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Probing the evolution of fault properties
during the seismic cycle with deep learning

Laura Laurenti 1 , Gabriele Paoletti 2, Elisa Tinti 2, Fabio Galasso 3,
Cristiano Collettini 2 & Chris Marone 2,4

We use seismic waves that pass through the hypocentral region of the 2016
M6.5 Norcia earthquake together with Deep Learning (DL) to distinguish
between foreshocks, aftershocks and time-to-failure (TTF). Binary and N-class
models defined by TTF correctly identify seismograms in test with > 90%
accuracy. We use raw seismic records as input to a 7 layer CNN model to
perform the classification. Here we show that DL models successfully distin-
guish seismic waves pre/post mainshock in accord with lab and theoretical
expectations of progressive changes in crack density prior to abrupt change at
failure and gradual postseismic recovery. Performance is lower for band-pass
filtered seismograms (below 10 Hz) suggesting that DL models learn from the
evolution of subtle changes in elastic wave attenuation. Tests to verify that our
results indeed provide a proxy for fault properties includedDLmodels trained
with the wrong mainshock time and those using seismic waves far from the
Norcia mainshock; both show degraded performance. Our results demon-
strate that DL models have the potential to track the evolution of fault zone
properties during the seismic cycle. If this result is generalizable it could
improve earthquake early warning and seismic hazard analysis.

Earthquakes represent one of our greatest natural hazards. Even a
modest improvement in forecasting their occurrence could have a
major impact on public safety and mitigation of economic loss. Exist-
ing work suggests that fault zone properties evolve during the seismic
cycle in response to stress changes andmicrocracking prior to rupture
with subsequent post-seismic healing1,2. Such changes are observed
commonly in lab experiments3–15 and field data confirm these expec-
tations in some cases, showing changes in elastic wave speed prior to
earthquake fault slip, volcanic activity and landslides16–22. However,
distinguishing subtle changes in seismic behavior or fault properties
prior to and after earthquakes, even in locations with dense seismic
networks, is challenging23–31. Active measurements of fault zone elastic
properties prior to earthquake failure, or indeed throughout the seis-
mic cycle, are rarely available and instead techniques have been
developed using passive seismic noise19,32–37. These techniques are
promising but often lack the spatiotemporal resolution required to

track the evolution of seismic properties during the seismic cycle or to
provide early warning. Lab experiments provide such data38,39 but are
typically conducted on homogeneous samples and simple faults.
Earthquakes occur on faults with complex structures consisting of one
or multiple fault cores, where most of the slip is localized, surrounded
by damage zones formedbywidespread fractures and subsidiary small
displacement faults. Thus amajor challenge in earthquake science is to
identify proxies that could serve as early warning or precursory signals
to impending catastrophic earthquake rupture.

Recent work in which machine learning (ML) techniques are
applied to frictional stick-slip events, the laboratory equivalent to
earthquakes, offers a critical opportunity for advancement. In parti-
cular these studies show: 1) clear and consistent precursors prior to
repetitive earthquake-like failure and 2) that lab earthquakes can be
predicted using ML10,24,40–55. The lab earthquakes are preceded by a
cascade of micro-failure events that radiate elastic energy in a manner
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that foretells impending catastrophic failure. Remarkably, ML and
related Deep Learning (DL) techniques predict the lab seismic cycle in
detail for hundreds of events, including the evolution of fault zone
stress during the lab seismic cycle and clear precursors to failure.
These techniques have been applied in many lab settings but few
studies have addressed the problem of extending such ML/DL meth-
ods to probe fault zone properties directly and illuminate changes
during the seismic cycle.

Here, we address this challenge using a technique in which a DL
model is trained to distinguish seismic waves prior to and after an
earthquake mainshock. We show that the DL method can readily dis-
tinguish seismic signals as a function of time to (and since) the 2016
M6.5 Norcia mainshock.

Results
The Amatrice-Visso-Norcia (AVN) 2016-2017 seismic sequence,
Central Italy
The AVN seismic sequence began with the Mw 6.0 Amatrice earth-
quake on August 24th 2016 followed by the Mw 5.9 Visso and Mw 6.5
Norcia earthquakes on October 26th and 30th56. These three main-
shocks nucleated on a set of SW-dipping normal faults with an along-
strike extension of about 80 km57.We focus on the Vettore fault, which
hosted theNorciamainshock, because in the twomonths preceding 30
Oct. the Vettore fault and surrounding crust were illuminated by per-
sistent seismicity (Fig. 1). This seismic activity increased soon after the
Visso mainshock and then Norcia aftershock activity occurred for
severalmonths. One goal of ourwork is to distinguish between seismic
events before and after themainshock, sowe use the terms ’foreshock’
and ’aftershock’ to refer specifically to time (pre and post Norcia
mainshock), without causal prejudice.

