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Abstract

The present work aims to comprehensively contribute to the process, design, and
technologies of Earthquake Early Warning (EEW). EEW systems aim to detect the
earthquake immediately at the epicenter and relay the information in real-time
to nearby areas, anticipating the arrival of the shake. These systems exploit the
difference between the earthquake wave speed and the time needed to detect and
send alerts.

This Ph.D. thesis aims to improve the adoption, robustness, security, and scala-
bility of Earthquake Early Warning systems using a decentralized approach to data
processing and information exchange. The proposed architecture aims to have a
more resilient detection, remove Single point of failure, higher efficiency, mitigate
security vulnerabilities, and improve privacy regarding centralized EEW architec-
tures.

A prototype of the proposed architecture has been implemented using low-cost
sensors and processing devices to quickly assess the ability to provide the expected
information and guarantees.

The capabilities of the proposed architecture are evaluated not only on the
main EEW problem but also on the quick estimation of the epicentral area of an
earthquake, and the results demonstrated that our proposal is capable of matching
the performance of current centralized counterparts.
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Chapter 1

Introduction

Earthquakes are not currently predictable with a high level of accuracy. Although
the research made significant progress in understanding the causes of earthquakes
and the types of geological features that may be more likely to experience seis-
mic activity, the precise timing, location, and magnitude of earthquakes are still
unpredictable.

Despite this, there are ongoing efforts to develop Earthquake Early Warning
(EEW) systems that can alert people of potential earthquakes in advance, giving
them time to take protective measures. These systems rely on detecting initial
waves of an earthquake before the more damaging waves arrive and can provide a
few seconds to a minute of warning time. Additionally, these systems can exploit
the difference between the earthquake wave speed and the time needed to detect
the quake and reach the population in the area of impact (usually via electronic
means) to provide an alert even before the first wave arrives in that area. While
these systems are not yet perfect, they have the potential to save lives and reduce
damage in the event of an earthquake.

The primary barrier to EEW deployment is the cost of building and maintaining
the sensor network. While existing infrastructures can be retrofitted to add this task
to the standard detection, the coverage is far from good due to the cost of high-
quality sensors. Earthquake analysis done by currently deployed seismic stations
aims to provide high-precision data for post-mortem studies: tens or hundreds of
sensors are enough. A high density of sensors in a given area adds no value to that
task. In contrast, EEW needs many stations to increase the detection speed, while
the detection accuracy can be low. In recent years, Earthquake Early Warning
research has looked at crowdsensing to work around this problem.

Crowdsensing is an increasingly popular method of collecting data and building
real-world applications. It relies on the voluntary participation of individuals to
collect and share data. Crowdsensing EEW unlocks the possibility of high-density
coverage due to the low cost of sensors and the large number of devices that em-
beds sensors, like smartphones or wearable "smart" gadgets. While these devices
use sensors that have lower accuracy when compared to the ones used in seismic
networks, it has been demonstrated that the quality is sufficient for detecting quake
waves [19] [42].

Current designs for crowdsensing EEW require a centralized architecture. This
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approach relies on one or more fusion centers that gather data from sensors across a
vast geographic area, potentially spanning the globe. Once the fusion center receives
the data, it uses complex calculations to detect an earthquake wave and determine
some basic parameters, such as the epicenter and the impact area. After these
parameters are extracted, the fusion center sends EEW notifications to smartphones
and other intelligent devices registered in the system.

Despite the benefits of this approach, such as quick and accurate detection of
earthquakes, it has a fundamental weakness: its centralized structure. The depen-
dence on a centralized architecture means that any interruption in communication
with the fusion center, or even a fault in the fusion center itself, can hinder the
detection of an earthquake or delay notifications.

The present work aims to contribute to the process, design, and technologies of
Earthquake Early Warning (EEW). We investigate how to enhance the adoption,
security, robustness, and scalability of crowdsensing-based EEW systems.

We started by studying the interaction between the EEW system SeismoCloud [53]
and the final users. The goal was to improve the accessibility of data and events
via End User Development (EUD), especially for non-computer literate users, and
understand which kind of data these systems need to work, hoping that resulting
improvements can help boost the adoption of these networks by users. This study
also served as a basis for us to understand the logic behind crowdsourcing EEW.

Next, the focus shifted toward the MQ Telemetry Transport (MQTT) proto-
col [7]. It is often used for Internet-of-Things applications, like SeismoCloud, as a
lightweight data and control bus between sensors and central systems. This fact led
us to analyze the security and integrity aspects of the protocol due to its critical
role played in EEW systems.

To address the main issue of avoiding Single point of failure (SPoF) in EEW
architectures, we explored a novel approach that relies on a distributed architec-
ture. Distributed systems spread the data processing and decision-making across a
network of nodes, reducing the risk of a SPoF. By leveraging the collective power
of numerous nodes, the distributed architecture can improve the resiliency and re-
liability of the network to faults. Distributed systems also provide other beneficial
properties, like data locality, which improves the sensor’s privacy. The proposed
design comprises no fusion centers, as the detection is made on the edge (on sen-
sors). A prototype of this architecture was also implemented using low-cost sensors
in a test environment named "SeismoCloud 2.0". Simulations have shown that the
performance of this architecture, in terms of time needed to alert the population in
the area of impact, is comparable to centralized ones.

Finally, we designed a process for epicenter estimation on the proposed archi-
tecture, showing that these networks can provide a good estimation without central
processing, and confirming the validity of the proposed approach on a secondary,
yet crucial, problem.

These results demonstrate that the proposed architecture provides the same
information on earthquakes of centralized architectures while avoiding some of their
pitfalls or excess information while still using low-cost sensors.

The thesis is organized as follows: first, in Chapter 2, a general introduction
to the current SeismoCloud network (as an example of a standard crowdsourced
EEW system) is offered. Then, the work on End User Development is presented in
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Chapter 3 and on MQ Telemetry Transport is presented in Chapter 4. After that,
the proposed architecture and the comparison results with centralized approaches
are presented in Chapter 5. A distributed algorithm for epicenter estimation is
discussed in Chapter 6. Finally, conclusions and future research directions are
reported in Chapter 7.
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Chapter 2

Introduction to SeismoCloud

This section introduces SeismoCloud as a crowdsourcing Earthquake Early Warning
system. SeismoCloud is cited as an example multiple times in this thesis. This part
provides the necessary background information for readers new to SeismoCloud or
crowdsourcing Earthquake Early Warning in general.

SeismoCloud is a community network designed to track earthquakes and provide
Earthquake Early Warning to citizens. We designed SeismoCloud in 2013 in our re-
search laboratory and the Italian National Institute of Geophysics and Volcanology
(INGV). The network operates using low-cost seismometers, such as IoT devices or
smartphone sensors. These devices are connected to a cloud-based system (“fusion
center”) via MQTT for both telemetry data and control plane (an introduction to
MQTT is in Section 4.1). The “fusion center” receives and analyzes seismometer
data to detect earthquakes and generate EEW for potentially affected areas.

Internet-of-Things sensors are constantly online, analyzing their accelerometer
feed, while smartphones are active only when placed horizontally over a table, and
no traveling is detected. Both sensors analyze the accelerometer feed; they report
significant vibrations to the fusion center for both shake detection, and long-term
archival in a Time-Series Database (TSDB). The dataset stored in the TSDB is
available to users via APIs.

SeismoCloud generates events from different sources, such as official earthquake
feeds, vibrations detected by sensors deployed by users in a crowd-sensing fashion,
and metadata (sensor temperature, status, etc). It uses these sources internally to
store and render data, and to generate Earthquake Early Warnings. These data are
long-term archived, and they are available via End User Development (EUD) and
API interfaces to all users.

The precision of the detection depends on the number of seismometers connected
to the network. The more seismometers are in a particular area, the higher the
detection’s precision and speed. While it is impossible to provide exact information
about an earthquake using those sensors, the system can generate reasonably precise
warnings when many devices are in the epicentral area.

Earthquake Early Warnings are delivered via a smartphone application, which
provides a customizable sound and vibration notification. The application is de-
signed to bypass sound settings, ensuring the notification is audible even when the
smartphone is set to “no sound”. Early warnings can be received from neighboring
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areas up to 20 seconds before detecting the earthquake at the epicenter.
Internet-of-Things sensor code is open source, allowing power users to port the

algorithm to new platforms. Such experiments include integrating the sensor into
a home automation system named “Home Assistant”. Amateur radio operators
in Italy integrated SeismoCloud in weather stations and remote unmanned radio
stations (such as radio repeaters).

As part of our efforts to raise awareness about earthquakes and disaster preven-
tion, in past years we conducted seminars in high schools, engaging with students
and providing them with information on earthquake science and safety measures. To
make these seminars more interactive and engaging, we have used the SeismoCloud
mobile app as a vector to capture students’ attention.

Figure 2.1. SeismoCloud network in Italy (Feb 26th, 2023). Green marks are either
Internet-of-Things sensors or smartphone participating in the system. Background tiles
from Google Maps - ľ Google.
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Chapter 3

Simplify Node-RED For End
User Development in
SeismoCloud

Smart objects and Internet-of-Things (IoT) devices are becoming widespread; thus,
they increasingly require that end users, who usually have limited computer science
and engineering knowledge, define their behavior and configure them to connect
with other objects as well as with online services.

Some programming tools allow wiring together hardware devices, API, and on-
line services, offering a powerful mechanism that provides complete control to the
end user. However, that often requires users to be knowledgeable about technical
issues. To overcome this limitation, different solutions have been proposed recently.
One of these solutions is named End User Development [29].

End User Development (EUD) is the technique of creating and modifying soft-
ware and processes by non-professional users. This is in contrast to traditional
software development, which is typically done by professional programmers or de-
velopment teams. EUD allows non-experts to customize digital systems to meet
their specific needs and requirements.

Node-RED [63] is a flow-based programming [48] platform commonly used for
End User Development. It allows users to create and configure networks of Internet-
of-Things devices and online services, without needing to write code. However, even
if Node-RED uses EUD for abstracting concepts, it still uses low-level terms and
components, like MQTT broker, WebSockets, HTTP requests. By doing so, it can
be difficult for different-skilled users (i.e., users with no skills in computer sciences)
to use it effectively, as it requires knowledge of networking and protocols in order to
configure and control the devices. In the application taken into consideration, which
is SeismoCloud, users struggled to understand the role of such low-level components.
Works in the literature that uses Node-RED require some prior knowledge of un-
derlying protocols (for example, in Tabaa et al. [61], skills on Modbus standards
and protocols are required).

To address this issue, we propose adding a level of abstraction to Node-RED
nodes, creating a user-friendly interface that allows so-called different-skilled users
to configure and easily control IoT devices and online services networks. These
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abstractions hide the underlying technical details and allow users to control the de-
vices and services without knowing how they work, which is viable using abstraction
with domain-specific items [32].

The abstractions have been added to the SeismoCloud application for earthquake
monitoring, which uses IoT sensors to detect and report earthquakes. With these
abstractions in place, we expect that different-skilled users would be able to easily
configure and control the sensors and integrate them with other online services and
applications. These results will demonstrate that EUD should be raised above the
components level to allow users to interact and change the system’s parameter (in
this case, an Earthquake Early Warning system), even if they do not have any
technical knowledge or expertise.

3.1 Other widespread EUD interfaces

Node-RED is widely used as EUD interface for different projects, ranging from
simple IoT sensors integration (like temperature sensors [43] or air quality monitors
[14]) to home automation [58], to complex industrial automation [61]. It is also used
to teach in Data Engineering courses [13] due to its simplicity.

A similar product is IFTTT “if this then that” [52], which is a cloud-based
trigger-action End User Development (EUD) platform. However, IFTTT supports
only simple flows [65] (from triggers to action) and not complex flows as Node-RED
does. For example, it is impossible to synthesize in IFTTT a complex industrial
flow, while Node-RED is capable of representing it, as demonstrated by Tabaa et
al. [61].

Ghiani et al. [32] provided an extensive and detailed analysis on the mechanisms
behind EUD when targeting an end-user. Node-RED itself has already implemented
some of these techniques. However, while Ghiani et al. “TARE” system uses a com-
position technique with buttons to build rules, our proposal uses a visual approach
based on the idea of "information flow".

3.2 Node-RED

Node-RED is built around the concept of events and messages. It allows users to
create networks of nodes, where each node represents a specific function or capa-
bility. When an event occurs, such as a sensor reading or a user action, Node-RED
routes a message to the appropriate nodes, which then execute one or more actions
based on the message.

A group of nodes that are connected together and that execute one or more
actions in response to an event is called an action flow. These action flows can be
created by connecting the nodes in the visual editor.

Node-RED comes with a set of built-in nodes that provide a wide range of ca-
pabilities, such as reading from sensors, sending messages over the internet, and
storing data in databases. Additionally, users can add third-party nodes using
plugins, which can provide even more functionality and extend the platform’s capa-
bilities. This makes Node-RED highly extendable while still being very simple and
user-friendly.
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Figure 3.1. Node-RED visual editor with an action flow running.

3.3 SeismoCloud Earthquake Early Warning system

The integration of Node-RED into SeismoCloud allowed us to create a more user-
friendly End User Development platform. By enabling users to create custom flows,
Node-RED allowed for the development of personal online services such as alarms
and statistics using the data provided by SeismoCloud. The flexibility of Node-
RED’s drag-and-drop interface made it accessible to users without technical skills,
and our modifications to its tool set further simplified the platform by removing the
need for understanding of IoT and network-related concepts.

