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PROPAGATING FRONTS FOR A

VISCOUS HAMER-TYPE SYSTEM

GIADA CIANFARANI CARNEVALE, CORRADO LATTANZIO,
AND CORRADO MASCIA

Abstract. Motivated by radiation hydrodynamics, we analyse a 2× 2
system consisting of a one-dimensional viscous conservation law with
strictly convex flux –the viscous Burgers’ equation being a paradigmatic
example– coupled with an elliptic equation, named viscous Hamer-

type system. In the regime of small viscosity and for large shocks,
namely when the profile of the corresponding underlying inviscid model
undergoes a discontinuity –usually called sub-shock– it is proved the
existence of a smooth propagating front, regularising the jump of the
corresponding inviscid equation. The proof is based on Geometric Sin-
gular Perturbation Theory (GSPT) as introduced in the pioneering work
of Fenichel [5] and subsequently developed by Szmolyan [19]. In addi-
tion, the case of small shocks and large viscosity is also addressed via a
standard bifurcation argument.

Keywords. parabolic-elliptic system, traveling waves, singular perturbation theory, ra-

diation hydrodynamics.
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1. Introduction

The dynamics of a gas in presence of radiation can be described by the

classical compressible Euler equations with an additional term in the energy

balance modelling the radiation effects (see [16, 21]). The extra state vari-

able, describing the intensity of radiation, is often modelled positing that it

obeys to an elliptic equation, leading to the hyperbolic–elliptic system






















∂tρ+ ∂x(ρ u) = 0

∂t(ρ u) + ∂x(ρ u
2 + p) = 0

∂t(ρE) + ∂x(ρEu+ p u− κ∂xn) = 0

−∂xxn+ τ {n− g(θ)} = 0

(1.1)

where ρ denotes density, u velocity, p pressure, E specific total energy and

θ temperature to be linked by some appropriate constitutive relations. The

classical Euler system is then coupled through the term κ∂xn to an addi-

tional quantity driven by the variable n, describing the average of the photon

density by means of the positive parameters κ and τ , and the function g,

who is usually assumed to have a power-like form. Such model is obtained

in the non relativistic limit of a corresponding hyperbolic–kinetic system
1
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where the variable describing the photon density obeys to a transport equa-

tion with interaction kernel given by the Stefan–Boltzmann law (see [1, 6, 14]

for further details).

A simplified model for radiation dynamics is the 2 × 2 system for the

scalars unknowns u and v having the specific form

{

∂tu+ ∂xf(u) = ∂xv

v − ∂xxv = ∂xg(u),
(1.2)

for some functions f and g satisfying appropriate assumptions to be specified

later. Here, the inviscid scalar conservation law is augmented with a scalar

elliptic equation, mimicking the coupling present in system (1.1). For the

choices f(u) = 1
2u

2 and g(u) = u, system (1.2) is known as the Hamer model

for radiating gas, see [7] (setting q := −v), whose well-posedness is discussed
in [10].

In the analysis of both systems (1.1) and (1.2), an intriguing issue is the

study of existence and stability of shock profiles. Specifically, the weak dissi-

pation properties –due to the coupling with the elliptic equation– give rise to

the existence of sub–jumps for sufficiently strong shocks. Correspondingly,

an increasing amount of regularity of the profile emerges as the magnitude

of the shock decreases.

Such problem has been addressed in various cases, that is for the “scalar”

models –a single conservation law with general flux functions coupled with

the elliptic equation– both for small and regular profiles [18], and for possi-

bly large and discontinuous ones [8, 11, 12]. The cases of systems has been

addressed as well, and in particular for the specific Euler model with radia-

tion effects (1.1) in [13] for weak (regular) profiles, and in [3, 15] for strong

(discontinuous) shocks. The case of general hyperbolic–elliptic systems for

small and large shocks is investigated in [11] for linear coupling and in [12]

for nonlinear coupling.

Here, we are interested in exhibiting how the presence of a viscosity term

in the simplified Hamer model (1.2) modifies the existence and regularity

properties of the shock profiles. Therefore, in the sequel we consider the

following regularized version of system (1.2)

{

∂tu+ ∂xf(u)− ǫ ∂xxu = ∂xv

v − ∂xxv = ∂xg(u),
(1.3)

where the flux function f ∈ C2(R) is (uniformly) convex and the coupling

function g ∈ C1(R) is (strictly) increasing, that is

d2f(u) > 0 and dg(u) > 0 for any u ∈ R, (1.4)
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where d denotes the derivative with respect to u. In what follows, we refer

to (1.3) as a viscous Hamer-type system. The corresponding one-field

equation for the unknown u can be obtained by eliminating the variable v

from the second equation and obtaining

∂tu+ ∂xf(u)− ∂xx {ǫ u+ g(u)} = ∂xx {∂tu+ ∂xf(u)− ǫ ∂xxu} .

Incidentally, let us also observe that the method used in [10] to exhibit

well-posedness of the standard Hamer model passes through a parabolic

regularization of the form (1.3) (see also [2, 20]).

The main topic of this paper is to investigate the existence of shock profiles

for model (1.3) in the specific case of end states leading to the presence of a

sub–shock in the inviscid model (see [8, 11, 12]).

For completeness, let us start with a classical definition.

Definition 1.1. Given the states u± ∈ R, a propagating front for the

hyperbolic-elliptic system (1.3) is a triple (u, v; c) where (u, v) is a travelling

wave solution (u, v) = (u, v)(x − ct) satisfying the asymptotic conditions

(u, v)(±∞) = (u±, 0) and c is a given constant.

The couple (u, v) is called the profile and the parameter c is the speed.

Incidentally, we are denoting with the same symbol both the general so-

lution to (1.3), and the specific propagating front. Being this manuscript

devoted exclusively to the existence of fronts, we are confident that this will

not generate confusion.

The asymptotic states (u±, v±) are forced to be equilibria of (1.3), i.e.

u± ∈ R with u+ 6= u− and v± = 0. Consequently, the speed c is forced to

satisfy the Rankine–Hugoniot relation

c =
f(u+)− f(u−)

u+ − u−
, (1.5)

as it is readily seen by integrating in R the ordinary differential equation for

the profile (u, v). A standard assumption in the context of scalar conserva-

tion laws with convex flux is the Lax condition

df(u+) < c < df(u−), (1.6)

guaranteeing that the jump from u− is u+ satisfies the entropy condition.

Given the Rankine–Hugoniot condition (1.5) and the convexity assumption

on the flux f , inequalities (1.6) are satisfied if and only if u+ < u−.

Next, we state the two main theorems of our work. The first one is based

on a singular perturbation approach relative to the (small) parameter ǫ.

Theorem 1.2. Assume (1.4)-(1.5)-(1.6). Moreover, let u+, u− be such that

the inviscid profile undergoes a sub-shock in the u variable. Then, for ǫ >
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0 sufficiently small, the parabolic-elliptic system (1.3) support propagating

fronts with speed c given by the Rankine-Hugoniot relation (1.5).

This result is obtained in the case of small viscosity coefficient ǫ and for

sufficiently large shocks, namely when the corresponding non viscous profile

experiences a discontinuity, by taking advantage of the Fenichel’s Geomet-

ric Singular Perturbation Theory, in what follows shortened as GSPT (for

details, see [5, 19] and the Appendix at the end of the paper). The condi-

tion which locates the sub–shock in the profiles for the non viscous models

agrees with the one needed to apply the aforementioned theory, leading to

the existence of the connection which smoothes out the discontinuity.

Our second main result, proved in Section 3, is based on a direct ap-

plication of bifurcation theory, where we consider fixed O(1) viscosity and

sufficiently small shocks.

Theorem 1.3. Assume (1.4)-(1.6). Moreover, let the states u+, u− be such

that |u+ − u−| is sufficiently small. Then for any fixed ǫ > 0 the parabolic-

elliptic system (1.3) supports propagating fronts with speed c given by the

Rankine-Hugoniot relation (1.5).

