝑘 is less than a threshold value IC𝑡ℎ = 0.10, then the corresponding set of control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘 is unfeasible because
t is non-informative of the actual modal properties of the structure. Conversely, if IC𝑘 is equal to or larger than a threshold value
C𝑡ℎ = 0.10, then the corresponding set of control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘 is feasible because it provides enough information about the
ctual modal properties of the structure.

The RF algorithm is thus trained to classify each freshly generated set of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘 as either feasible
r unfeasible, without performing the SSI-cov algorithm. Boolean discrimination is adopted such that the 𝑘-tuple of the control
arameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘 is labeled with 1 if IC𝑘 > IC𝑡ℎ (feasible set of control parameters) and 0 otherwise (unfeasible set of control
arameters). Boolean labeling improves the diversity among the most and the less informative sets of control parameters.

The RF algorithm is one of the most powerful and robust, yet simple, machine learning algorithms for classification prob-
ems [52]. Briefly, RF is an ensemble machine learning technique based on the simultaneous training of a group of various decision
rees (weak learners), whose predictions are finally aggregated with a majority voting method [53]. The RF algorithm adopts
n initial bagging procedure (also known as bootstrap), which is performed by randomly drawing a number of samples with
eplacements from the training set. A subset of input features is then used to train each decision tree component [52]. The usual
ize of this subset is

√

𝑑, where 𝑑 is the dimension of the features vector. Each decision tree component is trained in order to
maximize the information gain [53], in such a way to look for the best features among the selected subset, thereby improving the
tree diversity. The greatest advantage of any ensemble method is based on the adoption of a final majority voting system, which
ensures a consistent level of accuracy and robustness in contrast to any single weak learner alone. The aggregation provides, in
general, better results and reduces both bias and variance. This, in turn, improves the generalization capabilities and drastically
mitigates any possible overfitting issue [52].

The use of the RF is especially attractive to enhance the automation level of the i-AOMA because it does not require careful
tuning of its hyperparameters value by virtue of the intrinsic robustness due to its ensemble nature [53]. The only significant
control parameter of the RF algorithm is the number of decision trees composing the forest: if it is high, then it would provide
better results, with the side-effect of increasing the computation cost.

In the present study, the RF algorithm is implemented by considering 100 trees, an information gain measure based on the Gini
impurity index, no depth tree pruning, and a maximum number of features for the bootstrap subset equal to

√

𝑑 = 2 (being 𝑑 = 4
the size of the each 𝑘-tuple of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘).

3.4. Machine-learning-driven automatic identification and uncertainty propagation (i-AOMA Phase 2)

The Halton technique is employed to sample new 𝑘-tuples of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘 within the bounds listed in
Eqs. (12)–(15). Then, the trained RF applies as an intelligent core in order to classify the newly generated 𝑘-tuple of the control
parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘: if it is classified as unfeasible, then the SSI-cov does not apply and a new set is considered. This allows to save
elaboration time since only feasible 𝑘-tuples of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘 are processed henceforth. This intelligence-driven
procedure is reaped until a suitable convergence criterion is achieved.

The convergence check is performed periodically considering a batch size of successful quasi-MC simulations 𝑏 (i.e., convergence
check of i-AOMA is performed every successful 𝑏 runs of the SSI-cov algorithm). The selected convergence criterion depends on the
uncertainty associated with the estimated mode shapes 𝝓𝑢 =

[

𝜙𝑢,1 … 𝜙𝑢,𝑙
]⊤, which are carried out for 𝑢 = 1,… , 𝑚 from the
8
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Algorithm 1 Pseudocode of i-AOMA Phase 1 – Database preparation and training of the intelligent core
Define 𝑠 ⊳ Successful runs of the SSI-cov for training the RF algorithm
Define 𝑛𝑚𝑎𝑥, 𝑗𝑚𝑖𝑛, 𝑗𝑚𝑎𝑥, 𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥 ⊳ Reasonable control parameters bounds
Generate quasi-random samples of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑘=1,…
while 𝑠 successful runs of SSI-COV are not completed do

try
@check execution time ≤ 30 s ⊳ Admissible elaboration time
SSI-cov({𝑛, 𝑗, 𝑡, 𝑖}𝑘) ⊳ Compute the SD via SSI-cov
Normalize mode shapes

except ⊳ Numerical failure, execution time larger than 30 s
Set IC𝑘 = 0 ⊳ Unfeasible set of control parameters

end while
Overlap all the SDs
Check the poles stability ⊳ Detect possibly stable poles
Perform KDE ⊳ Perform FFT-KDE with ISJ algorithm
Recognize certanly stable poles from the normalized KDE
Calculate IC𝑘
Set IC threshold IC𝑡ℎ, if IC𝑘 ≥ IC𝑡ℎ then IC𝑘 = 1 else IC𝑘 = 0
Classifier training RF.fit(inputs= {𝑛, 𝑗, 𝑡, 𝑖}𝑘=1,…,targets= {IC𝑘}𝑘=1,…)

thus considered as multivariate random vectors, and the overall uncertainty is assessed by means of the generalized sample variance
matrix 𝑺𝑢 (i.e, a covariance matrix of the components of the 𝑢th mode shape vector 𝝓𝑢), which is defined as follows [54]:

