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Abstract: The production of reactive nitrogen species (RNS) by the innate immune system is part
of the host’s defense against invading pathogenic bacteria. In this review, we summarize recent
studies on the molecular basis of the effects of nitric oxide and peroxynitrite on microbial respiration
and energy conservation. We discuss possible molecular mechanisms underlying RNS resistance in
bacteria mediated by unique respiratory oxygen reductases, the mycobacterial bcc-aa3 supercomplex,
and bd-type cytochromes. A complete picture of the impact of RNS on microbial bioenergetics is not
yet available. However, this research area is developing very rapidly, and the knowledge gained
should help us develop new methods of treating infectious diseases.
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1. Introduction

Primary bacterial pathogens are infectious agents responsible for severe and often
deadly diseases in humans. In addition, commensal bacteria can produce opportunistic
infections in immunosuppressed patients. Disease-causing bacteria are becoming resistant
to most commonly available antibiotics, which poses a threat to global public health. The
production of reactive nitrogen species (RNS) by the innate immune system is part of the
host’s defense against invading microbes. RNS refers to various nitrogenous products
including nitric oxide (•NO), peroxynitrite anion (ONOO–), nitroxyl (HNO), dinitrogen
trioxide (N2O3), nitrite (NO2

–), nitrogen dioxide (•NO2), nitronium cation (NO2
+), nitroso-

nium cation (NO+), nitrosoperoxycarbonate anion (ONOOCO2
–), nitryl chloride (Cl-NO2),

S-nitrosothiols (RSNOs) [1]. •NO, along with carbon monoxide and hydrogen sulfide,
is considered an endogenous gaseous signaling molecule [2–5]. •NO is the main RNS
produced by the host and the main source for the generation of the other RNS. This small
diatomic molecule is a free radical, i.e., with one unpaired electron, and can diffuse easily
through biological membranes. The enzymes that produce •NO are NO synthases (NOS).
They convert L-arginine and O2 into L-citrulline and •NO using NADPH as the electron
donor. There are three NOS isoforms: neuronal (nNOS), endothelial (eNOS), and inducible
(iNOS). nNOS and eNOS are constitutively expressed whereas iNOS expression is induced
by immunological stimuli. The latter occurs predominantly in macrophages and plays an es-
sential role in immune defense. •NO can combine with superoxide radical (O2

•−) produced
by the NADPH oxidase at diffusion-controlled rates yielding another RNS, ONOO−. Under
physiological conditions, ONOO− is in equilibrium with peroxynitrous acid, ONOOH
(pKa = 6.8), and local pH affects peroxynitrite reactivity. Both ONOO− and ONOOH are
able to cross biological membranes. Peroxynitrite is a potent oxidant and nitrating agent,
with a very important role in the destruction of invading pathogens by macrophages, as
ONOOH spontaneously homolyzes to hydroxyl radical (•OH) and •NO2 [6,7]. As they
are within bacteria-containing phagolysosomes in macrophages, RNS creates a hostile
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environment that impairs microbial growth. RNS inhibit DNA replication and bacterial res-
piration [8]. •NO and ONOO− were reported to damage metalloproteins containing heme
cofactors and/or iron-sulfur clusters [9]. Additionally, •NO mediates post-translational
modifications through S-nitrosylation of protein thiol groups, and peroxynitrite promotes
the nitration of protein tyrosine residues [6,10]. This review focuses on the effects of •NO
and ONOO− on bacterial aerobic (O2-dependent) respiratory (electron transport) chains,
namely on their last component represented by a heme-containing terminal oxidase, in
light of recent findings.

We have chosen to focus only on aerobic bacteria because data on the RNS stress
response of pathogenic anaerobes remain scarce. For instance, in the case of multidrug-
resistant Klebsiella pneumoniae, a common cause of hospital-acquired pneumonia, some data
on its adaptive response toward oxidative stress are available [11,12] but none addressed
the bacterial response to •NO. A search of the genome of K. pneumoniae points out the
presence of •NO-detoxifying enzymes Hmp and Hcp nonetheless [9]. The intracellular
pathogen Shigella flexneri, which is the causative agent of bacillary dysentery, was reported
to be sensitive to •NO produced in vitro; on the contrary, •NO is not required for clearance
of the microbes in infected mice or macrophages [13]. A search of the genome of S. flexneri,
however, indicates putative flavorubredoxin, Hmp and Hcp enzymes are involved in
nitrosative detoxification [9]. Clostridioides difficile is the cause most implicated in antibiotic-
associated diarrhea and severe inflammation of the bowel. This anaerobic enteropathogen
encodes a few putative •NO-consuming enzymes, such as two flavodiiron proteins FdpA
and FdpF, and Hcp [14,15]. FdpA and FdpF, however, show negligible •NO reductase
activity but instead significant O2 reductase activity [15,16]. Although there is no data on
the specific •NO activity of Hcp, the physiological nitrosating agent S-nitrosoglutathione
(GSNO) was reported to induce the expression of hcp [17]. This finding indicates that Hcp
is involved in •NO resistance.

2. Bacterial Aerobic Respiratory Chains

Similar to mitochondria of eukaryotic cells, bacteria contain aerobic respiratory chains.
The main function of the chains is to create a proton motive force (PMF), a central energy
currency. The well-known mammalian mitochondrial chain is linear [18,19]. It consists
of the enzyme complexes I, II, III, and IV (Table 1). The complexes I, III, and IV catalyze
the oxidation of NADH by ubiquinone, oxidation of ubiquinol by ferricytochrome c, and
oxidation of ferrocytochrome c by molecular oxygen, respectively. Each redox reaction
is coupled to the generation of PMF that can be used further for the production of one
more central energy currency, ATP, by ATP synthase (also termed complex V) or for active
transport of solutes across the membrane. Complex II (succinate dehydrogenase) belongs
to both the respiratory chain and the Krebs cycle. Complex II catalyzes the electron
transfer from succinate to ubiquinone but unlike complexes I, III, and IV, the transfer is not
coupled to the formation of PMF [20,21]. The bacterial respiratory chains, in contrast to the
mitochondrial one, are branched, with different routes of electron transfer depending on
the growth conditions [22,23]. As a quinone, bacteria can use not only ubiquinone but also
menaquinone, plastoquinone, or caldariellaquinone.