The paper includes a final Appendix A with, the main general results of

GSPT needed in the present analysis.

Notations. For readers’ convenience, we list (some) symbols used in the text:

x and y = x/ǫ denotes the slow and fast variable, respectively;
u = (u, v, w) slow/fast variables for ǫ ≥ 0;

f ′ and ḟ denotes the derivatives of the function f with respect to the slow
and the fast variable, respectively;
S := {u : F (u) = 0} slow manifold with its subsets S∗, S±;
v = (u, v, w, ǫ) slow/fast variables;
πS projection onto the surface S
C, Cs, Cu center/center-stable/center-unstablemanifolds for equilibrium point
of limiting fast system
Fs,u = {Ψs,u(v) : v ∈ Cs,u} family of stable/unstable manifolds for Cs,u

W s,u stable/unstable manifolds of critical points for reduced slow system

However, all the notations will be restated at their first occurrence.

2. General strictly convex case and nonlinear coupling

To start with, we rephrase the existence of a propagating front in the

formalism of singular perturbation theory.

Since f is convex, the function df is strictly increasing and, thanks to

(1.6), there exists a unique point u∗ such that df(u∗) = c. Hence, setting

fc(u) := f(u)− cu.
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there holds dfc(u∗) = 0. The function fc describe the flux in a frame that

is co-moving with the propagating front. The value fc(u+) coincides with

fc(u−) as a consequence of the Rankine–Hugoniot condition (1.5) and we

use the notation fc(u±) to stress this coincidence. In addition, the Lax

condition becomes

dfc(u+) < 0 < dfc(u−). (2.1)

For traveling wave solutions, system (1.3) rewrites as

ǫu′′ = {fc(u)− v}′ , v′′ = v − g(u)′,

where we have used the notation ′ = d/dx. Integrating the first equation

from −∞ to x, and setting w := g(u)− v′, we obtain the slow system















ǫu′ = F (u, v, w) := fc(u)− fc(u±)− v ,

v′ = G(u, v, w) := w − g(u) ,

w′ = H(u, v, w) := v ,

(2.2)

which is a special case belonging to the class of singular perturbed problems.

The adjective singular refers to the presence of the parameter ǫ multiplying

first order derivatives of some state variables and assumed to be small (and

positive). A significant regime is then obtained as ǫ → 0 giving raise to the

reduced limit














v = fc(u)− fc(u±) ,

v′ = w − g(u) ,

w′ = v .

(2.3)

which is called limiting slow system. The first equality in (2.3) can be

regarded as an additional constraint along the dynamics, linking the value

of the variable u with the slow variables (v,w). As in the present case, the

relation F (u, v, w) = 0 is not invertible with respect to u and the use of

appropriate restrictions have to be considered.

After the rescaling y := x/ǫ, we get the so-called fast system















u̇ = F (u, v, w) ,

v̇ = ǫG(u, v, w) ,

ẇ = ǫH(u, v, w) .

with the notation · = d/dy = ǫ d/dx. In compact form, setting u = (u, v, w),

the above system can be rewritten as

u̇ = Fǫ(u) :=
(

F (u), ǫG(u), ǫH(u)
)

. (2.4)
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As ǫ→ 0+ in (2.4), we deduce the limiting fast system














u̇ = fc(u)− fc(u±)− v ,

v̇ = 0 ,

ẇ = 0 .

(2.5)

The variable u is said to be the fast variable of the system.

From now on, we are confronted with the problem of rigorously establish-

ing the existence of a heteroclinic orbit connecting at ∓∞ the critical points

of (2.2) –or, equivalently, (2.4)– which are

u± = (u±, v±, w±) :=
(

u±, 0, g(u±)
)

.

under the assumptions (1.4)–(2.1). To this aim, we follow the classical sin-

gular perturbation approach, consisting in the separate study of dynamical

systems (2.2)–(2.4) in the limiting slow and fast regimes described by (2.3)–

(2.5), respectively.

Let S := {u ∈ R
3 : F (u) = 0} be the slow manifold of critical points for

(2.5) and let S∗ be the open subset of the slow manifold S defined by

S∗ : = {u ∈ S : ∂uF (u) 6= 0}
= S \

{(

u∗, fc(u∗)− fc(u±), 0
)

+ te3 : t ∈ R
}

,

Since the restrictions of the function ∂uF in the open halflines (−∞, u∗) and

(u∗,+∞) are invertible. system (2.3) reduces to a two dimensional dynam-

ical system for the slow variables (v,w). Denoting such inverse functions

with the symbols h±, we can split the subset S∗ as the (disjoint) union

S∗ = S− ∪ S+

where

S− := {u ∈ S∗ : ∂uF (u) > 0}
=

{

(u, v, w) ∈ R
3 : v ∈

(

fc(u∗)− fc(u±),+∞
)

, u = h−(v)
}

,

S+ := {u ∈ S∗ : ∂uF (u) < 0}
=

{

(u, v, w) ∈ R
3 : v ∈

(

fc(u∗)− fc(u±),+∞
)

, u = h+(v)
}

.

By Lax condition (2.1), there holds u− ∈ S− and u+ ∈ S+.

The analysis for the slow system (2.2) exhibits the existence of a discon-

tinuous propagating front for |u+ − u−| sufficiently large (in the case of the

Hamer model (1.2), the critical threshold is
√
2, as shown in [8]). Specifi-

cally, we are interested in showing how the presence of viscosity in the first

equation of (1.3) restores the regularity of the profile by smoothing out the

internal jump of the shock solution. This task can be accomplished by work-

ing on the fast system at ǫ = 0 from [8, 11, 12] and, then, taking advantage

from the results in [19] to perform a rigorous matching.
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2.1. Splitting consistency. The first step consists in the analysis of the

linearization at u± of the fast system (2.4) for ǫ ≥ 0. Denoting by d the

derivative with respect to u, the jacobian of Fǫ is

dFǫ(u) =





dfc(u) −1 0
−ǫ dg(u) 0 ǫ

0 ǫ 0





with characteristic polynomial

det (dFǫ(u)− λ I) = −λ3 + dfc(u)λ
2 + ǫ

(

dg(u) + ǫ
)

λ− ǫ2dfc(u),

where I denotes the identity matrix. Denoting with λ1, λ2 and λ3 the roots

of the polynomial, there hold

tr dFǫ(u) = dfc(u) = λ1 + λ2 + λ3 ,

det dFǫ(u) = −ǫ2dfc(u) = λ1 · λ2 · λ3 .

Next, we analyze the real part of the eigenvalues λ1, λ2 and λ3 of dFǫ(u±).

Indeed, from the Lax condition (2.1), it follows

a. tr dFǫ computed at u+ (respectively u−) is negative (resp. positive);

b. det dFǫ computed at u+ (resp. u−) is positive (resp. negative),

Since the characteristic polynomial has degree 3, there are two cases:

i. either 3 real roots;

ii. or 1 real root and 2 complex conjugates.

Next, we limit the investigation to the case u+, the other being analogous.

i. Thanks to b., we have either 3 positive eigenvalues or 2 negative

eigenvalues and 1 positive. The first case is excluded by a.; thus,

there are 2 negative and 1 positive roots.

ii. Let us set λ1 ∈ R, λ2 = α+ iβ and λ3 = α− iβ with β > 0. Then

tr dFǫ = λ1 + 2α < 0 and det dFǫ = λ1(α
2 + β2) > 0.

These conditions imply λ1 > 0 and α = Reλ2 = Reλ3 < 0.

Summarizing, at u+, the matrix dFǫ has a two-dimensional stable manifold

and an one-dimensional stable manifold. At u− the situation is reversed:

the dimension of the stable manifold is 1 and that of the unstable manifold

is 2. We infer that the splitting is consistent since the sum of the dimension

of the unstable manifold at u− and the one of the stable manifold at u+ is

equal to 4 and the state space has dimension equal to 3.

