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Abstract. Aiming at improving our physical strength and expanding
our knowledge, tournaments and competitions have always contributed
to our personal growth. Robotics and AI are no exception, and since be-
ginning, competitions have been exploited to improve our understanding
of such research areas (e.g. Chess, VideoGames, DARPA). In fact, the
research community has launched (and it is involved) in several robotics
competitions that provide a two-fold benefit of (i) promoting novel ap-
proaches and (ii) valuate proposed solutions systematically and quanti-
tatively. In this paper, we focus on a particular research area of Robotics
and AI: we analyze multi-robot systems deployed in a cooperative-adversarial
environment being tasked to collaborate to achieve a common goal, while
competing against an opposing team. To this end, RoboCup provide
the best benchmarking environment by implementing such a challeng-
ing problem in the game of soccer. Sports, in fact, represent extremely
complex challenge that require a team of robots to show dexterous and
fluid movements and to feature high-level cognitive capabilities. Here, we
analyse methodologies and approaches to address the problem of coor-
dination and cooperation and we discuss state-of-the-art solutions that
achieve effective decision-making processes for multi-robot adversarial
scenarios.

Keywords: Strategies in Robotic Games · Robotic Competition · Soccer
Robots RoboCup SPL

1 Introduction

Games and sport competitions offer a suitable application where both teammates
cooperation and opponents management play a key role. Hence, being able to
deploy a artificial agent capable of showing human (or even super-human) per-
formance in these contexts, is one of the most difficult and fascinating goal that
lies at the intersection of robotics and artificial intelligence. Several milestones
have already be reached in this race for progress and technological advancement.
One of the first steps, most known to the mass, is undoubtedly the chess play-
ing AI that beat the human world-champion for the first time, DeepBlue. More
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recently, but still in the context of board-games, we acknowledge AlphaGo [23]
that, similarly to its predecessor, beat the world-champion in the most complex
board-game in history, the game of GO. Moreover, the techniques investigated
in recent years show promising results being generalizable to different scenarios
and agnostic to the state representation. In fact, more related to the work we
address in this survey, we also want to report the breakthrough achieved in [17]
where the authors successfully beat a team of humans in an highly-interactive,
partially observable, multi-agent scenarios in a continuous state-space world.

Assuming a different perspective in the wide spectrum of multi-agent ap-
proaches, here, we investigate how the research community tackles the problem
of deploying such techniques on real robots playing soccer. In particular, we ex-
plore: (i) individual strategies in multi-agent scenario; (ii) cooperative and strate-
gic decision-making; and (iii) opponent behavior analysis in adversarial settings.
Operating in the real world adds new challenges and complexity to problems
to solve. In fact, in this context, proposed techniques have to necessarily take
into account system failures, noisy perceptions, unpredictable and non-stationary
environments, and numerous unknown events ranging from faulty physical com-
ponents to opponents high-level strategies. Hence, in order to highlight the most
promising techniques and determine next research directions, we believe that cat-
egorizing the main contributions implemented within the RoboCup competitions
is key to provide a solid basis in the deployment of state-of-the-art approaches
to coordination and cooperation on physical robot.

It is very difficult to develop and deploy an autonomous agent able to un-
derstand and act in the physical world. In fact, when operating in uncontrolled
scenarios, robots must show robust and effective skills to support perception,
reasoning and coordinated behaviors with people and of course, other agents. To
this end, the research community is constantly promoting robotic competitions
in order to solve particular tasks and to develop and deploy operating agents in
the real world. In this context, RoboCup is one of the leadership organization
that challenges participants world-side in the game of soccer [4] with the aim to
develop and end-to-end robotic system capable of perceiving the environment,
high-level reasoning and performing agile and smooth motions.

In this context, perception and reasoning are enabling factors to enter the
soccer field, but coordinated effective robot behaviors are the key factor for
winning.