The user-friendliness of the SeismoCloud platform is crucial in ensuring that
citizens can access and use earthquake data effectively. With SeismoCloud, users
can easily create custom alerts and notifications based on their personal preferences
and the earthquake data available. Additionally, the platform allows users to access
real-time and historical seismic data.

3.4 Adding abstractions in Node-RED

SeismoCloud sensors use MQTT for signaling and data stream. While MQTT is a
relatively simple protocol, it still requires some knowledge of networking and proto-
cols to be used effectively. This can be challenging for non-technical users, who may
not be familiar with concepts like broker endpoints, topic subscriptions, and mes-
sage publishing. Additionally, some information about earthquakes is only available
via a REST API, requiring even more technical knowledge and programming skills.

To tackle this problem, we designed and implemented domain-specific nodes
that users can drag and drop and configure specifying domain-specific information
in human-readable form. These nodes are abstractions for the Node-RED supported
technologies, like MQTT or REST, built over the SeismoCloud platform. For exam-
ple, the “temperature” node (fig. 3.2a) can be easily configured just by specifying
the IoT sensor name (fig. 3.3), without any knowledge of the MQTT configuration
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which is automatically performed.

(a) Temperature
output node

(b) Perceptible
earthquakes (per
sensor)

Figure 3.2. Example of two new nodes created for this experiment

In fact, when the sensor sends its temperature using MQTT to all its subscribers,
this value is received by all the “temperature” nodes (fig. 3.2a) configured using its
name. All details such as MQTT broker, credentials, topic name, Quality of Service,
Transport Layer Security configuration, are hidden from the point of view of the
user.

By mixing Node-RED standard nodes and our high-level abstractions, different-
skilled people can build and understand Node-RED flows, such as “when two devices
emit a vibration message, send an SMS” (see figure 3.4).

Figure 3.3. Configuration panel for the newly designed "Temperature" node.

Figure 3.4. A very simple flow in Node-RED that sends a SMS whether two sensors
(“home” and “office”) detect a quake. Messages flow from left to right.
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3.5 User testing and results
To evaluate whether our approach represents a good simplification for ordinary users
and an enabler for the EUD in SeismoCloud (while maintaining enough expressive
power to create actions as desired by users), we planned and executed a test with
seven different-skilled users plus one expert user using different techniques:

• think-aloud, which involves asking users to verbalize their thoughts and ac-
tions as they use the interface;

• cooperative evaluation, which involves working with users to identify and eval-
uate the strengths and weaknesses of the interface;

• post-task walkthroughs, which require asking users to describe their experi-
ence using the interface after completing a specific task;

• expert-based testing, in which individuals with expertise in a specific area
(such as usability or user experience design) are involved in evaluating the
interface.

Users were asked to execute four tasks with different difficulty levels, which
required getting a data source event (e.g., a seismometer vibration detection or
a temperature sensor above threshold) and triggering a message using a simple
label-based template. They were expected to drag and drop the proper nodes from
the palette to the workspace and create a Node-RED flow. For each task, we
recorded the duration, success or failure in achieving task goals, and whether the
user understood newly introduced nodes.

After performing tests with the first four users, we made a second version of
the nodes, simplifying some labels that describe the information required for their
configuration. As an example, while asking the users if they understood what they
were doing, we discovered that the SSID1 node was not well understood (all the
different-skilled users replied they understood that node returned a value, but the
meaning was not clear). So, we changed the node label to Wi-Fi network name to
better reflect the meaning of the sensor.

In subsequent tests, all users could complete every task without significant prob-
lems, although sometimes it took more time than we expected.

3.6 Discussion
The result of our tests are encouraging. We have found that EUD can be ef-
fectively applied to earthquake early warning applications (such as SeismoCloud)
that use Node-RED. We are confident that this process simplifies the end-user de-
velopment process by adding more context to the Node-RED nodes and creating
domain-specific nodes. These modifications made it easier for users with limited
programming experience to build and modify the SeismoCloud application, and
seem to improve the overall usability and accessibility of the platform.

1Service Set Identifier: in Wi-Fi standard, this ID groups together multiple APs providing the
same network. SSID is commonly referred as the Wi-Fi network name.
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Overall, our findings suggest that end-user development is a valuable approach
for enhancing the usability and flexibility of Node-RED in the context of Seismo-
Cloud and other earthquake early warning applications. We believe these results
have important implications for designing and developing other end-user develop-
ment platforms.

This research has been presented at 1st International Workshop on Empowering
People in Dealing with Internet of Things Ecosystems - EMPATHY 2020 [9].
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Chapter 4

Security assessment of common
open source MQTT brokers and
clients

Security and dependability are crucial for Internet-of-Things systems, especially in
sensitive applications like Earthquake Early Warning in crowdsensing. So, after
working on the EUD project, my focus shifted towards the core component in the
SeismoCloud network: MQ Telemetry Transport (MQTT) [7]. MQTT is the stan-
dard communication protocol for resource-constrained IoT devices, but it was not
designed with security in mind. As MQTT is widely used in real-world applications,
it has come under scrutiny from the security community due to the prevalence of
attacks targeting IoT devices.

We conducted an empirical security evaluation of several widespread MQTT
system components, including five broker libraries and three client libraries. While
our research did not uncover any significant flaws, there were scenarios where some
libraries did not fully adhere to the standard, leaving room for exploitation and po-
tential system inconsistencies or denial-of-service, which might become an essential
issue in safety-critical systems like SeismoCloud EEW.

4.1 MQ Telemetry Transport (MQTT)

MQ Telemetry Transport (MQTT) is a lightweight and flexible messaging protocol
widely used in the Internet-of-Things and other distributed systems to exchange
information between devices. It was developed in 1999 by IBM and later became
an open-source protocol, and it was transferred to the Eclipse Foundation.

MQTT protocol uses a client-server model, where the clients can be either pub-
lishers or subscribers, and the server is a broker. The broker acts as an interme-
diary, receiving messages published by clients and delivering them to interested
subscribers. Multiple servers can form a "broker network" to absorb high loads, act-
ing as one broker. Subscribers can subscribe to specific topics they are interested
in, and the broker routes the messages to the correct subscribers based on their
subscriptions.

The publisher role refers to the client that generates and sends messages to the
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broker for distribution. The subscriber role refers to the client that receives messages
from the broker. Both publishers and subscribers can connect to the broker using
a network connection and send and receive messages in real time.

Topics in MQTT are used to classify and organize messages and define the hi-
erarchy of the topics. A topic is a string, and they comprise one or more levels,
separated by forward slashes ("/"). MQTT subscribers can use wildcards to sub-
scribe to multiple topics that match a specific pattern. The two types of wildcards
supported in MQTT are the "+" symbol, used to match any value in a single level,
and the "#" symbol, used to match multiple levels.

MQTT supports three Quality of Service levels, which define the level of guar-
antee for message delivery. QoS 0 provides "at most once" delivery, where a message
is delivered once, but not guaranteed to be received. QoS 1 provides "at least once"
delivery, where a message is guaranteed to be received at least once but may be
received multiple times. QoS 2 provides "exactly once" delivery, where a message
is guaranteed to be received exactly once, but at the cost of increased network
overhead and the complexity of implementations.

Not all MQTT clients and libraries support all QoS levels. Due to its complexity,
QoS 2 is often disregarded. Also, MQTT subscribers can subscribe using a lower
or higher QoS level than the published message. MQTT brokers are expected to
overcome these limitations, for example, by downgrading the QoS for the message or
the subscription when deliverying a message that doesn’t match on the QoS value.

Overall, MQTT’s lightweight protocol specifications, flexible topic design, and
support for different QoS levels make it a popular choice for many IoT and dis-
tributed systems applications. The protocol has been standardized under the ISO
umbrella as ISO/IEC 20922:2016 [38].

4.2 Exploring security issues in MQTT protocol imple-
mentations

Recently, there has been a rapid surge in the number of internet-connected devices,
facilitating the emergence of innovative technologies and applications across differ-
ent fields. Among these trends is the Internet-of-Things (IoT), characterized by the
proliferation of low-cost, small devices with a limited range of functions, featuring
an Internet protocol (IP) stack, an Ethernet/Wi-Fi connection, and the capability
to be re-programmed with commodity hardware, like USB ports. This development
has paved the way for exploring a broad spectrum of novel applications, including
nonprofessionals and crowdsourcing applications.

Internet-of-Things devices have a tiny amount of resources as their main goal is
to be as small as possible and low-cost. Sometimes, widely used protocols like HTTP
cannot be efficiently implemented without sacrificing critical features of the protocol
itself (leading to non-standard implementation) or essential parts of the “business
logic” (i.e., the primary purpose of the device). To overcome this limitation, several
lightweight protocols were invented, like MQ Telemetry Transport (MQTT) protocol
or Advanced Message Queuing Protocol (AMQP) [50]. When resources like memory
and processing power are severely limited (as in simple sensors/actuators), and the
system is in under-constrained environments (low-speed wireless access), the former
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is the preferred choice [46].
MQTT is a publish-subscribe protocol based on a simple message structure,

essential features, and a minimal packet size (considering the message headers).
An introduction to MQTT is present in Section 4.1. Thanks to its design, a large
number of IoT devices use MQTT or similar lightweight protocols to talk to each
other and communicate with the rest of the world. Also, MQTT has undergone
several standard processes, and MQTT v. 3.1.1 and 5.0 are both ISO standards [38].

The protocol was conceived with no security concern since initially designed
for private networks of the oil and gas industry [49]. The protocol’s adoption has
ramped up, and several statistics show that many devices use it without any protec-
tion [39]. In the MQTT v. 3.1.1 and 5.0 specifications, Transport Layer Security is
cited as supported but not required to be implemented by brokers or clients. Some
implementations offer extension plugins to improve security1 (e.g., role-based au-
thentication, Access Control Lists), but the standard does not support any of these
features, limiting the compatibility of these extensions.

Considering the privacy aspects, given its quite limited features, the MQTT
protocol has no built-in encryption features; also, the use of TLS to provide a secure
communication channel is very limited: at the time of writing, comparing with the
Shodan search engine the prevalence of the exposed IoT and Industrial Internet-of-
Things (IIoT) devices using MQTT, brokers exposing port 8883 (MQTT over TLS)
are 42, while those exposing port 1883 (unencrypted MQTT) are 154632 [39].

Since MQTT is widely used for real applications, it is under the lens of the
security community, also considering the widespread attacks targeting IoT devices.
The research is focusing on shifting towards ensuring secure IoT systems, for exam-
ple, implementing access control mechanisms [17], lightweight cryptography [26] or
remote attestation of devices [31]. An essential aspect of this context is discovering
unforeseen security risks resulting from the necessary interoperability with different
implementations of MQTT libraries.

Following this research direction, in this chapter we present an empirical security
evaluation of several widespread implementations of MQTT system components,
namely five broker libraries and three client libraries. Moreover, we also applied our
security analysis to an MQTT client embedded in a physical IoT device, namely
a Shelly DUO Bulb. This IoT device is a remote-controlled LED light bulb. It
supports Wi-Fi connectivity and acts as an MQTT subscriber to receive commands,
like powering on/off or light dimming.

Our evaluation aims to verify the responses of the components of the different
libraries to different MQTT messages to see their behavior in situations where the
standard does not indicate clearly how the message (or the connection itself) is
supposed to be handled. This mishandling might create interoperability issues or
even open doors to malicious attackers. While the results of our research do not
capture critical flaws, there are several scenarios where some brokers and libraries do
not fully adhere to the standard and leave some margins that could be maliciously
exploited and potentially cause system inconsistencies or unavailability.

1https://mosquitto.org/documentation/dynamic-security

https://mosquitto.org/documentation/dynamic-security


16 4. Security assessment of common open source MQTT brokers and clients

4.3 Related works on MQTT security analysis

As the abundance of surveys suggests [2, 44, 59], security and dependability of IoT
devices is paramount for the whole ecosystem. In this context, the MQTT protocol
plays a determinant role. In 1999 Andy Stanford-Clark (IBM) and Arlen Nipper
(then working for Eurotech, Inc.) proposed the MQTT protocol [8] to monitor oil
pipelines within the SCADA framework [22]. Since then, it has been revised into
two main versions, namely 3.1.1 (last update December 2015) and 5 (last update
March 2019). To date, the former is by far the most used in real applications, the
latter being much newer and still not widely adopted [22].

Like all the network protocols becoming a standard, it has undergone many
formal and empirical reviews. Several papers focus on MQTT formal modeling and
performance analysis [16, 34, 36], others on its possible vulnerabilities, and many
others on its security analysis. This research analyzes the security and compares
several of widely used software libraries implementing the MQTT protocol. Instead
of using static analysis of their code, as in [1], we perform a dynamic analysis using
the fuzzing methodology. In [33], the authors proposed a template-based fuzzing
framework and tested its effectiveness against two implementations of MQTT. Using
this method, they found some security issues: Moquette and Mosquitto brokers were
affected by a vulnerability that would have led to a Denial-of-Service (DoS) attack
in specific settings if exploited. In our research, we focus on possible DoS attacks
and the effects of standard violations by brokers and clients. Moreover, our analysis
applies to five brokers, three clients, and a physical device.

In [66], the authors evaluated the robustness of several MQTT implementations
against a subtle family of attacks known as low-rate denial of service. Similarly
to this work, a real testbed was set up, and several experiments were performed,
validating the open vulnerability of all the MQTT implementations.

