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Abstract
Purpose Neuroendocrine neoplasms can occur as part of inherited disorders, usually in the form of well-differentiated, 
slow-growing tumors (NET). The main predisposing syndromes include: multiple endocrine neoplasias type 1 (MEN1), 
associated with a large spectrum of gastroenteropancreatic and thoracic NETs, and type 4 (MEN4), associated with a wide 
tumour spectrum similar to that of MEN1; von Hippel-Lindau syndrome (VHL), tuberous sclerosis (TSC), and neurofi-
bromatosis 1 (NF-1), associated with pancreatic NETs. In the present review, we propose a reappraisal of the genetic basis 
and clinical features of gastroenteropancreatic and thoracic NETs in the setting of inherited syndromes with a special focus 
on molecularly targeted therapies for these lesions.
Methods Literature search was systematically performed through online databases, including MEDLINE (via PubMed), 
and Scopus using multiple keywords’ combinations up to June 2022.
Results Somatostatin analogues (SSAs) remain the mainstay of systemic treatment for NETs, and radiolabelled SSAs can be 
used for peptide-receptor radionuclide therapy for somatostatin receptor (SSTR)-positive NETs. Apart of these SSTR-targeted 
therapies, other targeted agents have been approved for NETs: the mTOR inhibitor everolimus for lung, gastroenteropatic 
and unknown origin NET, and sunitinib, an antiangiogenic tyrosine kinase inhibitor, for pancreatic NET. Novel targeted 
therapies with other antiangiogenic agents and immunotherapies have been also under evaluation.
Conclusions Major advances in the understanding of genetic and epigenetic mechanisms of NET development in the context 
of inherited endocrine disorders have led to the recognition of molecular targetable alterations, providing a rationale for the 
implementation of treatments and development of novel targeted therapies.

Keywords Neuroendocrine neoplasms · MEN1 · Von Hippel–Lindau (VHL) syndrome · Neurofibromatosis 1 (NF-1) · 
Tuberous sclerosis (TSC) · MEN4 · Targeted therapies
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Introduction

About 5% of neuroendocrine neoplasms (NENs) arise in 
the context of an inherited tumor syndrome. These are 
usually well-differentiated, low-proliferating (mitotic 
count < 20 HPFs and/or Ki-67 index < 20%) NENs, called 
neuroendocrine tumors (NETs), to be distinguished from 
poorly differentiated, highly proliferating NENs, called 
neuroendocrine carcinomas (NECs) [1, 2]. While NECs 
are aggressive, fast growing neoplasms that are usually 
sporadic [3], NETs are generally rather indolent, slowly 
growing neoplasms that produce peptide hormones or bio-
genic amines causing functional clinical syndromes, and 
can be associated with hereditary tumor syndromes [4], 
impacting on quality of life [5–7]. Among these predispos-
ing genetic syndromes, some are associated with a limited 
spectrum of tumors, specifically localized in an organ or 
in the digestive tract, while others are associated with a 
very broad spectrum of neoplastic lesions, affecting either 
endocrine and non-endocrine organs [4, 8, 9].

The present review is specially focused on syndromes 
predisposing to gastroenteropancreatic (GEP) and tho-
racic NETs. They include: multiple endocrine neoplasias 
type 1 (MEN1), associated with a large spectrum of GEP 
and thoracic NETs, and type 4 (MEN4), associated with a 
wide tumor spectrum similar to that of MEN1; von Hip-
pel–Lindau syndrome (VHL), tuberous sclerosis (TSC), 
and neurofibromatosis 1 (NF-1), associated with pancre-
atic NETs (pNETs). Other rare syndromes include gluca-
gon cell hyperplasia neoplasia (GCHN), involving only the 
pancreas, and familial small-intestinal NETs (SI-NETs) 
(Table 1).

Surgery remains the only curative approach for local-
ized NETs even in this setting, whereas systemic therapy 
is the standard of care for locally advanced or metastatic 
NETs and includes chemotherapy regimens, targeted 
agents, and radiopharmaceuticals [10]. Somatostatin ana-
logues (SSAs) traditionally represent the mainstay of sys-
temic treatment for NETs, given their efficacy to control 
hormonal production excess and tumor growth [11, 12]. 
Also, the innovative peptide-receptor radionuclide therapy 
(PRRT) with radiolabelled SSAs, that delivers targeted 
radiation to neuroendocrine neoplastic cells expressing 
somatostatin receptors (SSTRs), has been demonstrated to 
be effective and safe for SSTR-positive NETs [13]. Beyond 
these SSTR-targeted therapies, novel targeted therapies 
have been developed in the last decades, as the knowledge 
of genetic and molecular targetable alterations involved 
in NEN tumorigenesis has been improved. Nowadays, 
two other targeted agents have been approved for NETs. 
Everolimus, an inhibitor of the mammalian target of rapa-
mycin (mTOR) pathway, is approved for GEP, lung and 

unknown origin NET, while sunitinib, an antiangiogenic 
tyrosine kinase inhibitor, is adopted in pancreatic NET 
(pNET) [14–16].

