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Abstract: The development of remote sensing technology has redefined the approaches to the Earth’s
surface monitoring. The Copernicus Programme promoted by the European Space Agency (ESA)
and the European Union (EU), through the launch of the Synthetic Aperture Radar (SAR) Sentinel-1
and the multispectral Sentinel-2 satellites, has provided a valuable contribution to monitoring
the Earth’s surface. There are several review articles on the land use/land cover (LULC) matter
using Sentinel images, but it lacks a methodical and extensive review in the specific field of land
consumption monitoring, concerning the application of SAR images, in particular Sentinel-1 images.
In this paper, we explored the potential of Sentinel-1 images to estimate land consumption using
mathematical modeling, focusing on innovative approaches. Therefore, this research was structured
into three principal steps: (1) searching for appropriate studies, (2) collecting information required
from each paper, and (3) discussing and comparing the accuracy of the existing methods to evaluate
land consumption and their applied conditions using Sentinel-1 Images. Current research has
demonstrated that Sentinel-1 data has the potential for land consumption monitoring around the
world, as shown by most of the studies reviewed: the most promising approaches are presented
and analyzed.

Keywords: change detection; earth observation; land consumption; machine learning; SAR images;
Sentinel-1; soil sealing

1. Introduction

Land consumption, or land take, can be defined as the conversion of agricultural or
naturally healthy soil into residential, commercial, or other developed areas with artificial
covering (consumed land), due to the removal of vegetation and the loss of natural or
semi-natural soil [1].

The European Union (EU) and the Member States have soil-concerned reporting duties
because of many international agreements in which the EU is involved (e.g., Sustainable
Development Goals—SDGs; United Nations Convention to Combat Desertification—UN
CCD; United Nations Framework Convention on Climate Change—UN FCCC; United
Nations Convention on Biological Diversity—UN CBD) [2]. Moreover, assessing the growth
pace of land consumption is significant in terms of the European objectives: no net land
take by 2050 [3] and the five EU Missions, belonging to the Horizon Europe research and
innovation program for the years 2021–2027, a new way to create practical solutions to
some of our most critical challenges by 2030 [4].

Despite that, at the moment, there are no signs of change in chronological trends: land
consumption proceeds to increase annually at the European and global levels [5–7]. Soil
monitoring is still not implemented in a systematic, harmonized way. In comparison to
other precious resources, such as water, EU Member States have no legal obligations to

Land 2023, 12, 932. https://doi.org/10.3390/land12040932 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land12040932
https://doi.org/10.3390/land12040932
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0003-4279-9781
https://orcid.org/0000-0002-0592-6182
https://orcid.org/0000-0001-7283-116X
https://orcid.org/0000-0002-3415-6105
https://doi.org/10.3390/land12040932
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land12040932?type=check_update&version=1


Land 2023, 12, 932 2 of 25

report on soil. Actually, in many Member States, there are weak, insufficient, or non-active
soil monitoring programs, compromising the EU soil monitoring, which results in a lack of
data to assess policy options [2].

The Earth Observation (EO) platforms, with the advancement of remote sensing
technology, have become increasingly suitable to collect a large range of data. These data
have become fundamental for environmental monitoring through mapping earth features
and detecting changes on the land surface. Therefore, researchers have analyzed a widening
set of approaches, involving processes, techniques, methods, and algorithms, for mapping
land consumption, detecting changes, and testing different datasets collected by different
sensors. Since the development of new approaches is strictly interlinked with the growth
of technology, it is appropriate to constantly examine the available instruments to detect
and classify, and then monitor the trend of this phenomenon, to mitigate the potential for
bad societal consequences well in advance.

A wide range of EO satellites have been launched in space, and correspondingly, many
kinds of images are available: optical, microwave Synthetic Aperture Radar (SAR) [8,9],
multispectral (MS), or hyperspectral (HS) [10]. Many traditional approaches of land con-
sumption mapping based on optical and multispectral images are still relatively limited
in their applications since they are affected by various factors, such as the influences of
atmospheric conditions, changing seasons, satellite sensors, and solar elevations, reducing
the accuracy of the results [11].

To date, global scale land consumption mapping (e.g., national level) is mostly con-
ducted through the assistance of well-trained operators able to recognize the transforma-
tions that have taken place, aided by suitable spectral indices masks [12,13]. This requires
a time-consuming and expensive process. For this reason, it is important to define and
implement automatic methods that are able to speed up land consumption mapping and
cut costs. Some remote sensing image classification techniques have been developed over
the last decades for land consumption mapping or change detection. They include the
commonly used supervised or unsupervised methods applying pixel-based or object-based
approaches. Some of the existing methods are based on a mix of semi-automatic classifi-
cation and photointerpretation of satellite and airborne optical images [7], whereas more
recent methods are focused on spectral indices [14,15], machine learning technics [16], inte-
gration of SAR and optical images [1], or a combination between radar and Geospatial Big
Data [17]. However, those methods always are dependent on the datasets used. Therefore,
this paper wants to focus on Sentinel-1 data to monitor land consumption and soil sealing
because of their potential advantages and availability, providing large opportunities for
future research.

Goal of This Study

A lot of existing reviews are focused on land use/land cover (LULC) classification or
LULC change detection monitoring, focusing on different remote sensing classification ap-
proaches, optical/multispectral images, and algorithms utilized [18–26]. Other reviews are
focused purely on the impact of land use and its effects on the environment [27,28]. Indeed,
the impact of the land cover on land surface temperature, biodiversity, evapotranspiration,
groundwater table, peak runoff, infiltration, stormwater, pollution, imperviousness, etc. is
becoming more significant. Therefore, there are also a lot of review articles on the LULC
matter, but to our best knowledge, a systematic and comprehensive review in the specific
field of Land Consumption Monitoring, concerning the application of SAR images, in
particular Sentinel-1 images, is not available yet.

It comes out that a more systematic analysis is necessary to get an extensive and
objective comprehension of the applications of medium-resolution SAR images for Land
Consumption Classification and Change Detection analysis. The different applications
for which Sentinel-1 images were applied and the problems encountered in such studies
are beneficial information for researchers interested in Land Consumption and medium-
resolution SAR images.
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Through a meta-analysis, the publications related to Sentinel-1 and Land Consumption
are identified, and the main scientific advances noted in the literature are summarized.
Finally, a conclusion, critical summary, and future perspective are given.

2. Background Analysis
2.1. Fundamentals on Land Consumption

According to ISPRA and EEA, land consumption, or land take, is

“a phenomenon associated with the loss of an important environmental resource: agricul-
tural, natural, or semi-natural land. The phenomenon refers to an increase of the artificial
covering of the ground, due to settlement dynamics. It is defined as a change from a
non-artificial covering (unconsumed land) to an artificial covering of the soil (consumed
land)” [7,29]

Although we take it for granted, “soil is one of the most important fragile, non-renewable
resource in our lifetime that needs to be carefully managed and safeguarded for future
generations. Indeed, soil is the basis of 95% of our food. It provides clean water and
habitats for biodiversity while contributing to climate resilience. It supports our cultural
heritage and landscapes and is the basis of our economy and prosperity” [2].

Thus, the soil is involved in many ecosystem functions (e.g., filtration and transfor-
mation of many substances, biomass production, cultural and historic functions, habitat
provision, etc.) [30]. Soil is also an essential—and often neglected—element of the climate
system. It allows for storing huge quantities of carbon, just second after the oceans. Mostly,
climate change might be the effect of more carbon being stored in plants and soil or more
carbon being released into the atmosphere, depending on the regions and agricultural
techniques used. The restoration of key ecosystems on land and land sustainable use in
rural and urban areas can facilitate us mitigating and adapting to climate change [29].

