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A B S T R A C T   

Coralligenous reefs are considered as one of the most important benthic ecosystems in the Mediterranean Sea in terms of biodiversity, ecosystem functioning, and 
aesthetic value. Bryozoans deserve special attention within the coralligenous framework fauna: they are among the most common animals, showing high diversity 
values and playing different functional roles. Distribution, spatial variability, and demographic features of five erect bryozoan taxa Adeonella sp., Myriapora truncata, 
Pentapora fascialis, Reteporella sp., and Smittina cervicornis were studied in the central Tyrrhenian Sea. Abundance, size, and relationship with other taxa/morpho
logical groups of benthic organisms were studied in coralligenous reefs between 35 and 40 m depth. High density of colonies was reported especially in association to 
gorgonians and algae dominated assemblages. Size distributions of the five bryozoans were characterized by small colonies; only two species (P. fascialis and 
S. cervicornis) showed colonies larger than 50 cm2. Structure of coralligenous assemblages and disturbances outlined different ecological requirements of the five 
studied taxa. Results provide baseline information for monitoring trajectories of change of these organisms in the coralligenous ecosystem. To date, this work 
represents the first study exploring ecology and distribution patterns of common erect bryozoans in the Mediterranean Sea.   

1. Introduction 

The comprehension of the ecological features, requirements, and 
distribution patterns of marine species represents one of the main goals 
for marine biologists and ecologists in the era of global environmental 
changes. The increase in frequency and impact of anthropogenic dis
turbances, as well as climate modifications and anomalies, threatens 
both composition and functions of marine communities (Harley et al., 
2006; Lejeusne et al., 2009). Thus, knowledge of distribution and de
mographic characteristics of key species is the first step for imple
menting effective management and conservation measures. In addition, 
demographic data represent valuable information to use as a baseline for 
assessing disturbances and trajectories of changes. This is particularly 
relevant for those ecosystems that show high variability, such as cor
alligenous reefs, an endemic Mediterranean bioconstruction with 
long-lived organisms that create multi-layered and structurally complex 
assemblages (Ingrosso et al., 2018). Coralligenous concretions are car
bonate substrata, primary produced by the accumulation of encrusting 
algal thalli growing at low light levels and secondarily by sessile animal 

taxa; this ecosystem characterizes Mediterranean seabeds between 20 
and 120 m depth (Ballesteros, 2006). It represents one of the most 
important marine habitats in terms of biodiversity and recreational, 
commercial, cultural, and aesthetic values to society (Tribot et al., 2016; 
Tonin, 2018; Thierry De Ville d’Avray et al., 2019). Commercial 
exploitation (i.e. fishing and tourism) coupled with the slow dynamics 
and longevity of the builder organisms make this bioconstruction one of 
the most vulnerable and exposed to human impacts (Teixid�o et al., 2011; 
Piazzi et al., 2012). Nevertheless, coralligenous reefs have been classi
fied by the European Red List of marine habitats as “data deficient” 
(Gubbay et al., 2016) and thorough investigations and focused moni
toring plans are urgently needed. 

Besides being the realm of encrusting red algae, coralligenous reefs 
support highly diversified communities of suspension feeders; among 
them, bryozoans are one of the main components of the sessile macro
zoobenthos. The richest bryozoan diversity in the Mediterranean Sea is 
found in coralligenous habitat (219 sp.) and in marine caves (220 sp.) 
(Rosso and Di Martino, 2016; Rosso et al., 2019). Bryozoans play two 
important roles within the bioconstruction; as primary consumers, they 
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transfer particulate organic matter from the water column to benthic 
habitats (Gili and Coma, 1998; Belloni et al., 2019) and thus contribute 
to the growth of the reefs depositing carbonate (Hong, 1982; Ballesteros, 
2006). Even though they have been mainly described as secondary 
builders, bryozoans are also able to create mono- or multi-specific bio
constructions in tropic and temperate seas (Cocito, 2004; Wood et al., 
2012; Lombardi et al., 2014; Rosso et al., 2019). Several “bryo-con
structions”, some of which are morphologically different, have been 
reported in the Mediterranean Sea: Pentapora fascialis (Pallas, 1766), 
Cellaria salicornioides Lamouroux, 1816, Schizoporella errata (Waters, 
1878) and Turbicellepora magnicostata (Barroso, 1919), Schizomavella 
(Schizomavella) cornuta (Heller, 1867) formations, as well as 
multi-specific nodular concretions between semi-dark and dark cave 
sectors (Harmelin et al., 1985; Cocito et al., 2000; McKinney and Jaklin, 
2000; Cocito and Ferdeghini, 2001; Ferdeghini et al., 2001; Nicoletti 
et al., 2007; Cocito et al., 2009). 