Table 1. Major enzyme complexes of the mammalian mitochondrial electron transport chain.

Enzyme Complex Electron Donor Electron Acceptor Energy Currency
Produced

Complex I NADH ubiquinone proton motive force
(PMF)

Complex II succinate ubiquinone none

Complex III ubiquinol ferricytochrome c PMF

Complex IV ferrocytochrome c O2 PMF
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In order to transfer electrons from NADH to quinone, bacteria use three different fam-
ilies of NADH:quinone reductases (dehydrogenases)—NDH-1, NDH-2, and NQR (Table 2).
NDH-1 reductases are closely related to the mitochondrial complex I and function as redox-
driven proton pumps [24,25]. Both NDH-2 and NQR are unrelated to the canonical complex
I. NDH-2 enzymes are non-electrogenic and therefore unable to support PMF [26,27]. NQR
reductases operate as redox-driven sodium pumps, i.e., they generate a sodium ion motive
force rather than PMF [28–30]. The sodium ion motive force, along with PMF and ATP,
is the third energy currency used by a few bacteria [31]. Bacteria with more than one
NADH:quinone reductase show a preference for one or another enzyme depending on the
growth conditions.

Table 2. Major enzyme complexes found in aerobic bacterial electron transport chains.

Enzyme Complex Electron Donor Electron Acceptor Energy Currency
Produced

NDH-1 NADH quinone PMF

NDH-2 NADH quinone none

NQR NADH quinone Na+ motive force

Complex II succinate quinone none

Complex III quinol ferricytochrome c PMF

Heme–copper
oxidases (aa3, caa3,

bo3, cbb3, ba3)

ferrocytochrome c or
quinol O2 PMF

Cytochrome bcc-aa3
supercomplex quinol O2 PMF

Cytochrome bd (bd-I,
bd-II) quinol O2 PMF

Cyanide insensitive
bd-type oxidase (CIO) quinol O2 n.d.

Bacterial complex III, also termed cytochrome bc1 complex, transfers electrons from
quinol to ferricytochrome c. This redox reaction is coupled with the production of PMF
via the Q-cycle (Mitchellian redox-loop) mechanism [32,33]. The presence of complex III
in bacterial respiratory chains is optional. Some bacteria, e.g., Escherichia coli, have no
cytochrome c at all, and hence no cytochrome bc1 [34]. Cytochrome c of other bacteria is not
water-soluble but fused either to complex III or complex IV. This leads to the formation of a
supercomplex between complex III and complex IV (Table 2). Accordingly, the cytochrome
bcc-aa3 (III2–IV2) supercomplex was discovered in Mycobacterium smegmatis and Corynebac-
terium glutamicum [35–37]. A supercomplex composed of cytochrome bc1 and aa3-type
cytochrome c oxidase was also identified in Rhodobacter sphaeroides [38]. Figure 1 shows
examples of three different types of branched bacterial respiratory chains in which the com-
plex III is absent (E. coli [34]), present as a separate enzyme (Pseudomonas aeruginosa [29]), or
forms a tight supercomplex with the aa3-type cytochrome c oxidase (M. tuberculosis [39,40]).
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Figure 1. Aerobic respiratory chains of Escherichia coli, Pseudomonas aeruginosa, and Mycobacterium 
tuberculosis. In E. coli, two NADH dehydrogenases, NDH-1 and NDH-2, and succinate dehydrogen-
ase (SDH) transfer electrons to ubiquinone (UQ)/menaquinone (MQ) pool. Three quinol oxidases, 
cytochromes bo3, bd-I, and bd-II, oxidize ubiquinol/menaquinol with the concomitant reduction of 
O2 to 2H2O. P. aeruginosa has three NADH dehydrogenases, NDH-1, NDH-2, NQR, and SDH. The 
electrons from ubiquinol are further transferred to O2 either directly via two quinol oxidases, cyto-
chrome bo3 and bd-type cyanide insensitive oxidase (CIO), or via the bc1 complex to three cytochrome 
c oxidases, caa3, cbb3-1, and cbb3-2. M. tuberculosis possesses three NADH dehydrogenases, one NDH-
1, two NDH-2, and two succinate dehydrogenases, SDH-1 and SDH-2. The electrons from mena-
quinol are then transferred to O2 via cytochrome bd or cytochrome bcc-aa3 supercomplex. 

