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Abstract—The increasing performance requirements of mod-
ern applications place a significant burden on software-based
packet processing. Most of today’s software input/output acceler-
ations achieve high performance at the expense of reserving CPU
resources dedicated to continuously poll the Network Interface
Card. This is specifically the case with DPDK (Data Plane
Development Kit), probably the most widely used framework for
software-based packet processing today. The approach presented
in this paper, descriptively called Metronome, has the dual
goals of providing CPU utilization proportional to the load,
and allowing flexible sharing of CPU resources between I/O
tasks and applications. Metronome replaces DPDK’s continuous
polling with an intermittent sleep&wake mode, and revolves
around a new multi-threaded operation, which improves service
continuity. Since the proposed operation trades CPU usage with
buffering delay, we propose an analytical model devised to
dynamically adapt the sleep&wake parameters to the actual
traffic load, meanwhile providing a target average latency. Our
experimental results show a significant reduction of the CPU
cycles, improvements in power usage, and robustness to CPU
sharing even when challenged with CPU-intensive applications.

I. INTRODUCTION

Packet processing is a very common task in every modern
computer network, and Data Centers allocate relevant amounts
of resources to accomplish it. Also, DPDK is the most used
framework for software packet processing, as it provides
excellent performance levels [1]. On the downside, deploying
DPDK applications comes with a series of shortcomings, the
major one being the need for fully reserving a subset of the
available CPU-cores for continuously polling the NICs—a
choice that has been made in order to timely process incoming
packets. This approach not only gives rise to constant, 100%
utilization of the reserved CPU-cores, but also leads to high
power consumption, regardless of the actual volume of packets
to be processed [2].

Indeed, there are many reasons which suggest that the avail-
ability of solutions capable to replace continuous polling with
an intermittent, sleep&wake, CPU-friendly approach would be
beneficial. While Google states that even small improvements
in resources utilization can save millions of dollars [3], previ-
ous work has brought about evidence that despite Data Center
networks are designed to handle peak loads, they are largely
underutilized. Microsoft reveals that 46-99% of their rack pairs
exchange no traffic at all [4]; at Facebook the utilization of
the 5% busiest links ranges from 23% to 46% [5], and [6]
shows that the percentage of utilization of core network links

(by far the most stressed ones) never exceeds 25%. Fully
dedicating a CPU, the most greedy component in terms of
power consumption [7], [8], to continuous NIC polling thus
appears to be a significant waste of precious resources that
could be exploited by other tasks. To a greater extent this
appears the case nowadays: CPU performance is struggling to
improve and seems about to reach a stagnation point [9], [10],
at the moment of time in which CPUs burden is ever growing,
also because of newly emerging needs for security (e.g. the
Kernel Page Table Isolation—KPTI–facility adopted by Linux
to prevent attacks based on hardware level speculation, like
Meltdown [11]).

DPDK’s continuous CPU usage may also raise concerns in
multi-tenant cloud-based deployments, where customers rent
virtual CPUs which are then mapped onto physical CPUs in a
time-sharing fashion. In fact, fully reserving CPUs for DPDK
tasks complicates (or makes unfeasible) the adoption of re-
source sharing between different cloud customers. Also, 100%
usage of computing units is not favorable to performance in
scenarios where threads run on hyper-threaded machines—just
because of conflicting usage of CPU internal circuitry by the
hyper-threads. Hence, multi-threading should be avoided in
continuous polling-based DPDK deploys, posing the additional
problem of making this framework not fully prone to scale on
off-the-shelf parallel machines. While major cloud providers
[12], [13] have already enabled the deployment of DPDK
applications in their data centers, to the best of our knowledge
such solutions still present the shortcomings of drivers based
on continuous-poll operations.

To face these issues, this paper proposes Metronome [14],
an approach devised to replace the continuous DPDK polling
with a sleep&wake intermittent approach. Albeit this might
seem in principle an obvious idea, its advantages are linked to
several factors that we cope with in this article. First, a suited
implementation/usage of sleep&wait operating system services
needs to be put in place. As for this aspect, Metronome can
work effectively by relying on microsecond level sleep phases
supported by either the Linux nanosleep() service or our
own new service called hr_sleep() [14]. The latter offers
a few advantages and is also independent of limitations re-
lated to system parameterization and thread priorities. Second,
Metronome revolves around a novel architecture and operating
mode for DPDK, where incoming traffic, from either a single
receive queue or multiple ones, is shared between multiple
threads—as we will discuss this also offers advantages by the
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side of robustness versus operating system thread-scheduling
decisions. These threads dynamically switch—in a coordinated
manner—from polling the receive queue to sleep phases for
short and tunable periods of time when the queue is idle.
Owing to a suitable adaptation strategy which tunes the
sleeping times depending on the load conditions, Metronome
achieves a stable tunable latency and no substantial packet loss
difference compared to standard DPDK while reaching signi-
ficant reduction for both CPU usage and power consumption.

Overall, the contributions we provide in this article can be
summarized as follows:

• exploiting a fine grain sleep&wake service—in particular
the hr_sleep() service—we define the Metronome
multi-threaded architecture for DPDK applications, based
on extremely low thread-coordination overhead. It boils
down CPU usage compared to classical DPDK settings,
and offers a better capability to exploit hardware level
parallelism. As an indirect effect, Metronome positively
impacts energy efficiency under specific workloads;

• we present an analytical model for Metronome, which is
used for driving allocation of CPU to threads, making the
DPDK framework dynamically adapt its behavior (and its
demand for resources) to the workload;

• we extensively assess Metronome on 10 Gbps NICs, in
various load conditions, and we test its integration in
three different applications: L3 forwarding, IPsec, and
FloWatcher [15], a high-speed software traffic monitor;

• we extend the evaluation of Metronome to 40 Gbps
NICs, where multiple receive queues need to be used and
therefore, orchestrated by the Metronome algorithm.

Metronome is publicly available at [16].

II. RELATED WORK

When processing the packet flow incoming from NICs, two
orthogonal approaches can be exploited: (continuous) polling
and interrupt. Polling-based frameworks can either rely on a
kernel driver (e.g. netmap [17], PFQ [18] and PF_RING ZC
[19]) or bypass the kernel through a user space driver, like
DPDK [20] and Snabb [21]. Such frameworks rely on high
performance, batch transferring mechanisms such as DMA and
zero copy [19], preallocating memory through OS hugepages.
Among all of these solutions, DPDK has definitely emerged
as the most used one, as it reaches the best performance levels
[1]. Furthermore, it is continuously maintained by the Linux
Foundation and other main contributors (e.g., Intel).

As mentioned, one of the main shortcomings of DPDK is
the excessive usage of resources (CPU cycles and energy),
caused by the busy-wait approach used by threads to check
the state of NICs and Rx queues. Intel tried in [22] to address
the energy consumption issue via a gradual decrease of the
CPU clock frequency under low traffic for a commonly used
application such as the layer-3 forwarder. A similar approach is
used in [23], with the addition of an analytical model exploited
to choose the appropriate CPU frequency. Along this line, [7]
proposes a power proportional software-router.

However, while the downgrading of the clock frequency
reduces power consumption [7] without noticeably affecting

performance, these solutions do not take into account another
crucial aspect, namely the actual usage of CPU. In fact, down-
grading the clock frequency of a CPU-core fully dedicated to
a thread operating in busy-wait (namely, continuous polling)
mode still implies 100% utilization. Hence, the CPU-core is
anyhow unusable for other tasks. Moreover, downgrading the
clock frequency of CPUs is not feasible in cloud environments
since (i) they are shared between different processes and
customers and (ii) providers would like them to be fully
utilized in order to reach peak capacity on their servers [24].
Our proposal bypasses these limitations since we do not rely
on any explicit manipulation of the frequency and/or power
state of the CPUs. Rather, we control at fine grain the timeline
of CPU (and energy) usage by DPDK threads—hence the
name Metronome—which are no longer required to operate
in busy-wait style. Such control is based on an analytical
model, that allows taking runtime decisions depending on
packet workload variations.