In [5], authors described a new strategy to test MQTT through fuzzing and how
much it is efficient against the protocol. However, they did not present any results
about the application of their strategy. A similar approach is adopted in [12], where
the authors propose to apply fuzzing techniques in a container-based environment
(Docker). This would allow a large-scale test of the MQTT protocol. However,
again, the authors did not compare different implementations (they only consider
Mosquitto), nor describe the type of attacks they performed.

A different methodology based on attack patterns [60] was proposed by Sochor et
al. and was used to spot hidden vulnerabilities in different broker implementations.
They adopt a method to randomly generate test sequences (Randoop) to challenge
the different brokers, and they were able to find several failures and unhandled
exceptions. Our research adopted a different methodology, tested different broker
MQTT implementations, and included clients.

Another methodology to perform a dynamic analysis is model-based testing, as
proposed for MQTT applications in [62]. The methodology considers using a finite
state machine that verifies the properties of the software and proposes extensions
to model-based tools for MQTT applications.

Additionally, in [39] Kant et al. showed that many consumer-grade devices
do not use a secure transport for MQTT (like TLS), further expanding the attack
surface.
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4.4 Methodology of the proposed analysis

Our research aims to compare the behavior of various implementations of the MQTT
protocol. To do this, we identified and set up the most popular open-source MQTT
broker and client libraries that are commonly used to manage devices or develop
software solutions. We used the number of stars and forks on the corresponding
GitHub repositories and the number of blog posts citing the brokers as indicators of
their popularity. Once we had identified and set up the most popular libraries, we
conducted our empirical study to compare their behavior and identify any deviations
from the standard that could potentially lead to inconsistent or critical states in
applications.

For this assessment, we considered open source libraries and brokers as they
are widely used thanks to availability and licenses: Mosquitto, EMQ X, HiveMQ,
Moquette and Aedes as brokers, paho, mqttools, and mqtt.js as client libraries. We
discuss the brokers and the clients respectively in Section 4.5.1 and in Section 4.5.2.
Some of these have thousands of instances running in “production” environments
in typical consumer and business-to-business solutions. We also added a popular
low-cost Internet-of-Things device to the comparison, namely the Shelly DUO Bulb
(Section 4.5.3), to assess whether the complete stack (i.e., when both software and
hardware are combined) exposes some unexpected issues.

We thoroughly reviewed the MQTT standard, version 3.1.1, to identify any
undefined behaviors, unspecified states, or other missing information related to
message handling to use them in our fuzzer. In addition, we examined the standard
for any sections that might result in incorrect implementation due to unclear or
missing specifications for expected actions by the broker or client. By focusing our
testing on this restricted subset of cases, as outlined in Section 4.5, we were able to
ensure that our testing was targeted and effective.

Different sets of experiments were created to find possible anomalies in MQTT
implementations. A custom fuzzer, written in Python with the help of the twisted
library, was developed to manage different streams and send custom packets. This
allowed for the manipulation of every packet bit, allowing for testing the broker’s
behavior even in the presence of malformed packets. On the other hand, standard
MQTT libraries implement state machines that are expected in certain parts of the
protocol, such as QoS 2. These libraries do not allow for arbitrary changes in the
flow of messages, like out-of-order messages. Each experiment was codified in a
JSON file that specified the sequence of actions or packets that should be run on
or against the software under test. The behavior of the parties involved was logged
and analyzed.

In our work, the model of the attacker includes the capability to modify the
MQTT packet flow, delay the transmission or make it out of order, or modify the
MQTT packets payload, injecting invalid values. This capability can be exploited
with limited access to the broker or intermediate network devices, or even remotely,
by using other attacks like Distributed Denial-of-Service or flooding against a net-
work device in the path of the packet flow (for delaying packets, for example). These
vulnerabilities can be exploited in plain MQTT. Some of these can also be exploited
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when MQTT is tunneled in an older version of TLS protocol itself2: for example,
SSL used a vulnerable Message Authentication Code until TLS [25]; vulnerabilities
in TLS HMAC implementations are still found years after the standard [47].

4.5 Experimental results

Figure 4.1. Schema of the testbed for the experiments: the fuzzer, which acts as a
typical client, takes in input a “JSON experiment file" containing the client’s packets
to the MQTT broker. The fuzzer will also receive all the PUBLISH packets sent to the
broker. The MQTT Client, instead, uses one of the libraries that are examined in the
subsection 4.5.2.

4.5.1 Brokers

The task of a MQTT broker is to accept and forward messages from “publishers”
(clients who send messages to a specific topic) to “subscribers” (clients who want
to receive messages about specific topics) based on the message topic. This loosely
coupled architecture allows clients to communicate without being aware of each
other and without being designed for a direct (often specific) connection.

Modern brokers support many concurrent connections for publishers and sub-
scribers, complex topic routing matching, and different retention mechanisms. They
usually forward a large number of messages per second. A flaw in message state ma-
chines, packet parsing, or topic logic might expose a vulnerability that, if exploited
by a malicious actor, might significantly impact some property of the MQTT sys-
tem, like a Denial-of-Service (DoS).

The MQTT brokers analyzed are:

• Mosquitto3: it is one of the most used MQTT brokers in the world. It is a
single-threaded, lightweight broker written in C. This broker has been widely
used thanks to its flexibility;

• EMQ X4: it is written in Erlang and it claims to be so efficient to be “the
Leader in Open Source MQTT Broker for IoT";

• HiveMQ5: a broker written in Java. It supports MQTT version 3.x and 5.0
and it is widely used in automation and industrial systems6. We tested the
Community Edition;

2Note that low-cost IoT devices often implement old protocols, sometimes even partially
3https://mosquitto.org/
4https://www.emqx.io/
5https://www.hivemq.com/developers/community/
6https://www.hivemq.com/solutions/manufacturing/modernizing-the-manufacturing-industry/

https://mosquitto.org/
https://www.emqx.io/
https://www.hivemq.com/developers/community/
https://www.hivemq.com/solutions/manufacturing/modernizing-the-manufacturing-industry/
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• Moquette7: another Java-powered open-source broker. It is very lightweight
but it is less-known and less-used, when compared to other brokers;

• Aedes8: a broker written in JavaScript/NodeJS. It is the successor of MoscaJS.
It does not support version 5 of MQTT, but it is fully compatible with version
3.x and supports several extension libraries.

Each broker underwent the same set of tests. We performed more than 60
different experiments on a consumer-grade PC with local connections. A summary
of the results is in Table 4.1. In Section 4.5.1 we describe the most relevant ones.

Table 4.1. Summary of test results for brokers. The tested versions were the latest stable
available at the time of our experiments.

Broker Anomalies in Security problems Version
Mosquitto QoS unexpected / undocu-

mented behavior
1.16.12

EMQ X QoS and long topics unexpected / undocu-
mented behavior

4.2.1

HiveMQ QoS and long topics unexpected / undocu-
mented behavior

2020.5

Moquette QoS and long topics Denial-of-Service and
unexpected / undocu-
mented behavior

0.13

Aedes QoS and packet refer-
ences

Denial-of-Service 0.43.0

Experiments and results

All experiments were conducted multiple times in a controlled environment. Each
test was performed for 1 minute continuously (where possible, or until the crash of
the broker). No other load was present on both the server and the client machines.

Publish the same message using QoS 2 then 1. In MQTT, messages have an
ID for Quality of Service transactions. As stated in Section 4.1, PUBREL packets
should appear as a response to a QoS 2 PUBREC packet. In this experiment, we
exploit the state machine confusion by sending a packet with the same ID twice
with different QoS levels: first, we send a packet with QoS 2; then, we send another
packet at level 1; and finally, we ask the server to continue with the transaction of
QoS level 2.

An optimal response by the server to this client behavior is to reject the QoS
1 transaction when the second packet with the same ID is being published, or at
least ignore the duplicated packet, as the standard explicitly says that the packet
should be “currently unused” [8].

To test the server, our fuzzer performs the following steps:
7https://github.com/moquette-io/moquette
8https://github.com/moscajs/aedes

https://github.com/moquette-io/moquette
https://github.com/moscajs/aedes
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1. it sends a SUBSCRIBE packet with a specific topic;

2. it sends the first PUBLISH packet with a Quality of Service 2 and with id 1
over the topic specified in the subscription;

3. it sends the second PUBLISH packet with a Quality of Service 1, still with id
1 over the topic specified in the subscription;

4. it sends a PUBREL packet for the first packet sent.

We noticed different broker behaviors: Mosquitto publishes the first received
packet with QoS 2, but then it loses the second packet that is not published to
the clients due to the PUBCOMP packet that is not received, and so the packet
id is not available for use. The EMQ X broker publishes both packets; it handles
the flow for the first packet and then the flow for the second one. In HiveMQ and
in Moquette, the client that sends packets receives the publication first and after
the PUBCOMP concerning the first packet. Additionally, in HiveMQ, the client
receives the PUBCOMP back first and then the PUBREC. Aedes publishes both
packets, but the PUBCOMP arrives at the client after the two publications. This
behavior repeated several times, also in the other experiments regarding the Quality
of Service that are described below; it is a violation of the MQTT standards as it
specifies that the PUBCOMP messages must arrive before the publication of the
data to complete the message transmission for the packet with the QoS 2.

Publish QoS 2 and 0. This experiment is very similar to the one described
above; however, in this case, the fuzzer is downgrading the QoS to zero.

The client performs the following steps:

1. it sends a SUBSCRIBE packet with a specific topic;

2. it sends the first PUBLISH packet with a Quality of Service 2 and with the
id 1 over the topic specified in the subscription;

3. it sends the second PUBLISH packet with a Quality of Service 0 and with the
id 1 over the topic specified in the subscription;

4. it sends a PUBREL packet for the first packet sent.

Mosquitto, in this case, publishes both packets but in reverse order: it handles
the one with Quality of Service 0 first, and then it handles, correctly, all the flow
regarding the first packet sent with Quality of Service 2. EMQ X and HiveMQ main-
tain the order of the packets published by the client; also, in the case of HiveMQ,
the client received back the PUBCOMP first and then the PUBREC regarding the
packet with Quality of Service 2. Moquette behaves similarly to EMQ X, but, in this
case, the PUBCOMP arrives after the publication of the second packet. Aedes has
the same behavior as Mosquitto, but the PUBCOMP arrives after the publication
as in the previous experiment.
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Double publish QoS 2. The ID in MQTT transactions should be unique during
the transaction – meaning that peers should not use the same ID for different
messages at the same time. In this experiment, we verify this requirement by
sending two messages with the same ID and the same QoS.

To implement this test, our fuzzer performs the following steps:

1. it sends a SUBSCRIBE packet with a specific topic;

2. it sends the first PUBLISH packet with a Quality of Service 2 and with the
id 1 over the topic specified in the subscription;

3. it sends the second PUBLISH packet with a Quality of Service 2 and with the
id 1 over the topic specified in the subscription;

4. it sends a PUBREL packet for the first packet sent;

5. it sends a PUBREL packet for the second packet sent.

The standard does not specify what to do when encountering this situation. We
discovered that brokers implement different logic: in Mosquitto and EMQ X, only
one publication referred to the first packet sent, but the flow regarding the Quality
of Service is properly handled. HiveMQ and Moquette both publish the two packets
in the correct order (violating the standard regarding the reuse of the packet ID).
In Aedes, there is a potential dangerous behavior: the broker publishes the first
packet (sent by the client) twice instead of sending two different packets.

Long topic. In MQTT, messages have topics: a string representing the “subject”.
According to the MQTT standard, the maximum length of a topic is 65536 bytes.
However, when analyzing the source code of EMQ X, we found that the constant
that represents the maximum length for the topic handled in the program was set
to 4096 bytes. This means that EMQ X has a lower limit for the maximum length
of a topic compared to the requirements in the MQTT standard.

In this experiment, we tried subscribing to a topic with more than 4096 bytes
(up to 65536) using different messaging brokers. We observed different behavior:
EMQ X disconnects the client when the topic is too long according to their internal
constant. However, in HiveMQ, the topic was cut, and the client subscribed
to a shortened version. In Moquette, there was an IOException, and the client
connection was severed. However, the most dangerous behavior is in Aedes:
there was a crash of the broker, and an exception was thrown with an error message
stating “too many words”, creating a Denial-of-Service. Mosquitto is the only broker
that handles the topic subscription correctly.

Other experiments. We conducted additional experiments after the ones pre-
viously described. They have been summarized because the brokers’ behavior was
mostly correct, and there was no issue to report.

• we experimented with the client id value in the packet. We tried to fill it
with non-UTF-8 encoded characters: no anomalies. In detail, we have built a
connection packet with the client id containing particular characters, and the
experiment was handled correctly by all brokers;
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• fuzzing the Keep-alive field in connection packet: in all brokers, there is the
client disconnection due to a malformed packet;

• we tried subscriptions and publications with invalid wildcards in topics: all
brokers correctly disconnect the client due to “invalid topic”;

• encoding topics and wildcard non-UTF-8 encoded characters: the client is
correctly disconnected;

• large number of levels (i.e., a large number of / in the topic): in Mosquitto,
EMQ X, Moquette and Aedes the client is disconnected after reaching a certain
sub-level; HiveMQ cuts/limits the topic to a certain level;

• flooding the broker with QoS 0 packets at maximum packets per second: all
brokers handled the flood as required by the standard;

• sending invalid protocol name (or version) in the connection packet: in all
cases, the client is disconnected;

• sending a PUBREL packet that references a publication packet that was never
sent: all brokers, except for Aedes, sent back a PUBCOMP message. In Aedes,
the client is disconnected.