We propose a reappraisal of the genetic basis and clini-
cal features of NETs in the clinical setting of inherited syn-
dromes with a special focus on molecularly targeted thera-
pies for these lesions.

Materials and methods

This narrative review was conducted focusing on papers 
published over the last years. Literature search was sys-
tematically performed through online databases including 
MEDLINE (via PubMed), and Scopus using multiple key-
words combinations. The entree terms included “neuroen-
docrine neoplasms”, “neuroendocrine tumors”, “inherited 
tumor syndrome” “multiple endocrine neoplasia syndrome”, 
“MEN1”, “MEN4”, “Von Hippel-Lindau syndrome”, “tuber-
ous sclerosis complex”, “Glucagon cell hyperplasia neo-
plasia”, Familial small-intestine neuroendocrine tumors”, 
“Familial Insulinomatosis”, Bronchopulmonary Neuroen-
docrine Tumors” and Thymus Neuroendocrine Tumors” in 
combination with “Molecularly targeted therapies”, “soma-
tostatin analogues”, “peptide-receptor radionuclide therapy”, 
“mTOR inhibitors”, “everolimus”, and “tyrosine kinase 
inhibitors”. This was complemented by a carefully hand-
searching reference to find additional studies and expand 
the search. Literature search was performed up to June 2022.

The articles were selected on the basis of relevance of 
title and abstract in the topic. Primary studies and case series 
dealing with patients affected by NETs in the context of 
inherited tumor syndromes and reporting data on therapeu-
tic approaches were included. Also systematic and narrative 
review focused on therapies and outcomes of NETs associ-
ated with inherited predisposing syndromes was identified. 
We included in the present review the articles matching the 
following inclusion criteria: English language and publica-
tion in peer-reviewed journals. We excluded articles for irrel-
evance to the topic, duplicates, and papers written in other 
languages apart from English.

Syndromes predisposing 
to gastroenteropancreatic neuroendocrine 
tumors (GEP‑NET)

Multiple endocrine neoplasia type 1 (MEN1)

Genetic and clinical features of the syndrome

MEN1 or Wermer syndrome (OMIM *131100) is an auto-
somal dominant genetic syndrome with a high degree of 
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penetrance, such that more than 95% of patients develop 
clinic manifestations of the disorder by the fifth decade and 
75% of 20-year-old patients has at least one tumor [17]. It 
has an estimated prevalence of 1:30,000 inhabitants and 
affects men and women equally [18]. The disorder can affect 
all age groups; although the first symptoms often appear in 
people in their early 20 s, most people are diagnosed as hav-
ing MEN1 in their 40 s. It is clinically suspected by the asso-
ciation of at least two diseases among: parathyroid glands 
hyperplasia and primary hyperparathyroidism (HPT) (90%), 
GEP-NETs (30–70%), especially non-functioning tumors 
(NF, 20–55%) and gastrinomas (30–40%), and anterior pitui-
tary adenomas (30–40%), especially prolactinomas (20%) 
[19]. In addition, patients may also develop other neuroendo-
crine (i.e., bronchopulmonary NET in less than 2% of cases 
and pheochromocytoma in less than 1% of cases) and non-
endocrine tumors (angiofibromas, 85%; collagenomas, 70%; 
lipomas, 30%; meningiomas, 8%) [20] (Table 1). Uncommon 
neoplasias like parathyroid carcinoma, mammary cancer, or 
adrenocortical carcinoma have also been reported [21–23].