At the opposite side, the literature offers interrupt-based
solutions. However, the huge improvements of NICs (1GbE
to 100 GbE), and the contextual stall of CPU performance
because of the end of Moore’s Law and Dennard Scaling [9],
[10] has evidenced performance limitations of the interrupt-
based approach. In fact, interrupt-based solutions suffer from
the latency brought by the system calls used to interact with
the kernel level driver managing interrupts, packet copies to
user space and so on. Moreover, an interrupt-based architecture
operating at extreme interrupt arrival speed may cause live-
locks [25]. The Linux NAPI aims at tackling these limitations
by providing an hybrid approach which tends to eliminate
receive livelocks by dynamically switching between polling
and interrupt-based packet processing, depending on the cur-
rent traffic load. Such a mechanism currently works only for
kernel-based solutions, not for user space ones, like DPDK.
There is a growing interest in XDP [26], [27], a framework
built inside the Linux kernel for programmable packet pro-
cessing. Instead of moving control out of the kernel (with the
associated costs), XDP acts before the kernel networking stack
takes control so as to achieve latency reduction. While XDP
provides some significant benefits such as total integration with
the OS kernel, improved security and CPU usage proportional
to the actual network load, it still does not match DPDK’s
performances ( [26] and Sec.V-D) and currently supports less
drivers than DPDK does [28], [29]. Our solution is instead
fully integrated with DPDK. Works like Shenango [30] and
ZygOS [31] explicitly target latency sensitive applications,
while other contributions try to accelerate packet processing
by moving computation to modern NICs [32]–[35].

III. METRONOME ARCHITECTURE

A. Fine-Grain Thread Sleep Service

The precision of the thread-sleep interval supported by
the operating system, is essential for the construction of any
solution where the following two objectives need to be jointly
pursued: 1) threads must leave the CPU if there is currently
nothing to do (in our case by the side of packet processing); 2)
threads must be allowed be CPU rescheduled—gaining again
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control of the CPU—according to a tightly controlled timeline.
Point 2) would allow the definition of an architectural support
where we can be confident that threads will be able to be CPU
dispatched exactly at (or very close to) the point in time where
we would like to re-execute a poll operation on the state of
a NIC—to determine whether incoming packets need to be
processed. On the other hand, point 1) represents the basis
for the construction of a DPDK architecture not based on full
pre-reserving of CPUs to process incoming packets.

In current conventional implementations of the Linux ker-
nel, the support for (fine-grain) sleep periods of threads is
based on the nanosleep() system call. A few limits of this
service are related to its dependency on a slack factor assigned
to threads, which is checked when they request to sleep. This
factor can be controlled using the prctl() system call,
putting it to the minimal value of 1. If such setting is not
adopted, then for any thread that is not in the real-time CPU-
scheduling class we have at least 50 microseconds as the
slack imposed by the Linux kernel, which makes the awake of
the thread less controllable in terms of precision under fine-
grain sleep requests. Furthermore, when entering the kernel
level execution of nanosleep(), the Thread Control Block
(TCB) is checked because of the need to determine the current
slack value, which makes the service run a few machine
instructions to reconcile the real value to be adopted in the
sleep phase with the information kept in the TCB.

While developing Metronome, we also implemented an
alternative sleep service, namely hr_sleep(), whose details
are provided in [14]. This variant fully avoids any interaction
with thread management information at kernel level (such
as the current slack value kept in the TCB). Hence, it also
avoids running the additional machine instructions needed
to manage this information, for any CPU-scheduling class
of threads (real-time or not). We remand the reader to [14]
for an extended evaluation of this implementation.In any
case, in Figure 1 we show the slight advantages provided by
hr_sleep() even under the scenario where nanosleep()
is configured with the minimal admissible slack currently
supported by the Linux kernel. The tests have been conducted
on an isolated NUMA node equipped with Intel Xeon Silver
2.1 GHz cores. The server is running Linux kernel 5.4. We
have run an experiment where a million samples of the wall-
clock-time elapsed between the invocation of the sleep-service
and the resume from the sleep phase are collected. This wall-
clock-time interval has been measured via start/end timer reads
operated through __rdtscp(). We show the boxplots for
both the sleep services with different timer granularity requests
(1, 10, 100 µs). These data have been collected by running the
thread issuing the sleep request as a classical SCHED_OTHER
(normal) priority thread and—as hinted before—with the timer
slack of nanosleep() set to 1µs. The results show that
hr_sleep() provides some minimal gains both in terms of
mean latency and variance even under such extreme setting
of the slack value for nanosleep(). In any case, the
avoidance of the reliance on kernel level parameters makes
hr_sleep() fully independent of any kernel configuration
choice for the minimal admissible slack.
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Figure 1: Boxplots for hr_sleep() and nanosleep()
latencies

B. Actual Thread Operations

In this section, we describe how threads in charge of
processing packets operate in Metronome. To this end, let
us start with a brief discussion of the state-of-the-art DPDK
architecture: on the receiving side, NICs may convey their
incoming traffic into a single Rx queue or either split such
traffic into multiple Rx queues through RSS. A DPDK thread
normally owns (and manages) one or more Rx queues, while
an Rx queue belongs to (namely, is managed by) one DPDK
thread [36]. Therefore, the behavior of a DPDK thread is no
more than an infinite while(1) loop in which the thread
constantly polls all the Rx queues it is in charge of. This
approach rises some important shortcomings such as (i) greedy
usage of CPU even in light load scenarios (a problem we
already pointed to) and (ii) prevention of any Rx queue
sharing among multiple threads. As for point (ii) we note
that in 40GbE+ NICs, queues experience heavy loads despite
the use of the RSS feature, e.g. on a 100Gb port with 10
queues, each queue can experience 10Gb rate traffic or even
more. Preventing multi-threaded operations on each single
Rx queue, and the exploitation of hardware parallelism for
processing incoming packets from that queue, looks therefore
to be another relevant limitation.

Compared to the above described classical thread opera-
tions in state of the art DPDK settings, we believe smarter
operations can be put in place by sharing a Rx queue among
different threads and putting these threads to sleep, when
queues are idle, for a tunable period of time, depending on
the current traffic characteristics. In other words, via a precise
fine-grain sleep service, and lightweight coordination schemes
among threads, we can still control and improve the trade-off
between resource usage and efficiency of packet processing
operations.

To this end, the hr_sleep() service has been coupled
in Metronome with a multi-threaded approach to handle the
Rx queues. In more detail, in our DPDK architecture we have
multiple threads that sleep (for fine grain periods) and then,
upon execution resume, race with each other to determine
a single winner that will actually take care of polling the
state of some Rx queue for processing its incoming packets.
In this approach we do not rely on any additional operating
system services to implement the race; rather, we implemented
the race resolution protocol purely at user space via atomic
Read-Modify-Write instructions, in particular the CMPXCHG
instruction on x86 processors, which has been exploited to
build a lightweight trylock() service. The race winner is
the thread that atomically reads and modifies a given memory
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location (used as the lock associated with an Rx queue), while
the others simply iterate on calling our new hr_sleep()
service, thus immediately (and efficiently, given the reduced
CPU-cycles usage of hr_sleep()) leaving the CPU—given
that another thread is already taking care of checking with the
state of the Rx queue, possibly processing incoming packets1.

We also note that using multiple threads according to this
scheme allows creating less correlated awake events and CPU-
reschedules, leading to (i) more predictability in terms of
the maximum delay we may experience before some Rx is
checked again for incoming packets and (ii) less work to be
done for each thread, since the same workload is split across
more cores. This is true especially when the CPU-cores on
top of which Metronome threads run are shared with other
workload. In fact, the multi-thread approach reduces the per-
CPU load of Metronome. This phenomenon of resiliency to the
interference by other workloads will be assessed quantitatively
in Section V-E, along with the benefits for the applications
sharing the same cores with Metronome.