Earthquake, seismic stations, and waveform selection
DL algorithms work best with large datasets, so we adopted a catalog
created using ML58 with approximately 900,000 events between
August 15th, 2016, and August 15th, 2017. We selected all events within
3 km of the Vettore fault segment that ruptured in the Norcia main-
shock, using events below 2 km to minimize anthropogenic sources
and surface-based seismic noise. Our tailored catalog minimizes the
impact of Amatrice aftershocks and includes equal numbers of events
over the time period using an asymmetric region from 15 km NE to 4
km SW of the Norcia hypocenter (Fig. 1 and Figs. S1 and S5). In map
view (Fig. 1) foreshocks appear to concentrate to the south but in cross
section (Fig. S1) it is clear that pre/post events cover the same region.
To ensure waveform quality, we used only Mw >0.5 events recorded
on the active local seismic stations (Table S1 and Fig. 1). We selected
these thresholds because they are a good trade-off between having
enough traces and being close enough to the fault. We did a variety of
sensitivity tests, changing the event selection boundaries and using
different stations, and different magnitude thresholds and our results
are robust. In particular, we changed: the event boundaries to size
15 km × 10 km× 10 km,with Norciamainshock located in the center of
this box; the selected events havemagnitude> 1.0; we found that it did
not change our results. Further information on this topic is provided in
Section 2.6 which summarizes the use of ambient seismic noise to
assess seasonality, differences in spectral content of pre/post co-
located events, and null results for stations and earthquakes far from
the 2016 Norcia mainshock.

We analyzed 3 component seismic data for nine local stations
(Table S1) in a window from 5 seconds before to 20 seconds after the
theoretical P-wave arrival (Fig. S3). Dataset construction is provided in
the Supplement. We discarded seismic traces with multiple events in
catalog, but this did not eliminate all multiple events because the
catalog does not contain all small events or events with unusual
waveforms (Fig. S3). With these criteria our catalog includes 4694
events premainshock and 5135 events postmainshock (Fig. 1). The full

catalog shows a gradual reduction in event rate prior to the Norcia
mainshock but for our dataset the event rate is roughly constant in
time, with a small decrease in rate prior to the mainshock
(Figs. 2 and S2). This small decrease in event rate does not affect
performance because the out-of-class split is done in a temporal
fashion, by number of events, so the classes are always balanced.

Labels and CNN model
We label all events prior to themainshock aspre and all events after the
mainshock as post (Figs. 1 and 2). We trained DL models for a range of
classifications from 2 classes to multiple classes based on time to
(since) failure (TTF) (Figs. 2 and S2). We used a Convolutional Neural
Network (CNN)59 with 7 layers and an increasing number of filters up to
a maximum of 256 in the last two convolutional blocks (Fig. S4). A
batch normalization layer and ReLU activation layers were used. To
enhance the strong activations (feature map) from the convolution
output and eliminate the weak ones, we used amax-pooling layer after
the convolution operation (Fig. S4). Dilation was applied to all but the
first two convolutional blocks, and the dilation rate was increased with
networkdepth. To regularize the network and improve generalizability
in test, we also added a dropout layer with a rate of 0.2 after the fully
connected layer (Supplement).

CNN model results
Figure 3 shows results for binary classification and for 4-, 8- and
9-classes based on TTF of the Norcia mainshock. We defined classes
using variable time intervals that ensured an equal number of events
per class. We also tested the case of defining classes based on equal
timebins (i.e., for 4 classes: class 1: September; class 2: October; class 3:
November; class 4: December). The results are similar in both cases,
but the fixed time interval classes are less robust because they are
smaller, since we have to remove events in some cases to balance the
PRE/POST event numbers.

Another option is to divide the classes based on clustering fea-
tures, as established in the laboratory work of Karimpouli et al.54. For
the lab work this approach works well but it is not straightforward to
use that approach with field data, both because of the need to balance
event numbers, and because we do not have an independent estimate
of the fault stress state, so we leave this as a goal for future work.

The train/validation/test splits were always 70/20/10%, but the
splits were temporal rather than random to avoid the possibility of
model shortcuts in time content (Fig. S5). Because of the temporal
nature of our data and the progressive evolution in time, we selected
validation and testing data from the middle part of each class. This
allows a broader representation of training vs. validation and test data
because eachof the three is taken from thewhole class rather than just
one part. We explored several runs for each model to account
for minor differences caused by particular seismic traces and to pro-
vide uncertainties (Table 1). The performance is measured as
accuracy= TP +TN

TP +TN + FP + FN, where TP: True Positive; TN: True Negative;
FP: False Positive; FN: False Negative. In each case the model per-
formed well during training and validation (see Supplement for
details) and testing was done using data that the model had not seen
previously. The use of an Adam optimizer and epoch training pro-
duced good results and minimized overfitting by comparing results
during training and validation60. For binary classification, typical per-
formance values for train, validation, test were > 95%, with a slight
reduction in accuracy from train to validation and test (Table 1).