2.2. Extended fast system. Next, we extend the fast system (2.4) adding

a trivial equation for the parameter ǫ, that is

v̇ = Φ(v) :=
(

F (u), ǫG(u), ǫH(u), 0
)

,
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where v = (u, ǫ) ∈ R
3 × (−ǫ0, ǫ0) and F , G and H are still defined in (2.2).

Incidentally, let us observe that the above system is equivalent to (2.4) for

ǫ > 0 and to (2.5) for ǫ = 0.

The matrix of the linearization of Φ at v is

dΦ(v) =









dfc(u) −1 0 0
−ǫ dg(u) 0 ǫ w − g(u)

0 ǫ 0 v
0 0 0 0









with characteristic polynomial at v0 := (u, 0)

det (dΦ(v0)− λI) = λ3
(

λ− dfc(u)
)

.

The polynomial has two roots, λ = 0 and λ = dfc(u), which are distinct

if dfc(u) 6= 0. The multiplicity 3 of the eigenvalue 0 corresponds to the

dimension of the slow variables (v,w) plus the dimension of the fictitious

variable ǫ; the multiplicity 1 of the eigenvalue dfc(u), coincides with the

dimension of the fast variable u. Moreover, since λ = dfc(u) > 0 on S− and

λ = dfc(u) < 0 on S+, the unstable manifold of u− in S− and the stable

manifold of u− in S+ have both dimension equal to 1.

For readers’ convenience, let us recall a basic definition valid for generic

compact manifold M and diffeomorphism f .

Definition 2.1. An f -invariant submanifold Λ of M is said to be normally

hyperbolic if the restriction TΛM to Λ of the tangent bundle TM admits

a splitting into a sum of three df -invariant sub-bundles,

TΛM = TΛ+ Es + Eu.

where TΛ is the tangent bundle of Λ and Es,u denotes the stable/unstable

bundle, respectively.

Here, we consider compact subsets K ⋐ S0 that are normally hyperbolic

invariant manifolds of the layer problem (2.5).

Since F0 restricted to S± is identically zero, there holds

TuS± = ker dF0.

The subspace TuS± is invariant under the action of dF0 and, therefore, the

linear map induced by the linearization

QF0(u) : TuR
3/TuS± → TuR

3/TuS±

is well defined.

The eigenvalues of dF0 are exactly the nontrivial ones cited before, since

dF0(u) =





(dfc ◦ h±)(v) −1 0
0 0 0
0 0 0



 .
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Moreover, a generic element v ∈ TuS± is v = α ū + β e3 for (α, β) ∈ R
2

where ū := (1, (dfc ◦ h±)(v), 0).
Next, following [19], we define the projection map πS by the splitting

T R
3 = TS± ⊕N,

where N is the complement of TS± invariant under dF0. The matrix dF0

maps the vector v = (a, b, c) ∈ R
3 into





(dfc ◦ h±)(v) −1 0
0 0 0
0 0 0









a
b
c



 =





(dfc ◦ h±)(v)a− b
0
0



 .

Therefore, for a nonzero vector (a, b, c) to be invariant under the action of

JF0 it is required b = c = 0. Since (dfc ◦ h±)(v) 6= 0, the subspace N is

thus spanned by e1 := (1, 0, 0). Summarizing, the splitting is

T R
3
∣

∣

S±
= 〈ū, e3〉 ⊕ 〈e1〉.

Let us denote with C, Cs and Cu and the center, center-stable, center-

unstable manifolds generated by the extended fast system Φ. They are

locally invariant manifolds containing K×{0} and tangent to the correspond-

ing center, center-stable, center-unstable eigenspaces of the linearization dΦ

at v = (u, 0) ∈ K × {0}, denoted here by Ec
u
, Es

u
⊕ Ec

u
and Eu

u
⊕ Ec

u
,

In the case under scrutiny, the dimension kc of the center manifold for the

system (2.4) is 0. We recall that n = 2 is the dimension of the slow variable

(v,w) and k = ku + ks = 1 equals the dimension of the fast variable. The

following statements are true:

1. dim C = n+ 1 = 3;

2. for the surface S+, k
s = 1 and ku = 0, so that dimCs = n+1+ks = 4

and dim Cu = n+ 1 + ku = 3;

3. for the surface S−, k
s = 0 and ku = 1 so that dim Cs = n+1+ks = 3

and dim Cu = n+ 1 + ku = 4.

Given constants p, q ∈ [1,+∞), let Cs be a center-stable manifold for Φ

in a neighborhood of K × {0}. At this point, we need to introduce also the

notion of family of stable (resp. unstable) manifolds for Cs (resp. Cu).

Definition 2.2. A family Fs = {Ψs(v) : v ∈ Cs} is a Cq-family of Cp-

stable manifold for Cs near K if

i. Ψs(v) is Cp-manifold for each v ∈ Cs;

ii. v ∈ Ψs(v) for each v ∈ Cs;

iii. Ψs(v1) and Ψs(v2) are disjoint if v1 6= v2 for each v1,v2 ∈ Cs;

iv. Ψs(u, 0) is tangent to Es
u
at (u, 0) for each u ∈ S;

v. the set {Ψs(v) : v ∈ Cs} is a positively invariant Cq-family of

manifolds with respect to the flow Φ.
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The case of the unstable manifolds Fu is defined in an analogous way.

These families provide a foliation of Cs and Cu, i.e.

Cs = {Ψs(v) : v ∈ C} and Cu = {Ψu(v) : v ∈ C} .

2.3. Construction of the profile for the reduced system. We want

to apply Lemma A.2 in Appendix A to system (2.4) to describe the flow

induced on S when it is given by the graph of a function, i.e. in S±.

Adapting Lemma 5.4 in [5] to (2.4), we infer that the projections π± on

the surfaces S± are given by the multiplication against the matrices

A
± =





0 dh±(v) 0
0 1 0
0 0 1



 ,

so that the reduced systems are

u′ = A
±





0
G
H



 =





dh±(v)G(h±(v), v, w)
G(h±(v), v, w)
H(h±(v), v, w)





In components, for any (u, v, w) ∈ S±, the above systems become


















u′ =
w − (g ◦ h±)(v)
(dfc ◦ h±)(v)

v′ = w − (g ◦ h±)(v)
w′ = v.

(2.6)

In what follows, we refer to the vector field as FR.

Remark 2.3. In the case under investigation, the computations yielding to

(2.6) reduces to differentiate (2.3)1 along the profile lying on S±. Hence, for

u = h±(v), and using (2.3)2 we end up with

u′ =
w − (g ◦ h±)(v)
(dfc ◦ h±)(v)

and thus (2.6). On the other hand, Lemma A.2 in Appendix A refers to

a general framework, where the vector field in (2.4) merely depends in a

regular way on ǫ.

Upon observation, it is readily seen that the critical points of the limiting

slow system (2.3), or equivalently (2.6), where we have desingularized the

problem, are

u± :=
(

u±, 0, g(u±)
)

∈ S±,

and hence they concide with the ones of the perturbed slow systems (2.2).

Theorem A.3 in Appendix guarantees the existence for ǫ > 0 sufficiently

small of a sequence of critical points uǫ for the perturbed vector field in

(2.2), smoothly depending on ǫ, and which reduces for ǫ = 0 to the critical

points of (2.3). In our case, again in view of the independence from ǫ of the



PROPAGATING FRONTS FOR A VISCOUS HAMER-TYPE SYSTEM 11

vector field in (2.2), we have u± = u = uǫ, without invoking Theorem A.3.

However, in order to define the local stable/unstable manifolds of uǫ needed

for the connection, we shall refer to the general framework of Theorem A.4

and therefore one has to check that λ = 1 is not an eigenvalue of the Jacobian

dFR(u±). To this end, we compute the Jacobian of the vector fields in (2.6)

dFR(u±) =





0 −dg/df2c 1/dfc
0 −dg/df2c 1
0 1 0





where dfc and dg are computed at u±. The corresponding characteristic

polynomials p± are

p±(λ) := −λ q±(λ) with q±(λ) = λ2 +
dg(u±)

dfc(u±)
λ− 1.