Among the most common Cheilostomate bryozoans found on cor
alligenous reefs, Adeonella sp. Busk, 1884, Myriapora truncata (Pallas, 
1766), P. fascialis, Reteporella sp. Busk, 1884 and Smittina cervicornis 
(Pallas, 1766) increase the three-dimensionality of the bioconstruction 
through their erect colonies (Garrabou et al., 2002; Novosel et al., 2004; 
Casas-Güell et al., 2015). As for growth form, Adeonella sp., M. truncata, 
P. fascialis, and S. cervicornis are classified as erect bilaminate colonies, 
composed of multiserial bilaminate branches. Conversely, Reteporella sp. 
is a unilaminate erect bryozoan, composed of closely spaced and narrow 
branches usually arrayed in well-developed flat or curved sheets 
(McKinney and Jackson, 1989). These bryozoans have fragile structures 
and are recognized as sensitive to both water quality and human ac
tivities (Harmelin and Capo, 2002; Rosso et al., 2010; Chimenz et al., 
2014; Casoli et al., 2017a, b; Betti et al., 2019; Pag�es-Escol�a et al., 2020). 
Due to their role as bioindicators, erect bryozoans have been considered 
in the formulation of all the indices to assess and monitor the ecological 
quality, the integrity and the health and conservation status of cor
alligenous habitats (Deter et al., 2012; Gatti et al., 2015; Montefalcone 
et al., 2017; Piazzi et al., 2017a; Sartoretto et al., 2017; Ferrigno et al., 

2018a). In particular, M. truncata and P. fascialis have been also studied 
as model organisms to test the effect of both ocean acidification and 
temperature on bryozoans (Lombardi et al., 2008, 2006; 2011b, 2011a; 
Pag�es-Escol�a et al., 2018). Despite their importance, the distribution 
patterns, as well as the ecology and demographic processes, of erect 
bryozoans on coralligenous reefs have been poorly studied. Such infor
mation plays a pivotal role in the effective application of these species as 
bioindicators. 

This study aims to provide quantitative data on the presence of the 
five aforementioned bryozoans on coralligenous reefs, to assess their 
population structures, and to explore their ecological requirements and 
the relationships with other sessile benthic organisms in the central 
Mediterranean Sea. Furthermore, human disturbances influencing the 
distribution and size of the taxa are considered. 

2. Materials and methods 

2.1. Study sites, sampling design and data collection 

Fourteen localities (Fig. 1), tens to hundreds of kilometers apart from 
each other, were investigated to assess the spatial and ecological pat
terns of five erect bryozoan taxa (Adeonella sp., M. truncata, P. fascialis, 
Reteporella sp. and S. cervicornis) (Fig. 2). Within each locality three or 
six areas of 4 m2 surface (tens of meters apart) were sampled (Table 1). 
In each area three replicate samples consisting of three contiguous 
photographs of 0.2 m2 were collected. Sampling was carried out on 
vertical walls characterized by coralligenous concretions at a depth 
range of 35–40 m (Fig. 3). 

Photographic sampling was carried out by scientific divers using a 
digital camera arranged in a PVC frame (50 � 40 cm) in order to 
minimize parallax errors. The camera was equipped with two electronic 
strobes and diffusers. Photography enabled robust identification of 
conspicuous erect species, based on known morphological colony fea
tures, although it also gave potential for underestimation of bryozoan 
colonies in cryptic micro-habitats. Despite its limitations, this non- 

Fig. 1. Map showing the position of the thirteen localities where samplings were carried out. ARG: Argentario; ASN: Asinara; CPR: Capraia; GRG: Gorgona; IGL: Isola 
del Giglio; IEL: Isola d’Elba; ISR: Isola Rossa; LVN: Livorno; MNT: Montecristo; ORT: Oristano; PMB: Piombino; PNZ: Ponza; VLL: Villasimius; ZNN: Zannone. 
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destructive approach represented a good compromise for habitat and 
species conservation (Gerovasileiou et al., 2017; Dimarchopoulou et al., 
2018) which was important due to the location of four study sites within 
Marine Protected Areas. 