𝑺𝑢 =

⎡

⎢

⎢

⎢

⎢

⎣

Var
[

𝜙𝑢,1
]

Cov
[

𝜙𝑢,1, 𝜙𝑢,2
]

… Cov
[

𝜙𝑢,1, 𝜙𝑢,𝑙
]

Var
[

𝜙𝑢,2
]

… ⋮
⋱ Cov

[

𝜙𝑢,𝑙−1, 𝜙𝑢,𝑙
]

Sym. Var
[

𝜙𝑢,𝑙
]

⎤

⎥

⎥

⎥

⎥

⎦

. (28)

This is a symmetric matrix collecting the sample variances (Var[⋅]) of the 𝝓𝑢’s components on the main diagonal, whereas the
sample covariances (Cov[⋅, ⋅]) outside of the main diagonal are computed among pairs of 𝝓𝑢’s components. A suitable measure of
the overall variability of a multivariate random vector is the total sample variance, which corresponds to the trace of the matrix
𝑺𝑢 [54], namely tr(𝑺𝑢). Hence, the traces of the sample covariance matrices given by Eq. (28) for 𝑢 = 1,… , 𝑚 are computed, and
the acceptable shifting convergence band rule (ASCBR) [55,56] is employed to limit the subjective judgment of the convergence
condition. The batch size is taken 𝑏 = 50 [56] whereas the intelligence-driven procedure is stopped (i.e., new samples of the control
parameters are no longer generated) once the relative total sample variance for each mode of interest {𝛥tr(𝑺𝑢)}𝑚𝑢=1 is restricted to
±2% [57].

Once the convergence is achieved, the SDs carried out from all the applications of the SSI-cov algorithm are overlapped, and
the stability criteria in Eqs. (16)–(19) apply to identify possibly physical modes. Thereafter, the normalized KDE-based filtering
procedure is performed once again to retrieve the final estimates of the modal parameters, and basic statistics are determined. These
statistics allow quantifying the epistemic uncertainty in the final modal estimates due to the variability of the control parameters.

As far as the uncertainty quantification for the estimated mode shapes, a boxplot-based representation is recommended [58,59].
So doing, the boxplot’s whiskers represent the distance between the first quartile or the third quartile of the modal displacement
with respect to the lower and upper fence, respectively. The fences, in turn, are located at an additional distance of 1.5 times
the interquartile range. The whiskers-based representation is deemed appropriate since it provides a robust and not necessarily
symmetric measure of the uncertainty level.

3.5. Implementation details and open-source code

The workflows for both Phase 1 and Phase 2 of the i-AOMA method are depicted in Fig. 2. Algorithms 1 and 2 provides the
pseudocode for Phase 1 and Phase 2 of the i-AOMA method, respectively.

The proposed i-AOMA method has been implemented by means of the Python programming language. Particularly, the
implementation of i-AOMA relies on PyOMA [4], which is a suite of Python libraries for standard output-only modal identification
of linear structures. The code implementation is based on the extensive use of the object-oriented programming paradigm in order
to make the elaboration as fast as possible. The elaboration time can be dramatically reduced by means of a suitable parallelization
of the elaboration tasks.

The code is available at the following Google Colab notebook link: https://colab.research.google.com/drive/1D6z1zM7lqJavI6
yyMCI8BMnEqV9zw7kW?usp=sharing. It can also downloaded from the following GitHub repository: https://github.com/marco-
9

rosso-m/i-AOMA.
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Algorithm 2 Pseudocode of i-AOMA Phase 2 – Machine-learning-driven automatic identification and uncertainty propagation
Set the batch size 𝑏 = 50 ⊳ Convergence check every 50 runs of the SSI-cov
Set a large number 𝑠𝑚𝑎𝑥
Generate quasi-random samples of the control parameters {𝑛, 𝑗, 𝑡, 𝑖}𝑠𝑚𝑎𝑥𝑘=1
while 𝑘 ≤ 𝑠𝑚𝑎𝑥 and {𝛥tr(𝑺𝑢)}𝑚𝑢=1 ≥ ±2% do

try
if RF.predict(inputs= {𝑛, 𝑗, 𝑡, 𝑖}𝑘) = 1 then ⊳ RF classification

@check execution time ≤ 30 s ⊳ Admissible elaboration time
SSI-cov({𝑛, 𝑗, 𝑡, 𝑖}𝑘) ⊳ Compute the SD via SSI-cov
Normalize mode shapes
if 𝑘 reaches multiples of 𝑏 then