There are ≈ 40 to 80 events per day for both pre and post. For 2-4-
8 class models we did not include events associated in time with the
M5.9 Visso earthquake (from October 26th to October 30th 2016)
because of the high event rates, but we relaxed that for the 9-class
model that included earthquakes from the Visso sequence
(Figs. 3 and S2 and Table 1). The magnitude distributions are pretty
similar for pre/post events in our dataset (Fig. 2).
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Fig. 1 | Earthquake distribution for the 2016 sequence showing the three main
events (red stars and focalmechanisms). a fromnorth to south: VissoMw5.9, 26/
10/2016, Norcia Mw 6.5, 30/10/2016, and AmatriceMw 6.0, 24/08/2016). Gray dots
show the full catalog of 900,000 events58. We used earthquakes in a time window
± 2months from30/10/2016 and a rectangular region near theNorcia epicenter and

Vettore fault. Yellow symbols show events before the Norcia mainshock, and green
symbols show events afterward. Map views at right highlight foreshock and after-
shock locations (See Fig. S1 for cross-section). b time history for all events in the
selected region, and the inset (yellow and green) shows the events used in our DL
analysis.
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Fig. 2 | Temporalhistoryof events inourdataset and class splits used toclassify
and label data. Histograms are daily event numbers. a shows the data split for 2
classes: pre or foreshocks (yellow) and post or aftershocks (green). b shows addi-
tional granularity in time for 9 classes. The 9 class model includes events of the

Visso earthquake. In each case, models are trained on time periods with the same
number of events in each class. c shows the magnitude distribution with time.
Displayed events refer to NRCA station.
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The binary classification results are remarkably good for all 9 sta-
tions (Table 1 and Fig. 3), with performance ratios ranging from 79 to
99%. The CNN models are very good at detecting which seismograms
come from earthquakes before/after the Norcia mainshock. Station
T1213, located south of the Norcia mainshock, shows the best perfor-
mance for pre-events, with 100% of the foreshocks identified correctly.
In contrast, only 72% and 74% of the seismic traces for pre-Norcia

events recorded at Stations MMO1 and T1212 were identified correctly
(Table 1). These stations are farther from the mainshock than NRCA,
which is essentially at the epicenter (Fig. 1), but not farther than station
FDMO, which showed very good performance (Table S1). The model
performance does not vary significantly with distance or direction
from station to hypocenter (see Fig. S6 and station T1214). We did not
study possible differences in source characteristics with subsurface

Fig. 3 | Confusion matrices for each class split (see Fig. 2 and Fig. S2 for split
details). a is the simplest case of 2 classes: 98% of the pre and 99% of the post in the
test set are classified correctly. b shows the results for 4 classes, (c) shows the
results for 8 classes, and panel d) shows the results for 9 classes. Note that pre and
post are well identified in all cases and that DL models can resolve time to failure,

distinguishing between events close in time to the mainshock versus those well
before/after the mainshock. See Table 1 for data. Displayed events refer to NRCA
station. Note that the behavior isn’t the same for each run (seed); we are showing
random examples, not ad-hoc best cases.
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lithology61 nor variations in performance with back azimuth; both
would be interesting future works.

n-class models
The remarkable performance of the DLmodels in test suggests further
study of how seismic traces change with TTF. Table 1 provides results
for n-class models defined by TTF for the Norcia mainshock (Fig. 2).
Details of the time splits and results for all models are given in
Figs. S2 and S6 b) and the Supplement (Section 8.2).

The performance results for 4-, 8- and 9-class models are con-
sistent with the 2-class results (Table 1). Keeping in mind that the
chance level is 50, 25, 12.5 and 11.11% for 2, 4, 8 and 9-class models, the
results are very good for all nine stations. For each data set and split
(Fig. S6 b)) we ran three separate models to assess model variability.
Performance results in test are significantly above chance levels for
each station (Table 1).

n-class results, Station NRCA. We did additional n-class studies using
data for stationNRCAwhich is the closest to theNorciamainshock and
a few kilometers north-east Norcia city (Fig. 1). The high average
accuracy (98.8%) for binary classification shows that DL can accurately
identify and classifymost of the earthquakes in the test set (Fig. 2). The
test set used for binary models contains a total of ~ 1500 events and
only ~ 1%wereclassified incorrectly.Weevaluated spatiotemporal data
for the mislabelled traces, which are not clustered in time or location.

For the 4-class and 8-class models, we followed the same proce-
dure used above and created balanced subdivisions with equal num-
bers of earthquakes. The results for TTF classification are quite good
(Table 1 and Fig. 3). The models can correctly identify whether seismic
events occurred well before the Norcia mainshock, in late Aug., early
Sep. or after in Nov./Dec. (Fig. 3). Results in the confusionmatrix show
that most of the misidentified results are off by only one class, such
that foreshocks in class 2 (FEQ2) are sometimes placed in class 3
(FEQ3). For example, only 16% of the events in FEQ3 were identified
correctly (Fig. 3) but 93%of the events in the FEQ3 test set were placed
in FEQ2, FEQ3 or FEQ4. An exception is foreshocks in class 4 (FEQ4),
where 40% of themweremisclassified as aftershocks in category AEQ4
(Fig. 3). The DL algorithm performance level was 81% for the 4-class
test, 57% for the 8-class test, and 62% for the 8-class test for seismo-
grams recorded at stationNRCA.We point out that Fig. 3 shows results
for one case and there are slight differences between eachmodel run;
here and in other figures, we show random examples rather than ad-
hoc best cases.