A total of 540 high resolution photographs of coralligenous reefs 
were analyzed through ImageJ analysis software (Schneider et al., 
2012). From each picture, presence of the five bryozoan taxa, abundance 
(number of colonies/m2), colony width (i.e., the length of the longer 
colony’s axis parallel to the substrate measured in cm), and colony 
coverage (i.e., the surface area of the substrate covered as a projection of 
the specimen measured in cm2) were estimated. Colonies were visually 
classified in three classes: Small, Medium, and Large according to the 
maximum height of the tallest colony of each species. Height classes 
were assigned according to the following size ranges: Small <5 cm, 5 cm 
< Medium <10 cm, Large >10 cm. 

In addition, coralligenous assemblages were assessed with regards to 
the percentage cover of the main conspicuous sessile taxa and/or 
morphological groups (as Supplementary Materials, Table S1), 
following the classification given by Piazzi et al. (2017a,b). As for 
human pressure, three disturbance categories were here proposed (Low, 
Medium and High), taking into account proximity to commercial har
bors and/or urbanized areas, levels of eutrophication, sedimentation 
rates, and mechanical disturbance by fishing activities (Montefalcone 
et al., 2017; Piazzi et al., 2017a; Ardizzone et al., 2019). Both compo
sition and human pressure were considered to test their influence on 

bryozoans composition and coverage. 

2.2. Statistical analyses 

Spatial changes in abundance of the five bryozoan species were 
analyzed using Linear Mixed Effect Models (MEMs). The dependent 
variable (number of colonies/m2) did not respect the assumptions of 
normality and heteroscedasticity even after log-transformation. The 
locality with nested area was set as random effect to solve the issue of 
heteroscedasticity. Hence, abundance was tested in relation to two 
random nested factors: Localities (13 levels) and Areas (from 3 to 6 
levels). Then, to test the significance of the models, analysis of variance 
(ANOVA) was run on the output of the aforementioned MEMs. 

The total abundance was used to test if the bryozoan species occurred 
together and in association with other sessile organisms. Unlike the 
single taxon abundance, the log-transformed (log (xþ1)) total number of 
bryozoan colonies/m2 allowed the use of a linear model to analyze its 
changes in relation to coralligenous assemblages and geographical 
location. Normality and homoscedasticity were tested through the 
Cochran Q and Bartlett tests, respectively. The independent variables 
were chosen using Akaike’s criteria (AIC), an entropy-based measure of 
goodness of fit of statistical models; the model with the lowest AIC value 
was chosen (Akaike, 1974). 

To investigate the relationship between coverage and width in col
onies of different sizes, a linear model was fitted for each of the five 

Fig. 2. Colonies of the five studied bryozoans: a) Adeonella sp.; b) Myriapora truncata; c) Pentapora fascialis; d) Reteporella sp.; e) Smittina cervicornis.  

Table 1 
Features of the sampling sites. Locality, ID refers to the locality identification code. Coordinates are reported in decimal degree; Protection indicates the level of 
protection of the studied sites; Disturbance takes into account proximity to commercial harbors and/or urbanized areas, levels of eutrophication, sedimentation rates, 
and mechanical disturbance by fishing activities.  