4.5.2 Clients

After testing common brokers, our focus shifted toward MQTT client libraries. As
we did with brokers, we considered metrics such as the number of stars and forks
on the relevant GitHub repositories. We have chosen three widely used libraries:
paho-mqtt9 from the Eclipse Paho project, mqttools10 and mqtt.js11. The first
two libraries are in Python, while the third one is in JavaScript. Especially the
MQTT client from Paho is widely used: more than 500 libraries depend directly
on it (source: Libraries.io12), including azure-iot-device (the official Microsoft
MQTT client for Azure IoT broker) and other tools like ESPHome.

Our experiments did not uncover any notable anomalies, only minor issues. It
is worth noting that these tests were just as necessary as those for brokers, as client
libraries might be manipulated to send erroneous packets in some situations (for
example, when the input is coming from the user). We conducted these tests to
ensure these client libraries’ reliability and functionality.

A summary of the results is in Table 4.2. Here the tests we performed:

• invalid QoS level: all libraries report an error about the QoS, blocking the
sending of the packet;

• invalid wildcard subscription: in this case mqtt.js generates an “Invalid topic”
error, while the other two libraries timeout;

9https://pypi.org/project/paho-mqtt/
10https://pypi.org/project/mqttools/
11https://github.com/mqttjs/mqtt.js
12https://libraries.io/pypi/paho-mqtt

https://pypi.org/project/paho-mqtt/
https://pypi.org/project/mqttools/
https://github.com/mqttjs/mqtt.js
https://libraries.io/pypi/paho-mqtt
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• client id not encoded in utf-8: in mqttools the client refuse to connect to the
broker, in paho-mqtt there is a successful connection to the broker and mqtt.js
generates an error with the consequent client disconnection;

• publication (or subscription) to a topic with a length more than 65536 char-
acters: all libraries disconnect without sending the packet.

Table 4.2. Summary of test results for client libraries. The tested versions were the latest
stable available at the time of our experiments.

Library Anomalies in Security problems Version
paho-mqtt handling subscription

and publication to an
invalid wildcard.

Denial-of-Service (the
library hangs).

1.5.1

MQTT.js handling an invalid
Quality of Service.

Denial-of-Service (the
library crashes) due to
a TypeError.

4.2.1

mqttools handling subscription
and publication to an
invalid wildcard and
when the client id value
contains non-UTF-8
chars.

Denial-of-Service (the
library hangs), resource
exhaustion and other
issues due to an infinite
connection loop.

0.47.0

4.5.3 Physical Internet-of-Things device

The MQTT protocol is commonly used in the home automation field, as most
intelligent devices support it. Numerous software applications allow users to utilize
the MQTT protocol to manage their smart devices, such as Home Assistant. In
addition, Amazon’s AWS IoT platform uses MQTT to connect users’ devices to
other devices and services.

In order to conduct further experiments in a realistic scenario, we chose to use
a physical, commercially available Internet-of-Things device as a test subject: the
Shelly DUO smart light bulb. This device can connect to Wi-Fi networks and can
be remotely controlled using the MQTT protocol.

We discovered that this device does not have an “anti-flood” regarding the pack-
ets it receives; for example, it is possible to turn off and on the light bulb repeatedly
and quickly by sending a PUBLISH packet on the specific topic with specific con-
tent. The software that runs in the light bulb is the same as other Shelly devices, so
this problem also affects them. Therefore, it is possible to send many packets that
overload the device’s electronic components to damage or render them unusable
(DoS attack).

These problems are exacerbated due to missing or incomplete TLS support in
Internet-of-Things devices, which is common in low-cost IoT devices due to resource
constraints [39]. Also, very often, these devices are missing QoS 2 (sometimes even
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QoS 1). The missing protection from TLS and the partial support of QoS allows
attackers to perform “replay attacks”13.

We performed the same set of experiments on the Shelly DUO, and the previous
results were confirmed, indicating that some of these issues are also present when
Shelly devices are paired with vulnerable brokers and clients.

In addition to these experiments already performed for the various brokers, we
have tried to generate some attacks like buffer overflows through the payload sent
to the device. However, the light bulb passed all tests without errors; in particular,
the device ignores any form of payload other than what it expects to receive.

4.5.4 Results

The experiments conducted on brokers, clients, and the physical device yielded ex-
citing results. As described in Section 4.5.1, some of the unexpected behaviors
observed in the brokers could be classified as vulnerabilities and could potentially
lead to attacks under certain conditions. For example, we observed that in some
tests, brokers published messages that violated the protocol state machine. One
example of this is the out-of-order use of PUBCOMP by Aedes (and other brokers),
which could potentially be used to trigger a replay attack if the PUBCOMP itself is
delayed or dropped by a malicious actor. This type of attack could potentially dis-
rupt or damage devices, such as IoT mechanical devices, that could be continuously
triggered until the mechanical component is over-stressed.

Another violation of the standard which leads to a vulnerability (in all brokers
but Mosquitto) is the bad handling of long topics: in the MQTT standard, the
maximum length topic is 65536 bytes. However, trying to publish to a very long
topic (>4096 bytes) leads to a disconnection of the client. A malicious actor that
can inject (even indirectly, think user-provided information) some characters in the
topic may cause a Denial of Service for that client. Even worst, in Aedes there is
a crash of the broker itself, leading to a Denial of Service for the entire MQTT
network.

Certain parts of the standard are frequently misunderstood or interpreted differ-
ently by different brokers. For example, in the “Double Publish QoS 2” test, nearly
all brokers (with the exception of Mosquitto) violate the “unique identifier” feature
of MQTT in various ways. While this violation does not have a direct impact, it can
potentially be exploited if a client library exhibits poor handling of this situation.

Among all brokers, our tests show that Mosquitto seems to be the strongest one
in terms of MQTT standard adoption, and so the safest from a security point of
view. Client libraries, instead, have shown only minor issues, many of them relating
to encoding errors or long topic subscription issues. Our tests show that they are
quite robust, sometimes even better than some brokers.

13A “replay attack” is an attack where an evil agent in the network can copy and send a packet
again, causing the action to be re-executed.
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4.6 Discussion
In this research, we conducted an empirical study of the most popular implemen-
tations of MQTT brokers and clients. MQTT is an essential technology for the
Internet-of-Things (IoT) ecosystem, as it is widely used by IoT applications that run
on devices with limited computational power, such as the SeismoCloud Earthquake
Early Warning (EEW) system. Its ubiquity is due to the low resource requirements
and the large number of open-source libraries that implement MQTT, making it
easily accessible for developers.

We examined any deviations from the standard that could lead to inconsistent
or critical states in applications. We also tested a physical smart-home device as
part of our experiments. Our findings show that, while most of the libraries we
tested handle most interactions correctly, some vulnerabilities are present. These
could be exploited to target both brokers and client libraries, mainly by exposing
them to Denial-of-Service attacks, which might jeopardize EEW networks that use
them without further protection.

The presented results highlight the importance of carefully reviewing and testing
the behavior of different brokers and client libraries to ensure that they comply with
the MQTT standard and do not present any vulnerabilities that could be exploited.
In the meantime, some of these vulnerabilities can be mitigated (at least partially)
by implementing TLS (which unfortunately is not widely used for this protocol) or
other layered protection (like Virtual Private Network) wrapping MQTT to protect
connections in untrusted networks.

This research has been presented at ITASEC 2021 and published as [23].
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Chapter 5

Earthquake Detection at the
Edge: IoT Crowdsensing
Network

As the main research of this work, we focus on removing the most critical Sin-
gle point of failure of EEW systems, which is the “fusion center”. State-of-the-art
Earthquake Early Warning systems rely on a network of sensors connected to a fu-
sion center in a client-server paradigm. The fusion center runs different algorithms
to detect earthquakes on the whole data set. We propose moving computation to
the edge, with detector nodes that probe the environment and process information
from nearby probes to detect earthquakes locally. Our approach tolerates multiple
node faults and partial network disruption and keeps all data locally, enhancing pri-
vacy. This chapter describes our proposal’s rationale and explains its architecture.
We present an implementation using Raspberry, NodeMCU, and the CrowdQuake
machine learning model.

5.1 Creating a Peer-to-Peer distributed EEW architec-
ture

Many countries perform earthquake detection through a national network composed
of hundreds of high-precision seismic stations. Each seismometer in a station has
high sensitivity and can perceive low-magnitude or very distant earthquakes (some-
times from other countries). By interpolating signals from three or more seismic
stations, it is possible to localize the epicenter and compute the magnitude. These
seismic networks are costly, and building them might be a decades-long process.
Some countries use such networks to provide an Earthquake Early Warning (EEW)
system, such as the Japanese one by the Japan Meteorological Agency (JMA) [35].

An alternative that has been gaining traction in the last decade is the crowdsens-
ing EEW network, based on the availability of low-cost Micro-Electro-Mechanical
Systems (MEMS) sensors together with the widespread Internet connection. Vol-
unteers can participate in crowdsensing using their smartphone or an Internet-of-
Things (IoT) sensor as a seismometer. Crowdsensing EEW tackles the problem of
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MEMS’s low precision by trading quality with quantity. By leveraging the lower
cost of intelligent devices and distributing such costs among participants, these sys-
tems have a large user base and thus many seismometers, i.e., thousands or more.
This approach has proven to be successful, for example, in [3], at least to estimate
the epicentral area and an approximated intensity.

Existing crowdsensing EEW networks adopt a centralized processing approach:
seismometers send the collected data to a fusion center that processes it to under-
stand whether the report is a quake signal or not. In some cases, the sensors send
the MEMS raw signal to the fusion center (dumb approach). Other times, the edge
sensors perform partial calculations (limited due to resource constraints) and send
preprocessed data. The fusion center performs the detection work, adopting a post-
processing filtering that involves signals from many local seismometers to exclude
false positive or false negative earthquake detections.

As explained in the next section, this architecture has some drawbacks that
motivate the following research.

This work proposes a peer-to-peer distributed EEW architecture that is radically
different from existing architectures. It is based on edge computing, where each node
in a mesh network can sense the environment and detect a local earthquake without
relying on a fusion center or a leader node. It can share this information with its
neighbors, propagating the detection. This system keeps all data locally and can
tolerate multiple node faults and partial network disruption.

5.1.1 Motivation

Ideally, an EEW system should be fault-tolerant, which means that if one or a few
of its components fail, the overall system can continue to work seamlessly. In the
absence of fault tolerance, the High Availability property (HA) might be helpful: HA
systems tolerate a stop or downtime between the fault and its recovery. However,
if a fault occurs during an earthquake, the EEW system might be unavailable at a
critical moment.

EEW systems currently built or proposed in the literature do not have a fault-
tolerant architecture, as the fusion center constitutes a Single point of failure (SPoF)
that, if unavailable, prevents the entire system from working. Also, it is essential
to consider the connections to the fusion center, such as international internet links
with sensors, as a system component that can fail, causing the isolation of the fusion
center and thus the unavailability of the EEW system.

The first motivation behind our proposal is to solve the availability problem. As
we describe in Section 5.3.6, our system can tolerate multiple node faults and some
partial network disruption.

The mainstream EEW architecture also has a privacy-related issue. It is possible
to process raw accelerometric data to extract information other than seismic data.
For example, it is possible to detect some spoken words using the accelerometer
in place of the microphone [69]. As another example, during the analysis of the
data we present in this work, we noted that we could correlate the noise level of
seismometers in our homes with the presence of people in the house. So, sending
raw seismic signals to a fusion center might expose them to unwanted processing
that can violate the users’ privacy: An attacker could discover information about a
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family’s life habits or even extract words from private conversations.
Our proposed architecture enhances the privacy of the detection, keeping the

collected sensitive data locally in private places by a crowdsensing EEW system.

5.2 A comprehensive overview of decentralized EEW
systems

Decentralized approaches to earthquake detection have been studied for years. Tsit-
siklis [64] proposed a decentralized detection architecture where a central system
(named “fusion center”) collects “messages” from sensors. In EEW, a “message” can
be a signal sample that the sensor claims to be a quake signal. Faulkner et al. [27]
proposed a new version of this architecture for massive noisy sensors networks, and
Cochran et al. [15] presented an implementation using accelerometers connected
to laptops and workstations, named QCN (Quake-catcher network). Similarly,
MyShake, proposed by Kong et al. [40], is a machine-learning-based EEW system
that uses smartphones. The Earthquake Network (Finazzi et al. [28]) is a different
research project that uses smartphones and spatial correlation to detect quakes.
SeismoCloud [53] is another earthquake early warning system built using smart-
phones and Internet-of-Things devices. All these systems differ from our proposal
as they rely on a central system to collect all reports and make the final decision.

Another approach is the one described by CrowdQuake, from Huang et al. [37].
CrowdQuake runs a Convolutional-Recurrent Neural Network (CRNN) on the fusion
center, while smartphones at the edge collect different-length samples and stream
them to the fusion center. While relying on the fusion center, this system differs
from the previous ones because it can perform both the decision and the detection in
one step since the accuracy of the Convolutional-Recurrent Neural Network is very
high. It also shows some architectural limits that we describe in Subsection 5.2.3.

CrowdQuake+ [68] is an extension of the CrowdQuake network: While the
original network leverages only on smartphones, CrowdQuake+ is able to process
data from Internet-of-Things sensors. However, the overall architecture is the same,
as well as the limitations discussed in Subsection 5.2.3.

Fischer et al., in [30], described SOSEWIN, a self-organizing Earthquake Early
Warning system using a wireless mesh network. They use a hybrid approach, where
nodes act as local fusion centers. Instead, in our proposal, each node is independent
of others.