We also trained models with 9-classes in time to include events
associatedwith theOctober 26thM5.9 Vissomainshock, fromOctober
26th to October 30th 2016 (Fig. 2). This classification is particularly
interesting because it includes events that precede Norcia and post-
date Visso. Figure 2 shows the division of the dataset into 9 classeswith

the corresponding magnitude distribution for the entire data set of
9829 events. Here again the test performance is very good, with an
average of 58% of the events categorized correctly (Table 1, Fig. 3),
compared to the chance level of ≈ 11%.

The confusionmatrix provides a clear visual representation of the
algorithm’s performance (Fig. 3). We observe a division similar to the
one for 8 classes, with a performance peak corresponding to the Visso
events (99%).One interpretationof these results is that the algorithm is
able to identify changes in the seismogramsassociatedwith changes in
fault zone properties between the Visso and Norcia mainshocks.

Origin of model performance
We want to understand why our DL models trained on local data can
detect differences in seismograms as a function of TTF for the Norcia
mainshock. One hypothesis is that stress changes during the seismic
cycle cause micro-fracturing, fault zone damage, and crack sealing.
Other possibilities include subtle changes in earthquake source
properties or seasonal effects and changes in susceptibility associated
with stress and microfracturing.

Mainshock date and seasonality. DL models are well known for
detecting shortcuts in inference, so we tested a series of models to
assess the possibility that our results are a product of time of the year
in addition to time relative to the Norcia mainshock. Seasonal varia-
tions are expected for summer vs. winter times or rainy vs. dry con-
ditions and may arise from local fluid content in the upper crust or
variations in fracture characteristics with atmospheric
temperature19,29,32,35,62–64. Previous results suggest that these changes
can occur over weeks to months so we began by testing models with
small shifts in the mainshock date.

Models trained with the wrong mainshock date perform worse
than those trained with the correct date (Fig. 4). Here, we focused on
StationNRCA and trainedmodels for binary classification using several
dates for the mainshock. To conduct these tests, we retrain the entire
model on the same events, but we modify the labels used to define
pre/post using false mainshock dates. In each case we then retested
with the correctmainshockdate. As before, of the ≈ 1500 events in the
test set, fewer than 1% aremisidentified for our standardmodel (Fig. 3,
Table 1). For amodel trainedwith 21Oct. as theNorciamainshock date,
the overall performance drops only slightly, to 96%, as expected given
the total number of foreshocks, but for the test events that occurred
between 21 and 30 Oct., the correct mainshock date, the performance
drops to 11% (Fig. 4). Of the 43 events in the test set between 21 and 30
Oct., 38 of them are classified ’incorrectly’ for 21 Oct. as themainshock
(Table 2). That is, even though events during this period are labeled as
aftershocks during training, during testing the model identified 38 of
them as foreshocks. The colors in Fig. 4a, highlight the events that are
identified correctly/incorrectly based on the fake mainshock date.

Table 1 | Performance results for 2, 4 and 9 class models

Station 2 (%) 2 PRE (%) 2 POST (%) 4 (%) 8 (%) 9 (%)

FDMO 98.84 ± 0.22 99.19 ± 0.19 98.49 ± 0.52 68.81 ± 1.86 45.81 ± 3.29 47.05 ± 0.83

MC2 99.16 ± 0.43 98.93 ± 0.25 99.40 ± 0.72 63.90 ± 2.96 55.03 ± 5.96 53.04 ± 2.73

MMO1 84.61 ± 0.69 79.45 ± 2.47 89.80 ± 2.68 54.92 ± 2.46 39.04 ± 2.99 39.33 ± 1.55

NRCA 99.19 ± 0.12 99.16 ± 0.19 99.22 ± 0.07 68.21 ± 4.85 44.69 ± 1.76 57.94 ± 4.42

T1212 77.52 ± 3.37 62.37 ± 7.36 92.71 ± 1.61 69.67 ± 7.22 46.41 ± 3.99 41.02 ± 6.98

T1213 99.69 ± 0.13 99.84 ± 0.13 99.53 ± 0.38 80.57 ± 0.60 67.68 ± 4.31 64.57 ± 1.64

T1214 84.47 ± 7.03 77.62 ± 17.23 91.31 ± 4.43 61.48 ± 5.81 36.76 ± 2.35 40.96 ± 7.64

T1216 92.65 ± 0.83 96.45 ± 0.90 88.85 ± 1.51 59.53 ± 3.40 40.93 ± 2.70 31.83 ± 1.97

T1244 96.83 ± 0.55 98.85 ± 0.42 94.81 ± 0.95 71.25 ± 1.11 49.92 ± 1.61 46.66 ± 1.43

Values are thepercentageof correctly classifiedevents to total events. Pre- andpost-mainshock values aregiven for the2-classmodel. Fig. 3 gives offersdetails for each class, for stationNRCA.Note
that the results for station T1213 are best for each case. The mean and standard deviation reported are computed for 3 separate training, validation and testing runs.
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Comparing model performance for the whole test set with that for
mislabeled events (Table 2) shows that most events are labeled cor-
rectly as pre/post even though the training was done with incorrect
labels.