One centimeter of soil can take hundreds of years to form but can get lost in just a
single storm or industrial incident [2]. Its loss is mostly attributable to industrial activities,
urbanization, construction of new buildings and infrastructures, expansion, development,
densification of urban areas, etc. [1,31]. Land consumption consequences are various,
namely, contamination, loss of soil fertility and the ability to produce raw materials, ero-
sion, hydrologic cycle alteration, impact on biodiversity, loss of high-quality agricultural
land, higher risk of flooding, effects on climate changes, cultural and landscape heritage,
degradation of the landscape, scenic pollution, etc. [7,31].

Furthermore, soils are threatened throughout Europe and the world in general because
of a number of human activities (e.g., intensive agriculture, production and land use, current
consumption patterns, and industrial and construction activities) which are exacerbated
by climate change. By 2050, 500–700 million people worldwide are likely to be forced
to migrate due to a combination of climate change and soil degradation. By an accurate
analysis, the Mission Board Soil Health and Food and the Joint Research Centre (JRC)
concluded that 60–70% of soils in the EU are in an unhealthy state [32].

At the global level, the temperature increase is due to the release of greenhouse gases
in the atmosphere, the increase of the saturated water vapor pressure, and the rise of
the sea surface [33]. By contrast, in urban areas, the relative humidity has significantly
decreased due to the diminution in the amount of evaporation (steam amount) based on the
diminution of the water surface and green areas and the increase in the temperature due to
the heat storage by buildings and waste heat [1,34]. In addition, part of the precipitation
that drops on the soil surface, infiltrates, and crosses the subsoil, whereas part of that
evaporates into the atmosphere, falls to the soil surface, and is finally introduced into
water bodies, including lakes, oceans and rivers [35]. Nevertheless, once the soil surface is
covered, this natural cycle of water will be greatly altered [36]. High waterproofing areas
have various effects on water balance and water regulation [37].

In the context of increasing urban population and economic development, the built-up
areas have been widely expanding in large urban cities at a world scale [38]. According to
United Nations [39], by 2030, the urban population will represent 60% of the total global
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population. Knowledge of the spatial distribution of the built-up areas is essential for the
analysis of urban expansion and urban heat islands, as well as for the development of
strategies to prevent disaster management and to detect abusive phenomena. Therefore,
land consumption monitoring is a fundamental requirement for defining appropriate
policies and sustainable planning. In fact, an efficient land consumption monitoring strategy
makes it possible to quantify changes in the territory, identify trends, and adopt effective
development policies. At the European level, this phenomenon is an important issue, which
has prompted the European Commission to publish guidelines of good practice to limit,
mitigate, or compensate for soil sealing [37] to reduce land consumption and changes in
the LULC [1].

2.2. Fundamentals on SAR Images and Sentinel-1 Mission

Although optical images have a high capability for urban monitoring [12,18], they still
have some limitations, including their dependence on climatic conditions and spectral infor-
mation: clouds appear impenetrable in all-optical frequency bands, they completely distort
the spectral reflectance signal, and obscure the view of the ground below. Consequently,
there are considerable data gaps in spatiotemporal domains. Therefore, cloud cover is a
significant obstacle for applications that require continuous observation over a given period,
such as land take monitoring [40]. The inability to obtain optical images at night/darkness
is another problem that can make the land cover classification challenging [41].

The use of SAR represents a new era in land monitoring remote sensing technology.
SAR enables imaging in all weather conditions and at night, with the ability to detect
phenomena based on their location, roughness, and geometry, facilitating the land cover
classification [42,43]. SAR images can be particularly useful for monitoring areas where op-
tical images are unusable since the cloud cover or the dark time is almost permanent [41,44].
SAR sensors can, therefore, regularly provide information about the terrain. This makes it
possible to monitor rapid changes in land use and the development of urban areas, provid-
ing helpful information for land use planning and reducing the land take. For example,
JERS-1 SAR series images were used to analyze land use changes [45] and COSMO-Skymed
data were used for land cover classification [46]. Then, other works include unsupervised
change detection [1,47].

Built-up areas, such as buildings, are typically characterized by high backscattering
values and do not change significantly in a short time: hence, they can be easily recognized
in multitemporal image series [48] Built-up areas are also highly coherent. Considering two
multitemporal images, for vegetation the corresponding “Time Average Coherence” values
are significantly lower with respect to the ones of the built-up areas, which are in general
highly coherent [49]. This determines that the stable increase in coherence and intensity of
the signal most likely indicates land consumption [50].

Moreover, ascending and descending orbits are complementary. Only a small number
of pixels representing built-up areas are selected simultaneously in both the ascending and
descending maps. This shows the strong dependence of the building representation within
the SAR backscattering on their specific geometric positioning [51].

There are many existing and available medium-resolution satellite images (10–30 m)
for land consumption mapping, including Envisat and ERS-1/2, but Sentinel 1 image
results are still one of the most promising because they are freely accessible and they
improve information, in terms of reliability and timeliness of the data [52].

Sentinel-1 is an imaging radar mission, by the European Space Agency’s (ESA) Coper-
nicus Sentinel-1 constellation [52], which supplies continuous all-weather, day-and-night
imagery at C band. The mission consists of a constellation of two satellites, Sentinel-1A and
Sentinel-1B, which share the same orbital plane. The first of the dual Sentinel-1 satellites
was launched on 3 April 2014 and its identical twin was launched on 25 April 2016, but it
was actually decommissioned because of an anomaly related to the instrument electronics
power supply provided by the satellite platform, leaving it unable to deliver reliable radar
data [4]. The Sentinel-1 mission operates in four unique imaging modes with different
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resolutions (down to 5 m) and coverage (up to 400 km). It provides double polarization
capability, very short revisit times, and fast product delivery. Precise measurements of
spacecraft position and attitude are available for each observation (Table 1).

Table 1. Sentinel-1 satellite characteristics [53].

Interferometric
Wide-Swath Mode (IW) Wave Mode Strip Map Mode Extra Wide-Swath

Mode (EW)

Parameters

Polarization Dual
(HH + HV, VV + VH)

Single
(HH, VV)

Dual
(HH + HV, VV + VH)

Dual
(HH+HV, VV + VH)

Azimuth
resolution 20 m 5 m 5 m 40 m

Ground range
resolution 5 m 5 m 5 m 20 m

Azimuth and
range looks Single Single Single Single

Products

Level 2 Ocean Ocean Ocean Ocean

Level 1 Single Look Complex - Single Look
Complex

Single Look
Complex

Level 0 Raw data - Raw data Raw data

Characteristic

Lifetime 7 years (consumables for 12 years)

Launch date 1A—3 April 2014 | 1B—25 April 2016 timeframe

Launcher/Location Soyuz, Kourou (both launches)

Orbit Near-polar, Sun-synchronous, about 690 km, 12 days repeat cycle

Orbital period 98.6 min

SAR has the advantage of operating at wavelengths unimpeded by cloud cover or a
lack of illumination and can acquire data on a site during day or night in all weather condi-
tions. Sentinel-1, with its C-SAR instrument, is able to offer reliable, repeated wide-area
monitoring [52,53]. The Sentinel-1 mission was also planned to provide improved revisit
frequency, coverage, timeliness and reliability for operational services, and applications
requiring long time series [52,54].