Lee et al. [42] presented a custom-made board for EEW. The board contains
common chipsets (like ESP8266) and custom software with an Artificial Neural
Network for detection. They propose to send the alert to nearby intelligent devices
(TV, smartphones) via low-range transmissions (Bluetooth Low Energy) or Home
Automation solutions for early warning alerts. Unlike other solutions, including
ours, they do not use a network to send the alert to nearby houses; their alert is
“personal”.

QuakeSense, presented by Boccadoro et al. in [11], is an EEW system based on
LoRa, a Low Power Wide Area Network (LPWAN) technology. In their proposal,
sensors send information (like vibrations) using LoRa to local base stations “LoRa
gateways”, which relay these data to the fusion center of QuakeSense. LoRa, un-
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like Wi-Fi, allows QuakeSense to be deployed in remote locations with no access to
the power grid: LPWAN transceiver’s power consumption is low, allowing deploy-
ment with batteries and solar power. However, it leverages the same centralized
architecture as others do.

5.2.1 Quake-Catcher Network

The QCN, Quake-Catcher Network, is an earthquake early warning system built by
volunteers to “fill the gap between the earthquake and traditional networks” [15].
It has been built over BOINC [4]. QCN uses MEMS sensors in some laptop brands
(usually in the anti-shock subsystem) and some USB accelerometer brands. Ac-
cording to [15], the sensitivity of these accelerometers is low, and the network is
well suited for an earthquake of magnitude greater than 5.0.

QCN uses Z-Scores (also known as standard scores) to detect potential quakes:
when z is above 3, the sensor sends all relevant data to the fusion center, such as
the max amplitude or timestamp. Then, the center will again use a Z-Score against
the number of reports in a given area and time slice; a value of z > 6 will trigger
an EEW.

5.2.2 MyShake

MyShake [40] is an earthquake early warning system developed by UC Berkeley
Seismology Lab, designed to collect and process data on a smartphone and send
possible quakes to a fusion center for confirmation. Volunteers can download a
mobile application on their smartphone to join the network.

The MyShake mobile app reads the signal from the smartphone’s internal MEMS
accelerometer. Then, it uses an artificial neural network to detect potential quakes
and sends quake candidates to the fusion center, where a clustering algorithm re-
duces false positives.

5.2.3 CrowdQuake

CrowdQuake, by Huang et al. [37], has a layered approach to earthquake detection.
The lower layer, composed of dedicated smartphones or custom Internet-of-Things
devices, senses the seismic data and streams it to an intermediate layer of “gate-
ways”. Each gateway is a GPU-equipped server that processes seismic samples
from each sensor in a CRNN. Then, it sends data to a third and fourth layer for
notification, monitoring, and visualization.

Unlike others, CrowdQuake requires a stable and low-latency network connec-
tion between sensors and gateways because samples are sent for detection from the
accelerometers to the gateways, which act as fusion centers. This requirement is a
substantial limitation for the deployment, especially in remote sites.

5.2.4 SOSEWIN

SOSEWIN [30] is a decentralized wireless mesh network of sensors built using stan-
dard PC boards and external sensors. There is a hierarchy in the network between
nodes, built using a leader election algorithm; the two most important kinds of



5.3 Proposed Architecture 31

nodes are the leading node and the sensing node. A leading node receives informa-
tion from five sensing nodes and manages alerts from them and neighbors leading
nodes. A sensing node filters the accelerometer sensor information with an Infi-
nite impulse response passband filter and some thresholds, using an internal state
machine to refine the detection.

The leading node acts as a fusion center of a cluster of sensing nodes. Using
leader election for leading nodes, SOSEWIN obtains High Availability.

5.2.5 SeismoCloud

In SeismoCloud [53], smartphone apps and Internet-of-Things devices make the
sensor network and connect to a fusion center. Both types of sensor nodes run
an algorithm based on dynamic Z-Score for candidate quakes detection and send
candidate quakes to the central server, where a clustering algorithm filters out false
positives.

5.3 Proposed Architecture

We propose a new architecture for EEW systems based on crowdsensing and the
complete detection of earthquakes at the edge. This architecture, called Seismo-
Cloud 2.0, is an evolution of the SeismoCloud architecture [53]. The goal is to
achieve fault tolerance using low-cost commodity hardware while enhancing the
privacy and scalability of the system. The idea is to use a fully decentralized ap-
proach to detect earthquakes, creating a partial-mesh network (with no single point
of failure) that can survive multiple network and hardware faults.

First, we describe each component of the system. Then, we draw a comprehen-
sive picture of the architecture.

5.3.1 Probes, Detectors, and Local Authorities

Our network has two roles for edge devices: the probe and the detector. A probe is a
sensor capable of picking up the acceleration signal and streaming it to the detector.
On the other hand, the detector’s primary role is to run the detection algorithm
over the data stream from probes and match if there are any signs of an earthquake
wave. One detector can receive data from multiple probes. As the hardware for
a probe is very cheap, we expect that some detectors will have multiple probes
attached. Multiple probes can maximize the chance of detection because they may
fail or miss some vibrations (if they are improperly installed).

In addition, the two roles can be assigned to the same detector device if it
includes an accelerometer. They can both read the accelerometer signal and run
the detection algorithm simultaneously. For example, smartphones and System-on-
Chip boards have enough computing power to support such operations.

The detector is also equipped with a local alert device (speakers, blinking lights)
to alert its owner locally. Alerts are triggered both by local earthquakes and relevant
remote ones.

The Local Authority is a central system that supports the network with non-
critical services: it helps nodes discover other nodes and receives EEWs from the
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network to help local safety authorities prepare rescue operations. The Local Au-
thority is stateless due to the nature of its services. It is possible to have more than
one Local Authority instance to obtain high availability or load balancing. They
should share available information, although they do not require synchronization
but can implement eventual consistency. Such a connection can be implemented, for
example, using a gossiping protocol between Local Authorities. Nodes will discover
the local authority via DNS queries.

5.3.2 Network Architecture

The network architecture that we propose is a partial mesh (Figure 5.1). While
a full mesh would be desirable for information exchange between detectors, it is
entirely unfeasible due to the resource constraints of Internet-of-Things devices and
commodity network connections.

Figure 5.1. Network architecture example: six detectors (three of which have an embedded
probe) and three probes. Detectors are linked to neighbors based on their location.

Each node of the partial mesh is a detector. It is connected to neighbor detectors
using direct peer-to-peer links. Detectors exchange EEW messages using a gossiping
protocol: Each message is forwarded to neighbor detectors until it reaches a certain
distance from the reported quake location. The threshold distance can be set by
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deriving it from the acceleration value detected on the nodes that are sending the
EEW messages.

Nodes are connected to at least one Local Authority to advertise their presence
to others and get a list of neighbors to connect to. Due to the design of the Local
Authority, a node can connect to any Local Authority in the network. Moreover,
detectors report all quakes to the cloud service of the Local Authority to relay this
information to other services (e.g., rescue teams and TV broadcasts).

Probes connect to their nearest detector directly. They are not connected among
themselves and do not participate in any message exchange between detectors.

5.3.3 Bootstrap Sequence

When a detector powers up for the first time (Figure 5.2), it starts a discovery phase
of its neighbors using a registration and discovery service of the local authority. The
detector advertises its presence by using that service, providing its location, and in
turn, it receives the list of neighbors and details on how to connect to them.

After completing this exchange, the detector will connect to the indicated neigh-
bors and keep those connections alive, ready to relay information about early warn-
ings. Periodically, the detector repeats the registration and receives a new list of
neighbors.

Differently, probes query the local authority for the detector they should connect
to. They do not advertise any information to the local authority (see Figure 5.3).

Figure 5.2. Detector bootstrap sequence diagram.

5.3.4 Detection Pipeline

Figure 5.4 shows the detection pipeline. Probes stream the signal using their net-
work connection to the detector. The detector has one buffer per probe, where it
collects and stores the accelerometer signal for some time. A sliding signal window
is extracted and sent to the detection algorithm at given intervals.

Suppose the detection algorithm detects a quake from any of its probes. In that
case, the detector relays the earthquake alert, together with its location and the
signal data (Table 5.1) to the local authority and neighbors.
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Figure 5.3. Probe bootstrap sequence diagram.

Table 5.1. Earthquake Early Warning message content. This message is relayed between
detectors.

EEW Message Content Description
Timestamp Timestamp of the detection
Origin Location Coordinates of the detector which originated the message
Signal Data Accelerometric samples

5.3.5 Scalability

The detectors mesh network can scale to an infinite number of nodes. Each detector
of the partial mesh is connected only to a few nearest neighbors. In addition, each
message will reach a subset of the whole network as it is geographically limited, as
described in Section 5.3.2. There is no need to scale up a central server to handle
sensor traffic for detection purposes.

The Local Authority system should be scaled according to the number of sensors.
Unlike the fusion center of the server-client model, a local authority instance is
stateless and not involved in the detection pipeline or EEW message dissemination.
Scaling it is more straightforward than scaling a fusion center.

5.3.6 Fault Tolerance

The network is fully fault-tolerant. A fault of one or few sensors will not stop the
gossiping. An EEW message can be prevented from reaching the entire network
only if multiple faults occur so that the network temporarily splits into two or more
partitions. However, the more sensors in the network, the less the chance of having
such a split. Even if this split occurs, it will not affect messages from other sensors
inside other partitions. If sensors in the different partitions detect the quake, the
EEW can still be sent to the whole network (albeit with different origins).

A fault on a specific sensor itself will not stop the detection: neighbors can still
detect the earthquake, and they will still be able to pass information to others.

The Local Authority is using gossiping and eventual consistency: a fault in
one or multiple Local Authority instances is not affecting the rest of the network.
Nodes connected to faulted instances can switch to other instances with no data
loss. In case of faults in all instances of the Local Authority, which causes the
unreachability of its service, new nodes will not be able to connect to the network.
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Figure 5.4. Pipeline diagram. Each probe is attached to a buffer that feeds the detection
algorithm’s dedicated instance. Probe #3 is internal, as this detector also has the probe
role.

However, already connected nodes will keep their current connections. The Local
Authority will not receive an EEW during the downtime, but the EEW message
gossiping will not stop, and earthquake detection will remain active.

5.3.7 Privacy

Centralized systems that collect and analyze accelerometer signals in fusion centers
present significant privacy concerns. In these systems, a massive amount of data
is collected from many sensors and aggregated in a centralized location. This data
collection creates a potential risk for data breaches and unauthorized access to
sensitive information. Furthermore, the analysis of accelerometer signals can reveal
a lot about an individual’s movements and activities [6] and, in some cases, can
even lead to the recognition of spoken words [70].

Decentralization can offer a solution to some of the privacy issues associated with
centralized systems that collect and analyze accelerometer signals. In decentralized
systems like the one proposed here, the signal is analyzed locally on each device, and
no central authority can infer data from the accelerometer signal. Our approach
reduces the risk of data breaches and increases user privacy by limiting the amount
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of data shared with third parties. An attacker who wants to monitor sensors (for
example, to recognize spoken words or detect the presence of people in a building)
will need to attack specific sensors actively.

5.3.8 Practical Implementation Aspects

An essential aspect of crowdsensing EEW is an excellent practical implementation.
Complex user interfaces and systems that are difficult to understand can create
obstacles to widespread adoption, which is fundamental for these systems. Users
of the proposed EEW system should be able to use it without computer science or
domain skills. We suggest distributing our system by leveraging mobile apps (for
smartphones) and IoT devices to overcome these difficulties.

Mobile apps can introduce users to the system (and, under the hood, they act
as a sensor themselves, when and where possible). The app’s User Interface will
guide users to configure a new sensor and easily access the sensor’s data. The app’s
design must exploit a User-Centered Design (UCD) approach to avoid mistakes that
jeopardize the entire project.

Another vital aspect is the simplicity of installing and managing IoT devices.
Users with no background in electronics or computer science should be able to install
and run one or more detectors or probes. We suggest addressing this problem by
leveraging companies that build custom boards on-demand: Users will receive a
device that is no different from other intelligent boxes at home (such as smart
TVs). Once this “box” is connected to the power supply and an ethernet cable (or
Wi-Fi), the sensor will receive its location from the companion app on the user’s
smartphone, requiring no further configuration on the user’s part.

We are in the process of designing and testing these implementation aspects.

5.4 Prototype Implementation

We present the following implementation as an example of the architecture described
above. This implementation is currently running in a test environment.

5.4.1 Sensors Hardware

The detector device is a Raspberry Pi, made by the Raspberry Pi Foundation. It is a
System-on-Chip board with various ports (Ethernet, USB, HDMI, I2C, GPIO), Wi-
Fi, and Bluetooth wireless chipsets. For the current prototype, we use the Ethernet
port to provide an Internet connection to the detector, the I2C bus to connect the
accelerometer (to implement a Detector/Probe device), and a Wi-Fi card to create
a dedicated Wi-Fi network for external probes.

We tested different device versions: 2B, 3B, 3B+, and 4 (Table 5.2).
The accelerometer is the MPU6050, widely used in low-cost IoT applications in-

volving acceleration measurements. It has been demonstrated by Crisnapati et al. [19]
and Lee et al. [42] that this accelerometer can be used in EEW applications. The
sensitivity of such accelerometers allows the detection of significant earthquakes
only.
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Table 5.2. Hardware specifications for prototype detectors

Raspberry Pi
Model 2B 3B 3B+ 4

CPU
BCM2836
4 x Cortex-A7
900MHz

BCM2837
4 x Cortex-A53
1.2GHz

BCM2837
4 x Cortex-A53
1.4GHz

BCM2711
4 x Cortex-A72
1.5GHz

RAM 1GB 1GB 1GB 4GB
Disk 64GB SD 64GB SD 64GB SD 64GB SD
Wi-Fi - 2.4 GHz 2.4 / 5 GHz 2.4 / 5 GHz
Ethernet Fast Ethernet Fast Ethernet Gigabit Gigabit
GPIO 40 pin 40 pin 40 pin 40 pin

The MPU6050 provides a 100Hz feed via I2C to the NodeMCU board (Table
5.3) or the Raspberry Pi board. The probe and detector roles merge by connecting
the MPU6050 directly to the Raspberry Pi.