Overall, with Metronome we propose an architecture where
Rx queues can be efficiently shared among multiple threads:
to each queue corresponds a lock which grants access to that
queue. Threads can acquire access to a queue through our
custom trylock() implementation, which provides non-
blocking and minimal latency synchronization among them.
For each of its queues, every thread tries to acquire the
corresponding lock, and passes to the next queue if lock
acquisition fails. Otherwise, if the thread wins the lock race
it processes that queue as long as there are still incoming
packets, then it releases the lock once the queue is idle. Once
a thread has processed (or at least has tried to process) the Rx
queues, it can go to sleep for a period of time proportional
to (and controllable in a precise fine-grain manner depending
on) the traffic weight it has experienced during its processing.
Scheduling an awake-timeout through a fine-grained sleep
service enables very precise and cheap thread-sleep periods,
which are essential at 10Gb+ rates, and can still provide
resource savings at lower rates. How a thread can elicit an
awake-timeout period without incurring an Rx queue filling
is carefully explained through our analytical model in Section
IV. This model is used to make the Metronome architecture
self-tune its operations, providing suited trade-offs between
resource usage (CPU cycles and energy) and packet processing
performance.

IV. METRONOME ADAPTIVE TUNING

In this section we provide an approach to adaptively tune
the behavior of the Metronome architecture. Metronome is
designed to operate via a sequence of renewal cycles Θ(i),
which alternate Vacation Periods with Busy Periods. As shown
in Figure 2, a vacation period V (i) is a time interval where
all the deployed packet-retrieval threads are set to sleep mode,
hence incoming packets, labeled as NV (i) in the figure, get
temporarily accumulated in the receive buffer. For simplicity,
we first consider a single Rx queue, then we expand our

1Interested readers can have a look at Appendix I for a basic coding example
of DPDK-traditional and Metronome approaches.

model to multiple queues in Section IV-E. When the first
among the sleeping threads wakes up and wins the race, via
a successful trylock(), for handling the incoming packets
from the Rx queue, a busy period B(i) starts. This period
will last until the whole queue is depleted by either the NV (i)
formerly accumulated packets, as well as the new NB(i)
packets arriving along the busy period itself B(i)—see the
example in Figure 2.

After depleting the queue, the involved thread will return to
sleep. Note that other concurrent threads which wake up during
a busy period will have no effect on packet processing—failing
in the trylock() they will just note that Rx queue unloading
is already in progress and will therefore instantly return to
sleep, thus freeing CPU resources for other tasks.

A. Metronome Multi-Threading Strategy
As later demonstrated in Section V-E, Metronome relies

on multiple threads to guarantee increased robustness against
CPU-reschedule delays of each individual Metronome thread,
which is no longer in sleep state—the sleep timeout has fired
and the thread was brought onto the OS run-queue. Such delay
can be caused by CPU-scheduling decisions made by the OS—
we recall that these decisions depend on the thread workload,
their relative priorities and their current binding towards CPU-
cores.

In such conditions, Metronome’s control of the vacation
period duration is not direct, as it would be in the single-
thread case by setting the relevant timer, but it is indirect and
stochastic, as this period is the time elapsing between the end
of a previous busy period and the time in which some deployed
thread awakes again and acquires the role of manager of the Rx
queue. The question therefore is: how to configure the awake
timeouts of the different deployed Metronome threads?

Unfortunately, the simplest possible approach of equal
timeouts comes along with performance drawbacks: we will
demonstrate later on (see Figure 6) that when timeouts are all
set to a same value, CPU consumption significantly degrades
as load increases, which is antithetic with respect to the ob-
jectives of Metronome. Indeed, especially under heavy packet
arrival rate, threads would wake-up, therefore consuming CPU
cycles, just to find out that another thread is already doing the
job of unloading the Rx queue.

We thus propose a diversity-based strategy for configuring
the wake-up timeouts of different threads, which aims at mim-
icking a classical primary/backup approach, but without any
explicit (and necessarily adding some extra CPU consumption)
coordination, i.e. by using purely random access means. Each
thread independently classifies itself as being in primary or
backup state, according to the following rules:

• A thread becomes primary when it gets involved in a
service time (it is the winner of the trylock() based
race); at the end of the busy period it carried out, it
reschedules its next wake-up time after a "short" time
interval TS ;

• A thread classifies itself as backup when it wakes-up
and finds an on going busy period (i.e. another thread is
already unloading the queue); it then schedules its next
wake-up time after a "long" time interval TL > TS .
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V(i) B(i)B(i-1) V(i+1) B(i+1)

NV(i)=4 NT(i)=6

Renewal cycle Q(i)

Vacation period Busy period

Arriving packets
get accumulated

Rx queue is
unloaded until

no packets are left

Figure 2: System model & renewal cycle
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Figure 3: Vacation period and timeline of residual awake
timeouts

In high load conditions, the above rules yield a scenario
in which one thread at a time (randomly changing in the
long term—-see Figure 3) is in charge to poll the Rx queue
at a reasonable frequency, whereas all the remaining ones
occasionally wake up just for fall-back acquisition of the
ownership on the Rx queue if for some reason the thread that
was primary gets delayed, e.g. by the OS CPU-scheduling
choices. Conversely, at low loads more threads will happen
to be simultaneously in the primary state, thus permitting
to significantly relax the requirements on the "short" awake
timeout TS and motivating the adaptive strategy introduced in
Section IV-D.

B. Metronome Analysis

1) Background: Let us non-restrictively assume that, once a
thread wakes up, the packets accumulated in the Rx buffer get
retrieved at a constant rate µ packets/seconds (this assumption
is discussed in more details in Appendix II). It readily follows
that the duration of the busy period B(i) depends on the num-
ber of accumulated packets, and, more precisely, it comprises
two components: i) the time needed to deplete the first NV (i)
packets arrived during V (i), plus ii) the extra time needed to
deplete the next NB(i) packets arrived since the start of the
the busy period—in formulae:

B(i) =
NV (i) +NB(i)

µ
(1)

Since NV (i) and NB(i) depend on the vacation period V (i),
in most generality drawn from a random variable V , we can
take conditional expectation at both sides of (1) with respect

to V . Being λ the (unknown) mean packet arrival rate, we
obtain the following fixed point equation2 in E [B|V ]:

E [B|V ] =
1

µ
E [NV (i) +NB(i)|V ] =

λ

µ
(V + E [B|V ]) .

(2)
which yields an explicit expression of how a busy period
E [B|V ] is affected by the relevant vacation period:

E [B|V ] = V
λ/µ

1− λ/µ
(3)

If we conveniently define ρ = λ/µ, we can derive an explicit
expression which relates ρ to the controllable Vacation Period
duration V and the relevant observable Busy Period E[B|V ]—
this expression will be indeed used to estimate ρ in Section
IV-D:

ρ =
E [B|V ]

V + E [B|V ]
(4)

2) Vacation Period statistics at high load: It is useful to
start from two simplified mean-value analyses relying on two
opposite sets of assumptions valid at either high load or low
load. The two different models will be then blended into a
single one in Section IV-D. Let M ≥ 2 be the number of
deployed Metronome threads. In high load conditions, for
reasons that will soon become evident, we can assume that
only one of such threads is in the primary state, whereas all
the remaining M − 1 are in backup state. Once the primary
thread releases the Rx queue lock and schedules its short timer
TS , two possible cases may occur:

• no backup thread wakes up during the sleep timeout TS ;
in this case the primary thread will get back control of the
Rx queue for the next round, and will remain primary;

• one of the remaining M − 1 backup threads wake up
before the end of the sleep timeout TS and thus becomes
primary; when the former primary thread wakes up, it
will find a busy period3 and will therefore acquire the role
of backup thread, rescheduling its next wake up timeout
after a time TL.