Overlap all the SDs up to 𝑘 runs
Check the poles stability ⊳ Detect possibly stable poles
Perform KDE ⊳ Perform FFT-KDE with ISJ algorithm

end if
else

Set IC𝑘 = 0 ⊳ Unfeasible set of control parameters
end if

except ⊳ Numerical failure, execution time larger than 30 s
Set IC𝑘 = 0 ⊳ Unfeasible set of control parameters

end while
Overlap all the SDs
Check the poles stability ⊳ Detect possibly stable poles
Perform KDE ⊳ Perform FFT-KDE with ISJ algorithm
Select certainly stable poles from the normalized KDE
Compute basic statistics of the physical modal parameters of interest

4. Validation: numerical benchmark case

The proposed i-AOMA method is initially tested on a numerical benchmark problem following Pasca et al. [4]. A 5 degrees-of-
reedom (DOF) shear-type planar frame under white noise excitation is considered, with lumped mass at each floor equal to 25.91
s2/mm and story stiffness equal to 10,000 N/mm for every floor level. The damping matrix is computed by assuming a constant
amping ratio equal to 2% for every mode. System frequencies and mode shapes (normalized with respect to the largest value) are
he following:
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Vibration response data at every DOF corresponding to 1 h recordings have been generated with a sampling frequency of
𝑓𝑠 = 100 Hz. The response data have been polluted by adding a white noise with a signal-to-noise ratio equal to 10% in order
to reproduce real-world monitoring conditions. Following Pasca et al. [4], synthetic monitoring data have been decimated with a
factor equal to 5 after the application of a finite impulse response anti-aliasing low-pass filter with a 30 points Hamming window.
Fig. 3 illustrates synthetic monitoring data and the singular value decomposition of the power spectral density.

The singular value decomposition of the power spectral density shows that the fundamental frequency is 𝑓𝑓 = 0.890 Hz. Hence,
the bounds of the control parameters are roughly defined according to Eqs. (12)–(15). A total of 𝑠 = 100 quasi-random samples of
the control parameters have been generated according to the Halton technique for the present benchmark case during the i-AOMA
phase 1. To this end, 220 sets of control parameters have been sampled to gather 𝑠 = 100 successful applications of the SSI-cov
lgorithm, thus resulting in a success rate of about 45%. Numerical failure or excessive elaboration time occurred for the remaining
20 samples. Once the SDs corresponding to 𝑠 = 100 successful applications of the SSI-cov algorithm have been overlapped, stability
11

hecks have been performed according to Eqs. (16)–(19) and possibly stable poles are then identified. The FFT-KDE algorithm has
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Fig. 3. Numerical benchmark case: synthetic monitoring data (a) and singular value decomposition of the power spectral density (b).

Fig. 4. Numerical benchmark case i-AOMA phase 1: normalized KDE together with the identified peaks (a) and certainly stable poles falling within the retaining
bands (b) obtained from the sets of control parameters generated for training the intelligent core of i-AOMA.

been next applied on these possibly stable poles, delivering an estimate of the BW equal to 0.0015 Hz with the ISJ algorithm. The
statistical value of the prominence threshold for the peaks’ identification from the normalized KDE (99th percentile in the fitted
Beta distribution) is equal to 0.066. A factor of 𝑏𝑤 = 1 has been automatically identified to successfully collect non-empty groups of
stable poles around the peaks of the normalized KDE according to Eq. (25). Subsequently, the database consisting of all the generated
control parameters and the corresponding IC values is prepared in order to train the intelligent core of the i-AOMA method, i.e. the
RF algorithm. Figs. 4–5 illustrate the main results obtained from the 𝑠 = 100 sets of control parameters generated during the i-AOMA
phase 1.

Henceforth, new quasi-random samples of the control parameters are generated with the Halton technique. However, the SSI-cov
analysis is now performed only for those samples that are classified as feasible by the RF algorithm. In total, the algorithm generated
new 2105 samples, but only 600 new samples were actually analyzed with the SSI-cov algorithm, demonstrating the filtering effect
provided by the i-AOMA intelligent core based on the RF algorithm. Therefore, after collecting 600 new SDs, the convergence
criterion based on Eq. (28) has been fulfilled. Figs. 6–8 illustrate the final results of the i-AOMA.
12
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Fig. 5. Numerical benchmark case: numerical values of IC obtained from the sets of control parameters generated for training the intelligent core of i-AOMA.