MEN1 syndrome is caused by a mutation in the MEN1 
gene, located on chromosome 11q13. The gene is composed 
of 10 exons, encoding the protein menin, which acts at differ-
ent levels to regulate cellular proliferation, even if its specific 
role is still debated (Table 1) [24]. Menin acts as scaffold 
protein, and is also involved in epigenetic regulation of gene 
expression via histone methylation, facilitating or silencing 
transcriptional activity of target genes. MEN1 is a tumor-
suppressor gene, whose inactivation should be biallelic to 
conduct to tumorigenesis: thus, following the Knudson’s 
“two-hit” model, a somatic mutation of the MEN1 wild-
type allele should occur, and it has been found in 90% of 
tumors from MEN1 patients, most commonly through large 
deletion [25, 26]. MEN1-associated tumors harbor germline 
and somatic mutations, consistent with Knudson’s two-hit 
hypothesis. Anyway, no correlation between genotype and 
fenotype has been clearly established [27, 28].

MEN1‑associated NETs

Epidemiology, clinical, and pathological features

The age-related penetrance (i.e., the proportion of gene 
carriers manifesting symptoms or signs of the disease by a 
given age) has been ascertained, being greater than 50% by 
20 years of age and greater than 95% by 40 years [13, 14].

In young patients, the frequency of non-functioning 
pNET (NF-pNET) has increased up to 42, thanks to screen-
ing program, while functioning NETs remain rare in this age 
group [21, 29, 30]. Young patients with MEN type 1 and an 
exon 2 mutation have a twofold greater risk for developing 
a pNET [31].Ta
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Also, in adults, NF-pNET are the most frequent NETs, 
followed by gastrinomas (up to 40%), insulinomas (11–15%), 
and rare functioning pNETs like glucagonoma, VIPoma, and 
GHRH-oma (Table 1). In small percentage, also bronchopul-
monary NET (BP-NET), pheochromocytoma, and type 2 
gastric NETs are detected [21]. Insulinomas, thymic NET, 
and gastrinomas have the worst prognosis and the highest 
mortality [5]. Clinical symptoms are related to tumor secre-
tion, since GEP-NETs can be associated with symptoms 
due to ectopic secretion of hormones (functioning NETs) or 
either do not secrete any hormones or the products secreted 
do not cause a clinical syndrome (non-functioning, NF-GEP-
NET) (Table 2) [32–35].

MEN1-associated tumors may be larger, more aggressive, 
and resistant to treatment than sporadic endocrine tumors. 
Available data suggest that metastatic rate of some pNET 
histotypes can be higher in MEN1 patients rather than in 
sporadic ones: for example, metastases are reported in up to 
50% of patients with MEN1-associated insulinomas, but less 
than 10% of non-MEN1 insulinomas [36, 37]. Recent stud-
ies identified metastatic spread and related complications 
of pNETs as the major cause of MEN1-specific mortality 
[38, 39].

Therapies and outcomes

Surgical treatment is indicate for localized sporadic NF-
pNET > 2 cm or for functional pNET, but MEN1 patients 

often have multiple, multifocal tumors that occur over time, 
making surgery not always a viable option [40].

MEN1-related NETs can express all 5 somatostatin recep-
tors (SSTR), but SSTR2 and SSTR5 are the most frequently 
found subtypes [41]: this is the pathogenetic base of soma-
tostatin analogue (SSA) antisecretory and antiprolifera-
tive effects and of the possible use of radionuclide therapy 
(PRRT). Octreotide and lanreotide, SSAs that specifically 
bind SSTR2, proved to be effective and safe in MEN-1 
related NETs either at localized or advanced stages [42] In 
a study of 5 MEN1 patients with metastatic GEP-NENs and 
hypergastrinemia, a 3 month treatment with SSAs adminis-
trated at standard dose (100 microg subcutaneously, three 
times daily) reduced both gastrin secretion with sympto-
matic relief and the size of liver metastases [42]. Octreo-
tide has reported to stabilize disease in MEN1 patients 
in approximately 80% of cases [43]. Lanreotide has been 
compared to active surveillance in a prospective observa-
tional study in which it was administrated at standard dose 
in 23/42 MEN1 patients with p-NETs < 2 cm: the rate of 
tumor progression was significantly lower in treated than in 
untreated patients; 17% of treated patients had an objective 
response, while 65% of them had stable disease [44]. These 
data suggest a comparable efficacy of SSAs for inherited 
and sporadic pNENs, but a higher rate of tumor shrinkage 
in MEN1, supporting their early use in these patients [42]. 
No similar data are available for pasireotide, an SSA that 
binds SSTR1, SSTR2, SSTR3, and SSTR5 with different 

Table 2  The main endocrine syndromes associated with functioning gastroenteropancreatic neuroendocrine tumors: clinical features and thera-
peutic options