Let us now make the assumption that the (current) M − 1
backup threads were earlier CPU-rescheduled at independent
random times. This Decorrelation assumption, indeed later on
verified in Figure 4 using experimental results, is justified by
the fact that each service time, due to its random duration,
de-synchronizes the primary thread CPU-reschedule from the
remaining ones; since after a few busy cycles all threads
will have the chance to become primary, even if initially
being CPU-scheduled at around the same times, their CPU-
rescheduling instants will rapidly "decorrelate".

The statistics of the random variable V (vacation period)
can be computed as the minimum between i) the fixed wake-
up timeout TS of the primary thread, and ii) the wake-up
timeout of any of the remaining M − 1 threads, which, owing
to the previous decorrelation assumption, have been CPU-
rescheduled in any random instant in the range between 0

2In the derivation, we exploited the following well known fact (direct
consequence of the Little’s Result): the average number E[N ] of packets
arriving during a time interval of mean length E[T ] is E[N ] = λE[T ].

3In high load conditions, owing to equation 3, the average busy period lasts
significantly longer than the vacation period.
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Figure 4: Vacation period PDF: analysis vs experiments, TS = TL

and TL before the end of the current busy period. It readily
follows that the cumulative probability distribution function of
V is given by:

CDFV (x) = P (V ≤ x) =

1−
(

1− x
TL

)M−1

x < TS

1 x ≥ TS
(5)

and the mean vacation period for a given configuration of the
short and long awake timeouts, and for a given number of
threads, is trivially computed as:

E[V ] =

∫ TS

0

(1− CDFV (x))dx =
TL
M

(
1−

(
1− TS

TL

)M)
(6)

Finally, the probability that one of the M − 1 backup threads
gains access to the Rx queue at its wake-up time is given by:

Ps,succ =

∫ TS

0

1

TL

(
1− x

TL

)M−2

dx =

(
1− TS

TL

)M−1

M − 1
(7)

3) Vacation period statistics at low load: While, at high
load, a neat pattern emerges in terms of one single primary
thread at any time, with multiple backup threads, it is inter-
esting to note that at low load Metronome yields a completely
different behavior. Indeed, owing to equation (3), as the offered
load reduces, the average busy period duration becomes small
with respect to the vacation period duration. It follows that
when a primary thread gets control of the Rx queue, it very
rapidly releases such control, so that another thread waking up
will find the queue available with high probability. It follows
that in the extreme case, all threads will always remain in
the primary state4 and thus will periodically reschedule their
next wake-up times after a short interval TS . This case is
even simpler to analyze than the previous one, as the CDF of
the vacation time directly follows from (5) by simply setting
TL = TS and by considering M “competitors”, in formulae:

CDFV (x) = P (V ≤ x) = 1−
(

1− x

TS

)M
(8)

and mean vacation period simplifying to E[V ] = TS/M .

4This is because each time an awaken thread finds the Rx queue not locked
by another thread, then it acquires the primary role thanks to its successful
trylock() operation.

4) Experimental verification of the decorrelation assump-
tion: To verify the validity of the decorrelation assumption
used in the above models, Figure 4 compares the probability
distribution function obtained by taking derivative of the CDF
in equation (5), i.e., for x < TS ,

PDFV (x) =
M − 1

TL

(
1− x

TL

)M−2

(9)

with experimental results. We have specifically focused on the
case TL = TS as in this case the formula in equation (5)
is expected to hold independently of the load (primary and
backup threads use the same awake timeouts). Results, ob-
tained with awake timeouts set to 50µs and different numbers
of threads M , suggest that the decorrelation approximation
is more than reasonable and the proposed model is quite
accurate. Furthermore, the results also show that, in the real
case—although rarely—actual CPU-reschedules after a sleep
period can occur after the maximum time delay TL, because of
CPU-scheduling decisions by the OS—for example favoring
OS-kernel demons. However, such impact becomes almost
negligible in Metronome with just M = 3 deployed threads,
pointing to the relevance of the adopted multi-threading ap-
proach.

C. Adaptation policy under general load conditions

We propose a simplified, but still theoretically motivated,
approach which allows us to blend the results obtained via
the two extreme low and high load models into a single and
convenient analytical framework.

More specifically, in intermediate load conditions we cannot
anymore assume that just one single thread (as in high load
conditions), or all threads (as in low load conditions), are in
primary state along time. Rather, a part from the single thread
that has last depleted the Rx queue, which is therefore surely in
primary state, also some of the remaining M−1 threads will be
in primary state whereas others will be in backup state. Let us
therefore introduce a random variable P which represents the
number of the remaining threads in primary state. M − 1−P
will therefore be the number of remaining threads in secondary
state.

Let us now assume that each of the remaining M − 1
threads can be independently found in primary or backup state
with probability p (which will be determined later on). Then,
the random variable P representing the number of remaining
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threads in primary state trivially follows the Binomial distri-
bution:

Prob(P = k) =

(
M−1

k

)
pk(1− p)M−1−k

Then, we can compute the average vacation time also in
intermediate load conditions, by taking conditional expectation
over this newly defined random variable P . This permits us
to generalize equation (6) as follows:

E[V ] = E[E[V |P ]] =

=

M−1∑
k=0

(
M−1

k

)
pk(1− p)M−1−k

∫ TS

0

(
1− x

TS

)k
·

·
(

1− x

TL

)M−1−k
dx =

=

∫ TS

0

(
1− px

TS
− (1− p)x

TL

)M−1

dx =

=
1− ((1− p)(1− TS/TL))

M

M
(
p
TL

+ 1−p
TS

)
Furthermore, assuming TL >> TS , we can conveniently
simplify the above expression and approximate it as:

E[V ] =
TS
M
· 1− (1− p)M

p
(10)

Note that, for p → 0, namely when the probability to find
another thread in the primary state becomes zero (high load
conditions), equation (10) converges to the expected value TS ,
whereas E[V ] = TS/M for p = 1 (as for low load conditions,
i.e. all the threads becoming primary).

As a last step, it suffices to relate p with the offered load.
To this purpose, let ρ = λ/µ be the probability that the Rx
queue is busy at a random sample instant. It is intuitive to
set p = (1 − ρ), as the probability p that a thread is in
the primary state is the probability that when this thread has
last sampled the queue, it has found it idle, i.e. 1 − ρ. This
finally permits us to formally support our proposed formula
(13) as the load-adaptive TS setting strategy. Summarizing for
the reader’s convenience, being V̄ a constant target vacation
period, and ρ the current load estimate, TS can be set as:

TS = M
1− ρ

1− ρM
· V̄

Note that this rule can be conveniently rewritten in a more
intuitive and simpler to compute form, as:

TS = M
1− ρ

1− ρM
= V̄

M

1 + ρ+ · · ·+ ρM−1

D. Metronome Adaptation and Tradeoffs

Whenever the mean arrival rate is non-stationary, but varies
at a time scale reasonably longer than the cycle time, the load
conditions can be trivially run-time estimated using equation
(4). For instance, the simplest possible approach is to consider
for ρ(i) = λ(i)/µ the exponentially weighted estimator:

ρ(i) = (1− α)ρ(i− 1) + α
B(i)

V (i) +B(i)
(11)

Established that measuring the load is not a concern for
Metronome, a more interesting question is to devise a mechan-
ism which adapts the awake timeouts to the time-varying load.
The obvious emerging trade-off consists in trading the polling
frequency, namely the frequency at which threads wake up,
with the duration of the vacation period which directly affects
the packet latency. Indeed, if we assume that the serving thread
is capable to drain packets from the Rx queue at a rate µ
greater than or equal to the link rate, namely the maximum rate
at which packets may arrive (in our single-queue experiments,
10 gigabit/s), then once the thread starts the service, packets
will no longer accumulate delay. Therefore, the worst case
latency occurs when a packet arrives right after the end of
the last service period, and is delayed for an entire vacation
period.