These have three roots: the trivial one, given by λ0± = 0, and the roots of

q±, which can be expressed as

λ1± = −
√

dg2 + 4df2c + (sgn dfc) dg

2|dfc|
,

λ2± =

√

dg2 + 4df2c − (sgn dfc) dg

2|dfc|
,

where dfc and dg are computed at u±. Recalling the Lax condition (2.1)

and the monotonicity assumption (1.4) on function g, a direct computation

shows that

λ1− < −1 < λ1+ < 0 < λ2− < 1 < λ2+,

so that, in particular, λ2± 6= 1.

Therefore we can apply Theorem A.4 to characterize the local stable-

unstable manifolds of the perturbed critical points. These manifolds are

of dimension 1 for both u± and thus the critical points for the perturbed

system are saddles in the slow directions.

Now we pass to the study of the reduced system (2.6) to briefly recast

the results by Lattanzio et al. [11, 12] in the present framework (see also

[8]). To this end, we focus on the case of sufficiently large shocks so that the

profile exhibits a sub–shock for the variable u, case for which GSPT can be

directly applied, because the two branches of the profile belong to S− and

S+, respectively.

In the case of the singularly perturbed systems (2.2), we prove the ex-

istence of the heteroclinic orbit as a perturbation of the so-called singular

heteroclinic orbit. The latter consists of orbits of the reduced systems lying

on the two surfaces S± of the critical manifold S, linked by a heteroclinic

connection of the layer system (2.5).
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For completeness, we adapt here the results proved in [11] for system

(1.3) with g(u) = u and in [12] for general increasing functions g. For

readers’ convenience, we observe that the variable (u, v, w) of the present

paper corresponds to (u,−q, z) of [11, 12].
Let (v±, w±) be the maximal solutions to the problems

v′ = w − (g ◦ h±)(v) , w′ = v ,

with the asymptotic conditions (v±, w±)(±∞) = (0, g(u±)), describing the

dynamics of the reduced system (2.6) along the surfaces S±.

Functions v−, w± are decreasing and v+ is increasing. In addition, there

exist x± ∈ R such that

w±(x±)− v′±(x±) = g(u∗) and v±(x±) = −fc(u±)

In particular, the solution (v−, w−) is defined in (−∞, x∗] and the solution

(v+, w+) is defined in [x∗,+∞).

As a consequence of the monotonicity of functions v±, there holds

w−(x∗) ≤ g(u∗) ≤ w+(x∗).

The complete heteroclinic orbit is built by matching two branches of the

maximal solutions (v±, w±) at a given point x∗ which can be arbitrarily

chosen taking advantage of translation invariance.

Proposition 2.4. Assume hypotheses (1.4). Then, there exists a function

(v,w) with v ∈ C0(R)∩C1 (R \ {x∗}) and w ∈ C1(R)∩C2 (R \ {x∗}) solving
the first order system (not in normal form)

(fc ◦ g−1)(w − v′) = v , w′ = v ,

satisfying the asymptotic conditions (v,w)(±∞) = (0, g(u±)). Moreover,

the function v′ = w′′ has at most a jump discontinuity at x∗.

The existence theorem of propagating fronts for system (1.3) with ǫ = 0

is a simple consequence of the above construction.

Theorem 2.5. Assume hypotheses (1.4). For any u± satisfying the Lax

condition (1.6), there exists a propagating front for system (1.3) with ǫ = 0.

The profile (u, v) is unique up to translation and the speed c is given by the

Rankine–Hugoniot condition (1.5).

Moreover, the component u belongs to C1(R \ {x∗}), eventually with a

jump discontinuity at x∗.

For the complete proofs of Proposition 2.4 and Theorem 2.5, we refer to

[11, 12]. Here, we limit to sketch the basic steps in the matching procedure

with the aim of providing support to the subsequent parts.
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We define a profile w by matching together the two maximal solutions

w(x) =

{

w−(x) x < x∗

w+(x) x ≥ x∗,

relying on the monotonicity of maximal solutions w±, such that w(x∗) = w∗.

The latter equality can be written also as

g(ur) + v′r = g(uℓ) + v′ℓ.

Analogously, the continuity of w′ at x∗ gives

w′
+(x∗) = vr = vℓ = w′

−(x∗).

Since we are investigating a discontinuous profile u, we know that

v∗ := vℓ = vr < 0, (2.7)

and

ur = g−1
(

w∗ − v′+(x∗)
)

< u∗ < g−1
(

w∗ − v′−(x∗)
)

= uℓ. (2.8)

Therefore, there exists δ > 0 sufficiently small such that, along the con-

structed profile, we have

h+(v) ∈ [u+, u∗ − δ], h−(v) ∈ [u∗ + δ, u−],

and GSPT is applicable.

Remark 2.6. The present analysis is valid also for the particular case of the

viscous Hamer model with linear coupling (1.2), namely for f(u) = u2/2,

g(u) = u. In that case, the slow manifolds are given by:

S± = {(u, v, w) ∈ R
3 / u = ∓

√
1 + 2v}.

If we choose the asymptotic states as u± = (∓1, 0,∓1), we obtain u∗ = 0 and

c = 0. In [8, 11], the authors showed that the profile increases its regularity

as the strength of the shock decreases. Moreover, for that specific model,

from [8] we know that , u has precisely an ammissible jump discontinuity

at a single point if |u+ − u−| >
√
2, which is the case we are referring to

here. Therefore we get only the C1-continuity of w. The maximal solution

w+ decreases from zero toward -1 at +∞ and w− decreases from 1 at −∞
toward 0. Due to the particular choice of the flux f , and thus of the inverse

function h±(v), we get uℓ = −ur. We shall give a partial answer in the

case of small schocks in Section 3, when we shall discuss the existence of the

profile for sufficiently small shocks and arbitrary diffusion.
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2.4. Construction and persistence of the orbit. In the previous sec-

tion we have constructed the first two pieces of the singular heteroclinic

orbit, namely orbits of the reduced systems FR lying on S±. Here, we aim

to substitute the istantaneous jump for u among these branches with an ap-

propriate smoothed version described by the limiting equation (2.3) of the

original differential equations (2.2) in the regime ǫ→ 0+.

The limiting fast system (2.5) has critical points given by (h±(v), v, w) for

arbitrary v,w. Therefore, we make use of it to connect the two manifolds

S± at points uℓ = (uℓ, v∗, w∗) ∈ S− and ur = (ur, v∗, w∗) ∈ S+, where

uℓ = h−(v∗) and ur = h+(v∗) The dynamics are completely described by

the reduced equation

u̇ = F (u, v∗, w) = fc(u)− fc(u±)− v∗. (2.9)

Thus, for fixed v∗ > fc(u∗)− fc(u−), it is easily checked that

F (u, v∗, w) = 0 if and only if u = uℓ or u = ur ,

F (u, v∗, w) < 0 for u ∈ (ur, uℓ) ,

with the opposite sign for u ∈ (−∞, ur)∪(uℓ,∞). We infer the existence of a

global and decreasing solution u0 to (2.9) verifying the asymptotic conditions

u0(−∞) = uℓ and u0(+∞) = ur.

Example 2.7 (Hamer model). Let u∓ = ±1. As a consequence of the

Rankine–Hugoniot (1.5), the speed c is zero and

f0(u) = f(u)− 0 · u = 1
2u

2.

Moreover, since |u− − u+| = 2 >
√
2, the inviscid profile undergoes a

Lax sub–shock between uℓ and ur = −uℓ < 0. For any fixed value v∗ ∈
(

−1
2 , 0

)

, we can explicitly solve the equation (2.9) for u. Indeed, setting

v∗ := −1
2(u

2
− − 1) for some uℓ ∈ (0, 1), there holds

u̇ = 1
2 (u

2 − 1)− v∗ =
1
2(u

2 − u2ℓ ).