3. Materials and Methods

In this paper, we reviewed the available literature on the potential of Sentinel-1 images
to estimate land consumption using different kinds of mathematical modeling, focusing, in
particular, on innovative techniques.

Accordingly, this research was organized into three main steps: (1) searching for
relevant papers, (2) collecting information needed from each paper, and (3) analyzing the
existing methods, their accuracy, and their applied conditions.

In the first step, an extensive survey of studies involving Sentinel-1 images for land
consumption mapping and change detection was conducted. To find potentially relevant
research papers, we used Scopus “http://www.scopus.com (accessed on 15 February 2022)”
which is a web database of peer-reviewed (and non-peer-reviewed) literature. We selected
simultaneously the keywords ‘land consumption’ and ‘Sentinel 1’. We also included
variants of these terms, such as ‘soil consumption’, ‘land take’, ‘soil sealing’, and ‘urban
land cover’. The last literature search was performed in February 2022. The automated
query returned a total of 234 articles. Then, the specific search was limited to peer-reviewed
journal papers, after removing review papers (as they are not original methods for land
consumption monitoring), conference reviews (for the same reason before), erratum, and
articles still in the press. Only English languages were included. A total of 215 articles were
identified in this process and manually examined. After reading the abstract and, where

http://www.scopus.com
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necessary, the complete article, we extracted the relevant information from each paper. For
this purpose, information related to three types of parameters was collected from each
paper: specific application (e.g., land use, land cover, land consumption, impact assessment,
etc.), type and name of images used (e.g., Sentinel-1, Terrasar-X, Landsat, Sentinel-2, etc.),
and analysis type (e.g., mapping, classification, change detection, quantitative analysis, etc.).
Thus, we eliminated sources that were clearly not focused on the theme of the research (that
were not focused on land consumption classification/change detection using Sentinel-1
images) and n. 2 duplicated articles. Therefore, a total number of 23 studies, that met the
explained criteria, were selected. Moreover, 2 papers not resulting from the research were
added from another source, Google Scholar “https://scholar.google.com/ (accessed on 8
February 2022)”, for a total of 25 papers (Figure 1). The full text of such papers was read to
extract the following detailed information:

• Type of analysis conducted (e.g., mapping, classification or change detection);
• Software used (e.g., SNAP, ENVI, etc.);
• Methodologies implemented (e.g., combining Radar and Geospatial Big Data, integrat-

ing SAR and Optical data, considering Sentinel-1 features, etc.);
• Algorithms applied (e.g., supervised/unsupervised Machine Learning (ML) algo-

rithms, Bayesian Algorithms, Object/Pixel-Based learning algorithms, etc.);
• Study areas considered (e.g., local/city scale, national scale, global scale, etc.);
• Dataset considered (e.g., orbits, spatial and temporal resolution, number of

images, etc.);
• Results obtained (e.g., overall accuracy, k-index, producer accuracy, visual analysis

accuracy, etc.);
• Potential issues and gained benefits.

Figure 1. Flow Diagram for manuscript selection.

A simple statistical analysis was conducted in Scopus environment using the above
data to analyze the current status and trends in the use of Sentinel-1 images to monitor
land consumption. Statistics included the number of papers published annually from 2014
(year of the satellites’ launch) to today, as shown in Figure 2a, the number of journal articles

https://scholar.google.com/
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by country, Figure 2b, the percentage of papers by type, Figure 2c, the number of studies
by author, Figure 2d.

Figure 2. (a) Documents by year, (b) Documents by country, (c) Documents by type, (d) Documents
by author (statistics extracted from Scopus research).

Analyzing charts, it results that the first article about land consumption monitoring
with Sentinel-1 data was published in 2016, which can be explained by considering that
the first Sentinel-1 was launched in 2014. Indeed, graphs show a gradual increase over the
years since the issue is becoming increasingly popular across researchers and institutions
and we expect an even greater sprawl. Moreover, it is outlined that Italy and China are
actually the countries more specialized in the subject matter, even if other countries all over
the world are increasingly evolving.

4. Analysis of Existing Approaches to Map Land Consumption with Sentinel-1 Images

The analysis of the selected papers is organized as follows. Section 4.1 briefly intro-
duces the study area, the dataset, and the software used in different studies. In Section 4.2, a
detailed description of the proposed methodologies is given together with the discussion of
results. Furthermore, the structured comparison of methodologies is presented afterwards,
where characteristics, accuracies, strengths, and weaknesses of the proposed approaches
are discussed.

4.1. Study Area, Dataset, and Software

A total of 22 studies out of 25 selected have chosen a local/city/regional scale study
area. Just three articles [17,55,56] consider the national scale as a study area to detect land
consumption. These methods, indeed, were used to produce, respectively, a comparative
study of 40 cities across the world and the national land consumption map of Italy. Many
well-labeled points were used as a validation test to validate and compare the results
chosen as a subset of the study area to reduce the computational effort.
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To download Sentinel-1 and Sentinel-2 images, Copernicus Open Access Hub (https:
//scihub.copernicus.eu, accessed on 1 March 2023) is often used, previously known as
Sentinels Scientific Data Hub. It provides complete, free, and open access to Sentinel-1,
Sentinel-2, Sentinel-3, and Sentinel-5P user products, starting from the In-Orbit Commis-
sioning Review (IOCR).

Software more commonly used to pre-process Sentinel-1 images is SNAP, which is
open source, intuitive, and easy to use. It can be downloaded from the ESA website and is
composed of toolboxes that can manage, process, analyze, and visualize both multispectral
and SAR images. It gives the opportunity to non-expert users to implement reliable pre-
processing analysis in a short time. It has been used by nine authors to correct images before
using them in a single process (Table 2). The other five authors used ENVI, integrated
with Esri’s ArcGIS platform, also a valuable, reliable, accurate, but paid software (Table 2).
Just one author [49] used ERDAS Image software to apply the most popular supervised
classification method, Maximum Likelihood Classification (MLC).

Table 2. Characteristics of common Software used for Sentinel-1 pre-processing and downloading.

Software Developer Application Description Related Paper

Copernicus
Open Access

European
Space Agency

(ESA)
Downloading

It provides complete, free, and open access to
Sentinel-1, Sentinel-2, Sentinel-3, and Sentinel-5P user
products. The self-registration process is automatic and

immediate. Registration grants access rights for
searching and downloading Sentinels products. Search

queries on the products stored on the archive and
filtering of results are possible via a full-text search bar,

using filters for the different acquisition modes,
product types, product levels, and geographical areas.

[57–60]

SNAP—
Sentinel 1
Toolbox

European
Space Agency

(ESA)

Preprocessing;
Classification

A graphical user interface (GUI) used for both
polarimetric and interferometric processing of SAR

data. Start to finish processing includes algorithms for
calibration, speckle filtering, co-registration,

orthorectification, mosaicking, and data conversion.

[17,49,59–66]

ENVI
Inventory

Optimization
Solutions (IOS)

Preprocessing;
Classification

Software built in IDL, a powerful programming
language, allows for easy features and functionality

customization to meet unique needs.
It makes it easier than ever to read, explore, prepare,

analyze, and share information from imagery.

[1,61,67–69]

ERDAS Image ERDAS, Inc. Preprocessing;
Classification

Used widely for processing remote sensing data since
it provides a framework for integrating sensor data

and imagery from many sources. It is based on a
Hierarchical File Format (HFA) structure. It allows to

apply algorithms and validate results
(accuracy assessment).