Table 5.3. Hardware specifications for prototype probes

Model NodeMCU

CPU
106Micro
L106
160 MHz

RAM 128kBytes
Disk 4MBytes
Wi-Fi 2.4 GHz
Ethernet -
GPIO 13 pin

Probe sensors use an MCU board and an accelerometer, packed to run on 5v
from a power supply or battery. They transmit values using the Wi-Fi connection
to the detector. The MCU board is the “NodeMCU DEVKIT” that contains an
ESP8266 SoC [41], based on ESP-12 hardware. It has multiple GPIO ports and an
integrated Wi-Fi network connection.

5.4.2 Software

The Detector runs Raspberry PI OS (previously known as Raspbian), a Debian-
based GNU/Linux distribution. We use “Podman” to manage the lifecycle of our
software, an Open Container Initiative (OCI) image runner alternative to “Docker”
that we chose as it is daemon-less. The absence of a central process makes Pod-
man more robust and less resource-hungry than Docker. Podman runs a container
with an implementation of our proposal that is using the CrowdQuake CRNN [37]
detection algorithm. We built the primary container executable using Go (and
TensorFlow C bindings). The use of containers simplifies the deployment of new
algorithms for testing.

The Probe runs a customized firmware that we built using the Expressif SDK
for Arduino. The firmware reads data from the accelerometer sensor and sends
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the stream via WebSocket to the detector. The connection uses WebSocket to be
compatible with HTTP middlewares, such as network proxies and firewalls. The
firmware checks for updates and configuration at probe boot, querying the local
authority. If it fails, it still connects to the detector. We chose this Probe software
architecture after comparison with an MQ Telemetry Transport (MQTT) imple-
mentation. In our tests, we found MQTT too complex for this scenario: while
MQTT requires a broker, different publisher and subscriber roles, and topics, in
our case, we only had a publisher (the Probe) and a subscriber (the Detector) with
no need for topics. Thus, the implementation of the MQTT was overly complex for
our purpose, with no advantages.

We developed the Local Authority software using the Go language. In our ex-
periments, the Local Authority runs on our servers. It exposes Application Program
Interfaces for sensor discovery and debugging web pages. This implementation is
not fully scalable yet, but we successfully tested it with more than 1000 detectors.

5.4.3 Detection Pipeline

The primary container exposes a WebSocket endpoint for probes, and it reads the
accelerometer connected to the GPIO of the Raspberry Pi. The code spawns mul-
tiple processes (based on the number of cores/CPUs of the Raspberry Pi) so that
reading a local sensor while receiving a network stream does not interfere with each
other.

The probe data stream is buffered in memory by the primary container to
have a 2-second signal window (200 values), with a 1-second sliding window, as
shown in Figure 5.5. The signal window is then sent to the detection algorithm,
the CrowdQuake CRNN (running on the CPU). The structure of the CrowdQuake
CRNN is briefly reported in Figure 5.6 and presented by Huang et al. in [37].

The detection CRNN is run every second (as it receives a new set of samples
each second), and it looks for quakes in the last 2 s in the probe signal buffer. Each
probe has its independent buffer, and CRNN is run in parallel on each buffer.

5.5 Results’ evaluation

We ran our prototype in three different scenarios: First, we tested the pipeline using
a single software-only detector, feeding it with dummy accelerations to verify the
system’s soundness. Then, we built an actual probe to test the detection speed in
real hardware. Finally, we tested a network of sensors to measure the elapsed time
between the first detection and the EEWs.

The system’s soundness was tested using the CrowdQuake dataset [37]. The
dataset comprises 174 tracks from natural earthquakes and 79 tracks from “noise”.
Each earthquake track is made of 30’000 accelerations triples (X, Y , and Z), sam-
pled at 10Hz. Noise tracks are recorded using smartphones in day-to-day activi-
ties [37].

As expected, feeding the CrowdQuake dataset into the pipeline triggers the
CrowdQuake-based detector in the same way as using their neural network directly
(e.g., for evaluation purposes). This result was anticipated because CrowdQuake
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Figure 5.5. Prototype pipeline. The detection algorithm is the CrowdQuake CRNN, and
the time window is set to 2 s.

CRNN runs unmodified in our proposal (so there was no reason to expect different
performances).

The detection pipeline can analyze and output the result in a few millisec-
onds, as shown in Table 5.4. The detection latency for Raspberry Pi 4 is the
lowest (Figures 5.7 and 5.8) thanks to the faster processor and different onboard
bus wiring. This lower speed for detection opens up the possibility for incrementing
the detection frequency, which is currently 1 Hz, to higher values, depending on the
platform and the number of probes for each detector. Further analysis is needed to
assess the benefits and limits of having sub-second detections.

We also tested the impact of having multiple probes feeding data concurrently
in a detector. We loaded the detection algorithm in memory and streamed the same
dataset we used in previous tests. As shown in Figure 5.7, the impact of having
multiple parallel executions is minimal in the latest Raspberry Pi version, while it
can be significant in previous versions.

The Go garbage collector is causing a spike that nearly doubles the detection
latency when it executes concurrently with the detection algorithm (primarily visible
in Raspberry Pi 3B/3B+, Figure 5.8). It can be further optimized by running the
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Figure 5.6. CrowdQuake’s Convolutional-Recurrent Neural Network.

Table 5.4. CRNN response speed for 2-second signal (200 values), averages on 300 samples

Raspberry Pi Average
time

Standard
deviation 90-percentile

2B 27.19 ms 1.61 ms 28.73 ms
3B 27.78 ms 5.36 ms 30.74 ms
3B+ 22.44 ms 4.29 ms 24.59 ms
4 7.84 ms 0.41 ms 8.37 ms

garbage collector manually, rewriting the buffer code (where most of the allocation
takes place), or switching to a language with no automatic memory management
(e.g., Rust, C).

The detector code loads the network in memory, and it launches an “empty”
run to pre-fill the system cache so that the first latency test is not affected by the
cache miss, and it is comparable to all subsequent tests (Figure 5.8).

Finally, we tested a network of detectors to measure the time between the first
detection and the time when the message was received in the network. We built the
test network using 20 instances of the node code running in a single machine, each
instance connected to 10 random neighbors (partial mesh). Figure 5.9 represents
the network. The test machine is a Dell XPS 15, 6-Core i7 @ 2.20GHz. Delays of 5
to 205 milliseconds were randomly injected into the packet transmissions to emulate
the network latency. We performed six tests using the same topology but different
points of origin for EEWs.

As shown in Figure 5.10, in all but two test, the EEW reached every node of
the network in less than 450 milliseconds (including simulated network delay).

5.5.1 Limitations

We have not address yet the security of the network. This area has multiple aspects,
mainly related to the trust in early warnings from neighbors’ sensors. Today, any
byzantine probe in the network can cause a false alarm by sending an alert with
a signal that resembles an earthquake wave (downloadable from public datasets).
A byzantine detector can even send an earthquake early warning. We originally
designed the protocol message so that a signal could be sent together with the
EEW as a primary security measure: We planned to check that the signal attached
to the EEW was triggering an EEW by replicating the detection on each detector.
However, we did not clearly define or implement this part at this time, so we omitted
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Figure 5.7. Detection latency for the ML model when multiple probes are sending data
to a single detector.

this from the proposal, and it constitutes future work.
Another limitation is that we did not address the problem of setting up a secure

transmission between peers. In the prototype, we implemented a plain-text protocol
in which attackers can eavesdrop on the message exchange (loss of confidentiality)
and inject or modify messages. However, this problem can be solved trivially by
using widely studied and deployed protocols such as TLS [24].

It is worth underlining that the accuracy of the detection algorithm plays a
central role in the trust in this system. Users will trust an EEW system with this
architecture only if they receive very low false positives and false negatives EEWs.
We are working on this by allowing different detection algorithms to plug in to
compare their accuracy.

We did not consider epicenter location estimation while designing this proposal.
In a dense network, the sensor’s location that detects the earthquake before other
sensors can be considered an approximation of the epicenter. However, the approxi-
mation error depends on how close the sensor is to the real epicenter, its sensitivity,
its physical installation, and several geophysical characteristics, such as the terrain
composition (which influences quake waves). Further analysis should be conducted
to minimize the estimation error.

5.6 Discussion
We described a crowdsensing EEW architecture that moves the computation to the
edge, with detector nodes that probe the environment and process information from
nearby probes to detect earthquakes locally. Our approach tolerates multiple node
faults and partial network disruption and keeps all data locally, enhancing privacy.
We described our proposal’s rationale, explained its architecture, and presented an
implementation using Raspberry, NodeMCU, and the CrowdQuake machine learn-
ing model.
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Figure 5.8. Detection latency changes in time. The model was tested over 300 samples.
Each point represents the latency for a single sample.

Ongoing research on this topic focuses on the security of this architecture and
its implementations. It is essential to find a viable and secure solution to the
problem of trust in peer-to-peer EEW message exchange to use this architecture in
crowdsensing networks. At least the system should resist some byzantine nodes.

We are developing an app that will be integrated into this architecture both as
a sensor and as a “companion app” for IoT sensors. The app is being built using a
user-centered design as we aim to produce an interface that is easy to use. The app
will be able to provide the user with all data from its sensors and monitor them.
Thanks to the app, we will be able to test the system from the point of view of a
typical user, starting from initial configuration to maintenance to data access and
retrieval.

Another focus of our current research is the implementation of the architecture
that we presented over low-power, long-range radio protocols (LPWAN), such as
LoRa. These wireless protocols are very effective in long-range transmissions and
power efficiency compared to Wi-Fi networks. However, they usually lack coordina-
tion, so collision-avoidance algorithms such as water-filling cannot be used (unlike
in LoRaWAN, where water-filling can be implemented in Base Transceiver Station
(BTS) [21] or in the control plane [20]), and we will need to overcome this limita-
tion. The detection network can be deployed seamlessly from big cities to remote
sites using LPWAN for IoT [11], LTE for smartphones, and Fixed-Wireless Access
or FTTx for others. In big cities the Internet is ubiquitous, while in remote sites
LPWAN can be a low-cost, low-latency alternative to satellite links.

The proposal and the results in this chapter have been published in MDPI
Information journal as [23].
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Figure 5.9. Detector network used in simulations. Lines between detectors represents con-
nections. Detectors are placed in a random pattern. Tile images by OpenStreetMap [51].
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Figure 5.10. Number of detectors warned since the first detection on the source node.
Note that the number of detectors is sampled each 10 ms. The y axis represent the
cumulative number of detectors alerted.
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Chapter 6

Evaluation of SeismoCloud 2.0
architecture via earthquake
epicenter estimation

6.1 Estimating the epicenter in EEW networks

Estimating an epicenter is crucial for an EEW application. Not only for coordinating
alert systems but also for first responders: directing first aid to the area hardest
hit by the earthquake can have a strong positive impact on the outcome of rescue
operations.

In order to detect the earthquake and its epicenter from sensor data, many
existing crowdsensing EEW networks use a centralized strategy: information is
sent to a fusion center for processing. In some systems, the sensors provide the
MEMS raw signal; in others, the edge sensor performs an initial analysis and sends
the result. The task of earthquake detection is assigned to the fusion center, which
uses post-processing filtering to filter out false positive or false negative earthquake
detections using signals from several local seismometers in the same area. A fusion
center can also estimate the epicenter using standard methods already employed in
non-EEW networks by having a full view of an area [3].

Another approach to low-cost EEW is fully decentralized: networks of peers can
analyze their own sensors’ data and alert neighbors about a possible earthquake.
Each network node can sense the environment, detect a local earthquake (without
relying on a fusion center or a leader node) and share the information with neighbors.
Estimating an epicenter in such networks requires the cooperation of other nodes
and less computationally expensive algorithms.

In this chapter, we present an algorithm that uses a novel approach for estimat-
ing the epicenter that can run on nodes in a fully decentralized sensor network.

6.2 Existing approaches and their limits

Multiple EEW systems based on crowdsensing, which are operational or in research,
utilize a centralized architecture and traditional methods to estimate earthquake
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parameters such as the location of the epicenter; MyShake [3] is a state-of-the-art
example of such systems.

The need and utility of decentralized EEW systems have been demonstrated [54],
especially with regards to public safety; ACROSS [55] is a small network of seismic
stations deployed in strategical regions of Kyrgyzstan, that performs EEW in a
decentralized way.

Pujol [56] compared three methods to locate an earthquake’s epicenter, including
the P-S waves approach, which consists of analyzing the travel times of the P and
S waves at each seismometer. This method—widely adopted and implemented in
MyShake and ACROSS—first computes the distance between the epicenter and
each seismometer, using the travel time difference. Then, it uses these distances
as the radius of circles around seismometers, whose intersection is the estimated
epicenter location.