The membrane-bound terminal oxidases are divided into two superfamilies: heme–
copper oxidases and bd-type cytochromes [41–43]. The active site of a heme–copper oxi-
dase termed the binuclear center (BNC) is composed of a high-spin heme (a3, o3, or b3) and 
a copper ion (CuB). The enzyme catalyzes the transfer of electrons from cytochrome c or 
quinol to O2 with the production of 2H2O. The reaction is coupled to the generation of 
PMF using the mechanism of redox-coupled proton pumping across the membrane 

Figure 1. Aerobic respiratory chains of Escherichia coli, Pseudomonas aeruginosa, and Mycobacterium
tuberculosis. In E. coli, two NADH dehydrogenases, NDH-1 and NDH-2, and succinate dehydrogenase
(SDH) transfer electrons to ubiquinone (UQ)/menaquinone (MQ) pool. Three quinol oxidases,
cytochromes bo3, bd-I, and bd-II, oxidize ubiquinol/menaquinol with the concomitant reduction
of O2 to 2H2O. P. aeruginosa has three NADH dehydrogenases, NDH-1, NDH-2, NQR, and SDH.
The electrons from ubiquinol are further transferred to O2 either directly via two quinol oxidases,
cytochrome bo3 and bd-type cyanide insensitive oxidase (CIO), or via the bc1 complex to three
cytochrome c oxidases, caa3, cbb3-1, and cbb3-2. M. tuberculosis possesses three NADH dehydrogenases,
one NDH-1, two NDH-2, and two succinate dehydrogenases, SDH-1 and SDH-2. The electrons from
menaquinol are then transferred to O2 via cytochrome bd or cytochrome bcc-aa3 supercomplex.

The membrane-bound terminal oxidases are divided into two superfamilies: heme–
copper oxidases and bd-type cytochromes [41–43]. The active site of a heme–copper oxidase
termed the binuclear center (BNC) is composed of a high-spin heme (a3, o3, or b3) and a
copper ion (CuB). The enzyme catalyzes the transfer of electrons from cytochrome c or
quinol to O2 with the production of 2H2O. The reaction is coupled to the generation of PMF
using the mechanism of redox-coupled proton pumping across the membrane [21,22,44–59].
A heme–copper oxidase that uses cytochrome c as an electron donor (cytochrome c oxidase)
has the second copper site, CuA. CuA directly accepts electrons from cytochrome c. If the
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enzyme uses quinol as an electron donor (quinol oxidase), CuA is absent. Heme–copper
oxidases also contain a low-spin heme (a or b) that accepts electrons from CuA (cytochrome
c oxidase) or directly from an electron donor (quinol oxidase) and donates them to the
BNC. In caa3 and cbb3 oxidases, the reduction of CuA by water-soluble cytochrome c is
followed by an intermediate reduction of additional heme(s) c. The classification of the
heme–copper oxidases is based on the organization of the intraprotein proton transfer
pathways. Accordingly, the enzymes are divided into three main families: A, B, and
C [60–62].

The active site of cytochrome bd contains a high-spin heme d but not a copper ion [39,63–69].
There are data that one more high-spin heme, b595, could perform some of the functions of
CuB [70–86]. Similar to heme–copper oxidases, bd-type cytochromes couple the reduction
of O2 to 2H2O to the formation of PMF [44,87,88]. However, in contrast to the heme–copper
enzymes, cytochromes bd do so without being a proton pump [89–91]. The lack of proton-
pumping machinery decreases the energetic efficiency of the bd-type oxidases. Until now,
all biochemically characterized cytochromes bd turned out to be quinol oxidases [49,92–94].
Accordingly, the third heme in cytochrome bd, a low-spin b558, mediates electron transfer
from quinol to hemes b595 and d. The bd-oxidases typically have a very high affinity for
O2 and CO due to specific features of heme d, which is an iron-chlorin [77,95–99]. In
some cases, heme d can be replaced with heme b [42,100]. Intriguingly, phylogenomic
analyses performed by Murali et al. suggest that there are bd-type cytochromes that use
cytochrome c as an electron donor [42]. Phylogenomics by Murali et al. identified three
families and several subfamilies within the cytochrome bd superfamily. At the same time,
earlier classification of the bd-type oxidases based on the size of the hydrophilic region
between transmembrane helices 6 and 7 in subunit I (a binding domain for quinol oxidation
termed the Q-loop) is still commonly used. According to this classification, cytochromes bd
are divided into two subfamilies: L (long Q-loop) and S (short Q-loop) [101,102].

The catalytic cycle of heme–copper oxidases is best studied for the aa3-type cytochrome
c oxidases (Figure 2). It includes the intermediates termed O, E, R, A, P, F (see [41] and
references therein). The sequential transfer of two electrons to O (the fully oxidized state of
the BNC) results in the sequential formation of E and R, one-electron reduced and fully
reduced states of the BNC, respectively. R binds O2 to produce the A state. Then, the O–O
bond is cleaved, and the P state is formed in which heme a3 is ferryl, CuB is oxidized, and a
conserved tyrosine residue in the BNC is oxidized to a radical, Y•. The transfer of the third
electron to the BNC re-reduces Y• to Y bringing about the F state. The transfer of the fourth
electron to the BNC leads to the reduction of ferryl heme a3 to ferric form that regenerates
the O state and completes the cycle. The O→ E, E→ A, P→ F, and F→ O transitions are
electrogenic and coupled to the transfer of a pumped proton (not shown in Figure 2).
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Figure 2. Proposed catalytic cycles of heme–copper cytochrome c oxidase and bd-type oxidase.

The catalytic cycle of bd-type oxidases is deduced from the studies on the E. coli
cytochrome bd-I [90,103–106] (Figure 2). It includes the intermediates termed O1, A1, A3, P,
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F*, F, and takes into account that the quinol substrate is a two-electron donor. In the O1→
A1 transition, an electron transfers from heme b558 to heme d and the latter binds O2. In the
next A1→ A3 transition, two electrons from a quinol reduce heme b558 and heme b595. In the
A3→ P transition, a true transient peroxy complex of ferric heme d is formed concomitant
with oxidation of heme b595. The O–O bond cleavage occurs in the next, P→ F* transition
in which the ferric heme d is further oxidized to the ferryl form with a porphyrin π-cation
radical (Por•+). Then in the F*→ F transition, the radical is quenched by an electron from
the ferrous heme b558. The F→ O1 transition, in which two electrons from a second quinol
reduce the ferryl heme d (to the ferric form) and heme b558, completes the cycle. The P/F*→
F and F→ O1 transitions were reported to be electrogenic [88–91,107].