The overall model performance decreases as the time between
the fake and actual mainshock date increases (Table 2) but the
decrease ismore pronounced for aftershocks compared to foreshocks
(Fig. 4). This is seen as a drop in the gray circles and a rise in the blue
squares with increasing time since mainshock (Fig. 4b). These data
suggest that themodel is struggling to accurately classify the events in

the time period between the fake and real mainshock dates, high-
lighting hidden patterns common to all the traces of pre and post,
despite the labels used to train the model. These indicate that our
results are not simply a function of seasonal variations or time of year.

To assess longer-term seasonal variations we also evaluated seis-
mic noise recorded at Station NRCA from 2013 to 2022. We verified
that noise waveforms did not contain earthquakes using an STA/LTA
detector and divided successive 4-month intervals into two classes:
Before andAfter the beginning of eachmonth (2months per class).We
trained our model with the standard train/validation/test ratios and
evaluated data from 2013 to 2022, excluding 2016 and 2017, when
there were too many earthquakes to find sufficient numbers of clean
noise traces. These 2-Class models show test performances that ran-
ged dramatically with levels below 50% and as high as 80%. Perfor-
mance levels were consistently lower than our results for pre and post
events for the Norcia mainshock.

We also addressed the role of seasonality by comparing results for
seismic noise in September and October of three years (2014, 2016,
and 2022) and by looking at earthquake data for foreshocks in 2016. In
each case, we trained a model to distinguish noise (or earthquake
traces) in Sep./Oct using 2- and 4-class models. The results for 2-class
models using seismic noise show that performances are lower in 2014
(68%) and 2022 (71%) compared to 2016 (83%) and that pre-Norcia
earthquake traces in 2016 show even higher performance (91%).
Results for 4-class models show similar trends (Fig. S7). The elastic
waves from earthquakes are more able to distinguish times in Sep.
2016 from those in Oct. 2016 compared to noise. For details, see
Supplementary section 8.3 and Fig. S7.

Taken together, the tests show that seasonality and variations
with time of year do not explain our observations of model test per-
formance for foreshocks, aftershocks and time to failure for the M6.5
Norcia mainshock. However it is clear that seasonality plays some role

Table 2 | Results for models trained with data for Station
NRCA and a range of incorrect mainshock dates

Date Performance (%) NM/NC FP (%)

Oct 11 95.88 149/42 71.8

Oct 16 95.63 107/38 64.5

Oct 21 95.55 43/38 11.6

Oct 30 98.84 - -

Nov 04 95.00 64/36 43.7

Nov 09 93.42 121/45 62.8

Nov 14 90.07 171/41 76.0

Nov 19 79.58 261/61 76.6

Models are retrained using the whole data set in each case, with foreshock/aftershock labels
based on the date given. Performance is the ratio of correctly classifiedevents to total events for
the test set. Column3 is the number ofmislabeled events (NM) and the number of those that are
identifiedwith the correct (NC), rather than fake label. Note that the test set has 43 events in the
period 21 to 30 Oct. and 38 of them are labeled as foreshocks even though events during this
time in the training set were labeled as aftershocks. FP is the test performance during the ’fake’
time interval, when training labels were wrong. For the period 21 to 30 Oct. 11.6% of the test
events were identified as aftershocks while the others, 88.4%, were classified, correctly, as
foreshocks despite the wrong training labels.
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Fig. 4 | Model validation test data for a series of wrong mainshock dates.
a shows two examples. The shaded regions highlight the time period between the
selected false date and the actual mainshock on October 30th. b shows the per-
formance formodels trainedwith thecorrectmainshockdate and seven false dates.
The dashed red line shows the average performance for the correct mainshock
date. Gray dots show average performance for the test set when trained using a

model that includes incorrect labels (see Table 2 for details). Note that the average
test performance decreases with time away from the mainshock date, as more are
labeled incorrectly. Blue symbols show test performance for events during the
period where incorrect labels were used in training. Note that the percentage of
these events is always lower than the performance using the correct mainshock
date and that performance is worse closer to the mainshock time.
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and thus we posit that high performance values in test (> 90%) are
partially due to seasonality, but primarily a result of fault stress and
damage state. The tests with seismic noise suggest the value of further
work to assess its utility for monitoring earthquake-related signals, as
has been shown by previous studies using seismic noise to monitor
changes in crustal seismic velocity19,32–36

Frequency analysis and nearby similar events. One expects that
microfracture development and changes in crack aperture with stress
would attenuate seismic waves preferentially in specific frequency
ranges, for example as demonstrated by recent work in the Geysers
geothermal field65. We conducted binary classification experiments
using filtered waveforms to test the hypothesis that our DLmodels are
sensitive to subtle changes in frequency content (Fig. 5). We also
directly compared waveforms for nearby similar events to assess dif-
ferences in the pre/post waveform characteristics (Fig. 6).