Each RoboCup league is designed to address a particular challenge in devel-
oping and deploying a fully autonomous robot soccer player (see Fig. 1). In fact,
tackling sports at once is extremely difficult and attempting to tackle all the
research questions at the same time leads to unpractical and under-performing
systems. Hence, each of the RoboCup leagues is carefully defined to operate in a
particular research area – even though a certain amount of overlap is guaranteed.
Such an organization allows to divide the soccer game in sub-problems and to
better formalize solutions for each of them. Usually, we can categorize proposed
approaches in accordance with the sense-plan-act paradigm, and intuitively, each
league mainly targets one of these macro areas. In this paper, we categorize the
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Fig. 1. RoboCup Soccer Leagues.

contributions made in the context of RoboCup with a particular focus on coordi-
nation and collective behavior across different leagues. Our goal is to understand
the most competitive methodologies currently used, and to highlight the most
promising trends of research that will guide us to implement a fully autonomous
team of robots. Our focus is to survey proposed solutions that contribute in en-
abling a team of robots to collectively perceive the world, asynchronously reason
on current state of the environment and optimally coordinate their action to
achieve a common goal while competing with other robots.

2 RoboCup Leagues and Organization

RoboCup competitions are organized in several leagues each of which aims at
tackling a particular research challenge. In this paper we focus on coordination
and cooperation approaches which are a characterizing aspect of RoboCup soc-
cer leagues. Our goal is to analyze proposed techniques in order to highlight
research trends and understand their enabling factor. Such leagues are particu-
larly suitable to advance in our understanding of multi-agent systems. In fact,
the sport of soccer forces the team of robots to demonstrate robust individual
and collective behaviors while competing against another teams in an adversarial
setting.

However, solving the game of soccer at once is not an easy task and the
organization split the problem in different research areas, each of which is as-
signed to a particular league. Hence, such leagues features their own challenges
being designed with different environmental and structural assumptions. One
of the most sharp categorization that affects the methodologies proposed in
the competitions is determined by the physical implementation of the agents,
i.e. the platform hardware. Leagues, in fact, range from simulated agents to
heavy-hardware platforms. Simulation2D (Sim2D) and Simulation3D (Sim3D)
are the less hardware-demanding leagues which makes them the most suitable
scenario to promote research in designing complex collective behavior at scale.
The Small Size (SSL) and the Middle Size (MSL) represent the first gate to
physical agents. These leagues employ wheeled robots which alleviate locomotion
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constraints and are capable of performing dexterous maneuvers at high speed.
Then, the Standard Platform League (SPL) forces all participants to use the
same robotic platform, that currently is the Aldebaran humanoid NAO robot.
Such a setting allows researchers to focus more on the behavior of the differ-
ent agent rather than their hardware components. However, it includes in the
challenge noisy perception, partial observability and bipedal locomotion. Finally,
Humanoid Leagues (HL) represent the most hardware-demanding configuration.
In this leagues robot can be 1.6 meters tall, teams are completely in charge of the
hardware components and engineering smooth and agile movements. Intuitively,
however, the decision-making and cognitive behaviors are less demanding and
games features a maximum of 2 vs. 2 robots.

3 Cooperation Strategies

Robots involved in the RoboCup competitions are designed to understand the
external world and to exhibit robust and effective behaviors. In soccer, to this
end, an agent has to show individual decision-making skills to (i) promptly react
local situations [13]; (ii) reason at the collective level with other teammates in
order to efficiently achieve a common goal [8]; and (iii) acknowledge opposing
agents in the environment that act against [5]. Accordingly, we structure our
discussion in three subsections – each of them describing specific problems to be
solve in these areas and relating exiting work.

3.1 From Individual to Collective Strategies

An effective behavior for an autonomous multi-agent system is strictly related
to the single agents capabilities. In fact, one of the requirements to build an
effective multi-agent behavior, is a stable single player behavior. If we take a
closer look to the single-agents, we can classifying their behaviors into two set
of categories based on their abstraction level: skills and behaviors. Skills execute
primitive actions that are usually related to the core motions of the agent, while
behaviors determine how to select those primitive actions to achieve a specific
goal.