[49]

Google Earth
Imagery Google Validating

Google Earth includes many images collected from
satellites orbiting the planet. These images come from

various satellite companies and are grouped into a
mosaic of photographs taken over many days, months
and years. It allows to validate results in visual mode

[70,71]

Google Earth
Engine Google

Downloading;
Preprocessing;
Classification

Google Earth Engine combines a multi-petabyte
catalogue of satellite imagery and geospatial datasets
with planetary-scale analysis capabilities. It is used to
detect changes, map trends, and quantify differences

on the Earth’s surface. The client libraries provide
Python and JavaScript wrappers around our web

API. It is free.

[1,17,55,59,61,
68–70,72]

https://scihub.copernicus.eu
https://scihub.copernicus.eu
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Lastly, Google Earth Engine is used by different studies to implement pre-processing
and classification algorithms. It is a very useful instrument, since it allows for directly
visualizing images through the Copernicus hub and working on them without downloading
them, and quickly changing location, type of products, etc.

4.2. Methodologies

The aim of this section is to analyze and compare existing methodologies used to clas-
sify land consumption with Sentinel-1 images. Table 3 summarizes the main characteristics
of the process accustomed by selected articles.

Different approaches have been used recently to map LULC [19,21,73]. This paper
does not consider these approaches, but only those focused on land consumption/soil
sealing, considering that they are a subset of the general land cover classification sys-
tem. In particular, the goal of this paper is to analyze existing approaches dedicated to
mapping land consumption exploiting freely accessible medium-resolution SAR images,
such as Sentinel-1, since there are a lot of existing reviews on land consumption using
high-resolution images, as mentioned above.

To analyze and discuss in detail all the mentioned approaches, we have decided to
divide them into 4 categories, illustrated thereafter:

• Type A—Land consumption mapping combining SAR and Geospatial Big Data;
• Type B—Land consumption change detection;
• Type C—Land consumption mapping using data fusion or data integration;
• Type D—Land consumption mapping using approaches considering only Sentinel-1

image features.

4.2.1. Type A—Land Consumption Mapping Combining SAR and Geospatial Big Data

To classify land consumption, good results are obtained integrating Remote Sensing
data (including Sentinel-1 data) and Geospatial Big Data.

Shi et al. [63] investigated the opportunity of combining multisource remote sensing
images and data extracted from the WeChat social network to classify urban LULC. In
particular, SAR and optical images were used for different scopes. High-resolution optical
images helped delineate the land parcel through a segmentation algorithm. Low-resolution
multispectral images were used for specific classification by integrating object-based im-
ages analysis, decision tree, and Random Forest (RF) algorithms: urban villages, streets,
commercial buildings, and residential buildings were the classes considered. Afterward,
SAR Sentinel-1A data reduced the confusion between commercial buildings, greenhouses,
and water. Lastly, the distribution users of WeChat data improved the classification accura-
cies of urban villages, greenhouses, and commercial buildings. This approach, while very
innovative, is strictly linked to the availability of social media data.

Recently, Hu et al. [17] examined land take by associating demographic information
with remote sensing data. In particular, they refined data starting from the Local Climate
Zones (LCZs) maps used as proxies to disaggregate the global population grids (GHS-
POP) and the Morphological Urban Areas (MUA) extent to improve the spatial details of
population data. RF is the classifier chosen for the Local Climate Classification task, on a
global scale, performing an intra-urban land consumption analysis for 40 cities across the
globe. This method’s results are less reliable if applied to cities different from the trained
ones, and it istightly conditioned by the availability of the population data.

There is potential for these linear approaches, even though, as mentioned above, we
need to consider that they are bound to the availability of Geospatial Big Data (e.g., social
media data and global population data). Indeed, often third-party Geospatial Big Data
have been explored just to validate results [70,74]. Wrapping up, too few studies regarding
Sentinel-1 and Geospatial Big Data have been conducted but the approach seems to be
promising and larger research should be considered.
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4.2.2. Type B—Land Consumption Change Detection

Some articles consider detecting changes that occurred in land consumption, most of
them integrating SAR and Optical Data.

Mastrorosa et al. [1] exploited the SAR amplitude feature to detect changes in land
consumption and update existing soil sealing maps. The main assumption is that a change
in land consumption is associated with an increase of the SAR amplitude values. The
automatic procedure used multi-temporal Sentinel-1 data to apply the Step Detection Al-
gorithm based on a Bayesian approach as proposed by O Ruanaidh and Fitzgerald [75],
which detected the probability that changes occurred and the time in which they took
place. Optical imageries, then, were used to produce a Normalized Difference Vegeta-
tion Index (NDVI) map, for filtering results and removing false-positive changes. The
proposed approach is automatic, simple, unsupervised, and even feasible for non-expert
users. However, it should be considered that, whenever new objects are characterized
by low amplitude, such as streets, squares, or a set of solar panels, changes are not
punctually detected.

Positive results are also achieved by integrating NDVI and backscattering analysis.
Differently than Mastrorosa et al. [1], here, Strollo et al. [56] exploited the assumptions that
land consumption causes a decrease in the NDVI index due to the removal of vegetation
cover and an increase in the backscattering values. Using Sentinel-2 images, the difference
between two maximum NDVI rasters is calculated in order to assess the possible land
consumption changes. Then, to enhance the reliability of the results, Sentinel-1 images
have been employed to distinguish bare soil from urban areas, both resulting in low NDVI.
This mask, resulting from the difference between the median backscattering, allowed
removing from the map changes attributed to bare soil and not to the real land consumption.
This method, though very simple and with high accuracy, depends on the arbitrariness
of thresholds.

On the same line, considering the same assumptions of Strollo et al. [56], Luti et al. [55]
developed a fully automatic workflow, using the multitemporal acquisition of Sentinel-1
and Sentinel-2 images, in order to detect changes that occurred between 2018 and 2019 in
the study area of Italy. As the acquisition orbit influences the angle of view of Sentinel-1
images, the ascending and descending orbits were considered separately, to preserve the
information related to object configuration and orientation on the ground. Three approaches
were used and compared, which produced different and good results; however, the smallest
changes (less than one pixel) are omitted, and false or not permanent changes are often
considered.

In 2021, Nistor et al. [61] investigated the urban landscape changes for the last 50
years in Bucharest, introducing a new method assessed through the Build-up Change
Index (BCI). The first phase was related to the identification of available data input for the
analysis: high and medium-resolution MS and SAR images were used. Following that,
data pre-processing was performed, including data correction and enhancement of chosen
data. The third phase corresponded to data processing in GIS for urban land cover feature
delineation, based on image interpretation techniques on MS images and semi-automatic
classification of Sentinel-1 and Sentinel-2 decorrelated data stack, using the Support Vector
Machine (SVM) algorithm with a radial basis function. At last, data mapping and statistical
analysis were implemented to compare the different datasets’ results through the BCI.
Outcomes validated the good results for the integration of Sentinel-1 and Sentinel-2 data
for a city with heterogeneous urban patterns.

Recently, Gruenhagen and Juergens [70], using a principle similar to the Rapid and
Easy Change detection on Time series using the coefficient of Variation (REACTIV) pro-
posed by Koeniguer and Nicolas [76], showed the use of the Multitemporal Difference-
Adjusted Dispersion Threshold (MDADT) method to record land cover changes in the
form of building demolitions and new construction. These changes have been validated
with third-party Geospatial Big Data, showing quite accurate results. This approach uses
only SAR data that were rarely considered in previously existing land consumption change
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detection. Nevertheless, only medium-term land cover changes were considered, and small
changes were not detected due to the spatial resolution of SAR data.

