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Abstract. Nowadays many tools, e.g. fluctuation relations, are available to
characterize the statistical properties of non-equilibrium systems. However, most
of these tools rely on the assumption that the driving noise is normally dis-
tributed. Here we consider a class of Markov processes described by Langevin
equations driven by a mixture of Gaussian and Poissonian noises, focusing on
their non-equilibrium properties. In particular, we prove that detailed balance
does not hold even when correlation functions are symmetric under time reversal.
In such cases, a breakdown of the time reversal symmetry can be highlighted by
considering higher order correlation functions. Furthermore, the entropy pro-
duction may be different from zero even for vanishing currents. We provide ana-
lytical expressions for the average entropy production rate in several cases. We
also introduce a scale dependent estimate for entropy production, suitable for
inference from experimental signals. The empirical entropy production allows
us to discuss the role of spatial and temporal resolutions in characterizing non-
equilibrium features. Finally, we revisit the Brownian gyrator introducing an
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additional Poissonian noise showing that it behaves as a two dimensional lin-
ear ratchet. It has also the property that when Onsager relations are satisfied
its entropy production is positive although it is minimal. We conclude discuss-
ing estimates of entropy production for partially accessible systems, comparing
our results with the lower bound provided by the thermodynamic uncertainty
relations.

Keywords: stochastic processes, stochastic thermodynamics,
fluctuation theorems, Brownian motion
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1. Introduction

A deep comprehension of non-equilibrium systems is one of the most relevant open
problems in statistical mechanics [1]. A crucial aspect of the non-equilibrium condition
is the presence of currents induced by some external constraints: physical currents—in

https://doi.org/10.1088/1742-5468/ad063b 2

https://doi.org/10.1088/1742-5468/ad063b


Statistical features of systems driven by non-Gaussian processes: theory & practice

J.S
tat.

M
ech.(2023)

113202

the framework of Markov processes—imply that the detailed balance does not hold and,
in general, that the time-reversal symmetry is statistically broken, or, equivalently, that
the entropy production is positive [2–5]. From a mathematical point of view the above
statement can be assumed as satisfactory and it has been thoroughly considered in the
context of several Markov processes (e.g. Langevin equations and master equations), in
particular an explicit expression for the entropy production can be introduced as the
log-ratio between the probability of a long trajectory and that of its time reversal [6].

Among the interesting issues which deserve investigation, one should include the
design of efficient methods to characterise the ‘degree of irreversibility’, something also
called ‘distance from equilibrium’ [7], which typically requires a proper modelling with a
suitable mathematical description of the system [8–13]. In this paper we discuss the role
of Gaussian or non-Gaussian statistics for discriminating the degree of irreversibility of
a system.

Starting from the archetypal Brownian Motion, a plethora of phenomena have been
modelled and investigated in terms of stochastic differential equations with a Gaussian
random force (e.g. Gaussian white noise) [14]. It is a matter of fact that Gaussian pro-
cesses are ubiquitous in science, the reason is—basically—the central limit theorem,
which can be succinctly summarised saying that a linear combination of many inde-
pendent variables tends to behave as a Gaussian variable. This—already at a qualitat-
ive level—is a strong argument for modelling the random forces appearing in stochastic
differential equations in the form of Gaussian white noises. For the same reason, a large
part of stochastic thermodynamics is devoted to models with such a kind of noise,
which has been successfully adopted even for systems which are inherently out of equi-
librium [3–5]. There are several cases, for instance coming from the physics of driven
granular gases or self-propelled particles, where the usual linear Langevin equation is
considered to be a satisfying approximation for the description of the dynamics of a
massive probe, particularly in its diffusive regimes [15–18].

More accurate analyses have shown, however, that—in some cases—linear differ-
ential equations with Gaussian white noises are not able to describe some important
features of the underlying dynamics, in particular they cannot catch the non-equilibrium
statistical properties of the system. In order to restore non-equilibrium in the model, a
suitable non-Gaussian noise is necessary [19].

At a first glance, the use of non-Gaussian noise can sound rather odd, on the contrary
there are both physical and mathematical justifications for it. For instance we can
consider a massive intruder kicked by instantaneous collisions with agitated granular
particles: if the number of collisions in a given ∆t is not very large, the use of a Gaussian
white noise is questionable. There are cases where it is more appropriate to take, as
random force, a compound Poisson noise ζ(t), see section 2 for details. In addition,
it is possible to show that non-Gaussian white noises like ζ(t) can be derived from
microscopic theories through a systematic expansion of the Boltzmann–Lorentz equation
governing the evolution of the intruder in a granular gas [20–23]. Finally, we mention
that, even from a mathematical point of view, by virtue of the Levy-Ito decomposition
theorem, the compound Poisson noise is one of the three contributions to Levy processes,
i.e. processes with independent and identically distributed increments [24–26].

The structure of the paper is the following. Section 2 is devoted to an analytical
and numerical investigation of systems with non-Gaussian forcing. We show that it is
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possible to have a non-equilibrium system even with ⟨xi(t)xj(0)⟩= ⟨xj(t)xi (0)⟩: the
breaking of the time reversal symmetry can appear only looking at other correlation
functions e.g.

〈
x3(t)x(0)

〉
̸=
〈
x3(0)x(t)

〉
. In a similar way the absence of a current is

not sufficient for the time reversal symmetry to hold. In section 3 we study the entropy
production S: it is possible to find an explicit expression for systems driven by a forcing
containing a Gaussian term, with ‘temperature’ T, and a compound Poisson noise. It is
interesting that in the absence of a Gaussian noise, the entropy production is infinite,
as a straightforward consequence of the discontinuous character of the Poisson noise
and of the dissipative dynamics between jumps. Detailed numerical studies of S(ϵ,∆t),
i.e. the entropy production computed at space resolution ϵ and sampling time ∆t, show
that the convergence to the asymptotic value is very slow and a gigantic amount of
data is necessary, an observation which has an immediate and practical relevance for
the treatment of experimental signals. As a case study, in section 4 we treat a 2D
linear system driven by non-Gaussian forcing, that is a generalization of the Brownian
Gyrator, comparing S with the average current and the deviations from the symmetry
under time-reversal of higher order correlations. In section 5 we draw conclusions and
suggest perspectives. In the appendix we present some mathematical details for the
computation of S.

2. Time reversal symmetry and non-Gaussian noise

In this section we investigate the effect of non-Gaussian delta-correlated noise on the
equilibrium properties of stochastic processes, focusing our attention mainly on the time
reversal symmetry. We will show that this noise generally drives the system away from
equilibrium conditions even when fluctuation relations hold and we discuss a strategy
to infer and measure the ‘degree of irreversibility’ of the system.

Time reversal symmetry and thermodynamic equilibrium properties of a system are
two strictly related concepts. In the framework of Markov processes such a relation is
provided by the detailed balance condition [27]. Indeed, a system described by a Markov
process X is said to be at equilibrium if

π (X)Wt (Y |X) = π (Y )Wt (X|Y ) (1)

whereWt(Y |X) is the probability to have Y at time t given the initial condition X and
π(X) is the stationary probability. Condition (1) implies that forward (in time) and
backward paths have the same probability. Moreover, for any two functions f,g that
represent (under time-reversal) even observables, one has ⟨g(t)f (0)⟩= ⟨f(t)g(0)⟩. When
the system evolves according to a stochastic differential equation driven by Gaussian
noise detailed balance also imposes vanishing currents. If one also restricts the class
of investigated systems to Gaussian Markovian systems (for instance, in the continu-
ous case, Langevin equations with linear forces and Gaussian noise) we have that the
following conditions are sufficient for equilibrium [3, 4]:

• zero entropy production;

• no currents;
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• time-reversal symmetry of the correlation functions i.e. ⟨xi(t)xj(0)⟩= ⟨xj(t)xi(0)⟩.

Actually the above statements are equivalent; it is quite natural to wonder about the
effects of non-Gaussian forcing on the above scenario.

In the following we focus on the effect of a compound Poisson noise ζ(t) on cur-
rents and time-reversal symmetry, postponing the study of entropy production to
the next section. A compound Poisson noise ζ(t) is a stochastic process obtained as
ζ(t) =

∑
jUjδ(t− tj) where independent jumps, of random amplitudes Uj (Uj is a vec-

tor with the same dimensions of X ) distributed according to P(Uj), occur at random
times tj. The differences tj − tj−1 are distributed according to Qλ(t) = λe−λt. Such a
noise arises naturally in granular system [19–23] and can also be used to model act-
ive forces [28–30]. Moreover, similar noises have already been employed successfully
both for modelling systems showing anomalous diffusion or stationary distribution with
exponential tails [31, 32] or for implementing efficient protocols for finding ‘shortcuts
to adiabadicity’ [33]. Note that the properties of ζ(t) are strictly related to those of
P(U). In particular, if P(U) has finite second moments, elements of Γ =

〈
UUT

〉
, then

the central limit theorem holds and thus the sum of a large collection of jumps {Uj}j⩽N

tends to be normally distributed for large N, i.e.