In multi-agent adversarial settings, Individual strategies are a key factor for
achieving success. To feature competitive behaviors, a robot must reconstruct a
model of the world by relying on its local perceptions. Then it has to feature a
robust decision-making system to determine the next set of actions to perform
in order to reach a given goal. To this end, a single robot has to be capable of
performing dexterous low-level motions while executing sophisticated high-level
behaviors.

A low-level skill is usually defined as a predefined command for robot actua-
tors to implement action primitive. In the soccer context these are represented by
the routines for kicking, passing, dribbling, diving and getting-up. Individual be-
haviors are generated by composing skills and/or recursively including individual
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behaviors [31]. Behavior design, however, has to take into account different as-
pects characterizing the physical robot platforms, environmental constraints and
task specifics. In RoboCup, researchers investigate a large amount of approaches
and technologies in order to always show more sophisticated robot capabilities.
The most common approaches are based on state machines [21], planners [9] and
various learning techniques, as Evolutionary Learning [30], Statistical Learning,
Deep Learning [18, 12].

A state-machine approach, for example, can be deployed to easily model the
defender behavior of the agent that have to stop the ball to avoid the goal. On the
other hand, some game situations can benefit from the use of deep reinforcement
learning approaches more than a model ones. For example, during penalty-kicks
or in corner-kick situations. In this kind of contexts, learning-based approaches
have started to be used and have been deployed even in place of the modeled
approaches, as in [3, 15], where two different statistical learning methods are
adopted for solving behavioral problems. In the first one, the state evaluation of
a decision-making process has been carried out by means of a Learning to Rank
Algorithm. In the latter, the position of the goalkeeper agent in a MSL game has
been determined with a linear regression approach. Behavior modeling has been
also tackled with Reinforcement Learning approaches. In fact, in [27] within the
context of the Simulation 3D, an agent has been trained to score goals without
previous knowledge. This result has been achieved by means of a transfer learning
system instead of the classical reward shaping approach. Within the context of
the SPL, in [20] the authors addressed the problem of shaping the strategy
of a defender robot adapting it to the strategy of the opponents. The method
used is a combination of Monte Carlo search and data aggregation (MCSDA)
that allowed to adapt the discrete-action soccer policies of the defender player.
Finally, for solving the static free-kick task, a classical bandit approach has been
exploited in [16].

3.2 Collective Strategies

RoboCup soccer leagues forces researchers to program robots to show effective in-
dividual and local behaviors, but also to demonstrate robust teamwork and coop-
erative behaviors. Suggestively, developing multi-robot decision making system
is a much more complex challenge due to several factors: multiple environment
perception streams, distributed world representations, dynamic role-assignment
and asynchronous decision-making. Moreover, in RoboCup teammates are con-
nected via Wi-Fi which, during games, is noisy and too prone to faulty behaviors.

Hence, in order to trade-off robustness and efficiency, and to guarantee com-
petitive collective behaviors, researchers not only rely on the current data stream
but they also provide robots with a model of the environment that can be used as
a surrogate representation to embed the state of the external world [19]. Among
the proposed approaches to multi-robot cooperation and collaboration, we high-
light two major classes: positioning approaches and role-assignment approaches.

As the name suggests, the former category of approaches has the goal of
finding the best team positioning within the field. Such a positioning can be an
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extremely difficult task which grows exponentially with the number of players
and that is subjects to numerous factors. For example, the authors in [14] assess
that the contexts in which the game is currently evolving is key to re-position
teammates. For instance, team formation can be adjusted depending on whether
the players are in an defensive or attacking context, or equivalently depending
on the current score, players can be more aggressive or more cautious if they
have to manage the opponents.