Separating the variables and integrating by parts, we obtain

u0(x) = −uℓ ·
euℓx − 1

euℓx + 1
= −uℓ tanh

(

1
2uℓx

)

,

which satisfies the required asymptotic conditions u0(±∞) = ∓uℓ.

Let a, b ∈ R with a ≤ b. Then, given δ ∈
(

0, fc(u±)
)

, the compact

normally hyperbolic invariant manifolds K± have the form

K± =
{

u ∈ S± : (v,w) ∈
[

δ − fc(u±), 0
]

× [a, b]
}

.

It is clearly seen that the two parameter sets coincide.
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Let Wu
−,0 be the unstable manifold of u− and Ws

+,0 the stable manifold

of u+ with respect to the reduced slow system (2.6). Then, the singular

unstable manifold of u− and singular stable manifold of u+ are given by

Nu
−,0 =

⋃

u∈Wu
−,0

Ψu(u) and N s
+,0 =

⋃

u∈Ws
+,0

Ψs(u),

whereΨu,s(u) are the unstable/stable fibers of the limiting fast system (2.5)

based at u, which are tangent to the eigenvectors associated to the non-

trivial eigenvalue of the Jacobian dF0(u) with an appropriate sign choice.

The construction of the singular heteroclinic orbit is complete if and only if

we show that the intersection of the manifolds Nu
−,0 and N s

+,0 is transver-

sal along the solution of (2.9), namely upon construction of the smooth

connection between uℓ and ur recalled above.

For u ∈ S∗, the non trivial eigenvalue of the Jacobian dF0(u) is λ = dfc(u)

which is negative in S+ and positive in S−. At u ∈ S−, the eigenvector

relative to the eigenvalue dfc(u) is readily seen to be e1 = (1, 0, 0), so that

the unstable fiber Ψu(u) is explicitly given by u+ te1 for t ∈ R. The same

computation is valid for u ∈ S+ so that the elements of Ψs(u) have the form

u+ te1 for some t ∈ R.

Example 2.8 (Hamer model). For the viscous Hamer model, the sets K±

have the form

K± =
{

u ∈ S± : (v,w) ∈
[

δ − 1
2 , 0

]

× [a, b]
}

.

for δ ∈
(

0, 12
)

. The unstable/stable fibers Ψu,s(u) at u± = (∓1, 0,∓1) are

also tangent to e1.

In view of the previous discussion, for v∗ > fc(u∗)− fc(u−), there exists

a connection u0, solution to (2.9), between the points

uℓ = (uℓ, v∗, w∗) ∈ Wu
−,0 ⊂ K− and ur = (ur, v∗, w∗) ∈ Ws

+,0 ⊂ K+,

where ul = h−(v∗) and ur = h+(v∗). Such connections are uniquely de-

termined in view of the monotonicity of the component w along the sta-

ble/unstable manifolds Ws
+,0 and Wu

−,0.

The subsequent Theorem –an ultra-simplified version of [19, Theorem 4.1]

which for completeness we stated in the Appendix (see Theorem A.6)– gives

conditions to prove transversality in the regime ǫ = 0.

Theorem 2.9. Let φ(Wu
−,0) and φ(Ws

+,0) denote the (v,w)-coordinates of

the manifolds Wu
−,0 ⊂ S− and Ws

+,0 ⊂ S+, respectively. Then, the manifolds

Nu
−,0 and N s

+,0 intersect transversally at the points of the heteroclinic orbit

if and only if

T(v∗,w∗)φ(Wu
−,0) ∩ T(v∗,w∗)φ(Ws

+,0) = {0}. (2.10)
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In the sequel, we check the validity of (2.10).

Remark 2.10. The intersection of Nu
−,0 and N s

+,0 at a point of the form

u = (u0(x̄), v∗, w∗) (for some generic x̄ ∈ R) is transversal if and only if

TuN
u
−,0 + TuN

s
+,0 = R

3, that is if and only if

dim(TuN
u
−,0 + TuN

s
+,0) = 3.

Following the notation in [19], the equality

dim(TuN
u
−,0 + TuN

s
+,0) = dim(TuN

u
−,0) + dim(TuN

s
+,0)

− dim(TuN
u
−,0 ∩ TuN s

+,0)

implies that the intersection in (2.10) is transversal if and only if

dim(TuN
u
− ∩ TuN s

+) = d,

where d in our case is given by

d = ju− + ku− + js+ + ks+ − n− k = 1 + 1 + 1 + 1− 2− 1 = 1,

with ju−, k
s
−, j

s
+ and ks+ describing the dimensions of the stable and unstable

reduced manifolds of the singular points u±. In the general setting, Theo-

rem A.6 guarantees the needed transversal intersection along points of the

heteroclinic orbit if and only if there exist exactly d−1 linearly independent

solutions ξ ∈ T(v∗,w∗)φ(W
u
−,0)

⋂

T(v∗,w∗)φ(W
s
+,0) of the equation

(M, ξ) = 0,

where M ∈ R
2 is defined by

M :=

∫

R

ψ(ξ) ∂v,w
{

fc(u)− fc(u−) + v
}

dξ

and ψ is defined as the unique bounded solution of

ψ′ = −dfc(u0(x))ψ.

Here d− 1 = 0 and ∂v,w(fc(u)− fc(u−) + v) = (1, 0). Moreover

ψ(x) = ψ(0) exp

{

−
∫ x

0
dfc(u0) dξ

}

.

Since ur < u0(x) < uℓ and dfc is monotone, then

dfc(ur) < dfc(u0(x)) < dfc(uℓ),

which implies

ψ(0)e−dfc(uℓ)x < ψ(0)e−
∫ x

0
dfc(u0)ds < ψ(0)e−dfc(ur)x.

In view of the conditions dfc(ur) < 0 < dfc(uℓ), we can conclude that the

only ψ which is globally bounded in R is the trivial one, that is ψ ≡ 0 and as

a consequence the vector M is identically 0. In other words, in the present

case, the requirements of Theorem A.6 reduce to (2.10).
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Analyzing the intersection in (2.10), this condition is equivalent to inquire

the existence of a couple (v0, w0) ∈ R := [δ − fc(u±), 0] × [a, b] ⊂ R
2 such

that the points (h−(v), v, w) ∈ Wu
−,0 and (h+(v), v, w) ∈ Ws

+,0 are connected

by a heteroclinic orbit of the layer problem (2.5), i.e. a solution u0 to (2.9)

for some constant w ∈ R. By construction, both the maximal solution

w− (describing the unstable manifold Wu
−,0) and the maximal solution w+

(describing the stable manifold Ws
+,0) are monotone decreasing. Hence,

since w− decreases from g(u−) at −∞ toward w∗ and w+ decreases from w∗

toward g(u+) at +∞, we conclude that the only point in R verifying the

above conditions is

(v0, w0) = (vr, w∗) = (vℓ, w∗) = (v∗, w∗).

In other words, in order to construct the required smooth connection we

are looking for, we have obtained the same condition which locates the

discontinuity in u of the profile for ǫ = 0.

Finally, computing the vector field (G,H) = (w − g(u), v) at two given

points (uℓ, v∗, w∗) ∈ Wu
−,0 and (ur, v∗, w∗) ∈ Ws

+,0 and taking a linear com-

bination of them, we infer

α(G,H)(uℓ, v∗, w∗) + β(G,H)(ur , v∗, w∗)

= ((α+ β)w∗ + αg(uℓ) + βg(ur), (α + β)v∗).

Since v∗ < 0, see (2.7), ur < uℓ, see (2.8), and g is monotone increasing,

see (1.4), the two vectors are linearly independent which implies (2.10) and

then, invoking Theorem 2.9, Nu
−,0 and N s

+,0 intersect transversally. Finally,

the heteroclinic orbit for the reduced system at ǫ = 0 persists for ǫ > 0

sufficiently small and the proof of Theorem 1.2 is complete. Indeed, thanks

to GSPT, we obtain the existence of the perturbed manifolds Nu
−,ǫ and

N s
+,ǫ, and their trasversality along a transversal heteroclinic orbit is given

by Theorem A.5 (details on the construction of the manifolds Nu
−,ǫ and N

s
+,ǫ

can be found in [19]).