PN (zN = z)→GΓ (z) =
e−

1
2
zTΓ−1z√
|2πΓ|

as N →∞ (2)

zN =
1√
N

N∑
j=1

(Uj −⟨Uj⟩) . (3)

Let us note that (assuming ⟨U⟩= 0) correlations of L(t) =
´ t

0 ζ(t ′)dt ′ are equivalent to
those of a standard Wiener process [34–37], i.e.

⟨L(t)L(t ′)⟩= λΓ inf {t, t ′} . (4)

Such a result suggests that some properties of the system may not change when com-
pound Poisson noise is used instead of the Gaussian one as a driving force.

Consider a stochastic process X driven by a combination of a compound Poisson
noise ζ and a Gaussian noise ξ, i.e.

Ẋ = F (X) + ξ (t) + ζ (t) X = {xi}i=1,N (5)

with ⟨ξ ⟩= ⟨U⟩= 0,
〈
ξ(t)ξT (t ′)

〉
= 2Dδ(t− t ′) and

〈
UUT

〉
= Γ. Since the process X is

discontinuous, the detailed balance condition has to be imposed separately on the jumps
and on the continuous part [27]. Regarding the discontinuous part, equilibrium condi-
tion (1) takes the form

π (X)P (Y −X) = π (Y )P (X −Y ) . (6)

This means that if in the steady state the distribution of X is spatially non-uniform
(π(X) ̸= const.) and the jumps are symmetric (P(U) = P(−U)) equation (6) can not be
satisfied and the system is necessarily out of equilibrium. Nonetheless, if one restricts
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Figure 1. Examples of direct (left) and time-reverse (right) trajectories for pro-
cesses driven by a Gaussian or Poisson noise. It is evident that in the Poisson case
the time-reversed trajectory is strongly incompatible with the direct one, i.e. it is
not possible to find any piece of the latter in the former.

one’s attention to linear systems (F (X) =−AX with A a positive definite matrix), X ’s
correlations are equivalent to those of another system where the noises ξ and ζ are

replaced by a Gaussian white noise ξ̃ with
〈
ξ̃(t)ξ̃(t ′)

〉
= (2D+λΓ)δ(t− t ′). This means

that, in this context, even if the Onsager relations (⟨xi(t)xj(0)⟩= ⟨xj(t)xi(0)⟩) hold,
they are no longer sufficient to determine whether that system is in thermodynamic
equilibrium or not. Although this may seem surprising, recent works show that some
thermodynamics relations (e.g. Einstein and Kubo) depend exclusively on the exist-
ence of a stationary state and therefore hold also in non-equilibrium conditions [38].
Statistical moments of order higher than two are necessary to discriminate between
standard Gaussian noise and compound Poisson, and between equilibrium and non-
equilibrium behaviour [19, 39]. Notwithstanding, sometimes the non-equilibrium nature
of systems driven by compound Poisson noise can be easily grasped by looking at for-
ward and backward time-series, as shown in figure 1. Indeed, in the forward time-series
(left panel) each jump is followed by a damping which instead appears as an acceler-
ation in the backward time-series (right panel), signalling the time-reversal symmetry
breaking. In the following we will analyse in closer detail two one-dimensional examples,
in order to emphasize further the differences with respect to the equivalent Gaussian
systems.

2.1. 1D linear dynamics

As a first example, let us consider a one-dimensional linear system

Ẋ =−γX + ξ (t) + ζ (t) (7)

with ⟨ξ ⟩= ⟨U⟩= 0, ⟨ξ(t)ξ(t ′)⟩= 2Tδ(t− t ′) and
〈
U 2
〉

= Γ, with γ and Γ two positive
parameters. This equation has been proposed in [20–22] for describing the evolution of
a massive probe in a granular medium and it has recently been shown [19] that it can be
thought as a minimal effective model for such a systems. Concerning this equation, we
note that in the absence of ζ the system is necessarily at equilibrium (like all 1d systems
without periodic boundary conditions) since it can not sustain any stationary current.
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In this case, the system is Gaussian and the first two moments fully characterize the
statistics of X. The correlation function C(t) = ⟨X(t)X(0)⟩ is

C (t) =
T

γ
e−γt . (8)

When the compound Poisson noise ζ is taken into account, the system is driven out
of equilibrium and X is no longer Gaussian. Nonetheless, given the confining nature of
the potential, the system still can not sustain any net physical current transporting the
position steadily in a given direction. Furthermore, the correlation function is symmetric
by construction and takes the form

C (t) =
2T +λΓ

2γ
e−γt (9)

which is exactly of the same form of the Gaussian case. On the other hand, non-trivial
moments can display a breaking of time-reversal symmetry e.g. the 4th order correlation
function H(t) =

〈
X(t)X3(0)

〉
. Indeed, for t > 0 we have

H (t) =
〈
X (t)X3 (0)

〉
= e−γt

〈
X4
〉

(10)

H (−t) =
〈
X3 (t)X (0)

〉
= e−3γt

〈
X4
〉

+ 3e−γt
(
1− e−2γt

)〈
X2
〉2

(11)

which are clearly different. Note that ⟨X4⟩ (⟨X2⟩) denotes the average of X 4 (X 2)
over the steady-state distribution π(X). Defining a degree of irreversibility ∆H(t) =
H(t)−H(−t) leads to

∆H (t) =
(〈

X4
〉
− 3
〈
X2
〉2
)(

e−γt− e−3γt
)
. (12)

Note that the last equation correctly predicts ∆H(t) = 0 when the system is Gaussian.

2.2. 1-D dynamics on a ring

One-dimensional systems on a ring, e.g. with periodic boundary conditions, can sustain
a non-equilibrium steady state and therefore constitute an excellent test-bed for invest-
igating the effect of non-Gaussian noises on the properties of a system. From a physical
perspective, diffusion in periodic potential is used as a minimal model which displays
transport phenomena and it might be relevant to discuss the role of external noise on
these phenomena. Let us consider a system

Ẋ =−∂XV (X) + ξ (t) + ζ (t) , (13)

V (X +L) = V (X) . (14)

This system has already been studied in [30, 40–45] and several non trivial behaviours
arise. In particular, it has been shown that if the potential V (X ) has an asymmetric
shape, the noise ζ induces a physical current in the system [40]. Nonetheless, as a trivial
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Figure 2. Potentials of equation (17). Left: symmetric potential V1(X). Right:
ratchet potential V2(X).

consequence of the system laying in a one-dimensional space, the correlation function
C(t) is symmetric. Here we focus on the effects of ζ on the degree of irreversibility

∆H (t) =
〈
X (t)X3 (0)

〉
−
〈
X3 (t)X (0)

〉
(15)

and its relation with the physical current. For this purpose, we consider two forms for
the potential V (X ) (see figure 2), namely

V1 (X) =
LV0

2π

(
1− cos

2π

L
X

)
, (16)

V2 (X) =
LV0

2π

(
C + sin

2π

L
(X − d) +

1

4
sin

4π

L
(X − d)

)
,

C = sin
2πd

L
+

1

4
sin

4πd

L
. (17)

where the parameter d determines the minima positions. The first potential is symmetric
and the noise ζ is not able to induce any current if the distribution of jumps P(U) is an
even function [40]. Notwithstanding this, ∆H(t) reveals the breaking of time-reversal
symmetry in contrast to the Gaussian case where it is equal to zero, see the right panel
of figure 3.

The potential V2(X) in equation (17) instead has an asymmetric shape. Thus, the
noise ζ induces a physical current as is clear in figure 4 that shows the variable X
drifting towards positive values. Clearly, the non-equilibrium nature of the system can
also be revealed by the degree of irreversibility ∆H(t) (see figure 3 right panel). These
examples show once again that the absence of current and the symmetry of the usual
(second order) correlation functions are necessary conditions for equilibrium, but are
not sufficient if the system is driven by non-Gaussian noise.

3. Entropy production and its empirical estimate

In the previous section we have shown that stochastic differential equations driven by
non-Gaussian white noises are out of equilibrium and the breaking of time reversal

https://doi.org/10.1088/1742-5468/ad063b 8
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Figure 3. Degree of irreversibility ∆H(t) normalized to the value H (0). The degree
of irreversibility for the processes driven by compound Poisson noise ζ are shown
in blue while orange curves represent the Gaussian cases. Left: symmetric poten-
tial. Right: ratchet potential. The parameters used for numerical simulations are
L = 1,V0 = 1,d =−0.2,λ = 20,σ2 = 0.2,T = 0,Γ = σ2/λ. The initial conditions are
sampled from the stationary distribution.