Conversely, dynamic-role assignment attempts to find the optimal mapping
between a set of robots and a set of active task. For example, the authors in [6,
19] use utility functions to estimate how good a robot can perform a certain
task at a given time. Utility functions are particularly suitable to evaluate and
coordinate teams of heterogeneous robots acting collectively. Equivalently, the
authors in [24] exploit MDP to formalize individual behavioral models and de-
termine affinity with a set of given tasks. Differently, Catacora et al. [7] use a
learning-based approach to coordinate a team of robots. Their approach shows
promising results and successfully coordinates two robots in particular in-game
situations (e.g. penalty-kicks). However, the computational demand of such a
methodology limits its application and, at the moment, they cannot run the
learned policy on large teams of robots.

3.3 Opponent Analysis for Cooperation

In adversarial multi-robot environments, having an understanding of the oppo-
nents behaviors represents a remarkable advantage. In fact in such a context,
if a team of robots is able to counter opponents movements, both analyzing
individual behaviors and forecasting team strategies, then it can react more pre-
cisely to the situation at hand – and thus improve the team performance. In
RoboCup, we report that the majority of contributions in opponent analysis
comes from leagues where perception is more reliable [26] (e.g. Sim2D, Sim3D,
SSL and MSL). In such leagues we notice that opponents analysis approaches
can be coarsely categorized in two classes: action sequence analysis and behavior
forecasting.

The former group attempts to find patterns in the action sequences of the
opponents teams in order to recognize recurring strategies. For example, in [10],
the authors proposed an offline opponent action analysis approaches that pro-
cesses game logs in order to extrapolate action primitives. Such primitives are
then coupled with in-game states and organized in an opponents behavior tree.
Yasui et al. [29], instead, formalize a dissimilarity function among state-action
pairs which is then used for clustering and classification. The authors extend
their work to improve computational efficiency [1] and propose an clustering al-
gorithm to analyze the agents behaviors online and promptly react by position
in order to prevent the opponents to score [2].

The latter group aims at solving a forecasting task. In other words, given
the current state of teammates and sequence of opponent actions, the goal is
to predict the intentions of other agents and the next state of the environment.
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Such a capability is key to anticipate opponents’ intentions and gain a substan-
tial advantage on them. In this setting, Li et al. [11] proposes a fuzzy inference
system to classify particular in-game situation (e.g. corner-kick, passing); pre-
dict opponent trajectories; and re-position the team formation accordingly. They
show that by inferring opponents intentions it is possible to double the number
of won games. Similarly, the authors in [25] introduce FOSSE, a deep model-free
approach that given state representation attempts to learn a transition model,
forecast future states of the environment and (as in the previous case) adjusts
the team formation. Finally, in [22] the authors achieve an important milestone
by rolling out a learning approach on a humanoid robot in the SPL. The authors
introduce SAFEL, a real-time learning-based algorithm that is capable of gener-
ating an opponent behavioral model of an agent, and counter-react strategically.

4 Analysis and Classification of the Proposed Approaches

In this paper, we survey the implementation of the different approaches to
decision-making, both at the individual and collective level. In particular, we
analyzed how single agent skills, coordinated team actions and opponent anal-
ysis can contribute to implement effective multi-robot systems in cooperative-
adversarial scenario characterized by different specific challenges (e.g. used plat-
form, low communication, scalable behaviors).

However, there are different considerations that can be done in order to
better classify the proposed approaches in this particularly challenging context.
Such categorizations provide a thorough comparison and slice the state-of-the-
art along different perspectives:

Centralized vs. Distributed. Existing solutions to multi-robot coordination in-
clude a staggering amount of different techniques, each of which comes with
its own advantages and disadvantage. Most contributions to the field of multi-
robot coordination depend on the environmental configuration. For example, in
low-bandwidth and noisy communication scenarios, a fully distributed approach
is typically to be preferred in order to allow robots to act individually even
though the information about teammates is outdated – or simply not coming
in. Conversely, if the overall setup is characterized by a reliable communication,
a centralized approach is implemented to guarantee robustness and optimally
coordinated robots (e.g. Kiva system [28]).