Locality ID N� of areas Longitude Latitude Protection Disturbance Type of Disturbance 

Villasimius VLL 3 9.3820 39.0741 None Low Diving 
Oristano ORT 3 8.2768 39.8833 None Low Diving 
Ponza PNZ 3 12.9405 40.8578 None Medium Diving, Fishing 
Zannone ZNN 3 13.0221 40.9618 None Low Diving 
Asinara ASN 3 8.2911 41.1340 MPA Low – 
Isola Rossa ISR 3 8.9587 41.1867 None Low Diving 
Montecristo MNT 6 10.3513 42.3086 MPA Low – 
Isola del Giglio IGL 6 10.9300 42.3670 None Low – 
Argentario ARG 6 11.0561 42.4053 None Medium Diving, Fishing 
Isola d’Elba IEL 6 10.3321 42.8299 None Medium Diving, Fishing 
Capraia CPR 6 9.8683 43.0144 MPA Low – 
Piombino PMB 6 10.4839 43.0289 None High Diving, Fishing, Urbanisation 
Livorno LVN 6 10.2893 43.4211 None High Diving, Fishing, Urbanisation 
Gorgona GRG 6 9.9107 43.4289 MPA Low –  
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species. Both coverage and width data were log-transformed to respect 
the linear model assumptions. 

The relationships between bryozoans mean coverage values and the 
composition of coralligenous assemblages were investigated using a 
Canonical Correspondence Analysis (CCA). The explanatory variables 
were the same as highlighted by Akaike’s measure for the linear model. 
For MEMs, ANOVA and the linear models, a significance level of 0.05 (p- 
value < 0.05) was chosen. All the statistical analyses were performed in 
the R platform (version 3.5.2; R Development Core Team, 2012). 

3. Results 

3.1. Abundance and spatial distribution 

A total of 3441 colonies were counted and measured; the five taxa 
showed different abundance patterns among the fourteen investigated 
localities (Fig. 4). M. truncata and Reteporella sp. were well represented 
in all localities: for both taxa higher abundances were reported at VLL, 
with maximum densities of 91 and 108 colonies/m2, respectively. 
Adeonella sp., P. fascialis and S. cervicornis showed a scattered distribu
tion and lower abundances when compared to the aforementioned taxa. 
Their maximum values were 16, 32 and 28 colonies/m2, respectively. In 
particular, these three bryozoans were well represented at IGL and ASN. 
Adeonella sp. and S. cervicornis mostly differed due to the absence of the 
latter at CPR and IEL, although absence was registered in several 
replicate samples collected in the other localities as well. P. fascialis was 
absent at CPR, GRG, IEL, VLL and ISR, and occasionally found at LVN, 
ORT, PMB and ZNN. 

All the intercepts of MEMs were deemed significant through the 
ANOVA; it detected significant differences in abundance in relation to 
the combination of locality and areas for M. truncata, P. fascialis, Rete
porella sp. By contrast, both Adeonella sp. and S. cervicornis did not show 
significant variations (Table 2). 

The samples characterized by higher abundances were those with all 
the taxa present (Fig. 5). The linear model reported the interaction be
tween the number of colonies/m2 and bryozoans richness as significant 

(Table 3). 
The total number of erect bryozoan colonies/m2 significantly 

increased when the percentage cover of the following taxa and 
morphological groups was higher: Peyssonellia spp. Decaisne, 1841, 
Pseudochlorodesmis furcellata (Zanardini) Børgesen, 1925, Flabellia 
petiolata (Turra) Nizamuddin, 1987, Encrusting bryozoans, Massive 
sponges, the gorgonians Paramuricea clavata (Risso, 1826) and Eunicella 
cavolini (Koch, 1887). The total abundance also increased according to 
Corallium rubrum (Linnaeus, 1758) and Erect ascidians percentage cover, 
although these interactions were not reported as significant. From a 
spatial point of view, number of erect bryozoan colonies was inversely 
correlated to both latitude and longitude: this meant that total abun
dance increased from north to south and from east to west. Localities in 
the south of Tuscany, Latium and Sardinia were characterized by higher 
total abundances of erect bryozoans. 

3.2. Colony size and population structure 

Width to coverage ratio highlighted differences in colony 
morphology and sizes of the studied taxa (Fig. 6). Similar trends 
occurred for the erect bilaminate Adeonella sp., M. truncata, P. fascialis 
and S. cervicornis, although the latter two species reached higher width 
to coverage values. Reteporella sp. colonies showed a different pattern 
for width to coverage ratio. For all the bryozoans the most frequent 
observations were small colonies of width <5 cm and coverage <10 cm2. 
The intercepts of the linear model fitted with coverage and width data 
were significant. Coverage increased with width, although magnitude 
differed according to taxa (Table 4). 