Figure 5 shows results for band-pass filtered seismic traces
recorded at Station NRCA. The sampling rate is 100 Hz, so the seis-
mograms contain frequencies up to 50Hz. We trained and tested CNN
models on our complete data set with seismic traces that were band-
pass filtered (see Supplement for details) in steps of 3 Hz. Performance
results are lower for models trained with seismograms that do not
contain high frequencies (Fig. 5). The dashed red line shows binary
classification performance for the raw seismograms at NRCA, which is

98.8%. Band-pass filtered traces show similar results for 3-Hz windows
above 10 Hz, within the scatter expected for different realizations
(Table 1). Models trained with frequencies lower than 10 Hz show a
significant drop in performance. These results show that the evolution
of elastic properties during the seismic cycle is more apparent in fre-
quency bands above 10 Hz and that lower frequency waves do not
illuminate differences between pre/post seismic waves.

To further verify that our DL models are detecting TTF and dis-
tinguishing foreshocks from aftershocks using subtle changes in seis-
mic waves, we compared waveforms for nearby pre/post Norcia
mainshock (Fig. 6). Our catalog contains 918 pre/post event pairs with
similar hypocenter locations ( ± 500m) and local magnitude ( ± 0.1M).
Station NRCA has data for 253 of the pairs (Fig. S9) and we compared
spectra (Fig. 6) using the full three-component seismograms. Figure 6
shows an example for twoMw0.9 events at 6.0 kmdepth, and Fig. S10
shows additional examples. The spectra and spectral ratios (derived
from a multitaper approach66), show clear differences, particularly at
high frequencies. Aftershock seismograms have a clear peak between
30 and 40 Hz that is not present for foreshocks and these differences
extend to lower frequencies, naturally and because the filters are not
perfectbox-car functions. These differences are common for all similar
events (Fig. 9Sd) and presumably relate to differences in fracture
density or fault zone damage that appear to increase with time
between the foreshock and aftershock (Figs. S10 and S9).
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Fig. 5 | Frequency and attenuation analysis for events recorded at
station NRCA. a Gray trace shows an example raw seismogram with 5 seconds
before and 20 seconds after the P-wave. The red trace is the 9-12 Hz band-pass
filtered seismogram at the same scale. b shows amplitude spectra for both traces
with the band-pass highlighted. c Model performance for band-pass filtered

seismograms at different frequency ranges. The red line at the top is the baseline
performanceof raw traces. Note thatmodel performancedrops off significantly for
models using seismograms with only frequencies below ≈ 10 Hz. The DL models
distinguish seismograms forpre/post and time to failure (TTF) using high frequency
content of the elastic waves.
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Null result for a station far from the Norcia mainshock. As a further
test of our DL models, we evaluated seismic traces recorded outside
themain study area and away from the Norcia mainshock (Fig. S8).We
downloaded data for Station SMA1 for all events in our catalog (4694
pre events and 5135 post events) and trained our CNNmodel for binary
classification. The new performance ratio was 69.48 ± 1.80% on aver-
age with an accuracy of 63.53 ± 4.07% for pre and 75.43 ± 2.84% for
post. These numbers are much lower than those for seismic stations
close to the Norcia mainshock (Table 1), but they are above the 50%
chance level. We performed a seasonality test for this station using
seismic noise from 2013. As before, we selected 4months at a time and
did binary classification for each set (with 2 months for each class),
using seismicnoise. The average performance for 2013 is 78.4% and for
the months September to December it is 72.8%. These data suggest
that the results for station SMA1 are primarily seasonal changes rather
than changes related to the Norcia earthquake.

To extend this assessment of a null result and better char-
acterize the propagation of seismic waves that do not pass near or
through the Vettore fault and the M6.5 Norcia hypocenter, we eval-
uated seismic data from earthquakes in two additional regions: one
located just south of the Norcia region, near Accumoli, and another
farther south, near Amatrice (see Fig. S8). The northern region
includes the M6 Amatrice epicenter (August 24th 2016) and the

southern region includes the town of Amatrice. We included earth-
quakes that occurred before/after the Norcia mainshock, from Sep-
tember to December 2016, and built a dataset for Station SMA1 using
our standard procedure. We trained our CNN model for binary
classification to determine whether the model could distinguish pre
and post events using seismograms that did not pass near or through
the Vettore fault.

For the earthquakes in the northern region (Fig. S8) the average
model performance ratio for pre/post classification is 77.3% and for
southern region the averagewas 78.2%. Bothof these results are similar
to the seasonality results presented above for station SMA1. The lower
performance values, presumably due primarily to seasonality, are
consistent with the idea that seismic waves that do not pass near or
through the Vettore fault and the M6.5 Norcia hypocenter are not
capable of detecting TTF for the Norcia mainshock.

Discussion
Laboratory and theoretical models of the seismic cycle suggest that
the earthquake preparatory phase involves progressive cracking and
damage as stresses increase to failure, followed by abrupt changes in
elastic properties during dynamic rupture and gradual healing as
cracks close. For lab earthquakes, these processes produce clear
changes in elastic wave properties that provide precursory signals of
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Fig. 6 | Comparison of spectra for co-located foreshocks and aftershocks to
assess time dependent changes in crustal properties. a, b, and c display three
component seismograms for two co-located Mw 0.9 events that occurred on the
Vettore fault plane (see Fig. S9). Note that the foreshock (orange) which occurred
on 2016-08-29 has less energy in the frequency band from 30–40 Hz than the

aftershock (blue) which occurred on 2016-11-12. The differences are apparent in
each component and clear in the raw data, amplitude spectrum and spectral ratios.
The spectral ratio shows aftershock over foreshock and these differences are
consistent for all of the 253 event pairs (see also Fig. S10).
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impending failure (Fig. 7a). However, while similar observations have
been made in nature in special cases, there is still an open question
about why precursors are common in lab experiments but rare for
natural faults.Our results provide an important opportunity to address
this question using DL performance as a proxy for fault zone damage/
stress state.