The key role of most heme–copper oxidases in bacterial metabolism is to create PMF.
In the case of cytochromes bd, the bioenergetic function is not the only. The bd enzymes
play other critical roles in microbes [94,108–111]. They contribute significantly to the
ability of bacteria to resist stresses induced by peroxide [49,112–116], sulfide [5,117–120],
ammonia [121], chromate [122], cyanide [117,123]. Due to the fact that the bd oxidases
are often found in pathogenic bacteria but absent in humans, they can be used as protein
targets for next-generation antimicrobials [43,64,68,124–134].

3. •NO and Bacterial Terminal Oxidases
3.1. •NO and Bacterial Heme–Copper Terminal Oxidases

With the exception of the mycobacterial aa3-type oxidase (see Section 3.1.1), the bacte-
rial heme–copper oxidases tested to date, such as the cbb3-type oxidases from Vibrio cholerae
and Rhodobacter sphaeroides, and the aa3-type oxidase from R. sphaeroides, are rapidly and
strongly inhibited by •NO [135], similar to their mitochondrial homolog, cytochrome c
oxidase [136]. The reaction of the mitochondrial enzyme with •NO was studied in more
detail. It was shown that low, nanomolar levels of •NO reversibly inhibit the enzyme
activity [136] whereas high, micromolar levels of •NO cause irreversible damage to the en-
zyme [137]. The reversible inhibition occurs via two pathways. At high reductive pressure
(high turnover conditions) and low O2 tensions, the O2-competitive inhibition pathway
prevails. It occurs through the reaction of •NO with the two-electron reduced (and possibly
one-electron reduced) BNC leading to the production of the nitrosyl derivative of the
enzyme. At low reductive pressure (low turnover conditions) and high O2 tensions, the
noncompetitive pathway prevails. The latter proceeds via reaction of •NO with the cat-
alytic intermediates that have CuB oxidized, resulting in the generation of the nitrite-bound
enzyme [138–141]. It is reasonable to assume that the bacterial heme–copper oxidases
studied [135] are inhibited by •NO through similar mechanisms.

3.1.1. •NO-Metabolizing Activity of the Mycobacterial bcc-aa3 Supercomplex in Turnover

Mycobacteria contain no water-soluble cytochrome c. Probably for this reason their
aa3-type cytochrome oxidase needs to be in a tight supercomplex with cytochrome bcc, a
homolog of the mitochondrial cytochrome bc1 [35,36]. Forte et al. reported that a purified
chimeric supercomplex composed of M. tuberculosis cytochrome bcc and M. smegmatis aa3-
type oxidase resists inhibition by •NO [57]. The effect of •NO on the O2 consumption by the
bcc-aa3 supercomplex in the presence of excess dithiothreitol (DTT) and menadione (MD)
was evaluated amperometrically. A very small, short-term decrease in the O2 consumption
induced by •NO is followed by quick and complete restoration of the initial enzyme’s
activity (Figure 3, inset). Surprisingly, the •NO decay allowing for the activity recovery
occurs much faster than one would expect. The reason for this turned out to be the ability
of the bcc-aa3 supercomplex to degrade •NO under turnover conditions. The rate of •NO
decay in the presence of the enzyme and reductants is significantly higher than in the
presence of the reductants only (Figure 3, top panel). Furthermore, in the absence of DTT
and MD, the kinetic profiles of •NO decay in aerobic solution with and without the bcc-aa3
are identical (Figure 3, bottom panel). The latter two observations support the conclusion
that the •NO decomposition is indeed catalyzed by the purified bcc-aa3 supercomplex in
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turnover with O2 and the electron donors. The maximum •NO-consuming activity of the
enzyme measured following the addition of 30 µM •NO appeared to be about 300 mol •NO
× (mol bcc-aa3)−1 ×min−1 [57] (Table 3).
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Figure 3. Purified mycobacterial cytochrome bcc-aa3 supercomplex scavenges •NO under turnover
conditions. Top panel: the bcc-aa3 in turnover with 5 mM DTT and 0.26 mM MD accelerates the
decomposition of 30 µM •NO added. (Bottom panel) in the absence of DTT and MD, i.e., under
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Forte et al. [57] under the terms of the Creative Commons Attribution 4.0 International License.

Table 3. Overview of •NO interactions with mycobacterial cytochrome bcc-aa3 supercomplex and
E. coli cytochrome bd-I, respiratory enzyme complexes which contribute to mechanisms of bacterial
resistance to •NO.

Enzyme Complex Inhibition by •NO
•NO Degradation

in Turnover
Anaerobic •NO

Degradation
•NO off-Rate NO2

– off-Rate Reference

Mycobacterial
cytochrome bcc-aa3

supercomplex
No

Yes (~300 mol •NO
× (mol bcc-aa3)−1 ×

min−1)

Yes (~3 mol •NO ×
(mol bcc-aa3)−1 ×

min−1)
n.d. n.d. [57]

E. coli cytochrome
bd-I

Yes (IC50 = 100 nM
•NO at 70 µM O2) No No 0.133 s−1 n.d. [142,143]

Possible mechanisms for this reaction catalyzed by the bcc-aa3 are worth discussing.
Earlier, it was reported that in the mitochondrial cytochrome oxidase, •NO can react with
the catalytic intermediates O, P, and F, each according to a 1:1 stoichiometry [138,140].
One could suggest that in the bcc-aa3