Coverage values were used to obtain the size frequency distribution 
and describe the population structure of the five bryozoans (Fig. 7); log 
transformation was used for visual representation. A significant positive 
skewness clearly highlighted a prevalence of smaller colonies in all the 
taxa, belonging to the Small height class. Adeonella sp., M. truncata and 
Reteporella sp. showed unimodal distribution, with most frequent 
coverage values included in the range 0–10 cm2. Colonies larger than 50 
cm2 were rarely found. On the other hand, P. fascialis and S. cervicornis 

Fig. 3. Schematic diagram of the nested sampling design showing Capraia locality (ID: CPR), Areas and Replicates constituted of three contiguous Photos.  
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showed multimodal distribution with all the three eight classes well 
represented. In the former case three modes can be recognized: 5–10 
cm2, 30–40 cm2 and 140–150 cm2. The two main modes of S. cervicornis 
were in the ranges 5–10 cm2 and 25–35 cm2. 

3.3. Relationships with benthic assemblages and disturbances 

The Canonical Correspondence Analysis (CCA) explained 59.7% of 
the total variance (40.0% axis 1 and 19.7% axis 2); the combination of 
the taxa/morphological groups structuring the coralligenous assem
blages and the disturbances categories influenced size and composition 
of the erect bryozoans at the studied sites (Fig. 8). P. fascialis was 
associated with Peyssonnelia sp., P. furcellata, P. clavata and E. cavolini. 
Conversely, higher mean coverage values of Reteporella sp. were re
ported in sites with the green algae F. petiolata. Higher mean coverage of 
M. truncata was not related to any of the groups constituting the cor
alligenous assemblage. Adeonella sp. and S. cervicornis were both 
diffused in the fourth quadrant. The former was associated to the red 
coral C. rubrum, whereas the latter was related to Encrusting bryozoans 
and Massive sponges. As for disturbance categories, higher mean 
coverage of M. truncata was found in sites with medium and high 
disturbance levels, whereas Reteporella sp. characterized medium 
disturbance levels. On the other hand, Adeonella sp., P. fascialis and 
S. cervicornis colonies were associated with sites of low disturbance. 
From a spatial point of view, Reteporella sp. was the only taxon positively 
linked to both latitude and longitude, which characterized axis 2. The 
other taxa displayed higher mean coverage in southern and western 
samples. 

4. Discussion 

The present study provides pivotal information on the spatial dis
tribution patterns, ecology, and population structure of erect bryozoans 
in the Mediterranean coralligenous ecosystem. The definition of the 
ecological and demographic features of these taxa represents a baseline 
knowledge, especially in the light of global change and sensitivity to 
stress and human disturbances that have been reported for these or
ganisms (Montefalcone et al., 2017; Pag�es-Escol�a et al., 2018). 

Extremely high values were reported for colony abundances, 
although there were differences according to taxa. M. truncata and 
Reteporella sp. are the more ubiquitous bryozoans, occurring in all the 
replicates. The former showed a higher number of colonies/m2 than 
reported for coralligenous reefs along the coasts of Spain (Nuez-
Hern�andez et al., 2014). Abundance of Reteporella sp. is comparable to 
that reported from healthy Posidonia oceanica (L.) Delile, 1813 meadows 
(Deudero et al., 2009), whereas no similar data are available for cor
alligenous reefs. The scattered distribution of the species Adeonella sp., 
P. fascialis and S. cervicornis is in accordance to Harmelin (2017a), even 
though large scale photographic investigations were carried out in the 
present study. P. fascialis showed higher abundance when compared to 
similar studies carried out with visual census (Sala et al., 1996; Cocito 
and Ferdeghini, 2001; Lombardi et al., 2008; Harmelin, 2017b); in the 

Fig. 4. Abundance (colonies/m2) per bryozoan taxa: a) Adeonella sp.; b) Myr
iapora truncata; c) Pentapora fascialis; d) Reteporella sp.; e) Smittna cervicornis. 
Data have been log-transformed for visual representation. 

Table 2 
Summary of ANOVA results performed on the MEMs on the five bryozoans taxa 
abundance.  