Figure 4. X Vs t for the process driven by the compound Poisson noise in
the ratchet potential. The average slope represent the stationary current js.
The parameters used for numerical simulations are L = 1,V0 = 1,d =−0.2,λ =
20,σ2 = 0.2,T = 0,Γ = σ2/λ. The initial conditions are sampled from the stationary
distribution.

symmetry is revealed by looking at higher order correlation functions. This approach,
satisfactory for the goal of simply discriminating, e.g. in experiments, between equi-
librium and non-equilibrium, has some unavoidable disadvantages. In fact, although it
suffices to find two functions f,g for which one has

Cfg (t) = ⟨f (0)g (t)⟩ ̸= ⟨f (t)g (0)⟩= Cfg (−t) (18)

in order to asses the non-equilibrium nature of the system, the degree of irreversibil-
ity ∆Cfg = Cfg(t)−Cfg(−t) depends on the functions f and g therefore it is not pos-
sible to introduce a quantity which is intrinsic i.e. that does not depend on the choice
of the observables. This difficulty is overcome (at least from a formal point of view)
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by considering the entropy production S, which is an information-theoretic quantity.
Formally, the entropy production S of a Markov process X is defined as [6]

S = lim
T →∞

1

T

〈
log

(
P
(
{Xt}0⩽t⩽T

)
P
(
{XT −t}0⩽t⩽T

))〉= lim
T →∞

⟨ST ⟩
T

(19)

where P({Xt}0⩽t⩽T ) represents the probability of the path {Xt}0⩽t⩽T in an analogous
way P({XT −t}0⩽t⩽T ) of the reversed path {XT −t}0⩽t⩽T and the average is done with
respect to the forward path probability (we are always assuming, for simplicity, that
all the relevant degrees of freedom are even under time-reversal). When the system
admits a clear thermodynamics description, S is related to the dissipated heat [3, 4].
For a discontinuous Markov process X, the probability of a given path {Xt}0⩽t⩽T is
completely determined by the joint distribution of the discontinuities and the continuous
paths between two subsequent discontinuities, that is (see appendices A and B)

P
(
{Xt}0⩽t⩽T

)
= P

(
{Xt}0⩽t⩽t−1

)
· · ·P

(
{Xt}tn⩽t⩽T

)
P (t1,∆Xt1; . . . , tn,∆Xtn) (20)

where P(t1,∆Xt1; . . . , tn,∆Xtn) represents the probability that discontinuous jumps
∆Xtk = Xtk −Xt−k

for k = 1, . . . ,n occur at times t1, . . . , tn. Thus, the quantity ST can be

decomposed as

ST = ScT +SjT (21)

with

ScT =
n∑

i=0

log

 P
(
{Xt}ti⩽t⩽t−i+1

)
P
(
{XT −t}T −t−i+1⩽t⩽T −ti

)
 , t0 = 0 and t−n+1 = T , (22)

SjT = log

(
P (t1,∆Xt1; . . . , tn,∆Xtn)

P (T − t1,−∆Xt1; . . . ,T − tn,−∆Xtn)

)
, (23)

where n is the number of discontinuities in the path. A similar decomposition has already
been applied for computing the entropy production rate in a driven one-dimensional
Lorentz gas [46]. We note that decomposition (21) does not imply that the two quant-

ities ScT and SjT are completely disjointed. In particular, the presence of discontinuities
changes the probabilities for continuous paths so the statistics of ScT also depends on
the properties of P(t1,∆Xt1; . . . , tn,∆Xtn). This result is valid for all Markov processes
but often it is not very practical. There are a few cases for which it is possible to carry
out analytical computations and obtain simpler formula for S. Some stochastic process
driven by a compound Poisson noise ζ belong to this class of Markov processes, as
discussed in appendices D and E.

In our case, since the amplitude Uk = ∆Xtk is independent from the time tk at which
it occurs, the jumps’ probability P(t1,∆Xt1; . . . , tn,∆Xtn) takes the form

P (t1,∆Xt1; . . . , tn,∆Xtn) = P (t1, . . . , tn)P (U1) · · ·P (Un) (24)
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where P(t1, . . . , tn) is the uniform distribution over the region t1 < t2 < · · ·< tn < T
(see appendix B for further details), which implies SjT = 0 if P(U) = P(−U). Thus,
for stochastic processes driven by symmetric Poisson noise, one has ST = ScT . In the fol-
lowing we will give the explicit expressions for the entropy production for the examples
of the previous section. Before this, however, it is important, at least on a conceptual
level, to discuss how this entropy production can be measured in real experiments. In the
following we consider only symmetric P(U). We will see that ScT typically is determined
by two contributions: one given by the Gaussian noise and the other by the Poissonian
noise.

3.1. Empirical estimate of the entropy production

Estimating entropies from data is a difficult task, mainly due to the large number of data
needed for having a precise result. The purpose of this section is to discuss both the tech-
nical and conceptual problems faced in entropy production measurements. Borrowing
concepts from dynamical systems, we introduce the concept of scale-dependent entropy
production S(ϵ,∆t) (somewhat analogous to ϵ-entropy [47–49]) as follows:

• introduce a partition {Ci(ϵ)}1⩽i⩽K of size ϵ of the phase space ΩX (for example hyper-
cube of side ϵ),

• define an empirical Markov chain on the space induced by the partition whose sta-
tionary probability πi and transition matrix Mij(∆t) are

πi = P (Xt ∈ Ci (ϵ)) ,

Mij (∆t)= P (Xt+∆t ∈ Cj (ϵ) |Xt ∈ Ci (ϵ)) =
P (Xt ∈ Ci (ϵ) ,Xt+∆t ∈ Cj (ϵ))

P (Xt ∈ Ci (ϵ))
,

• compute the entropy production of this Markov chain

S (ϵ,∆t) =
1

∆t

∑
ij

πiMij log

(
Mij

Mji

)
.

Of course the Markov chain can be considered a good approximation only for ∆t and
ϵ small enough. The πi and the Mij(∆t) must be determined from a long trajectory.
Although the entropy production S(ϵ,∆t) is different from that of the real system S,
in the limit ϵ→ 0 and ∆t→ 0 one has S(ϵ,∆t)→S 3. It is important to note that the
S(ϵ,∆t) is not a lower bound for the entropy production. Indeed, in order to have a
lower bound one should consider the entropy production of the non-Markovian coarse-
grained process. Here, instead, we consider an approximate Markovian process and,
as it is shown in [13], its entropy production could also be larger than the entropy
production of the microscopic system. Let us now consider in more detail the expected

3 For ϵ→ 0 and ∆t→ 0 the empirical stationary distribution π and the transition matrix M converge to their continuous counter-

parts, i.e. π → π(X), Mij →Wt(Y |X). Thus, S(ϵ,∆t) →S = limt→0
1
t

∑
X,Y π(X)Wt(Y |X) log

(
Wt(Y |X)

Wt(X|Y )

)
which can be proven to

be an equivalent definition for the entropy production of a Markov process [3, 4, 50] (see also appendix C).
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behaviour of S(ϵ,∆t) in the context of stochastic process driven by compound Poisson
noise. The noise ζ has two relevant scales, one spatial and one temporal. The spatial
scale is related to the typical size of jumps U, i.e. ϵp ∼

√
⟨U 2⟩, while the temporal one is

dictated by the jumps rate λ, namely τp ∼ 1
λ . In situations where ∆t≫ τp, one expects

that S(ϵ,∆t) is in good agreement with the prediction of the Gaussian case, since there
is time for a large number of jumps to occur and ζ is somehow close to a Gaussian noise.
Similarly, for spatial resolutions greater than the size ϵp of typical fluctuations, Poisson
noise does not contribute to the transitions between different cells of the partition. For
small enough ϵ and ∆t instead, the quantity S(ϵ,∆t) is expected to be a good proxy of
the continuous entropy production S. All these observations are based exclusively on
theoretical arguments and are therefore valid in the limit of an infinite amount of data.
Problems can arise when the amount of data N is limited and so the results may not be
statistically significant. The most serious problem (and the only one we discuss briefly)
is how to deal with missing transitions, i.e. situations for which Mij > 0 but Mji = 0. In
these situations, the definition of S(ϵ,∆t) leads to divergences. In order to avoid these
divergences, a regularization can be applied, i.e. assuming a small but finite probability
δ≪ 1

N for the missing transitions. In this way, S(ϵ,∆t) takes only finite values that are

almost independent on the value of δ (as long as δ≪ 1
N ).