Fig. 6. Numerical benchmark case i-AOMA phase 2: the normalized KDE together with the identified peaks (a) and certainly stable poles falling within the
retaining bands (b) obtained at the end of the i-AOMA.

Fig. 7. Numerical benchmark case: convergence analysis of the relative total sample variance for each mode.
13
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Fig. 8. Numerical benchmark case: numerical values of IC obtained from all the feasible sets of control parameters generated during i-AOMA.

Fig. 9. Numerical benchmark case: joint probability density functions of the control parameters samples that have been classified as feasible from the intelligent
core of i-AOMA.

It is worth noting in Fig. 6 that a lower estimate of the BW equal to 0.00096 Hz has been obtained with the ISJ algorithm. The
reduction of the BW value in the i-AOMA phase 2 is due to the selection pressure provided by the RF algorithm, which reduces the
uncertainty of the modal estimates attributable to the control parameters by driving the selection of their most appropriate values.
Furthermore, Fig. 8 demonstrates that the trained RF algorithm drives intelligently the control parameters sampling, since most of
the points are above the IC threshold value.

Fig. 9 illustrates the joint (bidimensional) probability density functions of the control parameters that have been classified as
feasible from the intelligent core of i-AOMA. These plots provide interesting interpretative maps that illustrate where the best values
of the control parameters were actually sampled for this benchmark case study.

The estimates of the natural frequencies for the present benchmark case are 0.89 Hz, 2.60 Hz, 4.09 Hz, 5.25 Hz, and 6.00 Hz. The
corresponding estimates of the damping ratios are 1.97%, 1.99%, 2.12%, 2.13%, and 1.95%. The identified mode shapes are shown
in Fig. 10. By resorting to a boxplot-type representation, this figure also highlights the uncertainty level related to the selected poles
in Fig. 6, as it emerges from the corresponding combinations of the control parameters adopted for the SSI-cov algorithm.

Although the final stable poles are relatively close to each other, it is worth noting in Fig. 10 that the uncertainty due to the
control parameter values propagates and possibly amplifies through the identification procedure. Notably, the uncertainty level in
14
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Fig. 10. Numerical benchmark case: median mode shapes and corresponding uncertainty level in terms of boxplot’s whiskers.

the final mode shapes is not constant. On the contrary, it is very low in some cases but it can be also quite large, depending on the
considered DOF and the mode number.

Eventually, Figs. 11–12 illustrate the convergence of average and standard deviation for natural frequencies and damping ratios,
respectively, over all the feasible samples of the control parameters. The final standard deviation values in Figs. 11–12 show that
the uncertainty level about the natural frequencies due to the variability of the control parameters is generally lower than that
observed for the mode shapes. A significant uncertainty level is also observed for the estimation of the modal damping ratios.

It is pointed out that the original MC simulations-based construction of the SD has been applied for the sake of validation by
considering all the quasi-random samples of the control parameters (i.e., without restricting the application of the SSI-cov algorithm
to those control parameters that have been classified as feasible from the intelligent core of the i-AOMA). So doing, practically
identical results have been obtained on average whereas narrow confidence bounds are obtained by means of the proposed i-AOMA.
This is attributable to the selection pressure exerted by the RF algorithm, which allows reducing the uncertainties related to the
15
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Fig. 11. Numerical benchmark case: average (a) and standard deviation (b) of natural frequencies over the feasible samples of the control parameters.

Fig. 12. Numerical benchmark case: average (a) and standard deviation (b) of damping ratios over the feasible samples of the control parameters.

variability of the control parameters. This demonstrates that the proposed i-AOMA methods allow for achieving more accurate
results with no significant influence of the analyst’s decisions while dramatically reducing the whole computational effort.

5. Case-study: identification of the Al-Hamra Firduos Tower

5.1. General description, sensor network for dynamic monitoring and finite element analysis

The proposed i-AOMA is finally applied to perform the modal identification of the Al-Hamra Firduos Tower (hereafter named
Al-Hamra Tower for the sake of compactness), which is a sculptured skyscraper located in the center of Kuwait City, Kuwait.
16
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Fig. 13. Al-Hamra Tower: general view (a) and finite element model adopted for the modal analysis (b).

Started in 2005 and completed in 2011, this iconic high-rise building is composed of about 80 floors with a total height of
412.6 m, thus resulting the tallest building in Kuwait [60–62]. The skyscraper mainly hosts offices, whereas the first five floors are
devoted to commercial uses. This commercial area extends beyond the planar footprint of the tower and merges with a multi-level
car park area. However, this latter portion is structurally independent from the tower due to the presence of a decoupling expansion
joint [60,61], and thus it is neglected in the current analysis.