The P-S waves approach can take several seconds according to the geophysical
characteristics of the area, thus increasing the time needed to obtain an estimation,
hence the risk of losing that data in the event of a disruptive earthquake. This
approach is not optimal in contexts where quick response times are essential, such
as the proposed process. Geometrical methods that do not consider the travel-time
difference between the two waves [45] can also be used to estimate the epicenter of
an earthquake, as demonstrated by Pujol et al. [57]. In this chapter, we present our
geometrical strategy.

6.3 Proposed process
The proposed process estimates the position of the earthquake’s epicenter by an-
alyzing the state information that seismometers collect over time. The process is
fully decentralized and executed locally by each seismometer; the relevant state in-
formation is composed of the position of the nodes that detected an earthquake,
along with the detected intensity and the timestamp.

Subsections 6.3.1 and 6.3.2 contain a description of the architecture and princi-
ples of the proposal; subsection 6.3.3 explains how it works and solves the earthquake
epicenter estimation problem; subsection 6.3.4 presents the conducted experiments
and the obtained results.

6.3.1 Base architecture

The work presented in this chapter is based on the SeismoCloud 2.0 architecture
described in Chapter 5. The following paragraphs summarize the subset of the
SeismoCloud 2.0 architecture relevant to the proposed process.

Seismometers A seismometer is a device composed of two internal components:
the sensor (probe) and the detector (controller). Multiple sensors can be attached
to the same detector. The sensor can capture ground motion signals (vibrations),
whereas the detector feeds the signal into the detection algorithm and performs
local earthquake alerting. Each seismometer has a peering connection with nearby
seismometers used to exchange messages. The network can thus be seen as a graph
(N, V ) where N is the set of seismometers and V is the set of peering connections.
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Messages When a seismometer’s detector classifies a signal as an earthquake, an
EEW message is created and sent to all the connected peers. EEW messages contain
the detection timestamp, the geographical coordinates of the originating detector,
and acceleration samples. Messages are then forwarded to other seismometers that
are not peers of the originating node, thus realizing a gossiping behavior by which
eventually the whole network receives the alert. Messages are encapsulated in an
envelope that also mentions the sending and receiving nodes; in the case of a gossip
message, the sender is not equal to the originating node.

6.3.2 Process principles

As introduced before, the process solves the epicenter estimation problem by ana-
lyzing the recorded earthquake intensity of each node. Hence, the detector needs
to map the input signal to a numerical value comparable to the Modified Mercalli
intensity scale (MCS). Said mapping is achievable by using the correlation between
Peak Ground Velocity (PGV), Peak Ground Acceleration (PGA), and the instru-
mental Mercalli scale [67].

The following section describes how the intensity information is integrated into
the distributed system and used to solve the estimation task.

Messages

The EEW messages structure is modified as shown in Tab. 6.1 to include the inten-
sity.

Table 6.1. Structure of an EEW message

Item Description
Timestamp Detection instant
Origin node Identifier of the detecting seismometer

Origin location A (latitude, longitude) pair describing the location of the de-
tecting node

Intensity Detected intensity in MCS scale

State table

Each node maintains a state table (described in Tab. 6.2) that associates other nodes
with notable data extracted from direct and gossip messages. The table represents
the node’s view of the system’s global state regarding the information needed to
perform the epicenter estimation.

A node N updates its state table according to triggers:

a) N detects a vibration: a message msg is generated;

b) N receives a message msg.

In either case N updates its state table adding the tuple: (msg.originNode,
msg.originLocation, msg.intensity, msg.timestamp).
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Table 6.2. Structure of a node’s state table

Node Location Intensity Timestamp
N0 (lat0, lon0) i0 ts0
N1 (lat1, lon1) i1 ts1
... ... ... ...
Nn (latn, lonn) in tsn

Given Trigger b) and the gossiping behavior, all nodes have the same state
table eventually. Since the estimation procedure uses the information in the state
table, eventually, all nodes perform the same estimation.

Pseudo-ShakeMap

A ShakeMap is a standard graphical tool used to represent the degree of shaking of
a geographical area in the event of an earthquake. In ShakeMaps, MCS intensities
are associated with colors, which are interpolated to compose a gradient.

(a) ShakeMap (USGS) (b) Pseudo-ShakeMap

Figure 6.1. Comparison between ShakeMap and pseudo-ShakeMap for the L’Aquila (Italy)
earthquake of Apr 6, 2009.

In the context of the proposed process, we can define the pseudo-ShakeMap
as the graphical visualization of the result of the proposed estimation procedure;
the pseudo-ShakeMap is a simplification of the ShakeMap because of the following
properties:

• absence of interpolated coloring;

• the geological features of the terrain are not considered;

• use of concentric circles to represent intensity rings;
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• circles are built according to simple rules, considering nodes’ position and
recorded intensity.

Circles in the pseudo-ShakeMap represent intensity rings, namely circular par-
titions of the plane that inscribe seismometers that detect vibrations of a certain
intensity. The radius of the circles in the pseudo-ShakeMap is defined in Alg. 1:

Algorithm 1 Definition of the radius of intensity rings
Let I be the set of all detected intensities.
Let Ni be the set of nodes that detected vibration of intensity i.
Let center be the center of the pseudo-ShakeMap (estimation result).

for all i ∈ I do
limit← findFarthestNodeByIntensity(i, center)
radius← distanceKm(center, limit)

end for
function findFarthestNodeByIntensity(i, center)

. Sort Ni descending, by the distance between each node and the center
X ← Ni.sort(compareW hat : distanceKm(ni ∈ Ni, center))
return X[0] . The farthest node is at index 0

end function

To summarize, a circle of intensity i includes the farthest node from the center
that detected intensity vibration i.

The pseudo-ShakeMap is helpful for graphically visualizing an earthquake’s state
in real-time. In multiple parts of this chapter, we use the pseudo-ShakeMap to assist
explanations. Objects in a pseudo-ShakeMap have the following meaning:

• the red dot is the real earthquake epicenter;

• blue markers are seismometers;

• circles are colored based on the phase in which they are produced;

• the same color is chosen for the other dot in the map, which denotes the
estimated epicenter.

6.3.3 Epicenter estimation

The proposed earthquake epicenter estimation strategy is composed of three steps
executed locally by each node: candidate election, estimation refinement, and offside
removal.

The candidate election step examines the state table to find the node that
detected the highest-intensity vibration before all other nodes.

The estimation refinement can be made to reduce the estimation’s depen-
dency on the nodes’ positioning. Refining means finding the center of gravity of a
plane where nodes are objects, and their recorded intensity is their mass.

Offside removal is a further optimization that consists of moving the previously
estimated point after an analysis comprising the recorded intensities and the relative
positioning of nodes and intensity rings.
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Candidate election

The candidate seismometer is defined as the node that has recorded a vibration
before all other nodes, and such vibration is of the highest intensity. Candidate
election means finding such node. As an example, if three seismometers have
recorded a vibration, the maximum recorded intensity is 8, and the first detection
happened at ts0 (Tab. 6.3), N0 is the candidate, since 8 > 7 ∧ ts0 < ts1.

Table 6.3. Example of state table with three nodes

Node Intensity Timestamp
N0 8 ts0
N1 8 ts1
N2 7 ts2

Identifying the candidate is essential since, by definition, it is most probably the
nearest node to the epicenter. As described before, since the state table’s update
rules and the gossip behavior make the network converge to the same state table,
all nodes eventually elect the same candidate.

Each node performs a candidate election whenever a new message is sent or
received. Every time the state table is updated, it is also examined to check whether
a new candidate should be elected. Alg. 2 describes how candidate election is
performed; at the end of the function, candidateMsg.src is the candidate node.

Algorithm 2 Candidate election
Let msg be the last sent or received message.
Let candidateMsg be the message that made a candidate be elected.

function electCandidate(msg)
if 6 ∃candidateMsg then

candidateMsg ← msg
else if msg.timestamp ≤ candidateMsg.timestamp∧msg.intensity ≥ candidateMsg.intensity then

candidateMsg ← msg
end if

end function

At the end of this phase, the candidate’s position can already be considered
an epicenter estimation; hence nodes can build a pseudo-ShakeMap (as shown in
Fig. 6.2) using the candidate as the center.

Refinement

However, the candidate node is not always the best estimation, as shown in Fig. 6.2.
The result can be further improved by executing the refinement phase, which is
an optimization that produces a new point called virtual epicenter. Refinement
consists of finding the center of gravity of the area constituted by the set of all
seismometers, considering their detected intensity as mass. Alg. 3 describes how
the gravity center is computed.

The principle behind the refinement is to consider for the estimation not only
the candidate but all seismometers, weighting them according to their detected
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Figure 6.2. Pseudo-ShakeMap resulting after the candidate election step

Algorithm 3 Gravity center computing
Let S = {(node0, intensity0), (node1, intensity1), ...} be the state table.

function getCenterOfGravity
sumx ← 0
sumy ← 0
sumz ← 0
for all (n, i) ∈ S do

lat← n.lat ∗ π/180
lon← n.lon ∗ π/180
sumx ← sumx + cos(lat) ∗ cos(lon) ∗ i
sumy ← sumy + cos(lat) ∗ sin(lon) ∗ i
sumz ← sumz + sin(lat) ∗ i

end for
avgx ← sumx/|S|
avgy ← sumy/|S|
avgz ← sumz/|S|

lon← atan2(avgy , avgx)
hyp←

√
(avgx ∗ avgx) + (avgy ∗ avgy)

lat← atan2(avgz , hyp)

return (lat ∗ 180/π, lon ∗ 180/π)
end function
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Figure 6.3. Comparison between the gravity center (also center of the pseudo-ShakeMap)
and the center of shape; the black line represents the distance between the two points.

intensity, thus making the ones that detected the highest intensities (i.e., nearest to
the epicenter) more relevant in the estimation.

Refinement is executed when one of the following conditions is true:

• all nodes reported the same intensity;

• given maxIntensity as the highest detected intensity, at least one node re-
ported maxIntensity − 1.

From the rules follows that refinement does not happen if there is a single node
with the maximum intensity and the immediately lower intensity is not reported.
The rationale behind this heuristic is to avoid moving away the virtual epicenter
from the single max-intensity node (the candidate) when other nodes have much
smaller intensity than it; Fig. 6.3 shows an example of such behavior and provides
a graphical comparison.

The newly computed point is elected as the new virtual epicenter, and an im-
proved pseudo-ShakeMap can be built (Figure 6.4).
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Figure 6.4. Pseudo-ShakeMap resulting after the refinement step
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Offside removal

The estimation produced after the refinement can further be improved; in what
follows, we describe a procedure to perform such improvement by reducing the
error between the real epicenter and the estimated one after analyzing the position
of some nodes and the produced intensity rings.

A node is defined as offside if it results in being placed in a wrong intensity
ring on the pseudo-ShakeMap. More formally:

• let N i
n be the seismometer identified with number n that detected a vibration

of intensity i;

• let Ri be an intensity ring defined as the set {N i
0, N i

1, N i
2, ...} of all seismome-

ters that detected a vibration of intensity i;

• let R′i be the set of all seismometers that in the pseudo-ShakeMap are inscribed
by the circle associated with intensity i;

• then an offside is present if ∃i : Ri 6= R′i. In such case, the offside nodes are
in the symmetric difference set Ri4R′i.

As an example, Fig. 6.5 shows two intensity circles of intensity 6 and 5, and
nodes S0 and S9 are offside: the former for having intensity 5 but being in ring 6;
the latter for having intensity 4 but being in ring 5.

The principle behind this phase is that if one or more nodes are offside, it may
indicate that the virtual epicenter is not the best estimation with the available
information. Exploring the problem from another point of view, an offside node
suggests that the virtual epicenter is in a position where the resulting intensity
rings cannot correctly partition the plane.

It must be noted that offside situations cannot be solved by rebuilding the
intensity rings according to other rules. As an example of why it is true, consider
the scenario in Fig. 6.6: attempting to solve the offside of node C by rebuilding
new intensity rings with different criteria will ultimately result in placing B and D
offside. Therefore offsides are treated with the strategy described below.

Detecting offsides An offside of node N can be detected by comparing its dis-
tance relative to the virtual epicenter to one of the nodes at the border of the next
outer intensity ring; if the distance is smaller, then the node is offside. For example,
in Fig. 6.6, the offside of node C can be detected because bc < ac, being ac the
distance between the virtual epicenter and the border node B. The algorithm to
find the first offset node is in Alg. 4.

Fixing offsides An offside can be fixed by moving the virtual epicenter away
from the offside node, following a straight line, with an offset equal to the previously
computed distance difference. In the example of Fig. 6.6, the offside of node C can
be fixed by moving the virtual epicenter from point c to d, by an offset of ab = cd,
on the segment ad. The algorithm to fix an offside is in Alg. 5.
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Figure 6.5. Portion of a pseudo-ShakeMap after the refinement phase, in which 2 nodes
are offside

Algorithm 4 Offside detection
Let S = {(node0, intensity0), (node1, intensity1), ...} be the state table.
Let v be the current virtual epicenter.

function detectOffside
for all (n, i) ∈ S do

nodeDist← distanceKm(n, v)
lowerBorder ← findNearestNodeByIntensity(i− 1, from : v)
if ∃lowerBorder then

lowerBorderDist← distanceKm(lowerBorder, v)
offset← (nodeDist− lowerBorderDist)/111

. 1◦ ≈ 111km
if abs(offset) < 0.01 then

return ⊥
end if
if nodeDist > lowerBorderDist then

return (n, offset) . node n is offside of offset◦

end if
end if

end for
end function
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Figure 6.6. Schematic visualization of a pseudo-ShakeMap built after the refinement
phase, where: (1) the green dot is the virtual epicenter; (2) the red dot is the real
epicenter; (3) green circles are intensity rings, under which their intensity is reported;
(4) reversed triangles are seismometers: the top label is their identifier, and the inner
number is their reported intensity. In this scenario, node C is offside of the offset ab.
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Algorithm 5 Offside fix
Let S = {(node0, intensity0), (node1, intensity1), ...} be the state table.
Let v = (lat, lon) be the current virtual epicenter.

function fixOffside(node, offset)
angle← atan2(node.lon− v.lon, node.lat− v.lat) ∗ (180/π)
vlat ← v.lat + offset ∗ cos(angle ∗ π/180)
vlon ← v.lon + offset ∗ sin(angle ∗ π/180)
v ← (vlat, vlon) . new virtual epicenter

end function

The described procedure can be repeated for each possible offside node until
no node is offside. The approach is based on the hypothesis that after solving all
offsides, the new final virtual epicenter is an improved version of the one computed in
the refinement phase; the hypothesis has been confirmed, as shown in the Evaluation
section.