3.2. Entropy production for 1D linear dynamics

Let us discuss the effect of non-Gaussian noise on entropy production in one-dimensional
linear systems. Given the simplicity of linear models, this example allows us to under-
stand the main difficulties encountered in estimating entropy production. Moreover,
analytical computations for entropy production can be easily performed. The details
can be found in appendix E while the result is:

ScT = T−1 [V (Xt0)−V (XT )] +T−1
n∑

i=1

[V (Xti +Ui)−V (Xti)]

= T−1 [V (Xt0)−V (XT )] +
γ

2T

n∑
i=1

[
U 2
i + 2XtiUi

]
. (25)

In the limit T →∞ we have that, for ScT /T the first term contains only boundary
contributions and therefore it is zero, on the contrary, the second term of (25) increases
proportionally to n which on average is equal to λT . Thus, the entropy production rate
S (equation (19)) is

S =
γλΓ

2T
. (26)

At this point we can discuss the empirical estimates S(ϵ,∆t) and test whether it is able
to give a reasonable proxy to the entropy production S. Figure 5 show the empirical
entropy production S(ϵ,∆t) as a function of the temporal scale ∆t as the duration of
the trajectories T increases. As one can see, when the true value of entropy production
is not too ‘small’ (order ∼10−1− 1, see the red curve on right panel of figure 6), we
are able to get a good numerical agreement, a relative error of the order 10%, even
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Figure 5. Ratio between the empirical entropy production rate S(ϵ,∆t) and its
theoretical value S as a function of ∆t/τ for ϵ = 5.86 · 10−3. Different curves rep-
resent simulation of increasing duration. Horizontal black lines indicate the asymp-
totic value. Left and right panels show two cases with different proportion between
Gaussian and Poisson noise amplitude. The parameters used for numerical simula-
tions are γ = 1/180, λ = 1/64, (2T +λΓ) = 2γ, T = (1− p)γ, Γ = p(2γ/λ), p = 0.99
(left) p = 0.75 (right). The initial conditions are sampled from the stationary
distribution.

Figure 6. Left panel: Ratio between the empirical entropy production rate S(ϵ,∆t)
and its theoretical value S as a function of ∆t/τ for several ϵ. Horizontal black
line indicate the asymptotic value. Right panel: convergence of S(ϵ,∆t) towards
the theoretical value (horizontal lines) for different level of Poisson noise, p =
0.75,0.90,0.95. The vertical dashed black line represents the Poisson jump rate
τ .

by computing S(ϵ,∆t) with short trajectories. Conversely, although the absolute error
is about the same, if the true entropy production is too small (order ∼10−2, see the
light blue curve on right panel of figure 6), a gigantic amount of data is needed to
have the same accuracy. This can impose severe limitations in experiments with more
complicated systems having multiple time scales. Note, however, that this is just an
empirical observation and different systems could behave differently one from each other.

Left panel of figure 6 shows again S(ϵ,∆t) as a function of ∆t but for different value
of ϵ. As expected, differences between different ϵ only appear when ∆t≪ τ and the
estimates become more and more accurate as ϵ→ 0. Finally, the right panel of figure 6
confirms once again that S(ϵ,∆t) is a good proxy in different situations and in particular
when the system is ‘close to equilibrium’ (S ∼ 10−2).
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3.3. Entropy production for 1D dynamics on a ring

Consider now more complicated examples: the case where a particle is moving on a ring
under the effect of a periodic potential and driven by both Gaussian and Poissonian
noises. Here we employ the same potentials already used in section 2 (equation (17)),
with the difference that in the symmetric case we also add a constant pulling force f.
Such a force breaks the time reversal symmetry even in the Gaussian case, inducing a
stationary current js. It is well known that, in the Gaussian case, the entropy production
S is strictly related to the stationary current js according to [3, 4, 50]

S ∝ j2
s

T
. (27)

Therefore, it seems natural to wonder how Poissonian noise changes this scenario. As
already explained in the previous section, for gradient systems the change in entropy
equals the change of internal energy. Since all one-dimensional system can be thought
as gradient systems, the pulling force f just modifies the internal energy as V (X)→
Vf (X) = V (X)− fX. The reader can find the details of the analytical computation in
appendix E. The main result is the following

S =
js
T
f + ∆Sp . (28)

In the case of symmetric potential we have

∆Sp =
λV0L

2πT

〈
cos

2π

L
x

〉(
1− e−2(πΓ/L)2

)
(29)

while in the case of the ratchet-like asymmetric potential, we have

∆Sp =−λV0L

2πT

[〈
sin

2π

L
(x− d)

〉(
1− e−2(πΓ/L)2

)
+

1

4

〈
sin

4π

L
(x− d)

〉(
1− e−8(πΓ/L)2

)]
, (30)

where ⟨·⟩ indicates the average over the stationary distribution π(x). It is interesting to
note that, independently of whether there is a physical current or not, the first term of
the right hand side of equation (28) vanishes when f = 0.

Let us now consider the empirical entropy production S(ϵ,∆t), starting with the
symmetric potential with a constant pulling force f = 0.5. S(ϵ,∆t) displays several
regimes depending on the timescales of relaxation and jump events. In particular, if
the relaxation time τr ∼ V −1

0 is much bigger than the jump rate τp = λ−1, we expect
that S(ϵ,∆t)∼ j2

s/Teff for τp≪∆t≪ τr where Teff = T +λΓ. For τp ≲ τr the dynamics
is dominated by the jumps and the empirical entropy production strongly differs from
its Gaussian counterpart. This expectation is confirmed by numerical simulation as can
be seen in the top panels of figure 7. The left panel shows S(ϵ,∆t) as a function of ∆t
for various ϵ. It can be noted that almost every ϵ displays a pronounced plateau in the
correspondence of the Gaussian prediction. The differences between the Gaussian and
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Figure 7. Empirical entropy production rate S(ϵ,∆t) as a function of ∆t for
a particle in a symmetric periodic potential V1(X) and pulled by a constant
force f. Top left panel: S(ϵ,∆t) for several ϵ ∈ [1.2 · 10−3,1.9 · 10−2]. Horizontal
lines indicate the theoretical value (black) and the Gaussian prediction (red).
Top right panel: S(ϵ,∆t) for two different Poisson jump rates τ p (τp = 0.05 red,
τp = 0.005 blue) for ϵ = 3.9 · 10−3. Bottom panels show the convergence of S(ϵ,∆t)
for ϵ = 3.9 · 10−3 towards the theoretical values (horizontal lines) for different level of
Poisson noise (75% ,95%) for τp = 0.005 (left) and τp = 0.05 (right). The parameters
used for numerical simulations are L = 1,V0 = 1,d =−0.2, τp = 1/λ,σ2 = 0.2,T =
(1− p)σ2/2,Γ = pσ2/λ, f = 0.5 with p = 0.75 or p = 0.95. The initial conditions are
sampled from the stationary distribution.

non-Gaussian cases only arise for ∆t < τp. Note also that, as explained in the previ-
ous section, the convergence towards the true entropy production S may not be very
precise due to the large number of samples required. The different regimes of S(ϵ,∆t)
are shown on the right panel showing S(ϵ,∆t) for τp = {0.005,0.05}. Bottom panels of
figure 7 show S(ϵ,∆t) with two different percentages of Poisson noise4. These figures
confirmed once again that for large enough ∆t the coarse-grained entropy production
is not sensitive to different noises and differences only arise when ∆t∼ τp.

Most of the considerations made for the symmetric potential also hold for the ratchet
potential. Thus, we focus on the case f = 0 where a physical current induced by the

4 The percentage of Poisson noise p is defined as the ratio between the variance of the Poisson noise λΓ and the total variance of
the noise σ2 = (2T + λΓ), that is p = λΓ

σ2 .
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Figure 8. Empirical entropy production rate S(ϵ,∆t) as a function of ∆t for a
particle in an asymmetric periodic potential V2(X) for ϵ = 3.9 · 10−3. Blue (green)
and red (yellow) curves show S(ϵ,∆t) for τp = 0.005 ,0.05 respectively at two differ-
ent Poisson level 75% (green and yellow) and 95% (blue and red). The parameters
used for numerical simulations are L = 1,V0 = 1,d =−0.2, τp = 1/λ,σ2 = 0.2,T =
(1− p)σ2/2,Γ = pσ2/λ, f = 0 with p = 0.75 or p = 0.95. The initial conditions are
sampled from the stationary distribution.

compound Poisson noise ζ is present. Here we just want to underline that since the cor-
responding Gaussian case is an equilibrium system, for large ∆t the empirical entropy
production S(ϵ,τ) drops to 0 (see figure 8) although the system sustains a steady cur-
rent, as can be seen from figure 4.