From the architectural standpoint, the tower presents an approximately square sectional plan from the top view, with a removed
slice on the southern edge and with an internal open void that creates a counter-clockwise facade twisting movement along the
full height as shown in Fig. 13. The south-faced wall is made of concrete and has numerous openings with glass windows. East,
west, and north-faced walls are made of glass curtain walls. Several technical challenges were faced during construction works, such
as pumping concrete at high elevations. The concrete grade varies from C40 (toward top levels) to C70 (at low levels) [60]. The
average inter-storey height is 4 m high, and the typical floor is entirely built with reinforced concrete beams and slabs.

From a structural standpoint, starting from the base, the Al-Hamra Tower is connected to the foundation level with a web-like
concrete lamella structure visible at the lobby entrance level [60,61] in order to avoid buckling of the base columns. A 4 m depth
raft foundation is placed above 289 cast-in-situ bored piles, which have a diameter equal to 1.2 m and extend up to 27 m inside the
ground [61]. The high-rise building internal structural system relies on core shear walls with thicknesses varying between 1.20 m
and 0.30 m along the height [61]. On the southern side of the building, perimeter curved shear walls provide further stability to
the structural system [60]. Due to its twisting shape and thus variable floor plan shape, the center of mass shifts for each floor
diaphragm along the height [60].

The Al-Hamra Tower was equipped with a sensor network consisting of 24 biaxial force balance accelerometers to record its
horizontal dynamic response in the north and east directions, which are labeled as X and Y directions, respectively, as illustrated
in Fig. 14. Particularly, Fig. 14 shows that the typical instrumented floor is monitored by means of three accelerometers placed
at three extreme corners, so as to capture the torsional motion of the tower. The full-scale range of the accelerometers is ±4 g, the
dynamic range is larger than 155 dB (DC to 10 Hz), and the sensitivity is 2.5 V/g.

The sensors’ position is detailed in Table 1. It is worth noting that the sensors at the B2 floor are actually located at slightly
different elevations due to technical installation reasons [60]. However, the elevation change within the B2 level compared to the
elevation variations between the monitored floors is negligible. All the sensors are connected to the data loggers by means of cables.
The multi-channel centralized data loggers are installed in the refuge area located on the 54th floor. The sensors are synchronized
by a GPS installed on the top of the roof.
17
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Fig. 14. Al-Hamra Tower: typical monitored floor of the Al-Hamra Tower (left) and view of the biaxial accelerometers (right).

Table 1
Al-Hamra Tower: location of the accelerometers.

Sensor ID X [mm] Y [mm] Z [mm] Floor number

FL76A1 15,150 1,320
344000 76FL76A2 −700 19,935

FL76A3 15,150 34,050

FL65A1 7,955 −600
295075 65FL65A2 −700 12,835

FL65A3 16,295 35,300

FL54A1 40,475 2,645
246602 54FL54A2 −800 20,975

FL54A3 16,525 46,125

FL42A1 15,450 −800
194375 42FL42A2 −900 14,235

FL42A3 20,390 35,250

FL29A1 36,018 −9,247
137360 29FL29A2 −900 14,575

FL29A3 32,332 35,360

FL16A1 15,385 −800
80975 16FL16A2 −900 13,865

FL16A3 29,685 35,350

FL06A1 22,235 −11,870
38975 6FL06A2 −900 13,775

FL06A3 38,600 29,675

FLB2A1 45,100 −12,050 −4400
B2FLB2A2 −1,200 14,200 −6220

FLB2A3 35,285 45,480 −7090

Modal properties of the tower have been preliminarily obtained from the high-fidelity finite element model [60] illustrated in
Fig. 13. Details about the finite element model of the tower can be found in the paper by Sun et al. [60]. Numerical results of the
modal analysis for the first 15 modes are reported in Table 2. It is evident from Table 2 that the first 15 modes mobilize almost the
entire cumulative mass participating ratio (about 90%), except for the rotational mass in X and Y directions (about 82%). The first
five modes are characterized by very close natural frequencies and are lower than 1 Hz.

5.2. Identification under ambient vibrations

The experimental data for the present application were collected from the sensor network on May 2, 2022. One-hour monitoring
data with a sampling frequency 𝑓𝑠 = 200 Hz are analyzed. The monitored data were decimated with a factor equal to 40 in order
to investigate accurately the low frequency modes of the structure. According to the Nyquist’s theorem, the upper bound of the
observable frequency range is thus equal to 2.50 Hz. Fig. 15 illustrates the time-histories of the recorded accelerations at three
18
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Table 2
Al-Hamra Tower: numerical values of the modal properties estimated from finite element analysis (𝑇 is the natural period; 𝑓
is the natural frequency; UX and UY represent the participating mass ratio along X direction and Y direction, respectively; RX,
RY and RZ denote the participating rotational mass ratio along X direction, Y direction and vertical direction, respectively; the
symbol 𝛴 stands for cumulative sum of the participating mass ratios up to that mode number).