In RoboCup, the technical committee enforces noisy and non-constant com-
munication environments in most of the leagues, thus imposing a bias in the type
of coordination architecture that can be deployed. Moreover, in the SPL data
among teammates can be exchanged only once every second. There is, however,
one league that hosts only centralized approaches. The SSL, in fact, has a single
computer that receives sensory data streams; performs the computation; and
deliberates collective and individual robot actions.

In the SSL we can observe the benefits of featuring a centralized coordina-
tion system where robots do not compete for shared resources; do not clash in
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ambiguous situations; and in general do not show the artifacts of a distributed
approach where optimality in positioning and role-assignment is compromised
to favor reactivity and individual behavior of a single player. Finally, we notice
that in RoboCup, but also in other applications, centralized coordination ar-
chitectures are deployed when robots can assume that the world is stationary
and fully observable. Otherwise, it would be impossible to guarantee optimal
behaviors even with a centralized strategy.

When considering extreme and dynamic environments, distributed architec-
ture, are in general more robust to faulty communication; partial observability
and non-stationary environments. The SPL, and in general all the humanoid
leagues, are a clear example of such environments. Here, distributed coordination
approaches are the most effective solution that researcher can resort to. Usually,
a distributed coordination is achieved only exchanging local information among
the teammates in order to reconstruct of global representation of the world state.
Such information can have different format and might represent different con-
cepts. The majority of distributed coordination systems exchanges either utility
vectors or bid in auction-based methods in order to address dynamic-role assign-
ment. Conversely, few approaches attempt to reconstruct a more sophisticated
global world model by exchanging events that robots perceive locally and em-
bedding them in a global (approximated) representation – which is updated
iteratively. Finally, we notice that a common denominator of such techniques is
that, distributed coordination systems are ready to recover from situation where
a single unit might act individually and still trying to solve the task assigned to
the team. With that firm in mind, existing approaches usually set a priority of
the tasks to be complete. Then, the coordination system allocates roles in order
to guarantee that the most important tasks are always active.

Cooperative vs. Adversarial. RoboCup is challenging from different points-of-
views. In particular, given the structure of the problem and the environment,
researchers are forced to investigate and find a solution to different problems
at once. In this setting, for example, it is not possible to address separately
multi-robot coordination and adversarial analysis.

Due to the individual leagues rules, an effective coordination is achieved dif-
ferently across RoboCup competitions. Typically, coordination is achieved by
balancing a strategic positioning of the different players within the field and dy-
namic role-assignment. In leagues where perception and hardware is not a limit-
ing factor, coordination and cooperation also involves strategic setups, in-game
schemes and multi-agent plays such as give-and-go. As observed in the previous
sections, this is the case of simulated leagues and the SSL where perception is
guaranteed to each agent; and specific to the latter scenario, computation is
centralized.

Instead, we observe that dynamic role-assignment is constant in all leagues
– where participants intuitively exploit the possibility to replace units without
complications. Such a problem can be formalized as set of agents and a set of
tasks, and the aim is to dynamically assign optimally each task to a particu-
lar agent. In the SPL, for example, role-assignment is achieved in a distributed
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fashion where each player takes individual actions but attempting to satisfy a
team goal attempts to achieve a team. In this setting, approaches usually employ
auction-based or utility-based solutions in order to trade-off robustness and re-
activeness of the dynamic constraints of the environment. In the SSL, there are
few approaches that implicitly assign all tasks/roles at once by means of a learn-
ing algorithm. They achieve good in-game performance but, such approaches are
usually computationally inefficient and assume a reliable perception and local-
ization. In fact, we notice that, the less these two assumptions hold, the simpler
is the coordination strategy – which in extreme cases forces teams to implement
static coordination approaches.