By analyzing the results, we can conclude that the change detection approaches
using Sentinel-1 data are actually based on various assumptions, datasets, and algorithms.
However, the common issue experienced is the underestimation of small changes, due to
the medium spatial resolution of Sentinel-1 images, even when the integration between
Sentinel-1 and Sentinel-2 images occurs. Moreover, changes that are not permanent are
often detected, due to the increasing SAR backscattering of artificial structures, even for a
temporary period. Frequently, to limit those issues, a temporal series of Sentinel-1 images
is deemed [1,56].

4.2.3. Type C—Land Consumption Mapping Using Data Fusion or Data Integration

Several studies have shown that urban land cover classification can be improved when
SAR data are combined with optical data, instead of using SAR Sentinel-1 or optical data
independently [77].

As a central task in the field of remote sensing imagery, remote sensing image fusion
techniques aim to get an image that simultaneously has both high spectral and high
spatial resolutions.

In 2016, Pesaresi et al. performed a new image classification method for built-up area
mapping called Symbolic Machine Learning (SML) [78]. In this paper, after demonstrating
that the SML classifier outperforms other parametric and non-parametric classifiers in
terms of both computational efficiency and accuracy, a preliminary test was carried out
with the aim of evaluating the applicability of the SML classifier on Sentinel-2 imagery.
Then, it assessed the complementarity of Sentinel-1 and Sentinel-2. The result validated ap-
preciable improvement in the quality of the classification gained from the complementarity
between Sentinel-1 and Sentinel-2 images; although, highways were not always detected,
and build-up surfaces were often underestimated in areas where shadows hampered the
automated classification.

Along the same line, Zhou et al. [68] achieved higher urban classification accuracy
with the combination of SAR Sentinel-1 and optical Hyperion images, compared to the
classification using exclusively the combination of SAR features (e.g., texture, coherence,
backscatter intensity, and color) extracted from Sentinel-1 data and assessed by performing
the RF classifier. This linear approach could be improved by considering images from
different seasons to investigate the impact of seasonality on urban land cover classification.

A different innovative method was proposed by Iannelli and Gamba [59]: a simplified
and less computationally demanding version of the Urban Extractor (UEXT) algorithm
whose latest version is described by Lisini et al. [79]. The proposed approach exploited
both the double bounce backscatter that showed up in multi-temporally averaged and
despeckled sets of SAR images, due to the presence of artificial structures, and the finer
spatial and spectral resolution of MS data, used to improve the classification. In partic-
ular, the simultaneous use of SAR Sentinel-1 and MS Sentinel-2 data, both with specific
issues, but complementary in their ability to discriminate urban elements of the landscape
from natural ones, led to slightly better mapping results. However, the accuracy is still
under 90%.

On the contrary, Tsolakidis and Vafiadis [66] demonstrated the superiority of the
multispectral Sentinel-2 classification compared to the combined Sentinel-1 and Sentinel-2
classifications. Indeed, similarly to Pesaresi et al. [78] but using an RF algorithm, in 2020,
Tsolakidis and Vafiadis [66] proposed an urban land cover classification methodology
integrating Sentinel-1 and Sentinel-2 images after pre-processing. The resulting classifica-
tion was compared to the one using only multispectral Sentinel-2 images. The outcomes
showed that the classification of the MS images was better than the one integrating the two
Sentinel-1 and Sentinel-2 images. In fact, the salt and pepper effect improved the mixed
image classification, and the Overall Accuracy (OA) and k coefficient have been reduced.
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Once again, better classification results were produced using data combination from
Sentinel-1 and Sentinel-2, rather than separate imageries, are demonstrated by Hu et al. [71].
Indeed, to reduce the confusion between water and dark impervious surfaces, he processed
the combination of MS Sentinel-2 and SAR Sentinel-1 data via the layer stacking method
and implemented the classification using the novel approach the Support Vector Machine
with Composite Kernels (SVM-CK). In particular, the results indicated that SAR Sentinel-1
data identified urban land cover types with lower accuracy than MS Sentinel-2 data with
the same spatial resolution, while improvement was achieved by the fusion of the two.
Furthermore, the SVM-CK algorithm performed better compared to others ML algorithms:
nevertheless, misclassifications were often observed.

In 2021, Shrestha et al. [64] and [60] confirmed the better performance of the combined
data in built-up classification than optical data exclusively. The study used a pixel-based
fusion of Sentinel-1 and Sentinel-2 datasets (14 bands stacked images), applying the RF
land cover classification method, to map the impervious surfaces at the city scale. However,
the method results are time consuming if considering a larger study area and its results are
challenging to replicate in tropical regions where MS images are often contaminated by
cloud cover.

Then, Nistor et al. [61] performed the image classification process based on the recent
satellite Sentinel-1 and Sentinel-2 images from 2018 after creating a hybrid and highly
decorrelated image stack dataset. Lastly, the data mapping and statistical analysis were
implemented using the SVM algorithm with a radial basis function and obtained high-
accuracy results.

Good results are also achieved by Petrushevsky et al. [72]. They explored the chance
of combining the unique SAR ability to detect stable targets, e.g., urban structures, with
the fine resolution of optical surveys. First, the Simple Linear Iterative Clustering (SLIC)
superpixel algorithm was used to perform the segmentation of an optical image, so that the
final product follows the visible borders between land covers. Then, since pixels labeled
by the same segment are assumed to belong to a similar land cover, SAR multi-temporal
features (coherence and intensity) were estimated over the segments. An RF regressor
model was subsequently trained to identify urban segments by features retrieved from
a SAR stack containing at least eight images of the same area. Two stacks with different
orbits (ascending and descending) were used to enhance accuracy since urban structures
are distributed randomly, and they affect the characteristics of the returned signal. The
classification products were given as the percent of urban pixels in a segment, since some
segments do not contain only samples from one class, and finally a minimum threshold was
established to achieve binary classification. The training of the RF model was performed on
5% of the segments, achieving a good OA of 90.29%. The main issue is the misclassification
of many urban pixels surrounded by non-urban pixels.

A further analysis of the previous method was proposed by the same authors in
2022 [57]. Here, the Sentinel-2 image was used to identify clusters of similar pixels. The
choice of Sentinel-2 bands was based on empirical experiments, which showed superior
performance using the Green-Blue-NIR high-resolution channels. Then, for each cluster
of pixels identified in the segmentation process, a set of SAR features from the Sentinel-1
stack was extracted (e.g., differential entropy, sigmanought, and polarimetric coherence).
Finally, a Fuzzy C-Mean, an unsupervised classifier, was used to translate the features
into urban membership level and was a fixed threshold on the result to obtain binary
classification and achieve an urban mapping. Here, roads are usually confined surfaces
without any double-bounce scattering mechanisms and are surrounded by decorrelating
targets, resulting in difficulty detecting and classifying.

As mentioned above (Section 4.2.1), recently, Hu et al. [17] investigated land con-
sumption by associating demographic information to intra-urban knowledge on structural
variability by the LCZs. The developed classification system fused freely-accessible SAR
Sentinel-1 data and optical Sentinel-2 data via a semi-supervised strategy, then they applied
data results for mapping LCZ. RF was the classifier chosen for the Local Climate Classi-
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fication task, on a global scale. LCZ classes were, then, used as a proxy to disaggregate
the GHS-POP. At last, to improve the spatial details of population data, the MUA urban
extent was used, revealing that urban land consumption differs immensely across the
globe. This approach turns out low accuracy results if considering cities different from the
trained ones.