Mode 𝑇 [s] 𝑓 [Hz] UX [–] UY [–] RX [–] RY [–] RZ [–]

1 6.441 0.155 0.467 0.152 0.091 0.285 0.020
2 4.705 0.213 0.141 0.483 0.280 0.101 3.54E−05
3 2.761 0.362 0.009 0.004 2.00E−04 0.002 0.686
4 1.459 0.685 0.173 0.003 0.016 0.199 0.001
5 1.178 0.849 0.010 0.156 0.217 0.009 6.00E−04
6 0.938 1.066 0.001 8.00E−04 0.003 4.00E−04 0.114
7 0.692 1.446 0.062 0.003 0.002 0.097 1.00E−04
8 0.559 1.789 0.003 0.004 0.006 0.005 0.047
9 0.535 1.870 0.002 0.054 0.082 0.005 0.003
10 0.399 2.509 0.038 0.001 0.002 0.076 2.00E−04
11 0.355 2.814 2.00E−04 2.53E−05 1.00E−04 3.00E−04 0.035
12 0.33 3.026 0.001 0.036 0.067 0.003 2.95E−05
13 0.264 3.784 0.018 3.00E−04 4.00E−04 0.040 0.003
14 0.256 3.911 0.004 1.00E−04 1.00E−04 0.009 0.023
15 0.228 4.392 1.08E−05 0.028 0.055 1.61E−05 1.00E−04

Mode 𝑇 [s] 𝑓 [Hz] 𝛴UX [–] 𝛴UY [–] 𝛴RX [–] 𝛴RY [–] 𝛴RZ [–]

1 6.441 0.155 0.467 0.152 0.091 0.285 0.020
2 4.705 0.213 0.609 0.634 0.370 0.385 0.020
3 2.761 0.362 0.617 0.639 0.370 0.388 0.706
4 1.459 0.685 0.791 0.642 0.386 0.586 0.707
5 1.178 0.849 0.800 0.798 0.603 0.595 0.708
6 0.938 1.066 0.802 0.799 0.606 0.596 0.821
7 0.692 1.446 0.864 0.802 0.608 0.693 0.821
8 0.559 1.789 0.867 0.806 0.614 0.698 0.868
9 0.535 1.870 0.869 0.860 0.695 0.702 0.871
10 0.399 2.509 0.907 0.861 0.698 0.778 0.871
11 0.355 2.814 0.908 0.861 0.698 0.778 0.905
12 0.33 3.026 0.909 0.897 0.765 0.781 0.905
13 0.264 3.784 0.927 0.898 0.765 0.820 0.908
14 0.256 3.911 0.931 0.898 0.765 0.829 0.931
15 0.228 4.392 0.931 0.925 0.820 0.829 0.931

Fig. 15. Al-Hamra Tower: accelerations recorded on May 2, 2022 at 6th, 42th, and 76th floor (a) and singular value decomposition of the power spectral density
limited to the first six singular values (b).

different floors and the singular value decomposition of the power spectral density limited to the first six higher singular values.
The Welch’s method has been adopted by setting the Hann window length and the overlap percentage equal to 500 points and 50%,
respectively [63]. Furthermore, the stationarity of the recorded dynamic responses have been verified through the augmented
Dickey–Fuller test [64,65].

The inspection of the singular value decomposition of the power spectral density shows that 𝑓𝑓 = 0.16 Hz. Hence, the bounds
of the control parameters are roughly defined according to Eqs. (12)–(15). The number of quasi-random samples of the control
parameters generated by means of the Halton technique for the present case study is set to 𝑠 = 200. Specifically, 631 applications
of the SSI-cov algorithm out of 831 total generated samples have not been completed because of numerical failure or excessive
19
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Fig. 16. Al-Hamra Tower: normalized KDE together with the identified peaks (a) and certainly stable poles falling within the retaining bands (b) obtained from
the sets of control parameters generated for training the intelligent core of i-AOMA.