It follows that an adaptation strategy that targets a constant
vacation period duration irrespective of the load appears to
be a quite natural approach. Let us recall that, under the as-
sumption TL >> TS , the average vacation period at high load
given by equation (6) simplifies to E[V ] ≈ TS . Conversely,
at low load, we obtained E[V ] = TS/M . Therefore, being V̄
our target constant vacation period, the rule to set the timer
TS at either high or low loads reduces to:{

TS = V̄ highload

TS = M · V̄ lowload
(12)

The analysis of the general case (intermediate load) is
less straightforward, but can be still formally dealt with by
assuming that threads are independent and are in primary
or backup state according to the probability that, while they
wake up, they find the Rx queue idle or busy, respectively. As
shown in Section IV-C, we can prove that, in this general case,
under the assumption TL >> TS , the rule to set the timer TS
becomes:

TS = M
1− ρ

1− ρM
· V̄ (13)

which, as expected, converges to (12) for the extreme high
load case ρ→ 1 and the extreme low load case ρ→ 0.

Finally, we stress that Metronome does not sacrifice latency,
but provides the possibility to trade latency for CPU con-
sumption. Indeed, the duration of the chosen vacation period
will determine the performance/efficiency trade-off: the longer
the chosen vacation time, the lower the polling rate and
thus the CPU consumption, at the price of a higher latency.
If a deployment must guarantee low latency then it should
either configure a small vacation time target, or even disable
Metronome and use standard DPDK.

E. The multiqueue case

When Metronome is used with 40+Gb NICs, one queue
becomes not enough to sustain line rate traffic. Therefore,
a split of the incoming traffic into multiple receive queues
through RSS is needed. We now introduce the N parameter,
which represents the number of Rx queues for a certain NIC.
Given M as the total number of threads in the system, we
believe it should be at least as big as N , so that every queue
can have one primary thread associated to it (M ≥ N ). In this
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scenario, we have N primary threads (since everyone of them
has won the lock race for a different queue) and M − N
secondary threads. In a scenario with multiple queues, we
believe it is not efficient to statically bind a thread to a certain
queue, so we propose a different approach:

• once a primary thread has won the race and depleted a
queue, it goes to sleep for a TS period and when it wakes
up, it contends for the same queue as we know it is likely
for it to win the race again.

• once a backup thread has lost a lock race, it chooses the
queue to be contended at its next wakeup randomly.

The random selection of the next queue for the backup thread
ensures us a certain decorrelation among the threads in the
next queue selection and also fairness with respect to the queue
checks. While the TL value remains fixed, we update equation
(13) as follows:

TS =
M

N
· 1− ρi

1− ρ
M
N
i

· V̄ for i = 1, . . . , N (14)

We notice two differences with the single queue version. The
former is that the M parameter is now replaced with M/N , as
that is the average number of threads taking care of a certain
queue at any moment. The latter is that the ρ parameter is
now per-queue based, as each queue can experiment different
traffic rates (and therefore, queue occupancy) at any time.

V. EXPERIMENTAL RESULTS

Our experimental campaign starts with the appropriate tun-
ing for the V̄ , TL and M parameters and the analysis of
the subsequent tradeoffs. We then test the adaptation capab-
ilities of Metronome in Section V-B. Section V-C discusses
in detail both strengths and weaknesses of Metronome and
static DPDK in different aspects (latency, CPU usage and
power consumption). Section V-D compares Metronome and
XDP, while Section V-E shows the impact of Metronome in
common CPU sharing scenarios. While tests up to Section
V-E have been conducted with a single Rx queue (using Intel
X520 NICs), Section V-F evaluates Metronome in a multi
queue scenario (with Intel XL710s). For evaluating the system
we used a server running Linux kernel 5.4 equipped with
Intel® Xeon® Silver @2.1 GHz, running the l3fwd DPDK
application [37] on an isolated NUMA node and generating
traffic with MoonGen [38]. For benchmarking our system, we
used the evaluation suite provided by Zhang et al. in [39], as
well as the Intel RAPL package [40] and the getrusage()
syscall to retrieve energy usage and CPU consumption. Tests
are done with 64B packets, as this is the worst case scenario5.
Unless explicitly stated, the tests are executed using the
performance CPU power governor and with parameters
V̄ = 10 µs, TL= 500 µs, M=3—each choice is motivated in the
following section. Further tests for two different applications
are also shown (see Figure 16).

5For tests regarding latency, since [39] uses Moongen’s timestamping
capabilities, it is necessary to add a 20B timestamp to the timestamped
subset of packets, thus giving rise to a minimal difference in terms of offered
throughput.

Target V [µs] Measured V [µs] Measured B [µs] NV Loss (‰)
5 11.67 13.40 172.39 0

10 19.55 20.24 287.77 0
12 21.99 22.86 326.30 0.0037
15 26.23 27.25 385.18 0.023
20 33.28 38.32 494.39 1.180

Table I: Mean busy and vacation period, NV and packet loss
for different target vacation periods.
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Figure 5: Latency and CPU usage for different different target
vacant times.

A. Parameters Tuning

First of all, we would like to find a vacation period V̄ which
permits us not to lose packets under line-rate conditions. Table
I shows packet loss, vacation period and busy period for
different values of V̄ , which represents the target V to be used
when calling the hr_sleep() service: we found out that 10
µs is a good starting point as it provides no loss. The test
was conducted using the suite’s unidirectional p2p throughput
test, as this test instantly increases the incoming rate from 0
to 14.88 Mpps, so as to be sure that this setting works even
in the worst case scenario. We then analyzed the bidirectional
throughput scenario by assigning 3 different threads to each
Rx queue, as we found out that Metronome achieves the
same maximum bidirectional throughput that DPDK can reach
(11.61 Mpps per port) by constantly polling each Rx queue
with a different thread. Once a good suitable minimum value
for V̄ is found, we investigate how tuning V̄ affects CPU
usage and latency: indeed, as Table I shows, the shorter V̄ ,
the less the queue is left unprocessed as the actual (namely,
the measured) vacation time V decreases, so packets tend to
experience a shorter queuing period. However, such an advant-
age does not come for free, as the CPU usage proportionally
increases, as shown in Figure 5 for different traffic volumes.
We note that all these tests have been performed by relying
on 3 Metronome threads.
As for TL, while letting backup threads sleep for a longer
period of time alleviates the percentage of failed attempts of
trylock() (busy tries), and therefore the number of wasted
CPU cycles (as Figure 6 shows), a shorter TL means higher
reactivity when the primary thread is interfered by OS CPU-
scheduling choices. For our evaluation we chose 500 µs since
(i) it is 50 times bigger than the maximum TS possible value,
we recall that our analytical model assumes that TL >> TS ,
(ii) Figure 6 shows that most of the advantage of increasing
TL happens before 500 µs, while between 500 and 700 µs
we experimented a difference of only 1% in CPU usage and
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Figure 6: Busy tries and CPU
usage versus TL.
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Figure 7: Busy tries and CPU
usage versus M .

around 2% in busy tries. As for M, the philosophy underlying
Metronome is the one of exploiting multiple threads for
managing a Rx queue, not the one using excessive (hence
useless) thread-level parallelism. In fact, an excessive number
of threads comes at almost no usefulness: Figure 7 shows
how the percentage of busy tries increases linearly with the
number of threads, along with a slight cost increase in terms
of CPU usage. Furthermore, increasing the threads number
comes along with a significant cost in terms of latency, as
the more the threads, the more frequently a primary thread
switches to the backup role leading to longer sleep periods as
stated in equation (13). We experimented considerable latency
implications especially at high rates, as Figure 8a shows. Even
for much lower rates, a substantial increase in variance is still
visible (see Figure 8b). By the above hints, the single-queue
evaluation is done with 3 threads.
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Figure 8: Latency vs. the number of threads M

B. Adaptation
To test the dynamic capabilities of Metronome to ad-

apt to varying workloads, we modified the Moongen
rate-control-methods.lua example to generate con-
stant bit rate traffic at a variable speed: in a time interval of one
minute, Moongen increases the sending rate every 2 seconds
until 14 Mpps of rate is reached at about 30 seconds, and then
it starts decreasing. Figure 9a shows how Metronome perfectly
matches the Moongen generated traffic rate and how the TS
parameter—set by the threads proportionally—adapts. Figure
9b proves that Metronome promptly adapts CPU usage with
respect to the incoming traffic, starting from about 20% with
no traffic and increasing up to 60% under almost line rate
conditions. Also the ρ parameter correctly adjusts its value
along with the traffic load.