The fusion of Sentinel-1 and Sentinel-2 data successfully resulted in reducing the
effect of shadows caused by low sun elevation and tall buildings on Sentinel-2 images that
degrade the mapping accuracy. Sun et al. [80] explored more valid polarimetric features of
Sentinel-1 and proposed a hierarchical framework for impervious surface mapping at the
city scale by synergic fusion of dual-polarized SAR and MS information.

The method integrating SAR and optical data stands as the main obstacle. The classifier
used in previous studies often simply stacks the features extracted from optical images
and SAR images together. Nevertheless, optical reflectance data and SAR backscattering
data do not correlate [81]. Features extracted from optical and SAR have different statistical
characteristics, dimensions, and physical meanings [82].

The conventional layer-stacking approach cannot make full use of much information
with different characteristics. Therefore, many studies explored advanced methods to better
depict and differentiate heterogeneous features in order to integrate SAR and optical data
more effectively.

For instance, to solve the problem, Sun et al. [65] proposed the Multiple Kernel
Learning (MKL) methods using a balanced linear combination of multiple basic kernels
instead of a single one, where each kernel describes a different characteristic of the data
and is thus able to exploit discriminative information from different sources. He fused
heterogeneous features more effectively and provided improved performance to derive a
subpixel impervious surface map by employing the developed Multiple Kernel Support
Vector Regression (MKSVR) models, ensuring the improvement of performance, despite
the method being built on the arbitrariness of parameters choice.

Then, in 2021, Forget et al. [83] proposed a mapping approach based on multi-sensor
satellite imagery (Sentinel-1, ERS, Landsat, Envisat) and the volunteered geographic infor-
mation (OpenStreetMap) to estimate the urban expansion in Sub-Saharan Africa, consider-
ing a sample of 45 urban areas as case studies, properly selected to maximize the diversity
in relation to climate, dimension, population density, geography, and economy. The classi-
fication of built-up areas for each case study and each data (from 1995 to 2015) initiated
from the collection was always filtered for the considered period of training samples for
both built-up and non-built-up areas, extracted from OpenStreetMap. Following that, the
extraction of features both from SAR and from optical imagery was performed. Then, the
final pixel-based supervised classification was elaborate considering an RF algorithm built
on 100 trees and a maximum number of features per tree equal to the square root of the total
number of features. At last, a simple mean filter with a 3 × 3-window size allowed for the
partial removal of noise, illumination artifacts, and roads. The main issues encountered are
due to the availability of data since the long period is considered and due to the presence
of training samples.

A different approach, based on Convolutional Neural Networks (CNN), was explored
by Yang et al. [69] in 2022. The proposed method exploited the synergetic use of both active
and passive remote-sensing data, SAR Sentinel-1 and MS Sentinel-2 and the features of
spectral indices. The framework was based on two-dimensional (2D) and three-dimensional
(3D) hybrid Convolutional Neural Networks (CNN), integrating Sentinel-1 and Sentinel-2
images and spectral indices, resulting in particular efficiency in high humidity surfaces. To
verify the accuracy of the proposed classification model, the approach was compared with
k-Nearest Neighbors (KNN), 2D CNN, 3D CNN, SVM, and hybridSN classification models,
producing an OA of 98.87 e k-index of 0.98. These results were better than the ones obtained
using Sentinel-1 and Sentinel-2 separately or the fusion classification based on Sentinel-1
and Sentinel-2 combined. Here, the synergistic effect of active-passive remote-sensing data
was well exploited to improve the urban land-use classification, especially in high surface
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humidity, cloud cover, and foggy weather: still, the network structure of the model results
is quite complex.

Having analyzed all papers and the related results, we can wrap up that the approaches
considered are assorted (even if the pixel-based methods are usually preferred) but all of
them asserted an issue related to the misclassification due to the Sentinel-1 image’s medium
resolution. Moreover, all the examined studies (except for one) demonstrated better results
by integrating Sentinel-1 and optical data, compared to the use of Sentinel-1 or optical data
separately. Indeed, the complementary nature of Sentinel-1 and optical data were exploited
by both considering the double bounce backscatter that showed up in multi-temporally
averaged and despeckled sets of SAR images due to the presence of artificial structures,
and the finer spatial and spectral resolution of MS data was usually used to improve the
classification. Even here, the spatial resolution limitation might be reduced by considering
a temporal series of Sentinel-1 images [83].

4.2.4. Type D—Land Consumption Mapping Using Approaches Considering Only
Sentinel-1 Image Features

In several studies, SAR texture analysis increased the classification accuracy of land
consumption. Holobâcă et al. [49] carried out an innovative method for land consumption
detection based on Sentinel-1 data. After an image pre-processing, the built-up areas
have been extracted by means of the Iterative Self-Organizing Data Analysis Technique
(ISODATA) unsupervised classification and texture analysis by mixed classes (Iso-Tex),
using the Sentinel-1 double polarization and a combination of images from both ascendant
and descendant orbit. This method performed better than the one using a supervised
classification with the MLC Algorithm described by Boudinaud in 2017 [84].

Some studies aimed to map built-up areas by using only multi-temporal SAR features,
such as the backscattering intensity and the Interfermetric Synthetic Aperture Radar (InSAR)
coherence. This is possible considering two main hypotheses: built-up areas in SAR images
appear very bright and they are coherent in time. The reason for the first assumption is that
in the presence of buildings a ‘double bounce’ effect leads to a very high backscattering;
the second assumption can be formulated considering these built-up structures are hard to
target so that InSAR coherence is mostly constant in time.

In particular, InSAR coherence allows for discriminating false alarms caused by other
land cover classes that also show high backscattering values but are not coherent in time
(e.g., specific types of vegetated areas), as demonstrated by Chini et al. [74] and [48].
Specifically, the newly developed algorithm proposed in the papers was applied to five
distinct test sites located in semiarid and arid regions and was built on adaptive parametric
thresholding. First, pixels with high backscattering values in both VV and VH polarimetric
channels were identified, and then the inSAR coherence was used to reduce false alarms,
obtaining OA up to 98% and using Global Urban Footprint (GUF) as a Reference Map.

Furthermore, the multitemporal InSAR coherence and intensity series allowed also
for reducing speckle noise without losing spatial resolution. It was possible to obtain
intensity and coherence features by averaging multi-temporal SAR series, as shown by
Chini et al. [74] and [48].

Based on InSAR coherence, highlighting all surfaces with constantly high backscat-
tered intensity, steady physical parameters through time, and fixed shape (such as urban
areas) is the method developed in 2020 by Semenzato et al. [62]. It was a semi-automatic
process capable of monitoring and mapping urban areas and specifically calculating the
spatial extent of urban features over non-urban areas (e.g., urban footprint). A series of
multi-temporal coherence images were stacked in order to increase the accuracy of the
single classified coherence image. Then, both supervised and unsupervised classifications,
respectively using RF, MLC, and K-means classifiers, were performed and compared. In
the end, an accuracy assessment was processed, considering the properly preprocessed
Carta di Copertura del Suolo (CCS) as a reference, resulting in high OA (up to 90%).
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As mentioned in par. 4.2.2, similar to the REACTIV approach of Koeniguer and Nico-
las [76], the MDADT method was tested by Gruenhagen and Juergens [70]. Whereas, in
the first method, land cover change was represented in the Hue Saturation Value (HSV)
color space. In the MDADT method, a threshold was applied to detect building de-
molitions and new constructions. This method allowed for straightforward and simple
robust detection of urban land cover change outliers in the distribution, showing quite
accurate results.