At the end of the offside removal phase, a final and improved pseudo-ShakeMap
can be built, as shown in Fig. 6.7. From Fig. 6.8, it can be seen that each phase
produced a better estimation.

Figure 6.7. Pseudo-ShakeMap resulting after the offside removal step

6.3.4 Experiments

We built an epicenter estimation prototype that allows to:

• configure the earthquake to simulate;

• set the number of nodes, randomly positioned;

• perform evaluations by setting the initial and final number of nodes, how many
nodes to add at each evaluation step, and the number of evaluation iterations
(samples);
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Figure 6.8. Unified view of all pseudo-ShakeMaps after executing all steps.
Orange: candidate election; green: refinement; blue: offside removal.

• visualize results in real time;

• read and download evaluation statistics.

The prototype has been written in JavaScript, re-implementing a subset of the
previously introduced foundation architecture and adding the new elements needed
to perform the epicenter estimation tasks.

Multiple evaluation runs have been executed to assess each estimation step’s
performance. The leading quality indicator is the estimation error, meaning the
kilometers between the estimated and the real epicenter. Another quality factor is
the improvement scale, meaning each estimation phase should ideally yield a better
estimation.

Setup

At the end of the evaluation, the resulting JSON file contains structured data
comprising raw and aggregated information that will be used in subsequent steps.

Such data has then been analyzed with Pandas: a Python data analysis and
manipulation library. Specifically, we have analyzed the following:

• error distribution for each estimation step (candidate election, refinement,
offside removal);

• impact of the offside removal attempts on the error;
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Figure 6.9. Screenshot of the prototype’s web page, composed of: (1) a panel to configure
various simulation parameters; (2) a Leaflet map to optionally see results in real time

• impact of the number of nodes on the quality of the estimation.

Evaluation

We have produced a Jupyter Notebook to load, transform and analyze the collected
data. In the following paragraphs, we comment on each of the performed analyses.

Error distribution per strategy step The first data analysis task we performed
aimed to understand how errors are distributed for each estimation step.

The plot in Figure 6.10 can be commented as follows:

• the candidate election step (orange line) has a vast error range, with the
highest maximum error;

• the refinement step (green line) reduces the max error and shrinks the error
in the mid-lower range;

• the offside removal step (blue line) further reduces the max error and further
shrinks the error in the lower range.

To summarize, since the quality of the first step is inversely proportional to
the distance between the nearest node to the epicenter and the epicenter itself, its
minimum error can be as low as said distance. As hypothesized, the refinement step
reduces the reliance on the positioning of the nearest node, generally reducing the
maximum error. A similar principle holds for the offside removal step.
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Figure 6.10. Kernel density estimation plot, showing the error on the x axis and its
distribution on the y axis

Offside-attempt analysis The following evaluation is about the offside removal
step. Specifically, we have analyzed how the estimation error changes at each at-
tempt, which is executed temporally sequentially, representing a time figure.

As a preliminary evaluation, we have placed a hard limit on the number of offside
removal attempts to 100 to let the algorithm finish with a purposely simple rule; a
rule is needed to handle situations in which the positioning of nodes is such that
offsides are numerous and minimal.

Figure 6.11. Relation plot showing—for multiple evaluation samples—the offside removal
attempts on the x axis and the relative estimation error on the y axis. A lower error is
better.

The plot in Fig. 6.11 can be commented as follows:

• at each new attempt, errors are typically not increasing;

• in a minority of the instances, the error increases after certain attempts;

• in other minority cases, errors fluctuate;

• generally, errors are reduced very early (i.e. within the first 4 attempts).
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To summarize, offside removal produces a general improvement regarding the
error.

Stop rule

In the following paragraph, we illustrate an analysis to find a better algorithm stop
rule. Specifically, we have analyzed the offset value’s behavior over time. As shown
in Fig. 6.12:

• offsides with the highest offset value are solved very early (within the first 4
attempts);

• after solving said offsides, the offset tends to 0.

Figure 6.12. Relation plot showing—for multiple evaluation samples—the offside removal
attempts on the x axis and the offset on the y axis

A notable observation is that the elbow of most lines is located within the early
attempts, precisely between the offsets [0.01, 0.00], which indicates that after solving
an offside which offset is in such interval, the offsets of the subsequent offsides tends
to 0, meaning that they are increasingly less important. This discovery is helpful
to replace the simple hard limit and instead use an offset threshold as a stopping
rule. More specifically, the offset threshold avoids fixing below-threshold offsides,
thus eventually ending the procedure with a good compromise between efficiency
and correctness.

A new analysis has been executed after setting the offset threshold to 0.01
(Fig. 6.13). We can observe the following:

• similarly to the plot of the previous analysis, offsides are solved early, some of
which are at the first attempt;

• there is a general behavior of error reduction at each attempt;

• in the minority of instances in which there is a degradation of the result, the
final result is still an improvement of the starting estimation;

• a single instance presented the need for many attempts, all producing an
increasingly better estimation.
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Figure 6.13. Relation plot portraying the offside removal attempts on the x axis and the
estimation error on the y axis. A lower y is better.

To recap, introducing the offset threshold as a data-driven stop rule improves
the efficiency of the offside removal step.

Furthermore, the distribution plot (Fig. 6.14) does not show notable differences
concerning the one shown before.

Figure 6.14. Kernel density estimation plot, showing the error on the x axis and its
distribution on the y axis

Number of nodes analysis We have evaluated how the procedure’s precision
changes regarding the number of nodes. Specifically, the following analysis describes
how the minimum, average, and maximum errors for each estimation step change
according to the number of nodes.

From the plot in Fig. 6.15, it can be observed that among 100 evaluation runs,
with a varying amount of nodes in the interval [5, 200], with an increasing step of 5
nodes per run:

• the minimum error does not considerably change among the different steps,
i.e., each step produces a comparable best estimation;

• on average, the offside removal step improves the results from the refinement
step and is considerably better than the candidate election step;
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Figure 6.15. Line plots portraying the relationship between the number of nodes (x axis)
and the estimation error (y axis, lower is better). Each plot shows the behavior of
such variables concerning each estimation step (candidate election, refinement, offside
removal).
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• the maximum error is the greatest quality divider:

– the candidate election step always produces the lowest-quality estima-
tions;

– the refinement step always improves the estimations from the previous
step;

– similarly, the offside removal step always improves the estimations from
the refinement.

We have simulated five earthquakes in Italy using the earthquake parameters
from the INGV’s historical earthquakes repository:

• L’Aquila (AQ) of Apr 6, 2009;

• Finale Emilia (MO) of May 20, 2012;

• Accumoli (RI) of Aug 24, 2016;

• Norcia (PG) of Oct 30, 2016;

• Capitignano (AQ) of Jan 18, 2017.

As shown in Tab. 6.4, all simulations produced results with less than 4 km
of error on average, and 10 km of error in the worst case. These parameters are
compatible with an estimation of the epicenter for earthquake first response.

Table 6.4. Evaluation results of multiple earthquakes, executed with 200 nodes across 100
random samples. Values in km.

Earthquake Min error Avg error Max error
L’Aquila 0.61 2.75 6.04
Finale Emilia 0.83 3.27 8.23
Accumoli 0.58 3.06 6.35
Norcia 0.66 3.59 9.69
Capitignano 0.88 3.94 9.21

6.4 Discussion
Estimating the epicenter of an earthquake is a process that requires interpolating
data originating from multiple seismic stations; this process is generally executed
on servers called fusion centers, which represent a single point of failure.

The process we propose solves the earthquake epicenter estimation problem in
a decentralized way and in real-time, using a fully-decentralized architecture such
as the SeismoCloud 2.0 one, with minimal changes. Specifically, the architecture is
extended with elements to (1) extract relevant information from Earthquake Early
Warning (EEW) messages that nodes exchange; (2) let nodes independently build
a converging global state of the system; (3) analyzing said global state to estimate
the epicenter.
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The estimation procedure is composed of three phases that continuously improve
the result. These steps are:

1. candidate election: consisting of finding the node that detected a vibration
with the highest intensity before every other node;

2. refinement: improvement of the previous result by computing the center of
mass of the seismometers on the plan, i.e., a new point that considers the
detected intensities of all seismometers as a weight factor;

3. offside removal: optimization that improves the estimation by analyzing the
relative positioning of nodes and their detected intensity.

Each estimation step improves the previous result, meaning that the entire es-
timation pipeline produces good estimations with an average error that, with the
expected number of nodes composing the network, can be as low as 3km.

This estimation procedure and results have been published as [10] and presented
at 9th International Conference on Internet of Things: Systems, Management and
Security (IOTSMS 2022) conference.
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Chapter 7

Conclusions

The present work aims to comprehensively contribute to the process, design, and
technologies of Earthquake Early Warning (EEW).

We dealt with topics relevant to enhancing the adoption, security, robustness,
and scalability of crowdsensing-based EEW systems.

We proposed a decentralized approach to crowdsensed data processing and in-
formation exchange that leads to a more resilient networking architecture, removing
Single Points of Failure, demonstrating higher efficiency, assessing and mitigating
security vulnerabilities, and showing improved privacy.

We demonstrated the capabilities of the proposed architecture not only on the
main EEW problem but also on the crucial aspect of estimating the epicentral area
of an earthquake quickly.

In particular, this Ph.D. thesis tackled several challenges related to Earthquake
Early Warning (EEW) systems and their underlying technologies. Chapter 3 pre-
sented the successful application of End User Development (EUD) to EEW systems,
making it more accessible and usable and incentivizing the contribution of the crowd.
Chapter 4 highlighted the importance of testing and securing MQ Telemetry Trans-
port (MQTT) brokers and client libraries used by EEW systems to prevent potential
vulnerabilities and attacks. Chapter 5 proposed a novel crowdsensing EEW architec-
ture that leverages edge computing and decentralized processing, enhancing privacy
and fault tolerance. Chapter 6 presented a fully-decentralized architecture for esti-
mating earthquake epicenters in real time that eliminates the need for centralized
fusion centers and can produce highly accurate results with low error rates.

The proposed architecture, described in Chapters 5 and 6, tackles primary is-
sues for traditional EEW systems: resilience and privacy. While the traditional
approach involves deploying high-cost, high-precision sensor networks, which can
be prohibitively expensive for many communities, crowdsensing offers a potential
solution by leveraging the collective power of low-cost sensors deployed by individ-
uals or organizations. However, existing crowdsensing designs for EEW systems
are based on a centralized architecture, which can be vulnerable to partial faults in
communication or the fusion center itself. The proposed fully decentralized archi-
tecture addresses these vulnerabilities by removing the need for centralized fusion
centers and allowing each node to detect and relay earthquake information inde-
pendently. The approach is based on a topology with no strong hierarchy, enabling



68 7. Conclusions

fault tolerance and enhancing the scalability of Earthquake Early Warning systems.
By using low-cost sensors, our proposed architecture can be deployed more widely,
making EEW systems more accessible and affordable for communities worldwide.

The overall findings of this thesis contribute to advancing the field of Earth-
quake Early Warning and its associated technologies, highlighting the importance
of usability, security, privacy, and decentralization. These findings have significant
implications for researchers, developers, and stakeholders involved in designing, im-
plementing, and improving EEW systems. Future work can enhance the proposed
architectures’ security and scalability and evaluate their performance in different
settings and scenarios.

The research outcomes presented in this thesis have been disseminated in var-
ious scientific forums and publications, demonstrating their relevance and impact.
They contribute to the ongoing efforts to develop more reliable and efficient EEW
systems that can better protect communities from the devastating consequences of
earthquakes.

7.1 Recommendations for Future Research
While the proposed architecture provides the information needed for earthquake
Earthquake Early Warning, many other aspects must still be addressed. For exam-
ple, providing End User Development in a distributed architecture poses challenges
on how to retrieve data and where to run the EUD system itself.

A critical yet-to-be-addressed issue is the resilience against byzantine nodes
(where the definition of byzantine might expand from a simple fault to an active
attacker). This security issue is common in crowdsourcing projects, as members
can build devices to enroll in the network. Even when they cannot, proving that a
device exists (i.e., not simulated via software), behaves correctly, or was not altered
is an open problem. Remote attestation is the most prominent solution [18]. In
centralized architectures, this problem may be partially mitigated by some data
pre-processing, but it is hardly a definitive protection.

Another open challenge is in the network topology algorithms. A topology based
on geographical distances (like the one presented in this proposal) might be sub-
optimal: gossip protocols are sensitive to latency and Round-trip time (RTT) in
communication networks. Further studies on the effect of network and geographical
characteristics are needed to improve the speed of the system response further.
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