C. Comparing Metronome and DPDK
We now focus on the comparison between the adaptive

Metronome capabilities and the static, continuous polling
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Figure 9: Metronome’s correct adaptation to the incoming
traffic load

mode of DPDK in terms of (i) induced latency, (ii) overall
CPU usage and (iii) power consumption.
Latency: we tested Metronome in order to investigate how
the sleep&wake approach impacts the end-to-end latency. One
of our goals was to experiment a constant vacation period,
therefore a constant mean latency. Figure 10a shows how Met-
ronome (blue boxplots) successfully fulfills this requirement,
despite a negligible increase under line-rate conditions, which
seems obvious. DPDK clearly benefits from its continuous
polling operations as it induces about half of the mean latency
that Metronome achieves and is also more reliable in terms of
variance (see Figure 10a - orange boxplots). However, rather
than very low latency, Metronome targets an adaptive and fair
usage of CPU resources with respect to the actual traffic. The
minimum latency that Metronome can induce is mainly limited
by two aspects: the first one is the Tx batch parameter. Since
DPDK transmits packets in a minimum batch number which
is tunable, as our system periodically experiments a vacation
period some packets may remain in the transmission buffer for
a long period of time without actually being sent: this is clearly
visible as variance at low rates increases. To overcome such
a limitation, we ran another set of tests with the transmission
batch set to 1, so that no packets can be left in the Tx buffer.
We found out positive impacts on both variance and (slightly)
mean values for very low rates. Downgrading the Tx threshold
to 1 comes at the cost of a 2-3% increase in CPU utilization at
line rate. The second aspect is the minimum granularity that
hr_sleep() can support, even if the sleep time requested
is much smaller than microseconds (i.e., some nanoseconds).
By tuning the first parameter and patching hr_sleep()
in order to immediately return control if a sub-microsecond
sleep timeout is requested, we managed to obtain a 7.21 µs
mean delay in Metronome which is very close to the DPDK
minimum one (6.83 µs), and also a significant decrease in
variance (0.62 µs in Metronome vs. 0.43 µs in DPDK) while
still maintaining a 10% advantage in CPU consumption.
Total CPU usage: Figure 10b shows the significant improve-

ments by Metronome (blue bars): while DPDK’s greedy ap-
proach (orange bars) gives rise to fixed 100% CPU utilization,
Metronome’s adaptive approach clearly outperforms DPDK as
it is able to provide 40% CPU saving even under line-rate
conditions, while under low rate conditions the gain further
rises to more than 5x (Metronome achieves around 18.6%
CPU usage at 0.5Gbps). We underline that Metronome’s CPU
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Figure 10: L3 Forwarder example running static DPDK, Met-
ronome and XDP
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Figure 11: Power vs CPU utilization for different power
governors.

consumption could be further decreased by increasing the TL
value as explained in Section V-A.
Power consumption: as for energy efficiency, it is critical
to examine the two approaches depending on the different
power governors [41] available in Linux. More specifically,
we concentrated on the two most performing ones, namely
ondemand and performance. The first can operate at the
maximum possible speed, but dynamically adapts the CPU
frequency by periodically examining the current CPU load
and depending on some threshold values, while the second one
keeps the CPU cores at their maximum speed while executing
code. While ondemand permits a more adaptive CPU policy,
it is less reactive than performance. In particular, CPU
cores need more time to get to the maximum speed, but
this permits some savings in terms of power. This trade-
off is clearly visible in Figures 11a and 11b: except for the
10Gbps throughput under the performance power governor
scenario, Metronome achieves less power consumption than
the traditional DPDK does, with the maximum gain reached
when operating under no traffic with the ondemand governor
(around 27%). We underline that in the ondemand scenario
Metronome’s CPU usage is higher than in the previously seen
plots. While we concentrated on the performance governor
since we wanted to minimize Metronome’s CPU consumption,
these tests show that depending on the user/provider’s needs,
Metronome can also achieve significant power saving when
compared to static polling DPDK.

D. Comparing Metronome and XDP

We believe it is the case for Metronome to be also compared
against XDP [26]: this work has a similar motivation to

Metronome’s main one (reduced, proportional CPU utilization)
and is nowadays integrated into the Linux kernel. Despite this
similar goal, the approach of the two architectures is quite
different: XDP is based on interrupts and every Rx queue
in XDP is associated to a different, unique CPU core with
a 1:1 binding. Through a conversation with one of the XDP
authors on GitHub [42], we discovered that our Intel X520
NICs (running the ixgbe driver) achieve at their best a close-
to line-rate performance: in fact, the maximum we managed
to get is 13.57 Mpps with 64B packets. To do this, we had
to equally split flows between four different cores running
the xdp_router_ipv4 example (the most similar one to
DPDK’s l3fwd). The graphs now discussed are obtained us-
ing the minimal number of cores for XDP in order not to lose
packets6 (4 cores on 10Gbps and 5Gbps, 1 core on 1Gbps and
0.5Gbps). We remark that if XDP is deployed with the goal of
potentially sustaining line-rate performance, on our test server
it should statically be deployed on four cores since there’s
no way to dynamically increase the number of queues (and
therefore, cores) without the user’s explicit command through
ethtool: in that case, XDP’s total CPU usage increases
at 52% @1Gbps and 34% @0.5Gbps. Figure 10a shows the
latency boxplot for XDP: while (even with interrupt mitigation
features enabled) we see an increased latency at line rate, we
experimented similar latencies at lower rates (we underline
that decreasing Metronome’s V̄ and the Tx batch parameter
we could obtain lower latency results as shown in Section
V-C, while XDP is already operating at its best performance).
Figure 10 shows XDP’s mean total CPU utilization, which is
clearly much higher because of the per-interrupt housekeeping
instructions required to lead control to the packet processing
routine, which have an incidence especially at higher packet
rates. On the other hand, XDP occupies no CPU cycles at
all under no traffic, while Metronome still periodically checks
its Rx queues. This different approach permits Metronome to
be highly reactive in case of packet burst arrivals (as shown
in Section V-A), while XDP loses some tens of thousands of
packets in this case before adapting.

E. Impact

Finally, we analyze Metronome’s capabilities to work in a
normal CPU sharing scenario, where different tasks compete
for the same CPU. We first focus on motivating our multi-
threading approach, then we show that the CPU cycles not
used by Metronome can be exploited to run other tasks in the
meantime without significantly affecting Metronome’s capabil-
ities. In both the experiments, Metronome is sharing its same
three cores with a VM running ferret, a CPU-intensive,
image similarity search task coming from the PARSEC [43]
benchmarking suite. Because the Metronome task is more time
sensitive than the ferret one, we give Metronome a slight
scheduling advantage by setting its niceness value to -20, while
the VM’s niceness is set to 19 since it has no particular time
requirements. In any case, the two are still set to belong to
the same SCHED_OTHER (normal) priority class.