•NO also reacts with these species populated at a
steady-state. In view of the fact that in the bcc-aa3 the •NO/O2 stoichiometry was estimated
to be 2.65 [57] i.e., >1, we assume that in this enzyme •NO can react with more than one
intermediate during the catalytic cycle. Figure 4 shows possible reaction pathways for the
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bcc-aa3 taking into account modern views on the structures of intermediates O, F, and P. As
in the mitochondrial enzyme [138,140], in the reactions with O, F, and P, •NO is thought
to donate one electron to CuB

2+ yielding nitrosonium ion (NO+) and CuB
1+. This results

in the oxidation of •NO to NO2
– and the conversion of a corresponding intermediate into

the succeeding one along the catalytic cycle of the bcc-aa3 (Figure 4, reactions 1, 2, 3, see
also Figure 2). In other words, following the reaction with one molecule of •NO, O is
converted into E, F—into O, and P—into F. In the mitochondrial cytochrome oxidase, NO2

–

produced from •NO binds with a relatively high affinity to the oxidized heme a3 (or CuB)
in the BNC [140]. This impedes the complete reduction of the BNC and, hence, its ability
to bind and further reduce O2. As a result, O2 consumption is halted. We hypothesize
that in the case of the bcc-aa3 NO2

– generated from •NO does not bind to the BNC with
high affinity. Instead, NO2

– is quickly ejected into the bulk phase from the supercomplex
without affecting the catalytic O2 consumption.
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Figure 4. Possible mechanisms of the •NO detoxification catalyzed by the mycobacterial cytochrome
bcc-aa3 supercomplex under turnover conditions. Y in Reaction 3—a conserved tyrosine residue in
the BNC.

Since the bcc-aa3 is an O2-binding heme protein, it cannot be ruled out that the enzyme
is also capable of acting as a •NO dioxygenase. A possible mechanism of such reaction
similar to that reported for the truncated hemoglobin N of M. tuberculosis [144] is shown
in Figure 4 (reaction 4). According to the proposed pathway, the reaction of the catalytic
intermediate A with •NO yields nitrate (NO3

–) that should leave the BNC rapidly in order
to avoid inhibition of the main O2 reductase activity. All proposed reaction mechanisms
(Figure 4, reactions 1–4) await experimental confirmation.

3.1.2. •NO Reductase Activity of Heme–Copper Oxidases

The amperometric studies showed that a few bacterial heme–copper oxidases are able
to decompose •NO under reducing anaerobic conditions at •NO concentrations in the
solution in the range of 5 to 10 µM. Figure 5 demonstrates such activity of the purified my-
cobacterial bcc-aa3 supercomplex [57]. The pre-reduced enzyme was anaerobically added
to an O2-free solution of •NO in the presence of excess DTT and MD. The addition of the
enzyme was shown to increase the rate of the decomposition of •NO. It has to be noted that
the slow •NO decay observed before the addition of the bcc-aa3 is due to the non-enzymatic
reaction of •NO with the reductants. Additionally, the initial fast drop in the •NO concentra-
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tion detected immediately after the addition of the enzyme is probably due to •NO binding
to the bcc-aa3. The •NO-consuming activity of the bcc-aa3 under anaerobic conditions
at ~8 µM •NO added appeared to be about 3 mol •NO × (mol bcc-aa3)−1 ×min−1 [57]
(Table 3). As one can see, this is ~100 times lower than that observed under aerobic turnover
conditions. A similar activity was also reported previously for such heme–copper oxidases
as the ba3 and caa3 from Thermus thermophilus [145], the bo3 from E. coli [146], the cbb3 from
Pseudomonas stutzeri [147] and R. sphaeroides [148]. Notably, the mitochondrial beef heart
aa3-type oxidase does not catalyze the anaerobic degradation of •NO [149].
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For the ba3 oxidase from T. thermophilus it was directly shown by gas chromatography
that the end product of the catalytic •NO decay under reducing anaerobic conditions is
nitrous oxide (N2O), i.e., the •NO reductase activity takes place [145]. It is reasonable
to suggest that this is also the case for the other bacterial oxidases, which were reported
to degrade •NO under the same conditions [57,146,148]. The reaction mechanism could
resemble that used by native bacterial •NO reductases. Both mechanisms, however, are still
under debate [150,151]. In general, two •NO molecules react with the fully reduced BNC
of the oxidase yielding one molecule of N2O as the end product, with the formation of the
hyponitrite species as a transient intermediate. For more details, see Figure 23 in [151].

Since the •NO reductase activity measured in some bacterial oxidases is not too
high and the conditions requested hardly often occurs in vivo, we do not expect that this
contributes significantly to microbial defense mechanisms against •NO-induced stress.

3.2. bd-Type Oxidases Confer Bacterial Resistance to •NO

Evidence is accumulating that in at least some pathogenic bacteria, cytochrome bd
is involved in their defense against •NO-induced stress. Jones-Carson et al. examined
the role of the two major terminal oxidases of Salmonella Typhimurium, the heme–copper
cytochrome bo3 (encoded by the cyoABCD operon) and cytochrome bd (encoded by the
cydAB operon), in its antinitrosative defensive system [152]. The authors compared growth
rates of the wild-type strain, ∆cyoABCD, and ∆cydAB mutants in LB broth supplemented
with 5 mM DETA NONOate. The latter is the •NO donor that at the added concentration
produced a stable flux of 5 µM •NO during the experiment. In contrast to the wild-type
and ∆cyoABCD strains, the ∆cydAB mutant appeared to be hypersusceptible to •NO as
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manifested by the extended lag phase following the DETA NONOate addition. Jones-
Carson et al. also compared the rates of respiration in the wild-type, ∆cyoABCD, and
∆cydAB bacterial cultures treated with 50 µM spermine NONOate. The O2 consumption
activity of the ∆cydAB mutant was much more sensitive to spermine NONOate as compared
to that of the wild-type bacteria. Additionally, unlike the wild-type and ∆cyoABCD cells, the
O2 consuming activity of the ∆cydAB cells did not improve over time following the addition
of spermine NONOate. Cytochrome bd was reported to add to the •NO-detoxifying activity
of the flavohemoglobin Hmp that converts •NO into NO3