Fig. 17. Al-Hamra Tower: numerical values of IC obtained from the sets of control parameters generated for training the intelligent core of i-AOMA.

elaboration time (success rate about 24%). Once the SDs corresponding to 𝑠 = 200 successful applications of the SSI-cov algorithm
have been overlapped, stability checks have been performed according to Eqs. (16)–(19) and possibly stable poles are then identified.
The FFT-KDE algorithm has been next performed considering these possibly stable poles. So doing, an estimate of the BW equal to
0.0002 Hz is obtained by means of the ISJ algorithm. The statistical value of the prominence threshold for the peaks’ identification
from the normalized KDE (99th percentile in the fitted Beta distribution) is equal to 0.1585, and 𝑏𝑤 = 3 has been calculated. Next,
the database consisting of all the generated control parameters and the corresponding IC values is prepared in order to train the RF
algorithm. Figs. 16–17 illustrate the main results obtained from the 𝑠 = 200 sets of control parameters generated for training the
intelligent core of i-AOMA.

Afterward, new quasi-random samples of the control parameters are generated by means of the Halton technique and the SSI-cov
algorithm is performed only for those that are classified as feasible. The convergence criterion based on Eq. (28) has been fulfilled
when the trained RF algorithm has enabled the application of the SSI-cov algorithm for 500 newly samples out of 2311 quasi-random
combinations of the control parameters. Figs. 18–20 illustrate the final results of the i-AOMA.

It is noted in Fig. 18 that the ISJ algorithm now provides an estimate of the BW equal to 0.00016 Hz whereas it results in 𝑏𝑤 = 4.
Therefore, the BW has reduced while 𝑏𝑤 increased. Once again, therefore, the selection pressure provided by the RF algorithm
has reduced the dispersion of the final certainly stable poles, thereby lowering the uncertainty level about the modal estimates
20
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Fig. 18. Al-Hamra Tower: the normalized KDE together with the identified peaks (a) and certainly stable poles falling within the retaining bands (b) obtained
at the end of the i-AOMA.

Fig. 19. Al-Hamra Tower: convergence analysis of the relative total sample variance for each mode.

Fig. 20. Al-Hamra Tower: numerical values of IC obtained from all the feasible sets of control parameters generated during i-AOMA.

attributable to the control parameters. Moreover, Fig. 20 confirms the effectiveness of the trained RF algorithm in selecting feasible
sets of control parameters for modal identification, given the small number of events for which the IC value is lower than the
threshold.
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Fig. 21. Al-Hamra Tower: joint probability density functions of the control parameters that have been classified as feasible from the intelligent core of i-AOMA.

Fig. 22. Al-Hamra Tower: numerical mode shape (a), median experimental mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the first mode of the tower.

Fig. 21 illustrates the joint (bidimesional) probability density functions of the control parameters that have been classified as
feasible from the intelligent core of i-AOMA. The comparison between Figs. 21 and 9 demonstrates, as expected, that the most
appropriate combinations of the control parameters of the SSI-cov algorithm change on a case-by-case basis. This, in turn, confirms
the need for an automatic procedure for their optimal tuning.

Ten modes of the tower have been identified corresponding to natural frequencies value equal to 0.14 Hz, 0.17 Hz, 0.29 Hz,
0.59 Hz, 0.63 Hz, 0.79 Hz, 1.18 Hz, 1.25 Hz, 1.46 Hz, and 1.79 Hz. The related estimates of the damping ratios are 1.08%, 0.54%,
0.66%, 0.76%, 0.58%, 0.62%, 0.82%, 1.11%, 0.75%, and 1.05%. The corresponding mode shapes are shown in Figs. 22–31, which
are plotted considering a simplified wireframe geometrical model derived from the sensor network layout. The uncertainty level of
the mode shapes due to the variability of the control parameters adopted for the SSI-cov algorithm is highlighted by means of a
boxplot-type representation. Numerical mode shapes obtained from the finite element analysis are also shown in Figs. 22–31.

A satisfactory matching can be observed between the estimated mode shapes and the corresponding numerical predictions.
The first eight modes are also in very good agreement with previous experimental results reported by Sun et al. [60]. The last two
modes shapes identified in the present study were never detected before, and they are in good agreement with numerical predictions
obtained from the finite element model (modes number 9 and 10 in Table 2). Table 3 provides a synthetic comparative assessment
between the results reported by Sun et al. [60] and those obtained in the present study.
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Fig. 23. Al-Hamra Tower: numerical mode shape (a), median experimental mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the second mode of the tower.

Fig. 24. Al-Hamra Tower: numerical mode shape (a), median experimental mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the third mode of the tower.

Fig. 25. Al-Hamra Tower: numerical mode shape (a), median experimental mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the fourth mode of the tower.

Once again, it is evident from Figs. 22–31 that the uncertainty due to the control parameter values propagates and possibly
amplify through the identification procedure, even if the final stable poles are relatively close each other. It is also confirmed that
the uncertainty level is not constant. While it is very low in some cases, it results very large in others. The uncertainty level depends
on which DOF and mode number is considered, and, as expected, higher modes are often associated with a higher uncertainty.