Source of variation num DF den DF F P 

Adeonella sp. 
intercept 1 119 22,711 <0.001 
Locality*Area 65 119 1294 0.112 

Myriapora truncata 
Intercept 1 119 3,26,754 <0.001 
Locality*Area 65 119 2073 <0.001 

Pentapora fascialis 
intercept 1 119 7521 0.007 
Locality*Area 65 119 1668 0.008 

Reteporella sp. 
intercept 1 119 1,79,245 <0.001 
Locality*Area 65 119 2108 <0.001 

Smittina cervicornis 
intercept 1 119 21,298 <0.001 
Locality*Area 65 119 1330 0.089  

E. Casoli et al.                                                                                                                                                                                                                                   



Estuarine, Coastal and Shelf Science 235 (2020) 106573

6

cases of Adeonella sp. and S. cervicornis, no quantitative data are avail
able for further comparisons. The results are consistent with previous 
studies in the western Mediterranean Sea, reporting erect bryozoans as 
one of the animal groups with highest coverage in coralligenous as
semblages (Garrabou et al., 2002; Kipson et al., 2011; Casas-Güell et al., 
2015; Doxa et al., 2016; Ferrigno et al., 2018b). M. truncata, P. fascialis 
and S. cervicornis have been reported to characterize the upper (between 
35 and 40 m depth) coralligenous outcrops in the Southern Adriatic Sea 
(Corriero et al., 2019; Piazzi et al., 2019). On the contrary, erect bryo
zoans are lacking in the Northern Adriatic outcrops (Falace et al., 2015). 
Further studies are needed in order to assess and understand the vari
ability of the structure of coralligenous assemblages over different ba
sins of Mediterranean Sea. 

Variability of abundance between areas was found for three of the 
five studied taxa (M. truncata, P. fascialis and Reteporella sp.). This 
pattern commonly characterizes coralligenous assemblages, where the 
highest variability was reported at the smallest spatial scale investigated 
in different regions of Mediterranean Sea (Piazzi et al., 2004; Ponti et al., 
2011; Casas-Güell et al., 2015). As for other erect filter feeders, such as 
gorgonians (Linares et al., 2008; Sini et al., 2015), this variability can be 

explained more by biological factors than physico-chemical conditions. 
The presence of other taxonomic groups (as underlined by linear model 
in Table 3) and relative interspecific interactions can influence the 
bryozoans reproduction, settlement, and survival success. Gorgonians 
(E. cavolini and P. clavata) are indicators of strong water flow, contrib
uting to habitat heterogeneity and diversity, and enhancing associated 
fauna (Cerrano et al., 2010; Ponti et al., 2018). Morphology and size of 
gorgonians, as well as their long lifespan, contribute to create stable and 
long-lasting micro-habitats highly advantageous for both epizoans and 
bryozoan colonies settled on the basal layer of the bioconstruction 
(Lombardi et al., 2008; Montero-Serra et al., 2018). In algae dominated 
assemblages (Peyssonnelia sp., P. furcellata and F. petiolata) there is a high 
abundance of epiphytic encrusting and erect bryozoans (Hong, 1980; 
Harmelin, 2017a). A similar case has been reported for serpulid worms 
(Casoli et al., 2016). It is likely that erect bryozoans found in these as
semblages benefit from both water flows and the absence of larger filter 
feeders (Casoli et al., 2017b). Substrate has a pivotal role influencing 
bryozoan settlement and growth (Amini et al., 2004): the majority of 
cheilostomate bryozoan larvae have the ability to select suitable sub
strate during the settlement phase (Harmelin, 1997; Deudero et al., 
2009). Coralligenous reefs provide favorable conditions for the settle
ment of bryozoans due to the presence of permanent hard substrata, 
huge range of microhabitats, shelter, and availability of both oxygen and 
food (Harmelin, 1986, 2017a,; Novosel et al., 2004; Rosso and Di Mar
tino, 2016). In particular, water movement and therefore food supply 
can support the co-occurrence of the five studied taxa, as well as 
extremely high abundance values (up to 200 colonies/m2). It is likely 
that shifts in some ecological aspects, as suggested by Pag�es-Escol�a et al. 
(2018) for thermal tolerance, can occur in order to reduce competition. 