6We decreased the Mpps sending rate to 13.57 by sending 72B packets, so
that XDP wasn’t losing packets.
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alone w/ ferret
static DPDK 14.88 7.34
Metronome 14.88 14.88

Table II: Throughput (Mpps) for static DPDK and Metronome

The case for multiple threads: While we previously stated
that a few threads are better for Metronome, we now clarify
the reason for using multiple threads by scheduling the VM
running the ferret program on one core. When running
Metronome on the same single core, because of the CPU
conflicting scenario the maximum throughput achievable by
l3fwd is around 8 Mpps. If we deploy Metronome on three
cores (one of these three cores is the same used by the VM),
only one thread will be highly impacted by the CPU-intensive
task and therefore will unlikely act like a primary thread.
In this case l3fwd achieves no packet loss on a 10Gbps
link, and the same scenario happens if we schedule the same
VM running ferret on two of the three cores shared with
Metronome. The next paragraph shows that also when all of
the three Metronome threads are (potentially) impacted by
ferret, they can still forward packets at line rate, thanks
to the reduced likelihood that all of them (when requiring to
be brought back to the runqueue after the sleep period) are
impacted simultaneously because of the decisions of the OS
CPU-scheduler. These experiments clearly show that running
Metronome on multiple threads leads to improved robustness
against common CPU sharing scenarios and interference by
other workloads.
Co-existence with other tasks: we now demonstrate that
Metronome’s sleep&wake approach enables the CPU sharing
of other tasks without major drawbacks, while DPDK’s static,
constant polling approach denies such possibilities. We first
ran ferret on one core, with a static DPDK polling l3fwd
application on the same core. Then, we scheduled ferret
on three cores and the three Metronome threads on the same
cores. As Figure 12 shows, sharing the CPU with a static
polling task causes ferret to almost triple its duration,
while Metronome’s multi-threading and CPU sharing approach
only causes a 10% increase. Moreover, standard DPDK’s
single core approach couldn’t keep up with the incoming
load, achieving a maximum of 7.31 Mpps, while Metronome
achieved no packet loss even when all of its three cores
were shared with a CPU intensive program such as ferret
(see Table 4). We underline that Metronome’s multi-threading
strategy implies that the same workload is shared between
multiple threads, thus the more the cores, the less the work
every thread needs to perform and therefore the more they
can co-exist with other tasks without affecting performances,
as this test shows.

F. Going multiqueue

Our evaluation now focuses on the multiqueue case ana-
lyzed in Section IV-E: tests have been conducted for both
Metronome and static DPDK using Intel XL710 40Gbps NICs.
These devices are limited by a maximum processing rate of
37Mpps [44]. In all tested environments, Metronome always
reached the desired 37Mpps forwarding throughput. Traffic is
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Figure 12: Execution time for ferret

distributed equally among the RX queues through RSS, while
in a later subsection we will discuss the unbalanced traffic
case. We found out that the main components to be tuned for
achieving the best performances in Metronome (assuming a
fixed V̄ = 15µs) are the number of Rx queues and the CPU
power governor.

1) Tuning the number of queues: We test our l3fwd ap-
plication using 2,3 and 4 Rx queues for the same 37Mpps
throughput. Results for CPU and power consumption are
available in Figure 13. We now focus on the performance
power governor (Figures 13a,b,c), as we discuss the impact of
the ondemand power governor in the next paragraph. The
ρ parameter and the busy tries percentage are also shown
(see Figure 14) in order to better explain the results. As
with 2 Rx queues every queue is experiencing high load
traffic (~18Mpps each), most of the time the queues are busy
(ρ = 0.7 with 2 threads) and the CPUs are running at their
maximum, so the main gain is in the CPU occupancy (150%
with 2 threads, 156% with 8). While in the cases with many
threads Metronome uses more power than static DPDK (here
represented with dotted lines), it does not make much sense
to use more than 4 threads to contend just two queues, as
also the linear increase in busy tries (blue-filled bars in Figure
14a) suggests. When using a larger number of queues (3 or 4),
the lower per-queue load permits Metronome to increase its
gain compared to static DPDK both in CPU and power (see
Figure 13c). It is also worth noticing that with a larger number
of queues, ρ also decreases and, consequently, the number of
busy tries decreases, which makes the Metronome algorithm
more efficient.

2) Power governors matter: While in the previous para-
graph we focused on the performance governor, we now
discuss the ondemand one, the difference between the two is
explained in Section V-C. Figure 13d shows the results with
2 Rx queues: the initial decrease in power consumption is
motivated by the fact that while with 2 threads, these can only
be in the primary state, when increasing the number of threads,
they tend to be backup ones (and therefore, to sleep for more
time) because of the high percentage of busy tries (see the red-
filled bars in Figure 14a). This is in turn caused by the steep
increase of ρ with the number of threads: since the CPU cores
can execute at slower rates, threads will likely take more time
to unload their Rx queues and therefore these will be busy for
longer periods. This phenomenon is still visible with 3 queues



12

Busy tries (%) Total tries ρ
Queue #1 1.94 5970660 0.3208
Queue #2 4.39 2625007 0.7269
Queue #3 2.02 5704167 0.3552

Table III: Statistics for the unbalanced traffic case

and slightly with 4 queues. As the number of queues increases,
the difference between the two power governors in terms of
queue occupation ρ and busy tries still remains significant
but also slightly decreases (see the subfigures in Figure 14).
Overall, the ondemand power governor permits to trade some
extra CPU time for a better power efficiency: also in this case
the best advantages are visible with a larger number of queues.
This further demonstrates Metronome’s capability to adapt to
a lower per-queue load.

3) Scaling to the actual traffic: Figure 15a shows the CPU
consumption for Metronome and DPDK under different traffic
rates, from 0 to line rate on an Intel XL710 (37Mpps). The
test is done with 4 Rx queues with both Metronome and
DPDK, and with M = 5 and V̄ = 15µs for Metronome.
Our approach saves more than half of static DPDK’s CPU
cycles while maintaining the same line-rate throughput, and
improving even more at lower rates. Also in terms of power
consumption (see Figure 15b), Metronome provides around 2-
3W of advantage even when using a highly expensive power
governor such as performance.

4) Unbalanced traffic: We test Metronome’s multiqueue
capabilities by continuously sending at line rate an unbalanced
pcap file. The file is composed by 1000 packets, 30% of
the packets belongs to the same UDP flow, while the other
70% is randomly generated and therefore equally split among
the queues. In the test we use 3 Rx queues (without losing
packets), so the most stressed queue processes around 53% of
the total throughput, while the other two queues are in charge
of 23% each. Table III shows some meaningful statistics for
the test. Queue #2 is the most stressed. Therefore, it has
the highest busy tries percentage and also the highest queue
occupation ρ. It is worth noticing that, on a 3-minute test,
queue #2 experienced less than half of the lock tries of queues
#1 and #3: this trend validates the assumption in Section IV-A,
where a busy queue tends to have only one primary thread at
a time while a less occupied one is more likely to have more
threads in the primary state simultaneously, and therefore,
more tries.