Example 2.11 (Hamer model). The same conclusion holds for the viscous

Hamer model, for which R =
[

δ − 1
2 , 0

]

× [a, b] and d = 1. Thus we refer to

Theorem 2.6 to check the transversality of N s
+,0 and Nu

−,0. As before, the

condition of Theorem 2.6 is equivalent to find (v0, w0) ∈ R such that points

(
√
1 + 2v0, v0, w0) ∈ Wu

−,0 and (−√
1 + 2v0, v0, w0) ∈ Ws

+,0 are connected by

u0(x) = −uℓ tanh
(

1
2uℓx

)

.

As said before, the two maximal solution of the reduced systems w± are

monotone decreasing, namely w+ decreases from zero toward -1 at +∞ and

w− decreases from 1 at −∞ toward 0. Hence, we can conclude that the only
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point in R verifying the conditions of Theorem 2.6 is (v0, w0) = (v∗, 0). The

vector field (G,H) = (w − u, v) computed at (uℓ, v
∗, 0) ∈ Wu

−,0 is given by

(−uℓ, v∗), and at (ur, v
∗, 0) ∈ Ws

+,0 is given by (−ur, v∗) = (uℓ, v
∗). Since

v∗ ∈
[

δ − 1
2 , 0

]

is not zero, the two vectors are linearly independent and this

gives (2.10). We stress that w = 0, guaranteeing the existence of the smooth

connection between uℓ and ur, is the same condition found in [8] to locate

the admissible sub–shock for the linear, inviscid Hamer model.

3. Viscous radiating profile for small shocks

In the previous sections we proved the existence of viscous radiating pro-

files for sufficiently small viscosity and large shocks, in particular under the

hypothesis that the profiles in the variable u has a sub–shock. Here we com-

plement such result by proving this existence in the case of O(1)-viscosity,

fixed to be equal to 1, and sufficiently small shocks via a bifurcation argu-

ment with respect to the strength of the shock. This leads to the following

system (1.3) with ǫ = 1, which is
{

∂tu+ ∂xf(u)− ∂xxu = ∂xv

v − ∂xxv = ∂xg(u)
(3.1)

where we assume always hypotheses (1.4).

We shall prove the existence of solutions to (3.1) in form of travelling

waves, i.e. (u, v)(x, t) = (u(ξ), v(ξ)) where ξ := x− ct (with a slight abuse of

notation), where the propagation speed is given by the Rankine–Hugoniot

condition (1.5) and the Lax condition (1.6) is satisfied. Since the flux f

is convex, the latter reduces to the inequality u+ < u−. The bifurcation

parameter δ is defined as

δ := u+ − u− < 0,

and it is assumed to be sufficiently small.

In what follows, for the sake of simplicity, we shall focus on the Hamer

model, namely when f(u) = 1
2 u

2 and g(u) = u, being the general case pre-

sented above analogous. Note that, with such choices the Rankine-Hugoniot

condition becomes

c =
1

2
· u

2
+ − u2−
u+ − u−

=
1

2
(u+ + u−). (3.2)

and the Lax condition takes the form

u+ < c < u−. (3.3)
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Theorem 3.1. Assume hypothesis (3.2)–(3.3). Moreover, let the states u±

be such that |u+ − u−| is sufficiently small. Then the viscous Hamer system
{

∂tu+ ∂x
(

1
2u

2
)

− ∂xxu = ∂xv

v − ∂xxv = u,

supports propagating fronts with speed c given by equality (3.2).

The remaining part of this section is devoted to the proof of this result.

To this aim, let us start by recalling the dynamical system solved by the

profile:
{

−cu′ +
(

1
2 u

2
)′ − u′′ = v′

v − v′′ = u′.

Integrating the first equation in dξ, ξ = x− ct, from ±∞ we get:
{

u′ = 1
2

(

u2 − u±
)

− c(u− u±)− v

v − v′′ = u′.

Moreover, we can express the speed of the wave c in (3.2) as a function of

u+ and δ as follows

c = 1
2(2u+ − δ)

and therefore
{

u′ = 1
2(u− u+)[(u− u+) + δ]− v

v − v′′ = u′.

With the notation ũ = u−u+ and z = ũ+v′, the dynamical system becomes:

X ′ = F (X; δ), (3.4)

where X = (z, v, ũ) and

F (z, v, ũ; δ) =
(

v, z − ũ, 12 ũ
2 + 1

2 ũδ − v
)

.

Hence we observe that p1 = (0, 0, 0) is a critical point for any δ, which

corresponds to the point (u+, 0, u+) in the original variables. Moreover,

depending on δ, we have two different situations:

1) if δ = 0 then p1 is the only (trivial) critical point;

2) if δ < 0, then a second critical point p2 = (−δ, 0,−δ) bifurcates from
the trivial one, the latter corresponds to the point (u−, 0, u−) in the

original variables.

We want to transform (3.4) into its normal form performing a center man-

ifold reduction, and prove a transcritical bifurcation that occurs at δ = 0.

This will then imply the existence of the desired heteroclinic orbit, connect-

ing p2 at −∞ to p1 at +∞. To this end we start by rewriting (3.4) with

respect to the eigenbasis of the linearized system at the trivial critical point

for δ = 0.
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Let A = A(z, v, ũ; δ) be the Jacobian of F at (z, v, ũ), namely

A(z, v, ũ; δ) =





0 1 0
1 0 −1
0 −1 ũ+ 1

2δ





The characteristic equation at p1 = (0, 0, 0) is given by

−λ3 + 1
2δλ

2 + 2λ− 1
2δ = 0.

We study the real part of the eigenvalues at p1 using the information coming

from tr (A|p1) and det(A|p1). Since tr (A|p1) = λ1 + λ2 + λ3 = 1
2δ < 0 and

det(A|p1) = λ1λ2λ3 = −1
2δ > 0, we have two possibilities:

1) one real positive eigenvalue and two complex and conjugates eigen-

values with negative real part;

2) two real negative eigenvalues and one real positive eigenvalue.

Therefore at p1 we have two stable direction and one unstable direction. For

p2 = (−δ, 0,−δ) the situation is clearly reversed, being tr (A|p2) = −1
2δ > 0

and det(A|p2) = 1
2δ < 0. Hence at p2 we have two unstable direction and

one stable direction.

For δ = 0 the Jacobian at p1 reduces to

A(0, 0, 0; 0) =





0 1 0
1 0 −1
0 −1 0





with eigenvalues λ1 = 0, λ2 =
√
2, λ3 = −

√
2 and corresponding eigen-

vectors given by (1, 0, 1), (−1,
√
2, 1) and (1,

√
2,−1). Therefore, setting

Y := (w1, w2, w3), the desired change of basis is defined by the explicit

matrix

C =





1 −1 1

0
√
2

√
2

1 1 −1





giving raise to

Y = C−1X. (3.5)

As a consequence, our original system (3.4) becomes

Y ′ = BY + C−1F̃ (CY ; δ),

where B := C−1AC and F̃ (X; δ) = F (X; δ) −A(0, 0, 0) ·X, namely:

d

dx





w1

w2

w3



 =





0 0 0

0 −
√
2 0

0 0 +
√
2









w1

w2

w3





+
1

4





(w1 +w2 − w3)
2 + δ(w1 + w2 − w3)

1
2(w1 +w2 − w3)

2 + 1
2δ(w1 + w2 − w3)

−1
2(w1 + w2 −w3)

2 − 1
2δ(w1 + w2 − w3)



 (3.6)
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In this way the system consists of a linear part and a perturbation. The

Center Manifold Theorem guarantees the existence for δ sufficiently small

of two C1-functions ψ2(w1, δ) and ψ3(w1, δ) such that

w2 = ψ2(w1, δ) , w3 = ψ3(w1, δ),

and the following tangency conditions hold:

ψ2(0, 0) = ψ3(0, 0) = 0;

∂ψ2

∂w1
(0, 0) =

∂ψ3

∂w1
(0, 0) = 0;

∂ψ2

∂δ
(0, 0) =

∂ψ3

∂δ
(0, 0) = 0.