Width to coverage ratio reflects differences between the erect bila
minate forms (Adeonella sp., M. truncata, P. fascialis and S. cervicornis) 
and erect unilaminate colonies (Reteporella sp.). The erect bilaminate 
forms describe an exponential trend which increase the surface area of 
colonies reducing overlap between branches. Similar patterns were re
ported when comparing surface area with growth stage or mean path 
length (McKinney and Jackson, 1989). On the contrary, Reteporella sp. 
colonies appear as planar fans with folds, that increase along width axis 
rather than with surface area (coverage). This pattern can be linked to 
the plasticity of the colonies that often settle in crevices or in narrow 
spaces: an adaptation to spatial constraint. Plasticity in colony shape has 

Fig. 5. Total abundance in relation to number of erect bryozoans taxa.  

Table 3 
Output of the linear model fitted to the total abundance of erect bryozoans. 
Significant values are highlighted in bold.  

Coefficients Estimates Std. Errors t-value P-value 

Intercept 7481 1574 4753 <0.001 
Number of erect bryozoan species 0.298 0.038 7652 <0.001 
Peyssonnelia spp. 0.011 0.001 6338 <0.001 
Pseudochlorodesmis furcellata 0.088 0.016 5491 <0.001 
Flabellia petiolata 0.010 0.004 2265 0.024 
Encrusting bryozoans 0.143 0.056 2562 0.011 
Massive sponges 0.070 0.012 5652 <0.001 
Paramuricea clavata 0.031 0.009 3115 0.002 
Eunicella cavolini 0.087 0.023 3735 <0.001 
Corallium rubrum 0.042 0.028 1496 0.136 
Erect ascidians 0.736 0.523 1407 0.161 
Longitude - 0.114 0.044 � 2583 0.010 
Latitude - 0.104 0.038 � 2724 0.007 

Residual standard errors: 0.495 on 185 DF. 
Multiple R squared: 0.656, Adjusted R squared: 0.634. 
F-statistic: 29.43 on 12 and 185 DF, P-value: < 0.001. 
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been reported for other species of the Phidoloporidae family, such as 
Schizoretepora hassi (Harmelin et al., 2007). This allows Reteporella sp. to 
settle and use different microhabitats compared to other erect species. 
Furthermore, coverage can be interpreted as a proxy of width; linear 
models offer a mathematical relationship that can be applied in further 
studies. 

As for demographic features, the predominance of smaller size col
onies (<10 cm2) is consistent with the high abundance values. This may 
indicate continuous recruitment episodes or disturbed populations. 
P. fascialis and S. cervicornis are the only two species that represent the 
largest and tallest colonies (>50 cm2) well: as for P. fascialis, the data 
provided by this study are consistent with observation carried out in the 
North-western Mediterranean Sea (Sala et al., 1996; Pag�es-Escola, 

2020). Nevertheless, P. fascialis reaches over 1000 cm2 in the northern 
Tyrrhenian and Adriatic Seas (Cocito and Ferdeghini, 2001; Cocito et al., 
2006). The absence of these “P. fascialis bushes” from coralligenous reefs 
might be due to hydrographic features and competition phenomena with 
the other filter feeders. Coverage values reported for M. truncata are 
consistent with data from both MPA and no-MPA sites along the SE coast 
of Spain (Nuez-Hern�andez et al., 2014). No further comparisons can be 
done for the other species due to the paucity of studies. 

CCA reveals ecological shifts of mean colony size between the 
studied species in relation to the taxa/morphological groups structuring 
the coralligenous assemblages and the disturbance categories. This 
outlines the ecological requirements or preferences of the five species. 
The results are in accordance to Lombardi et al. (2008) and Sala et al. 
(1996) reporting P. fascialis as common in facies characterized by gor
gonians, whereas association between Adeonella sp., Reteporella sp. and 
S. cervicornis and other sessile taxa/morphological groups is here re
ported for the first time. M. truncata appears to be the most ubiquitous 
species, having a bathymetrical distribution and being found from 
shallow rocky bottoms to deep coralligenous reefs (Zabala, 1986). 