4. The ‘Poissonian’ gyrator

In the previous sections we have discussed how the Poissonian noise ζ affects the equi-
librium properties of one dimensional systems. In particular, we have stressed that some
equilibrium conditions (such as the absence of physical currents or symmetric correla-
tions) are no longer sufficient to infer thermodynamic properties of the system if the
Gaussian fluctuations assumption ceases to hold. However, one-dimensional examples
have the drawback that their Gaussian counterpart is necessarily a trivial equilibrium or
non-equilibrium system (a forcing is required to sustain non-equilibrium steady states).
On the other hand, multidimensional systems can be thrown out of equilibrium without
forcing even in the Gaussian case, whenever the system is in contact with multiple
thermal baths at different temperatures. Thus, the aim of this section is to present an
example of such a system, namely the case of the so-called Brownian gyrator [51–54].
It consists in a two dimensional linear system

Ẋ =−AX + ξ , (31)

A =

(
α −η
−µ γ

)
,

X =

(
x
y

)
(32)
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with ⟨ξ(t)⟩= 0, ⟨ξ(t)ξ(t ′)⟩= Σδ(t− t ′) and being Σ =

(
2T1 0
0 2T2

)
. In the stationary

states, the correlation function takes the form

C (t) = e−AtC (33)

where C = C(0) represents the covariance of X. The equilibrium conditions are expressed
through the Onsager relations (see [11, 27, 55] or appendix D)

AC = CAT (34)

or equivalently from the conditions C(t) = CT (t). When equation (34) is not satisfied,

a systematic torque induces a rotational current (⟨θ̇⟩ ̸= 0 with θ = arctan
(
y
x

)
) in the

system [55, 56]. In these cases, the entropy production rate S is

S = Tr
[
2CATΣ−1A−A

]
=

(T2η−T1µ)2

T1T2 (α+ γ)
(35)

which vanishes when T2η = T1µ. Furthermore, the rotational current ⟨θ̇⟩ is proportional
to (T2η−T1µ) and is equal to zero in equilibrium conditions. It should also be noted
that when the system is coupled to two different heat baths (T1 ̸= T2) the interaction
terms µ, η must be non-reciprocal (µ ̸= η) in order to maintain equilibrium [57]. As
already anticipated in section 2 and analogously to the one-dimensional examples, the
presence of an additional Poissonian noise ζ changes the above picture. Thus, consider
the equation

Ẋ =−AX + ξ + ζ (36)

where, as usual, we denote the covariance of jumps U as Γ. The correlations of the
process in the stationary state read

Ĉ (t) = e−AtĈ (37)

with Ĉ = Ĉ(0). Note that equation (37) are equivalent to equation (33) and so Ĉ has
the same structure of C of a Gaussian process with noise matrix D = Σ +λΓ (see
appendix D for further details). Since the system is driven by Poisson noise ζ and it is
necessarily out of equilibrium, the previous observation means that Onsager relations
[58] fail to discriminate equilibrium and non-equilibrium systems. For the same reason,
also the Harada-Sasa equality that relates the energy dissipation to the violation of
Fluctuation-Response relation [59] it is not able to distinguish between equilibrium
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Figure 9. Temporal asymmetries of the Poisson-Brownian gyrator. Left panel:
angle θ Vs t for the process driven by the compound Poisson noise (blue) and the
Gaussian noise orange. The average slope represents the stationary current js. Right
panel: Degree of irreversibility ∆H(t) normalized to the value H (0). The degree of
irreversibility for the process driven by compound Poisson noise ζ is shown in blue
while orange curve represents the Gaussian case. The parameters used for numer-

ical simulations are τp = 64, λ = 1/τp, A =

(
0.003 596 81 −0.000 899 202
−0.000 899 202 0.0022 6257

)
,

Γ =

(
0.653 682 0

0 0

)
and Σ =

(
0 0
0 0.010 213 78

)
. The initial conditions are

sampled from the stationary distribution.

and non-equilibrium dynamics5. Interestingly, in ‘equilibrium-like’ conditions, namely
AĈ = ĈAT , the system displays a non-vanishing rotational current ⟨θ̇⟩ ̸= 0, as one can

verify in the left panel of figure 9 which shows the cumulated θ angle, i.e.
´ t

0 dsθ̇(s), as
a function of time. Thus, the Poisson-Brownian gyrator behaves as a linear Brownian
ratchet embedded in two dimensions. It should be noted that it is possible to find a
stall condition (⟨θ̇⟩= 0) imposing different temperatures of the Gaussian baths (T1 ̸= T2)
so that a vanishing current does not imply anymore equilibrium. The non-equilibrium
nature of the system can always be inferred from higher-order correlation functions as
for instance from Hx(t) =

〈
x(t)x3(0)

〉
, as can be seen from right panel of figure 9 which

shows ∆Hx for both the Gaussian and Poissonian cases.
Although in this case it is not possible to use energetic arguments for estimating the

entropy produced between two subsequent jumps, thanks to the linearity of the system
it is still possible to perform analytical computations, as detailed in appendix D. It
turns out that the entropy production rate S is given by

S = Tr
[
2ĈATΣ−1A−A

]
(38)

5 The Harada-Sasa equality is [59]

J = γ

ˆ
dω

[
C̃ (ω)− 2TR̃ ′ (ω)

]
where J is the rate of energy dissipation, C̃(ω) and R̃(ω) are the Fourier transforms of the correlation function C (t) and the
response R(t), and the prime denotes the real part.
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Figure 10. Heat map of empirical entropy production rate S(ϵ,∆t)
as a function of ∆t and ϵ. Left and right panels show two estimates
S(ϵ,∆t) obtained from trajectories of different duration T (T = 225 left,
T = 228 right). The parameters used for numerical simulations are τp = 64,

λ = 1/τp, A =

(
0.005 058 0.001 2955

−0.002 760 34 0.000 801 378

)
, Γ =

(
0.825 827 0

0 0

)
and

Σ =

(
0.000 107 637 0

0 0.000 222 583

)
. The initial conditions are sampled from

the stationary distribution.

which is exactly equation (35) with C replaced by Ĉ. It is important to stress that the
‘temperatures’ appearing in the denominators are those of the Gaussian baths only.
If one splits the correlation matrix in two parts Ĉ = C+ C ′ related to the Gaussian
and Poissonian covariance matrices respectively, the entropy production rate S can be
written as

S = Tr
[
2CATΣ−1A−A

]
+ 2λTr

[
C ′ATΣ−1A

]
(39)

where the first term is the usual entropy production of the Gaussian system while the
second term (always positive) is the contribution of the Poisson jump noise. When

Onsager relations (AĈ = ĈAT ) are satisfied, the entropy production rate attains its
minimum, that is

S = λTr
[
ΓΣ−1A

]
. (40)

Interestingly, the minimum is not unique and S = λTr
[
ΓΣ−1A

]
whenever AΣ = ΣAT , as

detailed in appendix D. Having an analytical formula for the entropy production rate,
it is natural to wonder how its empirical estimates behave in this case. Obviously, in the
analysis of the results it is necessary to keep in mind the limitations that have arisen
in the one-dimensional cases. In particular, in section 3.2, we have shown that it often
takes a gigantic amount of data to obtain reasonable estimates of S. In multidimen-
sional systems this problem is accentuated and therefore we expect it to impose severe
limitations on the achievable resolutions. In the following we consider situations where
the Poissonian noise acts only on one component (x ). The panels of figure 10 show the
empirical entropy production S(ϵ,∆t) as a function of both ϵ and ∆t for two different
trajectories duration (T = 225 left, T = 228 right). From both figures it can be seen that
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Figure 11. Empirical entropy production rate S(ϵ,∆t) for ϵ = 1.2 · 10−2 as
a function of ∆t computed from one dimensional signals (θ purple, ρ
green, x light blue, y yellow). The horizontal black line represents the
theoretical value. The parameters used for numerical simulations are τp =

64, λ = 1/τp, A =

(
0.005 058 0.001 2955

−0.002 760 34 0.000 801378

)
, Γ =

(
0.825 827 0

0 0

)
and

Σ =

(
0.000 107 637 0

0 0.000 222 583

)
. The initial conditions are sampled from the

stationary distribution.

for time scales small enough (∆t∼ 100) and spatial scales small but large enough to
have suitably large statistics (ϵ∼ 0.1), the estimates of entropy production rate are in
good agreement with the theoretical predictions. Furthermore, comparing left and right
panels it should be noted that as the samples size increases the convergence of the
estimates S(ϵ,∆t) towards the analytical prediction also improve.