(3.7)

Thus for δ < 0 small enough, ψ2 and ψ3 are tangent in (0, 0) to the plane

identified by (w1, δ) = (0, 0). Moreover, the Center Manifold Theorem shows

that, again for δ < 0 small, in a neighborhood of the non hyperbolic crit-

ical point (0, 0, 0), the original system (3.4), rewritten as in (3.6), is C1

topologically conjugate to the following decoupled system:


























w′
1 =

1
4 {w1 + ψ2(w1, δ)− ψ3(w1, δ)}2

+ 1
4δ {w1 + ψ2(w1, δ) − ψ3(w1, δ)}

w′
2 = −

√
2w2,

w′
3 = +

√
2w3.

(3.8)

Thus, to study the qualitative behaviour of the flow given by (3.4) in a

neighborhood of the non hyperbolic critical point (0, 0, 0) and δ < 0 suffi-

ciently small, we are reduced to the flow on the center manifold, which is

given by (3.8)1. We want to apply Sotomayor Theorem [17, p. 338] to see

which type of bifurcation occurs for δ = 0. For completeness we report the

statement below.

Theorem 3.2 (Sotomayor). Suppose that F (X0, δ0) = 0 and that the ma-

trix A = JF (X0, δ0) has a simple eigenvalue λ = 0 with eigenvector v and

that AT has an eigenvector w corresponding to the same eigenvalue. Fur-

thermore, suppose that A has one eigenvalue with positive real part and one

with negative real part and that the following conditions are satisfied:

wT · Fδ(X0, δ0) = 0;

wT · [DFδ(X0, δ0)v] 6= 0;

wT · [D2F (X0, δ0)](v, v) 6= 0.

(3.9)

Then there is a smooth curve of equilibrium points of X ′ = F (X; δ) in R
3×R

through (X0, δ0) and tangent to R
3 × {δ0}. Depending on the sign in (3.9),

there are no equilibrium points near X0 when δ < δ0 (or when δ > δ0) and

there are two equilibrium points near X0 when δ > δ0 (or when δ < δ0). The
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two equilibria of F (X; δ) are hyperbolic and have stable manifolds of dimen-

sion one and two, respectively; i.e., the system X ′ = F (X; δ) experiences a

transcritical bifurcation at X0 as the parameter δ passes through δ0.

Introducing the same notation of the theorem, with F̂ (w1, w2, w3; δ) de-

noting the vector field




1
4 {w1 + ψ2(w1, δ) − ψ3(w1, δ)}2 + 1

4δ {w1 + ψ2(w1, δ) − ψ3(w1, δ)}
−
√
2w2

+
√
2w3





we clearly have

F̂ (0, 0, 0; 0) =





0
0
0



 and JF̂ (0, 0, 0; 0) = B =
√
2





0 0 0
0 −1 0
0 0 +1



 .

The eigenvector associated to λ = 0 is v = (1, 0, 0) and since B = BT we

have that the corresponding eigenvector to λ = 0 for this matrix is the same,

namely wT = (1, 0, 0). Moreover, in view of the tangency conditions (3.7),

a direct calculation shows

F̂δ(0, 0, 0; 0) = (0, 0, 0); DF̂δ(0, 0, 0; 0) =
1

4





1 0 0
0 0 0
0 0 0



 .

Therefore wT · F̂δ(0, 0, 0; 0) = 0 and wT · DF̂δ(0, 0, 0; 0)v = 1/4 6= 0. Fi-

nally we have to compute wT · [D2F̂ (0, 0, 0; 0)(v, v)] and we have to check

that is different from zero. The computation of [D2F̂ (0, 0, 0; 0)(v, v)] gives

the vector (1/2, 0, 0) and thus wT · [D2F̂ (0, 0, 0; 0)(v, v)] 6= 0. In view of

Sotomayor Theorem, these three conditions imply that the original system

(3.4) experiences a transcritical bifurcation at the equilibrium point (0, 0, 0)

as the parameter δ varies through the bifurcation value δ = 0.

The presence of the parameter δ is only in the first component F̂ 1 of the

vector field F , for which, evaluating F̂ 1
w1w1

(0, 0, 0; 0) = 1
2 and F 1

δw1
(0, 0, 0; 0) =

1
4 , we obtain the normal form (among others, see [4, Theorem 1.3]):

w′
1 =

1
4δw1 +

1
4w

2
1 = 1

4w1(w1 + δ).

Since δ < 0, the trivial equilibrium w1 = 0 is stable and w1 = −δ > 0

is unstable, and the same is true for the one–dimensional center manifold

reduction given by

w′
1 =

1
4 {w1 + ψ2(w1, δ) − ψ3(w1, δ)}2

+ 1
4δ {w1 + ψ2(w1, δ)− ψ3(w1, δ)} .

(3.10)

As a consequence, there exists an heteroclinic conncetion between w1 =

−δ at −∞ and w1 = 0 at +∞ for that equation. Then (3.4) is locally
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topologically equivalent to (3.10) augmented with the two linear equations

w′
2 = −

√
2w2, w

′
3 = +

√
2w3,

namely, system (3.8) (see [9, Theorem 5.4, p. 159]). The number of positive

and negative eigenvalues is preserved, as well as the trajectories of the two

dynamical systems. We have two unstable and one stable directions for the

equilibrium point (−δ, 0, 0) and two stable directions and only one unstable

at (0, 0, 0). The two–dimensional unstable eigenspace of (−δ, 0, 0) and the

two–dimensional stable eigenspace of (0, 0, 0) intersect along the direction

given by the vector (1, 0, 0), namely the tangential direction of the center

manifold in a neighborhood of the trivial equilibrium point. This implies the

heteroclinic actually exists for (3.8). Using (3.5) to go back to the original

variables, we have:

1) the point (0, 0, 0) is mapped to (u+, 0, u+),

2) the point (−δ, 0, 0) is mapped to (u−, 0, u−),

and we have finally proved the existence of an heteroclinic orbit between

these two points as stated in Theorem 3.1, thanks to the aforementioned

local topological equivalence.

Appendix A. Geometric Singular Perturbation Theory

A.1. Invariant Manifold Theorems. In this section we recall the main

results about Geometric Singular Perturbation Theory developed in [5, 19].

Let us consider the vector field Xǫ × {0} defined in the following way:














x′ = ǫf(x, y, ǫ)

y′ = g(x, y, ǫ)

ǫ′ = 0

where x ∈ R
n are the slow variables, y ∈ R

k are the fast variables. The alge-

braic costraint g(x, y, 0) = 0 defines the slow manifold S and correspondingly

the two invertible branches S±. The following invariant manifold theorem

describes the flow induced by Xǫ × {0} near S± × {0} for small ǫ.

Theorem A.1. Let M be a Cr+1 manifold, 1 ≤ r < ∞. Let Xǫ, ǫ ∈
(−ǫ0, ǫ0) be a Cr family of vector fields on M , and let S be a Cr submanifold

of M consisting entirely of equilibrium points of X0. Let ks, kc and ku be

fixed integers, and let K ⊂ S± be a compact subset such that QX0(m) has

ks eigenvalues in the left half plane, kc eigenvalues on the imaginary axis,

and ku in the right half plane, for all m ∈ K. Then:



24 G. CIANFARANI CARNEVALE, C. LATTANZIO, AND C. MASCIA

1) There is a Cr center-stable manifold Cs for Xǫ × 0 near K. There

is a Cr center-unstable manifold Cu for Xǫ × 0 near K. There is a

Cr center manifold C for Xǫ × 0 near K.