−. Both Hmp and the bd oxidase
contribute to similar extents to S. Typhimurium pathogenesis. Furthermore, there is
a substantial degree of independence between these two proteins in S. Typhimurium
pathogenesis. It is suggested that low O2 levels in mice favor •NO detoxification by
cytochrome bd whereas high O2 tension favor Hmp as the •NO-detoxifier. Bacteria may
experience different O2 and •NO levels as the inflammatory response evolves over time
during the infection. Therefore, S. Typhimurium may preferentially use Hmp or the bd
oxidase according to the availability of O2 and •NO. Thus, cytochrome bd, along with Hmp,
is an important component of the antinitrosative defensive system of S. Typhimurium [152].

Shepherd et al. examined the relative contribution of cytochrome bd-I (CydAB), Hmp,
the flavorubredoxin NorVW, the nitrite reductase NrfA, and the iron–sulfur cluster repair
protein YtfE to the •NO-tolerance mechanisms in a multidrug-resistant uropathogenic E.
coli (UPEC), strain EC958 [153]. For this purpose, the authors mutated the cydAB, hmp,
norVW, nrfA and ytfE genes in EC958. Growth rates of wild-type EC958, and cydAB, hmp,
norVW, nrfA and ytfE mutants were measured following the addition of the •NO-releaser
NOC-12 under microaerobic conditions. It turned out that mutation of cydAB and hmp
confers the highest sensitivity to •NO. Furthermore, the ∆cydAB mutant displayed increased
sensitivity to neutrophil killing, reduced survival within primed macrophages, and an
attenuated colonization phenotype in the mouse bladder. The fact that deletion of cydAB
impairs survival in a mouse model suggests that the bd oxidase-dependent respiration
under nitrosative stress conditions is a key factor for host colonization. Thus, the UPEC
cytochrome bd-I provides the greatest contribution to •NO tolerance and host colonization
at low O2 tensions and is of major importance for the accumulation of high microbial loads
in the course of infection of the urinary tract [153].

Beebout et al. reported that cytochrome bd of UPEC (E. coli cystitis isolate UTI89)
is highly expressed in biofilms and that loss of the bd-oxidase-expressing subpopulation
impairs barrier function and reduces the abundance of extracellular matrix [154]. The
authors hypothesized that cytochrome bd is preferentially expressed in the UPEC biofilm
because the enzyme provides protection against nitrosative stress. The addition of the •NO
donor NOC-12 to planktonic cultures was found to significantly reduce the growth rate of
the ∆cydAB mutant: the doubling time increased from 37 to 106 min after the treatment.
This finding suggests that during aerobic growth the bd oxidase serves as an •NO sink that
reversibly sequesters •NO. This protects respiration mediated by cytochrome bo3 which is
a proton pump that is more efficient at transducing energy but susceptible to irreversible
inhibition by •NO. Beebout et al. proposed that cytochrome bd-expressing subpopulations
in UPEC are critical for withstanding such harmful metabolic by-products as •NO while in
the biofilm state [154].

Consistently, •NO caused more significant growth inhibition in non-pathogenic E.
coli strains lacking cytochrome bd as compared to cytochrome bo3-deficient ones [155]. In
Shewanella oneidensis, the bd oxidase provides tolerance to nitrite rather than •NO, but this
is an exceptional case [156]. A protective role of cytochrome bd against •NO stress also
agrees with the expression of this enzyme in E. coli [154,157,158], S. Typhimurium [152],
Staphylococcus aureus [159], Bacillus subtilis [160], and M. tuberculosis [161] in response to
•NO. Interestingly, in M. tuberculosis, the bd oxidase was reported to be necessary for
optimal respiration at acidic pH as the bcc-aa3 supercomplex is markedly inhibited under
these conditions [162].
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Like most heme–copper oxidases tested (see Section 3.1), the bd-type oxidases from
non-pathogenic E. coli and A. vinelandii are rapidly inhibited by •NO [142]. This was
demonstrated on the level of both the purified enzymes from these bacteria [142] and
the E. coli cells lacking cytochrome bo3 [155,163]. The inhibition is reversible with the
IC50 value of 100 nM •NO for the purified bd oxidases from E. coli and A. vinelandii at
70 µM O2 in the assay medium [142] (Table 3). Unlike some heme–copper oxidases (see
Section 3.1.2), cytochrome bd does not exhibit a measurable •NO reductase activity under
anaerobic conditions. The question arises as to if cytochrome bd is quickly inhibited
by submicromolar concentrations of •NO and unable even scavenge this RNS via •NO
reductase-like reaction, how can it serve as one of the key mechanisms for protecting
bacteria against nitrosative stress? Phenomenologically, the answer to this question can
be obtained by comparing the kinetic profiles of activity recovery from •NO inhibition
following the addition of the •NO scavenger oxyhemoglobin (HbO2) for the bd oxidase
and the mitochondrial cytochrome c oxidase (Figure 6). Upon •NO depletion in solution by
HbO2, the recovery is significantly faster in cytochrome bd than in the mitochondrial oxidase
under similar experimental conditions [142,164]. However, what molecular mechanisms
underlie such a rapid recovery of activity in the case of the bd oxidase? Studies of the
interaction of •NO with different cytochrome bd species made it possible to shed light on
the molecular mechanisms [142,143,165,166]. •NO binds at the level of the heme d active
site. The reaction occurs if heme d is in the ferrous, ferryl, or ferric state. The rate of •NO
binding to the ferrous uncomplexed heme d (R species) has never been measured. One may
expect that its value (kon) is comparable with those for the binding of CO and O2 to the
fully reduced enzyme, i.e., in the range of 108 to 109 M−1·s−1 [101]. The reaction yields the
nitrosyl ferrous heme d adduct (Figure 7, reaction 1) [72]. It turned out that the rate of •NO
dissociation from heme d2+ (koff) in the purified fully reduced cytochrome bd-I of E. coli is
unusually high, 0.133 s−1 [143] (Table 3). A similar value (0.163 s−1) was later reported for
membrane preparations of E. coli mutant strain RKP4544 devoid of cytochrome bo3 [155].
This koff value is about 30 times higher than that for •NO dissociation from ferrous heme
a3 in the mitochondrial cytochrome c oxidase [164]. Furthermore, the •NO off-rate for
cytochrome bd is faster than that detected for almost all heme proteins. Such a high •NO
dissociation rate obviously explains why after •NO-inhibition the activity of cytochrome bd
is restored much faster than that of the mitochondrial oxidase (Figure 6). The reaction of
•NO with the A. vinelandii cytochrome bd in the ferryl state (F species) is fast (~105 M−1·s−1)
and likely produces the oxidized enzyme with nitrite bound at ferric heme d (Figure 7,
reaction 2) [165]. This is about 10 times faster than the same reaction for the mitochondrial
cytochrome c oxidase (~104 M−1·s−1) [138,167]. Then, NO2