Finally, the convergence of average and standard deviation for natural frequencies and damping ratios over all the feasible
samples of the control parameters are reported in Figs. 32–33, respectively.

6. Conclusions

This work was meant at contributing to current efforts towards the fully automation of the algorithms for structural identification.
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Fig. 26. Al-Hamra Tower: numerical mode shape (a), median experimental mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the fifth mode of the tower.

Fig. 27. Al-Hamra Tower: numerical mode shape (a), median experimental mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the sixth mode of the tower.

Fig. 28. Al-Hamra Tower: numerical mode shape (a), median experimental mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the seventh mode of the tower.

Fig. 29. Al-Hamra Tower: numerical mode shape (a), median experimental mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
24

(c) for the eighth mode of the tower.
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Fig. 30. Al-Hamra Tower: numerical mode shape (a), median experimental mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the ninth mode of the tower.

Fig. 31. Al-Hamra Tower: numerical mode shape (a), median experimental mode shape (b) and corresponding uncertainty level in terms of boxplot’s whiskers
(c) for the tenth mode of the tower.

Table 3
Al-Hamra Tower: comparison between the results reported by Sun et al. [60]
and those obtained in the present study by means of the i-AOMA algorithm (𝑓
is the natural frequency, whereas 𝜉 indicates the damping ratio).

Mode No. Mode type Sun et al. [60] This study
𝑓 [Hz] 𝑓 [Hz] 𝜉 [%]

1 NS flexural (1) 0.14 0.14 1.08
2 EW flexural (1) 0.18 0.17 0.54
3 Torsional (1) 0.31 0.29 0.66
4 NS flexural (2) 0.61 0.59 0.76
5 EW flexural (2) 0.66 0.63 0.58
6 Torsional (2) 0.84 0.79 0.62
7 NS flexural (3) 1.24 1.18 0.82
8 EW flexural (3) 1.30 1.25 1.11
9 Torsional (3) – 1.46 0.75
10 NS flexural (4) – 1.79 1.05

To this end, a computational framework for the intelligent automatic operational modal analysis (i-AOMA) of linear structures
under ambient vibrations has been proposed. It exploits the covariance-based stochastic subspace (SSI-cov) algorithm for the output-
only identification of the modal parameters and the overall workflow consists of two main phases. The first phase provides a database
for training the intelligent random forest (RF) core based on the identification results in terms of stabilization diagrams (SD) by
randomly varying the control parameters of the SSI-cov. In the second phase, the quasi-random sampling of new sets of control
parameters is intelligently driven by the RF until a statistical convergence criterion is reached. Final stable modal results of interest
are then extracted from the stabilization diagrams and relevant statistics are computed to evaluate the uncertainty level attributable
to the control parameters of the SSI-cov algorithm. The proposed i-AOMA has been applied to estimate the modal parameters of the
Al-Hamra Firduos Tower located in Kuwait City. The entire Python source code of i-AOMA is made freely available along with the
present work.

It is worth remarking that the proposed method relies on the standard SSI-cov technique, from which it inherits all its main
characteristics, including the robustness against the noise [66–68]. Indeed, this study aims at enabling its reliable automatic
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Fig. 32. Al-Hamra Tower: average (a) and standard deviation (b) of natural frequencies over the feasible samples of the control parameters.

Fig. 33. Al-Hamra Tower: average (a) and standard deviation (b) of damping ratios over the feasible samples of the control parameters.

implementation by means of an original computational framework that implements novel solutions to achieve two goals. The
foremost objective is the automatic calibration of the control parameters, which has been pursued through a suitable computational
intelligence algorithm. Ultimately, the overall algorithm no longer depends on the analyst’s decisions about the involved control
parameters, while only a few general settings are required. The second objective is a clear evaluation of the effects of the uncertainty
about the control parameters. Hence, a rational methodology has been developed to quantify how the uncertainty about the control
parameters propagates into the final modal estimates. So doing, the uncertainty level affecting the final modal estimates due to the
26
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variability of the control parameters is always made explicit. The main limitation of the proposed i-AOMA method is attributable
to the total computational effort. Although the elaboration time has been mitigated by exploiting an efficient object-oriented
programming approach and can be further reduced through a suitable parallelization, it is beyond doubt that the computational
effort is much higher than other existing proposals for AOMA.

It is noteworthy that the proposed strategy can be adapted to accommodate other identification algorithms. This paves the way to
urther versions of the proposed approach, for example targeted at identifying structural systems from nonstationary time histories
r in case of nonlinear behaviors. Possible improvements of the proposed computational framework include the implementation a
ayesian approach to deal with the uncertainties due to the control parameters.
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