2) There is a Cr−1 family Fs = {Ψs(p) : p ∈ Cs} of Cr stable manifolds

for Cs near K. If p ∈M×{ǫ}, then Ψs(p) ∈M×{ǫ}. Each manifold

Ψs(p) intersects C transversally, in exactly one point. There is a

Cr−1 family Fu = {Ψu(p) : p ∈ Cu} of Cr unstable manifolds for

Cu near K. If p ∈ M × {ǫ}, then Ψu(p) ∈ M × {ǫ}. Each manifold

Ψu(p) intersects C transversally, in exactly one point.

3) Let Ks < 0 be larger then the real parts of the eigenvalues of QX0(m)

in the left half plane, for all m ∈ K. Then, there is a constant Cs

such that if p ∈ Cs and q ∈ Ψs(p), then

d(p · x̄, q · x̄) ≤ Cse
Ksx̄d(p, q)

for all x̄ ≥ 0 such that p · [0, x̄] ⊂ Cs. Let Ku > 0 be smaller than

the real parts of the eigenvalues of QX0(m) in the right half plane,

for all m ∈ K. Then there exists a constant Cu such that if p ∈ Cu

and q ∈ Ψu(p), then

d(p · x̄, q · x̄) ≤ Cue
Kux̄d(p, q)

for all x̄ ≤ 0 such that p · [x̄, 0] ⊂ Cu.

4) Let SH ⊂ S± such that QX0(m) has not eigenvalue with zero real

part. If K ⊂ SH , define for (m, ǫ) ∈ C,

FR(m) := πS
(

∂

∂ǫ

)

Xǫ(m)|ǫ=0

and

XC(m, ǫ) :=

{

ǫ−1Xǫ(m)× {0}, if ǫ 6= 0

FR(m)× {0}, if ǫ = 0

Then XC is a Cr−1 vector field on C near K × {0}.

A.2. Reduced System. The following lemma gives the reduced system in

Theorem A.1 of the previous section in local coordinates in which S appears

as graph of a function (see [5]). From now on, the symbols Di, i = 1, 2, 3

denote the derivative with respect to slow variables Dx, fast variables Dy

and Dǫ respectively.

Lemma A.2. Consider the system

ẋ = f(x, y, ǫ), ẏ = g(x, y, ǫ),

defined for (x, y) in an open subset of Rn×R
k, for ǫ near zero. Let y = h(x)

be a function such that

f(x, h(x), 0) ≡ 0, and g(x, h(x), 0) ≡ 0.
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Suppose (x0, h(x0)) ∈ SH, so that the matrix
(

α β
γ δ

)

=

(

∂xf(x0, h(x0), 0) ∂yf(x0, h(x0), 0)
∂xg(x0, h(x0), 0) ∂yg(x0, h(x0), 0)

)

has rank k. Let ν = ∂xh(x0). Then the projection πS = πS(x0, u(x0)) is

multiplication by the matrix

A =

(

I + β(δ − νβ)−1ν −β(δ − νβ)−1

ν + νβ(δ − νβ)−1ν −νβ(δ − νβ)−1

)

and the reduced system is given by:
(

ẋ
ẏ

)

= A

(

∂ǫf(x, h(x), 0)
∂ǫg(x, h(x), 0)

)

A.3. Local theory near equilibria of the reduced vector field. The

next theorem explains how the critical points of the reduced vector field at

ǫ = 0 – denoted by FR – are related to the critical points of the original

vector field Xǫ in the regime of small ǫ > 0.

Given ǫ ∈ (−ǫ0, ǫ0), let Xǫ be a C
r family of vector fields on R

3 and let S
be a Cr submanifold of R3 consisting of equilibrium points of X0. Moreover,

let u ∈ SH be an equilibrium point of the reduced vector field FR.

Theorem A.3 (Theorem 12.1, [5]). If λ = 1 is not an eigenvalue of

TFR(m), then there exists ǫ1 > 0 and a Cr−1 family of points uǫ with

ǫ ∈ (−ǫ1, ǫ1) such that u0 = u and uǫ is an equilibrium point of Xǫ.

Let ·t denotes a flow on the manifold M . Given V ⊂M , set

A+(V ) :=
{

u ∈ V : u · [0,+∞) ⊂ V
}

,

A−(V ) :=
{

u ∈ V : u · (−∞, 0] ⊂ V
}

,

I(V ) :=
{

u ∈ V : u · (−∞,∞) ⊂ V
}

.

The following result characterizes the local stable/unstable manifolds of nor-

mally hyperbolic invariant manifold of FR.

Theorem A.4 (Theorem 12.2, [5], Theorem 2.2, [19]). Under the hypothesis

of Theorem A.3, suppose TFR(u0) has j
u eigenvalues in the right half plane,

no eigenvalues on the imaginary axis and js eigenvalues in the left half

plane. Suppose QF0(u0) has ku eigenvalues in the right half plane and ks

eigenvalues in the left half plane.

Then, there exists ǫ1 > 0 such that

i. there is a Cr−1-family of hyperbolic equilibrium points of Fǫ, denoted

by {uǫ : ǫ ∈ (−ǫ1, ǫ1)}, such that lim
ǫ→0

uǫ = u0 and there is a family

of neighborhoods of u0, denoted by {Uǫ : ǫ ∈ (−ǫ1, ǫ1)}, such that

I(Uǫ) = {uǫ} for any ǫ 6= 0;



26 G. CIANFARANI CARNEVALE, C. LATTANZIO, AND C. MASCIA

ii. there is a Cr−1-families of (ju+ku)-dimensional manifolds {W u
ǫ : ǫ ∈

(−ǫ1, ǫ1)} and (js + ks)-dimensional manifolds {Ws
ǫ : ǫ ∈ (−ǫ1, ǫ1)}

such that

A−(Uǫ) =W u
ǫ and A+(Uǫ) = Ws

ǫ ∀ ǫ > 0;

iii. the local stable and unstable manifolds of uǫ for ǫ > 0 are given by

N s
ǫ =

⋃

p∈Ws
ǫ

Ψs
ǫ(p) and Nu

ǫ =
⋃

p∈Wu
ǫ

Ψu
ǫ (p),

where {Ψs
ǫ(u) : ǫ ∈ (−ǫ1, ǫ1),u ∈ Ws

ǫ } is a Cr−1-family of k1-

dimensional manifolds such that {Ψs
ǫ(m) : m ∈ Ws

ǫ } for each ǫ > 0

is a positively invariant family of manifolds (the same for Ψu
ǫ (m)).

Theorem A.5 (Theorem 3.1, [19]). Let the manifolds N1 and N2 satisfy

the assumptions of Theorem A.4. Assume that the manifolds

Nu
1 :=

⋃

p∈Wu
1

Ψu(p), N s
2 :=

⋃

p∈Ws
2

Ψs(p)

intersect transversally along the singular heteroclinic orbit.

Then, there exists ǫ1 > 0 such that there exists a transversal heteroclinic

orbit of the singularly perturbed system

ẋ = f(x, y, ǫ), ǫẏ = g(x, y, ǫ),

connecting the manifolds N1,ǫ and N2,ǫ for 0 < ǫ < ǫ1.

Finally, the last needed result concerns sufficient (transversality) condi-

tions needed to obtain the connections between the two branches of the

involved invariant manifold.

Theorem A.6 (Theorem 4.1, [19]). Let the manifolds N1 and N2 satisfy the

assumption of Theorem A.4. Let φ(W u
1 ) and φ(W

s
2 ) denote the x-coordinates

of the manifolds Wu
1 and Ws

2 , respecitvely. Then the manifolds Nu
1 and

N s
2 intersect transversally in the points of the heteroclinic orbit (x0, y0(x))

if and only if there exist exactly d − 1 linearly independent solutions ξ ∈
Tx0

φ(Wu
1 )

⋂

Tx0
φ(Ws

2) of the equation

(M, ξ) = 0 where M :=

∫

R

ψ(ξ) · ∂xg
(

x0, y0(ξ)
)

dξ.

The function ψ is the unique (up to a scalar multiple) bounded solution of

the adjoint equation

ψ′ = −∂yg(x0, y0(x))Tψ.
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