The adversarial nature of sports makes RoboCup an excellent testbed to
promote research in the area of Adversarial MRS. However, there is only a
subset of leagues that explicitly takes into account actions of the opponent teams,
such as simulation leagues, SSL. But, there is an emergent trend in one of the
humanoid leagues, i.e. SPL, that started to investigate how to react to opponent
actions. In general, existing methodologies are coarsely categorized in behavior
(and formation) classification and episodic reactive strategies. While the former
involves long term strategies and re-positioning the robots in the field, as in the
SSL, the latter shows more basic behavior that are reactions to movements of
other players. Such strategies influence decisions of the robots and trigger local
routines depending on the particular joint state of the players (both teammates
and opponents). Also in this case, as for the coordination methodologies noisy-
perceptions and hardware might become an obstacle that leads to techniques
that promote robustness and compromise scalability.

Simulation vs. Hardware. We attempt to highlight which are the major factors
that impact and influence the realization of effective multi-robot behaviors for
physical agents in robotic soccer. The research conducted in simulated leagues
supports the design and implementation of the most sophisticated coordination
behaviors and collective strategies. In fact, given reliable perception and guar-
anteed computation power, simulated leagues have the privilege to only focus on
behavior generation. From a different point-of-view, hardware oriented leagues
like the Humanoid, historically focused their effort on behavior modeling for in-
dividual agents, limiting the environment to a pure adversarial setting. Recently,
however, more robots have been added to the game, forcing teams to implement
coordinated actions also for such platforms. Due to the constraints and size of
such robots, current solutions to coordinated behaviors are basic and carefully
handcrafted. But, the evolution of cooperative and collective behavior can only
move forward, and as it happened for other leagues, researchers are experiment-
ing with planning and machine learning approaches, moving away from ad-hoc
modeling. We can conclude, that hardware is definitely one of the most critical
factors in the development of coordination approaches. In fact to-date, heavy-
platforms limit the research in collective behaviors and their deployment on the
field.



10 Suriani et al.

Model-based vs. Learning-based. At the current stage, model-based approaches
represent the most effective in-game choice for behavior generation and coordi-
nation due to their fast deployment and intelligibility. Learning-based methods,
however, show the most promising results achieving more accurate and efficient
solutions even if they suffer from high-computational demand, sample ineffi-
cient and they may result in brittle solutions. For these reasons, the use of
pure learning-based approaches is limited and researchers tend to combine both
paradigms to alleviate some of these issues. However, it is worth noticing that
in leagues where high-computational support is guaranteed, and less complex
platforms are used, learning approaches are more often deployed and have the
chance to showcase their benefits. Examples of such environments are the Sim-
ulated Leagues and the Small-Size League. As a consequence, results shown by
DL methods motivates teams to investigate learning-based approaches across all
RoboCup leagues. In fact, during this survey, we encountered several learning
methodologies which have been proposed to address and optimize particular in-
game situations even in more complex and hardware-demanding leagues. But,
to-date, such methodologies are deployed in an end-to-end fashion, and they are
rather used to support planning-based solutions.

5 Conclusions

RoboCup competitions represent a exciting environment to foster novel research
and excellent testbed to deploy and validate novel methodologies on physical
agents. The research conducted within this context is fundamental develop au-
tonomous end-to-end agents and already contributed to numerous applications
outside the soccer field. We report that in recent years more sophisticated ap-
proaches have been proposed to optimize coordination and collective behavior
at the decision-making level. However, it is worth noticing that not all the pro-
posed approaches find a direct implementation in the actual competition. In
fact, researcher tend to prefer planning-based approaches for in-game situations
while learning-based methods seem to remain at a research phase. However,
even if the solutions within the latter category are sample inefficient, not intelli-
gible and may feature brittle behaviors, learning-based techniques show the most
promising results improving performance in particular settings and generalizing
to unknown scenarios.

Finally, we can summarize that the research conducted in robotics competi-
tions is key for advancing and building effective teams of robotic agents. Com-
petitions, in fact, represent a good balance between research and engineering of
novel solutions that force the research community to develop techniques that
can actually be implemented and can interact with the real world.
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