To conclude, we discuss the behaviour of empirical estimates S(ϵ,∆t) when only
partial information about the system is available. For example, consider the case in
which the time series of a single scalar variable has been observed. There is growing
interest around this topic, mainly due to the large number of thermodynamic bounds
on entropy production recently proposed relying both on thermodynamic uncertainty
relations (TURs) (see [60–63] and reference therein) or on other quantities such as
dynamical activity (also known as ‘frenesy’) [64, 65]. Generally, TURs provide a lower
bound of entropy production as a ratio between average and fluctuations of a steady
current. Thus, TURs strongly differ from coarse-grained entropy production S(ϵ,∆t)
since the latter can provide non-trivial estimates, even if the system does not sustain
any steady physical current, as shown in section 3. In the Poisson-Brownian gyrator,
there are some natural one-dimensional variables among all possible one dimensional
signals: the radius ρ, the angle θ and the two components x and y. Note that only the
angle θ can be used in a TUR to provide a lower bound on entropy production since
it is the only variable which can display a current. For the other variables, the best we
can do is to study the empirical estimate S(ϵ,∆t). Figure 11 shows these estimates as a
function of ∆t for a given value of the spatial resolution ϵ. The first thing to note is that
the estimates obtained from the y signal are practically zero. This is due to the fact
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Table 1. Table with the ratio of the empirical estimate of entropy production
S(ϵ,∆t) and the theoretical value for different one dimensional signals. The last
row represents the estimate obtained with TUR.

Signal S(ϵmin,∆tmin)/S

x 0.58
y 0.64 · 10−4

ρ 0.23
θ 0.12
TUR 9.72 · 10−3

that Poisson noise ζ acts indirectly on y through the coupling with x. The best estimate
S(ϵ,∆t) is obtained considering the signal x since it feels directly the jump noise ζ.
The estimates provided by the signals ρ and θ are in between those provided by x and
y separately as ρ and θ are non-linear combination of these two signals. This analysis
shows that in general the bounds of entropy productions on partially observed systems
strongly depend on the variables considered and therefore usually can not be considered
good proxies of the true value. This claim is supported by table 1 showing the ratio
between empirical estimates and theoretical value. As can be noted, from x and ρ one
gets estimates of the same order of magnitude of the theoretical value (60% and 20%
respectively). On the other hand, the estimate provided by the signal y is 104 times
smaller than the correct value. Interestingly, the signal θ provides an estimate which
is one order of magnitude smaller than the theoretical value if one takes as empirical
estimate the coarse-grained entropy production S(ϵ,∆t). However, if one employs the
TUR6 to provide a lower bound he gets a value which is two order of magnitude smaller
than the theoretical one. Therefore, in the case of discontinuous processes, we argue
that TURs, although technically valid, usually severely underestimate the entropy pro-
duction. This means that estimates of entropy production make sense when one has a
clear understanding of the model suitable for describing a phenomenon, otherwise the
results strongly depend on the chosen model.

5. Conclusions

In this work we have thoroughly discussed the role of non-Gaussian white noise, as
a driving force, on the non-equilibrium properties of a system. In particular, it has
been shown that Langevin equations driven by symmetric Poissonian noises do not
satisfy detailed balance and are therefore inherently out-of-equilibrium. However, non-
equilibrium manifests itself quite differently than in systems driven by Gaussian noise
and a plethora of unusual behaviours can be observed. For example, the absence of
currents or the symmetries of correlation functions do not guarantee anymore that the
system is in thermodynamic equilibrium. We have shown that, from an experimental
point of view, it is rather easy to evidence the breaking of time reversal symmetry

6 Formally the TUR is defined as TUR = limt→∞
m2(t)

tσ2(t)
where m(t) = ⟨θt − θ0⟩ and σ2(t) = ⟨(θt − θ0)2⟩−m2(t) [60, 61].

https://doi.org/10.1088/1742-5468/ad063b 21

https://doi.org/10.1088/1742-5468/ad063b


Statistical features of systems driven by non-Gaussian processes: theory & practice

J.S
tat.

M
ech.(2023)

113202

by considering higher-order correlation functions. Nonetheless, these methods cannot
provide an intrinsic measure of the degree of irreversibility of a given system. Formally,
the difficulties are overcome by considering an information-theoretic quantity, namely
the entropy production rate S. We show that it is possible to provide explicit formulas
for the path probabilities of stochastic processes driven by both Gaussian and Poissonian
noise but unfortunately analytical expressions for S can be obtained in special cases
only. These cases play an important role because they underline that the ‘temperatures’
of the thermal baths in which the system dissipates are exclusively the Gaussian ones.
Thus, the entropy production diverges when the system is not coupled to Gaussian
thermal baths justifying the expression ‘athermal’ baths already used for Poissonian
noise [21, 23].

In addition to the analytical results, an empirical estimate of the entropy production
has been introduced, i.e. the ϵ−∆t entropy production S(ϵ,∆t) depending on the spatial
and temporal resolution scales. Numerical simulations provide clear evidence of the
goodness of this approach, although it often requires an immense amount of data to
converge to the analytical prediction. It therefore can not always be applied to the
analysis of experimental signals, especially in high-dimensional systems, since the finite
number of samples could lead to very inaccurate results. It is also worth noting that
for low temporal resolution a system may appear indistinguishable from one driven by
Gaussian noise. The ‘Poissonian’ gyrator is an explanatory example of the behaviour of
this type of system, revealing itself as an excellent test bed for discussing the estimates
of entropy productions from incomplete information. We have shown that the estimates
strongly depend on the chosen observables, varying even by four orders of magnitude
with respect to the theoretical value. It can therefore be concluded that without a deep
comprehension of the system under consideration, it is very difficult to provide accurate
estimates of its thermodynamics properties.
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Appendix A. The setting

In this section we are interested in discussing more in detail the non-equilibrium prop-
erties of stochastic processes introduced in section 2, i.e. stochastic processes in which
random jumps are added to a typical Wiener process. The dynamic of such processes
can be formally described by the following stochastic differential equation

Ẋ = F (X) + ξ (t) + ζ (t) X = {xi}i=1,N (A.1)

where ξ(t) is a standard Gaussian noise with ⟨ξi(t)⟩= 0 and ⟨ξi(t)ξj(t ′)⟩= Σijδ(t− t ′)
while ζ(t) =

∑
jUjδ(t− tj) where both the intervals between to subsequent jumps

https://doi.org/10.1088/1742-5468/ad063b 22

https://doi.org/10.1088/1742-5468/ad063b


Statistical features of systems driven by non-Gaussian processes: theory & practice

J.S
tat.

M
ech.(2023)

113202

t = tj − tj−1 and the amplitude of jumps U are i.i.d. drawn from the probability distri-
butions Qλ(t) and P(U) = GΓ(U) defined as

Qλ (t) = λe−λt (A.2)

GΓ (U) =
e−

1
2
UTΓ−1U√
|2πΓ|

. (A.3)

Once the jumps in the time interval [0, t) have been extracted (we assume that there have
been n jumps at times 0 < t1 < t2 < .. . < tn < t of intensity U1,U2, . . . ,Un and we denote
this set of values with Kn ≡ {tk,Uk}k=1,n), since between two jumps we have a Wiener

process, we can write down the transition probability W (n)
t (X|Y,Kn) from X(0) = Y to

X(t) = X of the whole process simply by suitably concatenating the ‘free’ propagators

W (0)
t (X|Y ) of the Wiener process , those we have in absence of jumps (K0 = ∅), i.e.

W (n)
t (X|Y,Kn) =

ˆ n∏
k=1

[
dXkW (0)

tk−tk−1
(Xk−Uk|Xk−1)

]
W (0)

t−tn (X|Xn) (A.4)

where X0 = Y and t0 = 0. The expression above is the starting point from which we
can deduce the non-equilibrium properties of such processes once we figure out how to
average over the jump distribution P(Kn).