– likely escapes from heme d3+

to the bulk phase, but the off rate for nitrite has to be determined. Since intermediate F is
highly populated in turnover [105], we think that the rapid oxidation of •NO into NO2

–

by cytochrome bd also contributes to the mechanisms of bacterial resistance to •NO. The
reaction of •NO with ferric heme d in the purified fully oxidized cytochrome bd-I of E.
coli (O species) proceeds with kon of ~ 102 M−1·s−1 yielding a nitrosyl adduct, d3+–NO or
d2+–NO+ (Figure 7, reaction 3) [166]. The reaction is rather slow and the O species is not a
catalytic intermediate of cytochrome bd [168] therefore it barely contributes to mechanisms
of •NO-inhibition or •NO tolerance. Thus, we can conclude that the bd oxidase confers
•NO resistance to bacteria due to (i) extraordinary high •NO off-rate and (ii) the ability to
rapidly convert •NO into NO2

– in turnover.
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Figure 6. Activity recovery from •NO inhibition of E. coli cytochrome bd-I and beef heart cytochrome
c oxidase. Shown are time courses of O2 consumption by the enzymes. •NO inhibits the enzymatic
O2 consumption. Oxyhemoglobin (HbO2) scavenges rapidly all free •NO that leads to reversal of
•NO inhibition. Modified from [111] with permission.
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4. Peroxynitrite and Bacterial Terminal Oxidases

The study of the interaction of peroxynitrite with bacterial terminal oxidases is at
the very initial stage. To date, the only bacterial oxidase that has been studied for the
reaction with this highly reactive toxic compound is cytochrome bd-I from E. coli [109,169].
Earlier, the interaction of the eukaryotic heme–copper oxidase, the aa3-type cytochrome
c oxidase isolated from bovine heart mitochondria, with ONOO− was investigated [170].
It was shown that the mitochondrial enzyme when solubilized or in proteoliposomes is
irreversibly damaged by ONOO− (Table 4). At concentrations of less than 20 µM ONOO−

significantly raises the enzyme’s Km for O2. This effect was tentatively explained by the
nitration of some tyrosine residues [137]. At higher concentrations ONOO− was reported
to decrease the Vmax. The ONOO−-induced lowering of the Vmax could be due to both
the destruction of the CuA site in cytochrome c oxidase, and the irreversible loss of the
830-nm absorption band characteristic of the oxidized CuA was observed [170], and the
degradation of hemes a and a3.
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Table 4. Overview of ONOO− interactions with bovine heart aa3-type cytochrome c oxidase and E.
coli cytochrome bd-I.

Enzyme Complex Inhibition by ONOO−
•NO Production after

ONOO− Addition

Short-Term Generation
of O2 just after

ONOO− Addition

Direct Observation of
ONOO− Degradation

in Turnover
Reference

Purified bovine heart
aa3-type cytochrome c

oxidase

Yes (irreversible
damage to enzyme

complex)
Yes No No [170]

Purified E. coli
cytochrome bd-I

No (up to 0.1 mM
ONOO−) Yes Yes Yes (~600 mol ONOO−

× (mol bd-I)−1 ×min−1) [169]

Borisov et al. studied amperometrically the effect of ONOO− on the O2 consumption
by the E. coli cytochrome bd-I at the level of the isolated detergent-solubilized enzyme
and the bd-I overexpressing bacterial cells [169]. It turned out that in both cases, the O2
consumption by the bd-I oxidase is not inhibited by up to 0.1 mM ONOO− (Figure 8,
Table 4). The effect of higher ONOO− concentrations was not tested. After the addition
of ONOO− a slight short-term generation of O2 was observed (Figure 8). This is likely
due to the catalase-like activity of cytochrome bd-I that scavenges H2O2, a contaminant
in the commercial ONOO− or a product of the peroxynitrite degradation [109,113,114].
Furthermore, using the stopped-flow rapid mixing technique it was shown that the bd-
I oxidase is able to catalyze scavenging of ONOO−. The kinetics of this reaction was
measured [169]. In these experiments, the enzyme pre-reduced anaerobically with excess
reducing agents, N,N,N’,N’-tetramethyl-p-phenylenediamine (TMPD), and ascorbate, was
mixed with an air-equilibrated solution of ONOO−. The ONOO− decomposition rate
was determined at 310 nm. It was found that ONOO− disappears with an observed rate
constant that is proportional to the cytochrome bd-I concentration and increases with the
TMPD concentration. Importantly, in control experiments, neither the protein nor the
reductants tested independently reveal the decay of ONOO− to a significant extent. The
apparent turnover rate at which the bd-I oxidase, in turnover with O2 and excess TMPD and
ascorbate, decomposes ONOO−, was estimated to be ~600 mol ONOO− × (mol enzyme)−1