In 2021, Ghasemi et al. [58] employed the MLC and SVM algorithms for supervised
classification using Sentinel-1 images. In both algorithms, they performed the classification
once by using the SAR backscattering coefficient and once by combining the backscattering
coefficients with the statistical data obtained from the texture. The results showed that
the use of SAR images only with backscattering intensity resulted in poor performance
while using the Gray-Level Co-occurrence Matrix (GLCM) and texture features increased
the accuracy. The statistical results obtained from the ML and SVM classifications for
SAR images at VV and VH polarization indicated that the latter performed better than
the former. Furthermore, in both algorithms, separation of the road from barren lands
was difficult in the SAR images, as they are more sensitive to the physical features of the
phenomena and since the roads have the same reflection as bare lands. In this process,
therefore, Sentinel-1 images were used as basic materials and Sentinel-2 images were used
to evaluate the accuracy of the classification.

To Summarize, the most successful processes are based on the integration of InSAR
coherence and backscattering intensity, considering both ascending and descending orbits.
These methods are quite new and are more complex than the methods analyzed in previous
paragraphs but they result in an accurate classification, and they have the potential to
continue to be studied.

Table 3. Summary of analyzed articles.

Paper Type Method Mode Algorithms/
Techniques

Accuracy
Assessment Advantages Disadvantages

[63] A Object-
based Supervised

Segmentation
algorithm
Decision tree
RF

OA: 91.55%
K: 0.89

Reduced confusion
between
greenhouses and
vegetation thanks
to the population
density (in urban
areas higher than
in vegetation
areas).

Availability of
Social Media data.

[17] A–C Pixel-based Supervised RF;
K-means OA: various Possible use for

global scale.

Several accuracies
(different cities
considered).
Availability of
global population
data (GHS-POP).
Low accuracy if
considering cities
different from
trained ones.

[1] B Pixel-based Unsupervised Bayesian
algorithm

Visual
analysis

This approach is
simple,
unsupervised,
automatic, and
feasible for users
who are not
experts in the field.

Changes are not
detected whenever
the new objects are
characterized by
low amplitude,
such as a street, a
square, or a set of
solar panels.
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Table 3. Cont.

Paper Type Method Mode Algorithms/
Techniques

Accuracy
Assessment Advantages Disadvantages

[56] B Pixel-based Unsupervised

NDVI applicated
to optical images;
Median
backscattering;
Photointerpreta-
tion

OA:
97.7–99.66%

High accuracy.
Global scale.

Arbitrariness of
thresholds.

[70] B Pixel-based Unsupervised MDADT Visual
analysis

Use only SAR data,
consider large area,
and long time
period.

Only detected
medium-term land
cover changes.
Small changes
were not recorded
due to the spatial
resolution of
Sentinel-1 images.

[61] B–C Pixel-based Supervised SVM with radial
bases

S1: OA = 96%
K = 0.942
S1-S2: OA =
96% K =
0.942

Data are integrated
and harmonized,
thus obtaining a
very accurate
result for a city
with a complex
and heterogeneous
urban pattern.
These new
products offer
support for
conducting spatial
and statistical
analysis for
changes that
occurred in the
urban landscape.

Limited number of
classes that can be
extracted due to
the similar spectral
signature of some
classes.

[55] B Pixel-based Unsupervised

NDVI applicated
to optical images;
Median
backscattering;
Photointerpreta-
tion

OA: various

Global scale.
No training areas.
Time and
cost-effective.

Omissions are
mainly related to
the smallest
changes, which are
less than one pixel
in size.
Could be detected
false or not
permanent
changes.

[64] C Pixel-based Supervised RF OA: 85–98%
K: 0.8–1

The technique
would mainly
benefit urban areas
with open spaces
within the
settlement due to
higher spatial
resolution of
Sentinel data
despite the urban
density.

To replicate the
process in tropical
regions would be
challenging, being
S-2 data constantly
contaminated with
cloud covers.
For a larger study
area, the method
can be
computationally
time consuming.
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Table 3. Cont.

Paper Type Method Mode Algorithms/
Techniques

Accuracy
Assessment Advantages Disadvantages

[71] C Pixel-based Supervised SVM-CK OA = 92.12%
K = 0.89

The fusion of
Sentinel-2B MSI
and Sentinel-1A
SAR data
efficiently improve
land cover
classification in
cloud-prone
regions.

Possible
misclassification.

[65] C Pixel-based Supervised MKSVR RMSE: 0.2031
R2: 0.8321

Improved accuracy
compared with the
same method
using optical
image alone.

Setting parameters.
Computational
efficiency.

[66] C Pixel-based Supervised RF
S2:OA: 95%
S1-S2:OA:
91%

-

Salt and pepper
effect improved
the mixed image
classification, and
overall accuracy
and k coefficient
have been reduced
to respect
multispectral S2
classification.

[72] C Object-
based Supervised S1: MLC, RF

S2: SLIC OA: 90%

Free and open
access data.
The ability to
follow
high-resolution
details in a mixed
environment.
A low number of
calibration
parameters is
required, reducing
tuning sensitivity.

Urban pixels
surrounded by
many not-urban
pixels will be
misclassified.
Inconsistencies of
Sentinel 2.
Quite complex
approach.

[78] C Pixel-based Supervised SML Visual
analysis

The capacity to
handle different
sets of input
features, such as
radiometric,
textural, and
morphological
descriptors.
The distinction
between built-up
areas and fluvial
gravel, similar in
terms of
radiometric
characteristics but
having different
surface roughness
becomes possible.

Highways are not
detected.
Underestimate the
built-up surfaces
in high density
areas where
shadows hamper
the automated
classification.
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Table 3. Cont.

Paper Type Method Mode Algorithms/
Techniques

Accuracy
Assessment Advantages Disadvantages

[57] C Object-
based Unsupervised

S2: Super-pixel
segmentation;
S1: Fuzzy C-Mean

OA: 88–95%
K: 0.58–0.61

The SAR features
are tuned to detect
high
concentrations of
permanent
scatterers and
stable targets.
Unsupervised
classification: no
training dataset
used, making the
proposed solution
applicable
worldwide.
Frequently
updated.

Object-based
approach limits the
size of the smallest
detail.
Roads are narrow
surfaces without
any double-bounce
scattering
mechanisms
(usually) and are
surrounded by
decorrelating
targets, causing
difficulties in their
classification.

[83] C Pixel-based Supervised RF

F1 score:
0.81–0.98;
K-fold Cross
Validation
(CV):
0.90–0.95

RF class
probabilities were
post-processed
using a simple
mean filter with a
3 × 3 window size.
This allowed a
partial removal of
noise, illumination
artifacts, and
roads.

Availability of data
since the long
period considered.
Lots of training
samples.

[68] C Pixel-based Supervised RF OA: 99%
K: 0.98 High accuracy.

Impact of
seasonality in
urban land cover
mapping.

[60] C Pixel-based Supervised RF OA: 92–95%
K: 0.88–0.92 High accuracys.

Slight
underestimation of
impervious surface
for the city.

[59] C Pixel-based Supervised UEXT OA: 75-82%
K: 0.5–0.65

Overcome limits in
mountainous
regions, often
erroneously
identified as urban
structures.
Reduces number
of false positives.
Low
computational
demand.
Higher
repeatability over
a long time.

Low accuracy.