Appendix B. Averaging over the jump distribution

The aim of this section is to explain how to average generic functions over the jump
distribution. On one hand these calculations serve to clarify how to correctly define the
path probability that appeared in section 3, while on the other they are a necessary step
for the computation of the entropy production carried out in the following appendices.
First of all, since the distribution of the time intervals tk− tk−1 between two jumps is
exponential, the probability of having n jumps in a time t is Poissonian, i.e. Pλ(n|t) =
e−λt(λt)n/n!, while, given n and t, the distribution P(t1, . . . , tn|n,t) of the times {tk}k=1,n

in the interval [0, t) is

P (t1, . . . , tn|n,t) =

{
n!/tn 0 ⩽ t1 < t2 < .. . < tn < t

0 otherwise
. (B.1)

Putting it all together we get

P (Kn|t) = Pλ (n|t)P (t1, . . . , tn|n,t)
n∏

k=1

GΓ (Uk) (B.2)
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with

∞∑
n=0

ˆ
dKnP (Kn|t) = 1

dKn =
∏
k=1,n

dtkdUk ∀n > 0, P (K0|t) = e−λt

 . (B.3)

Now, we are able to compute the average Ft =
∑∞

n=0

´
dKnP(Kn|t)Ft(Kn) of a generic

function of the type

Ft (Kn) =
n∑

k=1

F (t− tk,Uk) ∀n > 0. (B.4)

In fact, given t, if we assume that in the absence of jumps such function is Ft(K0) = F (0)
t ,

we have

Ft− e−λtF (0)
t = e−λt

∞∑
n=1

λn
n∑

k=1

ˆ t

0

dt1

ˆ t

t1

dt2 . . .

ˆ t

tk−1

dtk f (t− tk)
(t− tk)

n−k

(n− k)!

= e−λtIf (t) (B.5)

where f(t) =
´
dUGΓ(U)F(t,U), If (t) =

∑∞
n=1Ifn(t), Ifn(t) = λn

∑n
k=1I

f
n,k(t) and 7

Ifn,k (t) =

ˆ t

0

dt1

ˆ t

t1

dt2 . . .

ˆ t

tk−1

dtk f (t− tk)
(t− tk)

n−k

(n− k)!

=

ˆ t

0

dz1

ˆ z1

0

dz2 . . .

ˆ zk−1

0

dzk f (zk)
zn−k
k

(n− k)!
. (B.6)

If we differentiate Ifn,k(t) with respect to t we get

İfn,k (t) = In−1,k−1 (t) ∀,n,k > 1 (B.7)

and then

İf (t) =
∞∑
n=1

İfn (t) = İf1 (t) +
∞∑
n=2

λn

(
İfn,1 (t) +

n∑
k=2

Ifn−1,k−1 (t)

)

= İf1 (t) +
∞∑
n=2

λnİfn,1 (t) +λIf (t) . (B.8)

So, since İfn,1(t) = f(t)tn−1/(n− 1)!, we have to solve the following linear differential
equation

İf (t)−λIf (t) = λeλtf (t) with If (0) = 0 (B.9)

7 Note that the factor tn/n! is cancelled by its inverse present in the probability of having n jumps while factor (t− tk)n/(n− k)!
is obtained by integrating over the values dtk+1 · · ·dtn.
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in order to get

Ft = e−λtF (0)
t +λ

ˆ t

0

dt ′ f (t ′) . (B.10)

We can follow a similar approach in order to compute the average over the jumps for a
function like

Ft (Kn) =
n∏

k=1

F (t− tk,Uk) ∀n > 0. (B.11)

In this case we have

Ft− e−λtF (0)
t = e−λt

∞∑
n=1

λn

ˆ t

0

dt1f (t− tk)

ˆ t

t1

dt2f (t− t2) . . .

ˆ t

tk−1

dtn f (t− tn)

= e−λtIf (t) (B.12)

where, again, f(t) =
´
dUGΓ(U)F(t,U), If (t) =

∑∞
n=1Ifn(t),

Ifn (t) = λn

ˆ t

0

dx1f (x1)

ˆ x1

0

dx2f (x2) . . .

ˆ xn−1

0

dxnf (xn) (B.13)

and their derivatives respect to t read

İfn (t) = λf (t)Ifn−1 (t) ∀n > 1
(
İf1 (t) = λf (t)

)
(B.14)

İf (t) = λf (t) +λf (t)If (t) . (B.15)

Once we solve the differential equation above (If (0) = 0) we get

Ft = e−λt

(
F (0)

t + exp

{
λ

ˆ t

0

dt ′f (t ′)

}
− 1

)
. (B.16)

B.1. Averaging over the stationary measure

Given the starting point X(0) = Y and the set of jumps in the time interval [0, t)

we define the average ⟨f(X)|Y,Kn⟩(n)
t of a generic function f (X ) over the transition

probability W (n)
t (X|Y,Kn) as

⟨f (X) |Y,Kn⟩(n)
t =

ˆ
dXW (n)

t (X|Y,Kn)f (X) . (B.17)

Once we average over the jump distribution also, i.e.

⟨f (X) |Y ⟩t =
∞∑
n=0

ˆ
dKnP (Kn|t)⟨f (X) |Y,Kn⟩(n)

t (B.18)
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we can look at the t→∞ limit to get the average over the stationary measure of the
process, i.e.

⟨f (X)⟩=

ˆ
dXπ (X)f (X) = lim

t→∞
⟨f (X) |Y ⟩t (B.19)

where

π (X) = lim
t→∞

∞∑
n=0

ˆ
dKnP (Kn|t)W (n)

t (X|Y,Kn) . (B.20)

Appendix C. Entropy production rate

In section 3 the entropy production S of a Markov process X has been defined as

S = lim
T →∞

1

T

〈
log

(
P
(
{Xt}0⩽t⩽T

)
P
(
{XT −t}0⩽t⩽T

))〉= lim
T →∞

⟨ST ⟩
T

(C.1)

but it has also been mentioned that it can be equivalently defined as

S = lim
t→0

1

t

∑
X,Y

π (X)Wt (Y |X) log

(
Wt (Y |X)

Wt (X|Y )

)
(C.2)

where Wt(Y |X) denotes the propagator of the Markovian dynamics. Indeed, let h be a
fixed time step, t the duration of a trajectory and consider the quantities

S(h)
t =

ˆ
dx0π (x0)

N∏
i=1

[dxiWh (xi−1→ xi)]

log
π (x0)
←−π (xn)

+
N∑
j=0

log
Wh (xj−1→ xj)
←−
Wh (xj → xj−1)


=

ˆ
dxπ (x) log

π (x)
←−π (x)

+
t

h

ˆ
dxdyπ (x)Wh (x→ y) log

Wh (x→ y)
←−
Wh (y→ x)

= S0 + tS1 (h) (C.3)

and

S2 (t) =

ˆ
dxdyPt (x,y) log

Pt (x,y)
←−
Pt (x,y)

= S0 + tS1 (t) (C.4)

where

t = Nh (C.5)

S0 =

ˆ
dxπ (x) log

π (x)
←−π (x)

(C.6)
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S1 (h) =
1

h

ˆ
dxπ (x)

ˆ
dyWh (x→ y) log

Wh (x→ y)
←−
Wh (y→ x)

(C.7)

with ←−· representing the backward dynamics.
Defining S1 = limh→0S1(h) one has

St = S0 + tS1 (C.8)

lim
t→∞

St
t

= S1 = ∂tSt (C.9)

proving that the two definitions of entropy production coincide. However, when the
process is discontinuous, the propagator also depends on the exact realizations of the
jumps, as can be seen from equation (20). Thus, at each time step h, the system evolves
according the propagator Ph(x→ y) =W (n)(x→ y) depending on the number of jumps
n occurred in a time h. Therefore, in order to compute the entropy production S employ-
ing equation (C.2) we should consider the contribution to S coming from all trajectories
having n jumps and then average over the jump distribution.

To summarize the previous discussion, for computing the entropy production rate
of such processes we have to:

(i) consider the propagator of the reverse path for which we back-jump the system
using exactly the same times and intensities, i.e.

←−
W (n)

t (Y |X,Kn) =

ˆ n∏
k=1

[
dXkW (0)

tk−tk−1
(Xk−1|Xk−Uk)

]
W (0)

t−tn (Xn|X) (C.10)

(ii) compute the entropy production rate once t and the jumps Kn are given

S(n)
t (Y,Kn) =

1

t

ˆ
dXW (n)

t (X|Y,Kn) log
W (n)

t (X|Y,Kn)
←−
W (n)

t (Y |X,Kn)
, (C.11)

(iii) average over the jump distribution

St (Y ) =
∞∑
n=0

ˆ
dKnP (Kn)S(n)

t (Y,Kn) , (C.12)

(iv) remove the dependence on the starting point Y by averaging over the stationary
measure π(Y )

St =

ˆ
dY π (Y )St (Y ) (C.13)

(v) take the t→ 0 limit

S = lim
t→0
St. (C.14)
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Appendix D. Linear systems

As anticipated in section 4, in the case of the linear systems we are able to get an
explicit expression for entropy production rate because an explicit expression of the

free propagator W (0)
t (X|Y ) is available, i.e.