G. Tested applications

To further assess the flexibility and the wide breadth of
Metronome, we show three DPDK applications that we suc-
cessfully adapted to the Metronome architecture, namely two
DPDK sample applications as a L3 forwarder [37] and an
IPsec Security Gateway [45], as well as FloWatcher-DPDK
[15], a high-speed software traffic monitor.
L3 forwarder The l3fwd sample application acts as a soft-
ware L3 forwarder either through the longest prefix matching
(LPM) mechanism or the exact match (EM) one. We chose
the LPM approach as it is the most computation-expensive
one between the two. We have used the l3fwd application to

exhaustively test Metronome’s performances in Section V, so
we refer the readers to that Section for further performance
implications.
IPsec Security Gateway This application acts as an IPsec
end tunnel for both inbound and outbound network traffic. It
takes advantage of the NIC offloading capabilities for cryp-
tographic operations, while encapsulation and decapsulation
are performed by the application itself. Our tests perform
encryption of the incoming packets through the AES-CBC
128-bit algorithm as packets are later sent to the unprotected
port. The DPDK sample application achieves a maximum
outbound throughput of 5.61 Mpps with 64B packets in static
polling mode: once we adapted the application to Metronome,
we found out that we were able to reach the exact same
throughput. In fact, one of Metronome’s threads was always
processing packets and therefore never releasing the trylock
shared with the other threads, this is clearly visible in Figure
16a. For lower rates, Metronome clearly outperforms the static
approach as rates get decreased.
FloWatcher-DPDK FloWatcher is a DPDK-based traffic mon-
itor application providing tunable and fine-grained statistics,
both at packet and per-flow level. FloWatcher can either act
through a run to completion model or a pipeline one: we chose
the former since the receiving thread is also calculating the
statistics, therefore providing a more challenging scenario for
Metronome. We find out that Metronome provides the same
performances that the static DPDK approach does in terms
of zero packet loss and correct statistics calculation, while
reaching major improvements in CPU utilization. In particular,
Figure 16b shows a 50% gain even under line rate traffic and
almost a 5x gain with 0.5 Mpps traffic.

VI. CONCLUSIONS

This paper has proposed and assessed Metronome, an ap-
proach devised to replace the continuous and CPU-consuming
DPDK polling with a sleep&wake, load-adaptive, intermittent
packet retrieval mode. Metronome’s viability has been eval-
uated by integrating it into three different common DPDK
applications, and by showing its significant improvements
primarily in terms of CPU utilization (and, partially, also
in terms of power consumption), and therefore its ability
to release precious CPU cycles to business applications. We
finally stress that such gains are traded off with an extra latency
toll, which can be taken into account and configured using
the tuning knobs provided by our approach, especially when
(and if) considering the usage of Metronome with time-critical
applications.
Acknowledgments: We thank Giuseppe Siracusano and Se-
bastiano Miano for helping us in tuning XDP.
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APPENDIX

I. SKELETON CODE

We briefly compare the classical and Metronome methods
through a simplified (yet meaningful) code example of a
typical DPDK thread routine. This example only focuses on
the different coding approaches, rather than other aspects
(e.g., implementing the actual network functionalities, calcu-
lating the optimal timer through our analytical model...). Both
examples show a typical packet processing task. The usual
DPDK implementation is shown in Listing 1, while our novel
proposal is depicted in Listing 2. While both solutions include
a set of Rx queues (queue[]) to be processed, in Listing 1
each thread has assigned a specific queue in an exclusive way
(line 1), while in Listing 2 queues are shared among multiple
threads and therefore require access through the trylock()
mechanism (see line 4). In Listing 1 the thread tries to retrieve
a burst of packets (line 4) of maximum size BURST_SIZE,
processes it (line 7) and immediately scans again its set
of queues, regardless of the fact that those queues may be
experiencing low traffic (or no traffic at all). We highlight
that this behavior is the real cause of the 100% constant CPU
utilization by a single thread, as threads are working in a
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Listing 1: A standard DPDK polling loop
1 curr_queue = THREAD_ASSIGNED_QUEUE;
2
3 while (1) {
4 nb_rx = receive_burst(queue[curr_queue], pkts,

BURST_SIZE);
5 if (nb_rx == 0)
6 continue;
7 process_and_send_pkts(pkts, nb_rx);
8 }

Listing 2: Our novel DPDK processing loop
1 curr_queue = THREAD_ASSIGNED_QUEUE;
2
3 while (1) {
4 if(!trylock(lock[curr_queue])) {
5 curr_queue = randint(n_queues);
6 hr_sleep(timeout_long);
7 continue;
8 }
9
10 while(nb_rx = receive_burst(queue[curr_queue], pkts,

BURST_SIZE))
11 process_and_send_pkts(pkts, nb_rx);
12 unlock(lock[i]);
13
14 hr_sleep(timeout_short);
15 }

traffic-unaware manner. As for the later point, this level of
CPU usage is negatively reflected on energy consumption and
also on turbo-boost waste.
Listing 2 shows our novel approach: once the lock for a
certain queue is acquired, the thread processes that queue
until it becomes empty (while() loop in lines 10-11),
then it releases the lock (line 12) and goes to sleep for a
timeout_short period. If a certain lock can’t be granted,
that queue is skipped as a different thread is already processing
it: the thread changes its curr_queue, extracting it randomly
from the set of all available queues (line 5), and goes to sleep
for a timeout_long period.
Despite the simplicity of these examples, we believe they
clearly point out the difference between a traffic-aware policy
and a static one simply based on greedy resource usage.

VII. II. CAVEATS AND DETAILS

In this Appendix we discuss some supplementary technical
details at the basis of our assumptions. We specifically start
from the assumption used in the model presented in Section
IV-B: packet retrieval rate µ independent on the packet size.
Even if not strictly necessary7, our assumption of µ constant
and independent of the packet size is actually motivated by the
specific way in which DPDK handles packets. Indeed, DPDK
does not process packets by physically moving them from the
NIC, but it just moves the relevant descriptors which populate
the Rx queue.

7The renewal arguments brought about in this work remain valid if we
replace deterministic quantities with their mean - in other words even if we
consider the alternative model of constant retrieval rate in terms of a constant
rate of C bits per second, opposed to µ packets per second, we would just
need to set µ = E[P ]/C, with E[P ] being the average packet size.

Since a typical DPDK application consists of a loop where
a receive function is executed at each iteration, the service
rate can somewhat be influenced by: (i) the loop length (that
is, how much time passes between two consecutive receive
operations) and, (ii) how many descriptors are processed by
the receive function in each cycle. DPDK usually processes
descriptors in a batch defining the maximum number of
packets to be processed at each invocation. Usually, this value
is set to 32 as it provides a nice tradeoff for the batching
benefits without affecting latency. Some interference on the
rate µ may also be inducted by OS interrupts or because
of preemption of DPDK threads by some higher priority
thread (like an OS kernel demon). However, the multi-tread
approach taken by Metronome is devised just to make DPDK
more resilient towards this kind of interference scenario, and
with no need for dedicated resources—as said, one of our
targets is to make DPDK effective in CPU-sharing contexts.
In fact, nowadays OS kernels (like the Linux kernel) adopt
temporary (if not fixed) binding approaches of threads to
CPUs—with periodic migration of threads across the CPU-
cores for load balancing. Hence, having multiple Metronome
threads that can become primary while managing the NIC
decreases the likelihood that all the DPDK threads (statically
pinned to different CPU-cores at startup time) share their CPU-
core with higher priority interfering threads. On the other
hand, we have already mentioned that Metronome—including
its hr_sleep() architectural support—is devised with no
need to explicitly impose high priority to its threads. This
leaves extreme flexibility to the infrastructure owner in terms
of resource-usage configuration. The transmitting process is
also influenced by batching, as DPDK moves descriptors to a
transmit queue only if a certain batch threshold is reached for
the same amortization reasons. This doesn’t directly affect the
retrieval rate, but can rather influence the latency that DPDK
induces. Transmission and receiving queues permit the host
CPUs to dialog with NICs through the DMA technology: such
queues usually have a variable length (on an Intel X520 NIC,
users can choose a Rx/Tx queue length between 32 and 4096
descriptors).
In multi queue scenarios, Metronome needs to generate a ran-
dom value without compromising the system performance. We
leverage the DPDK’s builtin Thread-safe High Performance
Pseudo-random Number Generation library rte_random8.

8https://www.dpdk.org/wp-content/uploads/sites/35/2019/10/Threadsafe.
pdf

https://www.dpdk.org/wp-content/uploads/sites/35/2019/10/Threadsafe.pdf
https://www.dpdk.org/wp-content/uploads/sites/35/2019/10/Threadsafe.pdf
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