× min−1 [169] (Table 4). Since the rate constant was found to increase with the enzyme
activity (the electron flux), in the bacterial cell in which cytochrome bd-I utilizes ubiquinol
as the substrate, the peroxynitrite-decomposing activity may be even higher. For instance,
a turnover number of cytochrome bd-I is about seven times higher when the reducing
system is ubiquinone-1 plus DTT as compared to that for TMPD plus ascorbate [168]. If
the peroxynitrite-neutralizing activity of the bd-I oxidase is proportional to the electron
flux, its apparent turnover rate in the E. coli cell could be as high as ~4200 mol ONOO− ×
(mol enzyme)−1 × min−1. To summarize, the E. coli cytochrome bd-I in the catalytic steady
state is not only resistant not ONOO−, but also capable of decomposing this highly reactive
cytotoxic effector, thus serving as an important detoxifier of ONOO− in vivo.

A possible mechanism of the peroxynitrite decomposition catalyzed by the bd-I enzyme
has never been proposed. We assume that the most likely site for the reaction is the high-
spin heme d. We may suggest at least four possible reaction mechanisms. The fact that the
addition of ONOO− to the isolated bd-I protein in turnover with O2 and reductants resulted
in the production of •NO [169] (Table 4) points out that •NO could be the main product. If
this is the case, a one-electron reduction of ONOO− to •NO and H2O2 by the ferrous heme
d may occur (Figure 9, reaction 1). If so, at least part of the H2O2 transiently generated
following the addition of ONOO− to the enzyme is also the main reaction product. There
are two observations that are not consistent with the mechanism proposed. According to
the reaction scheme (Figure 9, reaction 1), the decay of one molecule of ONOO− added
should generate one molecule of •NO. In the experiments, however, the amount of •NO
produced was approximately 12 times less than the amount of ONOO− added. In addition,
no •NO production was detected with the ONOO−–treated cells while the short-term
generation of H2O2 is in place (Figure 8). The latter two findings indicate that the •NO
produced in the case of the isolated enzyme might be a secondary product, possibly non-
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enzymatic because the formation of •NO was also observed in the absence of the protein,
albeit to a lesser extent [169].
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It was reported that ONOO− generates Compound II (Fe4+ = O2−) in myeloperoxi-
dase, lactoperoxidase, and catalase, and Compound I (Fe4+ = O2− Por•+, where Por•+ is
a porphyrin radical) in horseradish peroxidase [171,172]. Since these are ferriheme (Fe3+)
enzymes, in these reactions ONOO− serves as a one-electron and two-electron oxidant,
respectively. We, therefore, suggest that in cytochrome bd-I ONOO− also could react with
the ferric heme d, (e.g., to the O1 catalytic intermediate, see Figure 2). In the case of one-
electron oxidation heme d3+ is converted to Compound F (analog of Compound II, see
Figure 2) with the concomitant release of •NO2 from ONOO− (Figure 9, reaction 2).

It is also possible that the ferric heme d catalyzes the isomerization of peroxynitrite to
nitrate (NO3

–). If so, Compound F and •NO2 are transient reaction intermediates, not the
final products (Figure 9, reaction 3). The fact that certain iron (III) porphyrins are capable of
catalyzing the isomerization of ONOO− to NO3

– [173] is in agreement with this hypothesis.
In the case of two-electron oxidation heme d3+ is converted to Compound F* (analog

of Compound I, see Figure 2) with the co-production of NO2
− from ONOO− (Figure 9,

reaction 4). It is worth noting that microbial and mammalian peroxiredoxins catalyze
detoxification of peroxynitrite via its two-electron reduction to nitrite [174,175].

5. Concluding Remarks

Usually, terminal oxygen reductases of bacterial respiratory chains are strongly inhib-
ited by nitric oxide and peroxynitrite. However, some of the respiratory enzymes, such as
the mycobacterial bcc-aa3 supercomplex and bd-type oxidases, confer resistance to RNS,
thereby contributing to microbial pathogenicity. An understanding of the molecular mecha-
nisms of bacterial pathogenicity is essential for the development of new strategies to combat
infectious diseases. In this regard, it would be interesting to figure out the reaction mech-
anisms underlying bcc-aa3 supercomplex-mediated •NO detoxification and importantly,
whether this unique property of the mycobacterial enzyme is shared by other aa3-type
oxidases, eventually complexed with the bc1. The interest in bd-type oxidases is increasing
due to their peculiar enzymatic abilities, stress tolerance, and importance to pathogens—
features that merit more in-depth functional and structural studies. Determination of
cytochrome bd structure from different microorganisms would help in the characterization
and rational design of selective inhibitors of these oxidases. Based on already published 3D
structures of bd-type oxidases, one of the main challenges in the structure-driven design
of quinone substrate-like inhibitors is expected to be the high flexibility of the N-terminal
part of the quinol binding site called the Q-loop. Another promising direction for future
research is the study of the effect of RNS on the anaerobic terminal reductases and other
bioenergetic enzymes in anaerobic pathogenic bacteria. All in all, the development of
next-generation antibiotics selectively targeting the RNS-insensitive respiratory complexes
in pathogens may reduce their impact on human health and social development.
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