W (0)
t (X|Y ) = GCt

(
X − e−tAY

)
(D.1)

Ct =

ˆ t

0

dt ′ e−t ′AΣe−t ′AT t→∞−→ C =

ˆ ∞

0

dte−tAΣe−tAT

(D.2)

from which it is easy to get the propagator and its reverse in presence of the jumps

W (n)
t (X|Y,Kn) =

ˆ n∏
k=1

[
dXkGCtk−tk−1

(
Xk−Uk− e−(tk−tk−1)AXk−1

)]
×GCt−tn

(
X − e−(t−tn)AXn

)
= GCt

(
X − e−tAY −

n∑
k=1

e−(t−tk)AUk

)
(D.3)

←−
W (n)

t (Y |X,Kn) =

ˆ n∏
k=1

[
dXkGCtk−tk−1

(Xk−1− e−(tk−tk−1)A(Xk−Uk)
]

×GCt−tn
(Xn− e−(t−tn)AX)

= GCt(Y − e−tAX +
n∑

k=1

e−tkAUk). (D.4)

This implies that, given the jumps and the starting point Y, the entropy production
rate is

S(n)
t (Y,Kn) =

1

2t

ˆ
dZ GCt (Z)W (Z)T C−1

t W (Z)− N

2t
(D.5)

where

W (Z) = Y − e−tAX +
n∑

k=1

e−tkAUk

=−e−tA

(
Z −

(
etA + e−tA

)
Y −

n∑
k=1

(
e(t−tk)A− e−(t−tk)A

)
Uk

)
. (D.6)
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Now, we average over the jumps by using UjUT
k = Γδj,k and by observing that, from

equation (B.10) we have

n∑
k=1

(M(t− tk)L(t)N (t− tk))ij =

ˆ
dKnP (Kn)

n∑
k=1

(M(t− tk)L(t)N (t− tk))ij

=
∑
lm

Llm (t)
n∑

k=1

Mil (t− tk)Llm (t)Nmj (t− tk)

= λ
∑
lm

Llm (t)

ˆ t

0

dt ′Mil (t
′)Nmj (t ′)

= λ

(ˆ t

0

dt ′M(t ′)L(t)N (t ′)

)
ij

(D.7)

then, to eliminate the dependence on the initial state Y we can compute the covariance

matrix Ĉ = ⟨XXT ⟩ over the stationary measure, i.e.

⟨X|Y ⟩t = e−tAY
t→∞−→ ⟨X⟩= 0 (D.8)

Ĉt = ⟨XXT |Y ⟩t−⟨X|Y ⟩t ⟨X|Y ⟩
T
t =

ˆ t

0

dt ′ e−t ′A (Σ +λΓ)e−t ′AT

(D.9)

Ĉt
t→∞−→ Ĉ = ⟨XXT ⟩=

ˆ ∞

0

dte−tA (Σ +λΓ)e−tAT

= C+λC ′ (D.10)

C ′ =

ˆ ∞

0

dte−tAΓe−tAT

. (D.11)

So, by putting it all together we get

St = Tr
[
Cte−tATC−1

t e−tA + Ĉ
(

1− e−2tAT
)
C−1
t

(
1− e−2tA

)
− I
]

/2t

+ Tr

[
Γ

ˆ t

0

dt ′
(
et

′AT − e−t ′AT
)
e−tATC−1

t e−tA
(
et

′A− e−t ′A
)]

/2t . (D.12)

Finally, the limit t→ 0 is made by considering Ct ≃ Σt and e−tA ≃ 1− tA which
leads to

S = Tr
[
2ĈATΣ−1A−A

]
= Tr

[
2CATΣ−1A−A

]
+ 2λTr

[
C ′ATΣ−1A

]
. (D.13)

It is easy to prove that, the Onsager’s equilibrium condition AĈ = ĈAT still leads to a

positive entropy production rate. In fact, since AĈ+ ĈAT = 2ĈAT = Σ +λΓ we have

S = λTr
[
ΓΣ−1A

]
. (D.14)
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We note that this value correspond to the minimum of the entropy production. Indeed,

2ĈAT = Σ +λΓ + ∆ (D.15)

∆ = ĈAT −AĈ (D.16)

lead to

S = S (∆) = λTr
[
ΓΣ−1A

]
+ Tr

[
∆Σ−1A

]
. (D.17)

The variation of S due to a change in ∆ can be written as

δS = Tr
[
(δ∆)Σ−1A

]
=
∑
ijk

(δ∆)ij Σ−1
jk Aki =

∑
i<j

(δ∆)ij

[(
Σ−1A

)
ji
−
(
Σ−1A

)
ij

]
. (D.18)

In cases where AΣ ̸= ΣAT , δS can not be equal to 0 and the minimum is obtained for

∆ = 0, that is ĈAT = AĈ. Interestingly we have δS = 0 whenever AΣ = ΣAT . Note that
the last condition does not imply Onsager relation. In fact,

AĈ =

ˆ ∞

0

dte−tAA(Σ +λΓ)e−tAT

, (D.19)

ĈAT =

ˆ ∞

0

dte−tA (Σ +λΓ)ATe−tAT

= λΓ−
ˆ ∞

0

dte−tAAλΓe−tAT

+

ˆ ∞

0

dte−tAAΣe−tAT

(D.20)

where the last equation has been obtained using integration by parts and imposing
AΣ = ATΣ. Thus, ∆ takes the form

∆ = λΓ− 2

ˆ ∞

0

dte−tAAλΓe−tAT

= 2

ˆ ∞

0

dte−tAλΓATe−tAT −λΓ

= λ

ˆ ∞

0

dte−tA
(
ΓAT −AΓ

)
e−tAT

(D.21)

which is not necessarily identical to the null operator.

Appendix E. Gradient systems

The procedure described in appendix C is rigorous but analytical computations can
rarely be carried out. Nevertheless, it is possible to obtain expressions suitable for
numerical computations for gradient systems in contact with a single thermal bath.
These expressions are those provided in section 3 for the one-dimensional linear case
as well as for the particle moving on periodic potentials. Consider a process X whose
dynamic is

Ẋ =−∂XV (X) +
√

2Tξ (t) +
∑
j

Ujδ (t− tj) (E.1)
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with
〈
ξ(t)ξ(t ′)T

〉
= Iδ(t− t ′). Between two jumps, the entropy production is

St (X,Y ) =
V (Y )−V (X)

T
. (E.2)

The entropy production rate once t and Kn are given is

S(n)
t (X0,Xt,Kn) =

1

tT

n∑
k=1

(V (Xk +Uk)−V (Xk)) +
V (X0)−V (Xt)

tT
(E.3)

where the last term vanishes when t→+∞. The average entropy production rate is

S =
1

tT

〈
n∑

k=1

(V (Xk +Uk)−V (Xk))

〉
=

1

tT

∞∑
n=0

Pλ (n|t)
n∑

k=1

∞∑
l=1

〈
V (l) (Xk)

〉
l!

U l
k (E.4)

with

∞∑
l=1

V (l) (X)

l!
U l =

∞∑
l=1

∑
{lk}:

∑
lk=l

∂(l)V (X)

∂
(l1)
x1 · · ·∂

(ln)
xn

U l1
x1
· · ·U ln

xn

l1! · · · ln!
. (E.5)

As mentioned in section 3, it is also possible to include a constant pulling force f in
the potential, i.e. Vf (X) = V (X)− f ·X. This modification only affects the boundary
term on the right hand side of equation (E.3) where it appears a term proportional to
f · (X0−Xt). On average, this term converges to (f · js)t giving rise to the first term on
the right hand side of equation (28).

E.1. One dimensional systems

For one dimensional systems it is possible to further simplify the expression for S. By
using the explicit formula for Gaussian moments

U 2m =
(2m)!

m!

(
σ2

2

)m

U 2m+1 = 0 (E.6)

one gets

S =
1

tT

〈
n∑

k=1

(V (Xk +Uk)−V (Xk))

〉
=

1

tT

∞∑
n=0

Pλ (n|t)n
∞∑
l=1

〈
V (l) (X)

〉
l!

U l

=
λ

T

∞∑
m=1

〈
V (2m) (X)

〉
m!

(
σ2

2

)m

. (E.7)

This formula can not be simplified anymore without specifying the potential V (X ). For
quadratic, periodic or quartic potentials one has
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V (x) =
1

2
ηx2→ η

λσ2

2T
(E.8)

V (x) = 1− cos
2π

L
x→S =

λ

T

〈
cos

2π

L
x

〉(
1− e−2(πσ/L)2

)
(E.9)

V (x) =
α

4
x4− β

2
x2→S = 3α

λσ2

2T

(
⟨x2⟩+ σ2

2
− β

3α

)
. (E.10)
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