Erect bryozoans have been reported as useful for the evaluation and 
monitoring of coralligenous reefs: the five studied taxa show different 
sensitivity to human disturbance. M. truncata is the less sensitive species: 
it has often been reported in highly degraded situations (Perez et al., 
2002). Reteporella sp. reflects moderate tolerance as well, being found in 
sites with medium disturbance levels. Erect arborescent bryozoans 
(Adeonella sp., P. fascialis and S. cervicornis) show the highest sensitivity 
to anthropogenic disturbances. These results, except for Reteporella sp., 
are consistent with data reported by several authors (Garrabou et al., 
1998; Gatti et al., 2015; Casoli et al., 2017a; Montefalcone et al., 2017; 
Piazzi et al., 2017a). 

The results confirm the importance of bryozoans within cor
alligenous bioconstruction, as recently reported by Franzese et al. 
(2017) in terms of biomass density. They play pivotal roles both as 
secondary builders, consolidating the framework created by calcareous 
algae, and by transferring energy from pelagic to secondary consumers. 
The abundance of suspension feeders (Gili and Coma, 1998; Casoli et al., 
2019) highlight the main pathway of energy flow that sustain the high 
(and still largely unexplored) biodiversity of coralligenous ecosystem. 

This study revealed that the structure and composition of cor
alligenous assemblages affects the presence and size of bryozoan 

Fig. 6. Best line fits and confidence intervals describing the width to coverage ratio for each studied taxa.  

Table 4 
Output of the linear models for each of the five studied taxa fitted on coverage 
and width data. Significant values are highlighted in bold.  

Coefficients Estimates Std. Errors t-value P-value 

Intercept (Adeonella sp.) - 0.612 0.058 � 10,430 <0.001 
Width 1717 0.049 34.40 <0.001 

Intercept (Myriapora truncata) - 0.379 0.011 - 34.23 <0.001 
Width 1497 0.012 1,21,690 <0.001 

Intercept (Pentapora fascialis) - 0.965 0.081 - 11.89 <0.001 
Width 2032 0.044 45.61 <0.001 

Intercept (Reteporella sp.) 0.834 0.022 - 36.35 <0.001 
Width 1872 0.017 105.68 <0.001 

Intercept (Smittina cervicornis) - 0.825 0.069 - 11.90 <0.001 
Width 1902 0.044 42.60 <0.001 

Residual standard errors: 0.274 on 171 DF. 
Multiple R squared: 0.873, Adjusted R squared: 0.873. 
F-statistic: 1184 on 1 and 171 DF, P-value: < 0.001. 
Residual standard errors: 0.243 on 1819 DF. 
Multiple R squared: 0.890, Adjusted R squared: 0.890. 
F-statistic: <0.001 on 1 and 1819 DF, P-value: < 0.001. 
Residual standard errors: 0.293 on 110 DF. 
Multiple R squared: 0.949, Adjusted R squared: 0.949. 
F-statistic: 2080 on 1 and 1110 DF, P-value: < 0.001. 
Residual standard errors: 0.265 on 1154 DF. 
Multiple R squared: 0.906, Adjusted R squared: 0.906. 
F-statistic: <0.001 on 1 and 1154 DF, P-value: < 0.001. 
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colonies. Importantly, the association with other sessile benthic groups 
highlights the ecological requirements of these vulnerable organisms. 
Coverage was found to be a good indicator for detecting human 
disturbance: furthermore, the different sensitivity levels reported in this 

work can integrate the several indices used for coralligenous reef health 
assessments. Temperature rise, ocean acidification, mucilaginous 
blooms, alien species, and unmanaged human activities threaten the 
future of erect bryozoans and, due to their importance, can lead to 

Fig. 7. Coverage distribution divided per height classes of the five investigated bryozoans.  

Fig. 8. Results of the Canonical Correspondence Analysis (CCA). Most diffused taxa/morphological groups composing coralligenous assemblages, disturbance levels 
(Low, Medium and High) and erect bryozoans are shown. 
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drastic modifications of coralligenous reefs building and trophic pro
cesses (Deudero et al., 2009; Lombardi et al., 2011a; Casoli et al., 2017a; 
Pag�es-Escol�a et al., 2018; Piazzi et al., 2018). In light of their distribu
tion, abundance and role within coralligenous ecosystem, bryozoans 
should be effectively monitored, and further studies should be under
taken to understand their response to the changes taking place in the 
Mediterranean Sea. 
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