[69] C Pixel-based Supervised

Multi-Attention
Module Hybrid
CNN
(MAMHybridNet)

OA: 98.87
K: 0.98

Good performance
in high surface
humidity, cloud
cover, and foggy
weather.
High accuracy.

Quite complex
model.
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Table 3. Cont.

Paper Type Method Mode Algorithms/
Techniques

Accuracy
Assessment Advantages Disadvantages

[49] D Pixel-
based\ Unsupervised MLC; ISODATA +

Texture analyses

MLC:
K < 0.80
ISO-TEX:
K > 0.80

Higher accuracy
level compared to
the
supervised
classification.

MLC: The
confusions
between the urban
and non-urban
were detected in
the high
backscatter areas.
The disparities
occur especially on
more extended,
excessively humid,
or bare soil areas.
ISO-TEX: the
spectral response
was explored on
all 20 bands by
land use classes
that are narrow
enough to capture
a particular
classification
problem.

[74] D Pixel-based Unsupervised Hierarchical Split
Based Approach

Visual
analysis

Reduces shadow
and layover areas.
Removes the
permanent water
bodies.
Reduce false
alarms.

Limited geometric
resolution of the
Sentinel satellites
with respect to
other commercial
satellites.

[85] D Pixel-based Unsupervised
Hierarchical Spilt
Based thresholding
approach (HSBA)

OA: 91–97%

Reduces the
speckle without
losing spatial
resolution.

Limited geometric
resolution of the
Sentinel satellites
with respect to
other commercial
satellites.

[58] D Pixel-based Supervised MLC; SVM

SVM:
K = 0.72
ML:
K = 0.61

Good performance
in separating water
bodies.

Better accuracy
only in semi-arid
areas (due to low
atmospheric
turbulences).
Backscattering
coefficient may
differ based on the
geometric
orientation of the
objects.

[62] D Pixel-based Supervised;
Unsupervised

MLC; RD;
K-means

OA: 85–90%
Visual
analysis

Completely based
on Open data.

Limited geometric
resolution of the
Sentinel satellites
with respect to
other commercial
satellites.
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Table 3. Cont.

Paper Type Method Mode Algorithms/
Techniques

Accuracy
Assessment Advantages Disadvantages

[48] D Pixel-based Unsupervised
Hierarchical Spilt
Based tresholding
approach (HSBA)

OA:
91.55–97.93%
K: 0.29–0.47

Reduces shadow
and layover areas.
Reduces the
speckle without
losing spatial
resolution.
Reduces false
alarms.

Variability of
accuracies.
Limited geometric
resolution of the
Sentinel satellites
with respect to
other commercial
satellites.

5. Conclusions

Assessing the pace of growth of land consumption is important considering the
European objectives for 2050, an important policy document that aims to achieve zero
net soil sealing by 2050 [3]. To achieve such a goal, some documents were delivered at
the European and global levels, such as the “Guidelines on best practice to limit, mitigate
or compensate Soil Sealing”, the guidelines of good practices issued by the European
Union [37] and the “Sustainable development goals”, the guideline released by United
Nation [86]. In particular, in this last report, the goals regarding land consumption issues are
goals 11—“Make cities and human settlements inclusive, safe, resilient and sustainable”—
and goal 15—“Sustainably manage forests, combat desertification, halt and reverse land
degradation, halt biodiversity loss” [86]. Despite all that, there are currently no signs of
change in historical trends and land consumption continues to increase annually at the
European and global levels [5,7].

Thanks to the frequent revisiting of the ESA Sentinel missions, we will be able to
monitor land consumption in an innovative, novel, and speedy way (e.g., even on a
monthly basis, depending on the phenomena in action). That allows for managing land
use in an effective and sustainable way at multiple scales (municipal, regional, national,
and global levels). Users could be public administrations, mainly at the local level, as they
are responsible for land-use plans and operational tasks to support soil protection among
their municipalities, environmental protection agencies, park authorities, regions, and
basin authorities.

Although Sentinel-1 data offer the potential for monitoring urban expansion, Sentinel-1
images are relatively new (approximated 6 years), so there are not yet many studies
concerned with Sentinel-1 land consumption applications. Indeed, as demonstrated from
the Scopus research conducted in this study, most of the studies employing Sentinel-1 data
mainly focused on general land cover classification (which is the reason they were excluded
from the current review).

This study aimed at understanding the contribution of Sentinel-1 data towards land
consumption monitoring. The current research has shown that most of the reviewed studies
indicated that Sentinel-1 data has the potential for land consumption monitoring across
the world. Many studies have reported the superiority of Sentinel-1 over optical sensors,
especially in regions affected by cloud cover (Table 3). In many studies, Sentinel-1 data
are integrated with optical data, such as Sentinel-2, showing a good/better performance,
exploiting the advantages of optical and SAR data, and reducing the respective shortcom-
ings. The approaches aim at exploiting the finer spatial and spectral resolutions of MS data,
such as Sentinel-2, as well as the double-bounce backscatter effect that is common in all
built-up areas in the SAR, such as Sentinel-1 data (Table 3). Many classification methods
have been applied to Sentinel-1 data, including both pixel and object-based approaches,
using ML classifiers (e.g., RF and SVM) or new methodology/procedures, integrating
Sentinel-1 and optical data, Sentinel-1 and Geospatial Big Data or just exploiting Sentinel-1
features, providing great potential for improving land consumption classification (Table 3).
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In summary, the major strength of Sentinel-1 is the high temporal resolution and
the availability of images regardless of meteorological conditions. Indeed, the spatial
resolution limitation might be reduced by considering a temporal series of Sentinel-1
images. The approach is successful, but it requires the scene to remain stable for an
extended period, which reduces the possibility of continuous monitoring. In order to
obtain the best classification results from Sentinel-1 images, a number of factors being
used (such as the dataset used, the quality of the pre-processing, the selection of the clas-
sification method and classifier, and the choice of training data and test area) need to be
considered. It is important to employ geometric, radiometric correction, and despeckling
on the images using appropriate methods and tools. Indeed, a lot of variation can be
obtained depending on the quality of the pre-processing conducted on the images be-
fore classification, especially in areas with spatial topographic variations or areas with
complex morphology.

The major practical application of our results is to support researchers in choosing the
most promising methods to work on. Researchers can prioritize their efforts by obtaining a
clearer idea of expected improvements achieved by different methods (Table 3). Therefore,
there is a need to continue studying land consumption classification using contempo-
rary Sentinel-1 data while also exploring its performance in detecting different aspects
(e.g., road networks, buildings, solar panels, etc.) that are often difficult to identify. Further
analysis should also be conducted on a larger scale to standardize the land consumption
monitoring process, making it independent of the place considered, creating a way to make
the hyperparameter (ML parameters) changes automatically.

It could be promising to focalize on the integration of Sentinel 1 and Sentinel 2 images,
taking advantage of the positive results of both and offsetting the medium-spatial resolution
by increasing the number of images considered. As a further analysis, we can consider
areas with various morphologies (e.g., Lazio), in which we already have accurate temporal
land consumption maps provided by ISPRA on which to test the different methodologies
(based on Sentinel-1 only or through the integration of Sentinel-2 and/or Geospatial Big
Data) and to explore the consequent results. Future review studies could also explore
the applications of Sentinel-1 data to specific regions of the world (e.g., Europe, Asia,
Africa, etc.).

Moving forward, Sentinel-1 offers new opportunities for the private sector, govern-
ment organizations, the scientific community, and practitioners to increase the availability
of regional, national, continental, and global level land consumption maps based on the
medium-resolution Sentinel-1 data.
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