We leverage the power of CNNs, which excel at extracting high-
level features. The CNN convolution kernels scan the input data,
enabling the network to capture intricate and informative details.
Pooling layers reduce the spatial dimensions of the data while pre-
serving essential features, enhancing the network’s ability to recognize
patterns, subtle differences, and hierarchies at multiple levels of
abstraction (e.g., ref. 67). We train a CNN model to differentiate
between foreshocks, aftershocks and TTF of the 2016 M6.5 Norcia
mainshock, and the model is remarkably successful. Our model can
distinguish between seismic waves prior to and after the mainshock
with greater than 90% accuracy (Figs. 1 and 3). The performance is
equally good for models trained on TTF, based on n-class models
trained to distinguish between different time periods before/after the
mainshock (Fig. 2 and Table 1). The results are robust across the full
range of magnitudes down to M0.5 and for multiple seismic stations
around the Norcia mainshock. These results are consistent with lab
data and with the field observations available in a few special
cases (Fig. 7).

In the lab, fault zone elastic properties vary systematically during
the seismic cycle (Fig. 7). Elasticwave speed and transmitted amplitude
drop abruptly with stress drop as the fault slips and frictional contact
junctions are rejuvenated. Wave speed and amplitude then increase
progressively when the fault is quasi-stationary and frictional contacts

grow and increase in stiffness. These changes in fault elastic properties
continue until stress increases enough for the fault to creep at a rate
sufficient to re-open cracks and reduce asperity contact stiffness.
These data are consistent with our findings for the performance of DL
models in distinguishing foreshocks from aftershocks. Our DL results
are also in accord with work showing that the evolution of fault zone
elastic properties can be used to predict lab earthquakes49,68. We posit
that seismic waves traveling through and near the M6.5 Norcia hypo-
center and Vettore fault record subtle changes in elastic wave prop-
erties similar to those observed in the lab (Fig. 7). For the lab seismic
cycle, the evolution of wave speed and amplitude during the seismic
cycle provide clear precursors to impending failure. While our DL
results for the 2016 central Italy seismic sequence do not have the
same resolution, they suggest a similar pattern of changes before and
after the M6.5 Norcia event.

Additional field observations confirm the interpretation that our
DL models detect changes in seismic wave properties during the
seismic cycle. The field data are from dense monitoring networks or
detailed seismic tomographic studies done using local earthquakes or
ambient noise17,21,69. Chiarabba and co-workers21 studied the 2016 AVN
seismic sequence of central Italy (Fig. 7b) and found changes in P-wave
velocity and Vp/Vs in the region around the hypocenter preceding the
Norciamainshock. The changes persist for several weeks and aremore
significant around the hypocenter than to the north and south
(Fig. 7b). We posit that our DL models illuminate the same changes in
elastic properties prior to and after the M6.5 Norcia mainshock. The
performance of our DL models is greatest for stations near the epi-
center and for seismic waves that travel near the hypocenter, in con-
cert with the results of seismic tomography21.

Fig. 7 | Lab and field data showing changes in fault zone elastic properties
during the seismic cycle. a swohs data for three lab seismic cycles showing shear
stress, Vp, and elastic wave amplitude transmitted through the fault zone. Note that
elastic properties evolve systematically and show clear precursors to failure. Data
from50. b shows P-wave velocity inferred from seismic tomography in central Italy
around the 2016 M6.5 Norcia earthquake on 30 Oct. 2016. Red dots show the area
around themainshock hypocenter, and green dots showVpdata for the area north

of the hypocenter. Modified from21, (c) shows data for (black) seismic attenuation
basedon repeating earthquakes during 5-yr period (Oct 2002–Sept 2007) and (red)
changes in Vp based on ambient seismic noise. Time period includes the 2003 Mw
6.5 San Simeon and 2004 Mw 6.0 Parkfield earthquakes. Note that seismic
attenuation data and Vp show clear changes for the 2003 San Simeon and 2004
Parkfield earthquakes. Data from17,69.
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Our results for DL models trained on bandpass filtered seismic
waves (Fig. 5) and the comparison of event pairs pre/post the Norcia
mainshock (Fig. 6) suggest that differences in elastic properties are
most apparent from30–40Hz. For a fault zonewithVpof ≈ 4.5–6 km/s
this represents wavelengths of 150–250 m, which corresponds to
events of M2-3. Therefore one explanation of our results is that DL
models track the fault damage and fracturing associated with Mw 2–3
earthquakes. Prior to the Norcia mainshock the rate of such events is
low. This increases abruptly with the Visso-Norcia mainshocks and
then progressively reduces with time. Following the mainshock, fluid
flow into these fractures promotes the activation of chemical and
mechanical healing, which facilitates crack closure and healing. We
note that carbonates are the dominant lithology of the seismogenic
zone in the Apennines, and lab experiments show rapid healing rates
for these fault rocks70.

The performance of our DL models is also consistent with pre-
vious work17,69 showing changes in elastic wave properties prior to and
after earthquake rupture (Fig. 7). These studies documented the evo-
lution of crustal wave attenuation using repeating earthquakes and
passive noise seismology for the 2003Mw 6.5 San Simeon earthquake
and the M6 2004 Parkfield earthquake (Fig. 7c). Both studies docu-
ment progressive changes prior to the mainshock followed by post-
seismic relaxation. The performance of our DL models is consistent
with these data. In addition, our comparison of seismic wave spectra
for co-located foreshock/aftershock pairs shows clear differences
(Figs. 6 and S10) that are consistent with changes in transmitted
amplitude and attenuation.

We challenged the DL models in several ways to assess reliability
and robustness and to test the hypothesis thatDLmodels can track the
evolution of fault properties during the seismic cycle. We achieve very
good model accuracy with high precision and few examples of false
negatives. In particular, we test the hypothesis that DL models recog-
nize the evolution of seismicwave attenuationduring the seismic cycle
by training/testing models on bandpass-filtered waveforms, finding
that the model is more confident in the classification when using
seismicwaves that contain higher frequencies.We get the same results
by comparing waveforms for co-located similar events occurring
pre/post mainshock, finding clear differences in spectral content. The
null tests were also helpful, showing that stations far from the hypo-
center and seismic waves that do not pass near or through the main-
shock do not successfully distinguish between foreshocks or
aftershocks.

A critical limitation of our work is that we have studied only one
location. A clear goal for future works will be to assess the efficacy of
thismethod in other tectonic settings and to investigate the possibility
of using real-time data to identify precursors prior to a mainshock
rather than working with post-event data.

In conclusion, we note that monitoring the evolution of tec-
tonic faults during the seismic cycle could inform earthquake
forecasting and early warning, but distinguishing changes in fault
properties is challenging. We leverage a CNN classifier to investi-
gate the variations in elastic properties of a fault zone during a
seismic sequence, following previous findings from the laboratory.
Our results demonstrate that the CNNmodel can accurately classify
the fault zone’s state and TTF using raw seismic waveforms,
achieving over 90% accuracy across various test scenarios. The
model’s performance was consistent across multiple local stations.
Our validation approach uses multiple verification tests, such as
using incorrect mainshock dates and distant seismic waves. These
tests underscored the model’s sensitivity to subtle changes in
elastic wave properties.

Our findings support the hypothesis that the CNN model can
detect progressive damage andmicrofracture development within the
fault zone and surrounding rock prior to an earthquake, as well as
gradual postseismic recovery. This aligns with theoretical and

laboratory expectations for seismic cycles and suggests that DL
models can enhance existing techniques for earthquake early warning
and seismic hazard assessment.

This study employes DL methods to track the evolution of fault
zone properties during the seismic cycle. If our result is generalizable
to other tectonic settings it could improve earthquake early warning
and seismic hazard analysis and ultimately provide a pathway to
identify earthquake precursors.

Methods
We gathered the data necessary for our study using ObsPy, an open-
source Python framework specifically designed for processing seis-
mological data (more information available at https://docs.obspy.
org/). With ObsPy, we were able to download waveforms and meta-
data for each event and station from the INGV network and assemble
the dataset (Fig. 1).

The datasets were organized separately for each station, with two
.hdf5 files: one containing waveforms for earthquakes that occurred
pre Norcia mainshock and one containing waveforms post. The Hier-
archical Data Format version 5 (HDF5) is an open-source file format
designed to handle large, complex, and heterogeneous data sets. It
uses a file directory structure that enables the organization of data
within the file in a variety of structured ways, similar to how files are
organized on a computer. In addition, we have two .csv files con-
taining metadata for each earthquake, which helps us to identify the
type of receiver used for recording as well as the location and char-
acteristics of the earthquake. This metadata allows us to understand
better the context in which each earthquake occurred and how it was
recorded.

Other information and further details of our methods are pro-
vided in the Supplement Section 8.

Data availability
The seismicity catalog used in this work is published by Tan et al., 2021
and access can be obtained at the Zenodo dataset repository (https://
doi.org/10.5281/zenodo.466287071). The dataset coming from our
selected sub-region, as well as the sub-catalog, can be obtained at
Zenodo dataset repository (10.5281/zenodo.1279562172). The pre-
processed dataset, ready to be used with our code, can be obtained at
the Zenodo dataset repository (10.5281/zenodo.1280608173). Corre-
spondence and requests for materials should be addressed to Laura
Laurenti or Chris Marone.

Code availability
All codes are accessible onGitHub at https://github.com/lauralaurenti/
CNN_Norcia_sequence_evolution, which is linked to Zenodo: https://
doi.org/10.5281/zenodo.13909498.
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