F-NET functioning neuroendocrine tumors, GI gastrointestinal, GERD gastroesophageal reflux disease, PPI proton-pump inhibitors, SSA soma-
tostatin analogues, PRRT  peptide-receptor radionuclide therapy, VIPoma vasoactive intestinal polypeptide secreting neuroendocrine tumor, 
SSoma somatostatinoma, GRHoma growth hormone-releasing factor secreting neuroendocrine tumor, NME necrolytic migratory erythema

F-NET syndrome Main symptoms/sign Initial medical treatment Secondary/other medical treatment

Gastrinoma (Zollinger–Elli-
son syndrome)

Pain (26–98%), GERD (0–56%), GI 
bleeding (8–75%)

PPI SSA

Insulinoma Hyoglicemia: confusion (51%), 
Sweating (43%), Tremulousness 
(23%)

Frequent small feedings, diazoxide SSA, PRRT, Everolimus

Carcinoid syndrome Diarrhea (58–100%), flushing (67%), 
carcinoid heart disease (27%)

SSA PRRT, telotristat

VIPoma (pancreatic cholera) Severe and profuse diarrhea (95%), 
hypokalemia (89%), dehydration 
(78%), flushing (22%)

SSA, fluid/electrolyte replacement PRRT, glucocorticoids, loperamide, 
sunitinib, indomethacin

Glucagonoma Diabetes (22–90%), diarrhea (17–
73%), dermatitis (NME) (54–90%)

SSA, amino acid infusion Parenteral infusion, PRRT 

Ectopic Cushing’s syndrome Cushingoid habitus, diabetes, hyper-
tension, hypokalemia, osteoporo-
sis, recurrent infections

Steroidogenesis inhibitors Mitotane, dopamine agonists, SSA, 
PRRT 

SSoma Diabetes, diarrhea, gallbladder 
disease, weight loss

SSA PRRT 

GRHoma/GHoma Acromegaly SSA PRRT 
Paraneoplastic hypercalcemia Hyperparathyroidism SSA + cinacalcet, rehydration Bisphosphonates, PRRT 
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affinity. NETs express also some tyrosine kinases (TKs) 
receptors that can be targeted, like vascular endothelial 
growth factor receptor (VEGFR), insulin-like growth fac-
tor 1 receptor (IGF1R), and platelet-derived growth factor 
receptor (PDGFR). The multikinase inhibitor sunitinib has 
been proved to improve progression-free survival (PFS) in 
sporadic NETs of about 6 months compared to placebo [14], 
but no data were obtained in MEN1 patients [45]. Another 
possible targeted therapy involves the mTOR inhibitor 
everolimus, that is approved for advanced pNETs, with an 
increase of PFS of about 11 months [46]. In a multicentric 
retrospective study involving patients with both sporadic and 
MEN1-related pNETs, disease control rate with everolimus 
was numerically higher in MEN1-related compared to spo-
radic ones (87.5% vs. 68.4%), in terms of both PFS (33.1 vs 
12.3 months, P = 0.383) and time to treatment failure (TTF, 
16.1 vs 9.9 months, P = 0.888), suggesting a possible role of 
this germline mutation in treatment response [45]. Anyway, 
generally tumors find out escape pathways to avoid everoli-
mus effect, and a novel mTOR inhibitor, sapanisertib, has 
being studied for everolimus-resistant pNETs. In a recent 
work, pNET-xenografts were implanted in mice, than treated 
with sapanisertib or with everolimus; when mice became 
resistant to everolimus, they were cross-over to sapanis-
ertib, which showed high shrinkage potential, even in MEN1 
mutated tumors [47]. Interesting pre-clinical results have 
also been reported about the role of nitric oxide synthase 
inhibitor using its vasoactive effect [48].

Multiple endocrine neoplasia type 4 (MEN4)

Genetic and clinical features of the syndrome

Multiple endocrine neoplasia type 4 (MEN4) is the latest 
member of MEN syndromes and shares a similar pheno-
type spectrum to MEN1 with negative MEN1 gene muta-
tions (Table 1). In MEN4, there is a mutation in the cyclin-
dependent kinase inhibitor 1b gene (CDKN1B), located 
in chromosome 12p13 [49]. The CDK inhibitor p27 (also 

known as KIP1), a 196 amino-acid protein encoded by the 
CDKN1B gene, regulates the transition from cell cycle 
phase G0/G1 to S and is implicated in cellular processes 
like proliferation, motility, and apoptosis [50, 51]. Pellegata 
and coworkers first described mutations in CDKN1B gene 
causing a p27 deficiency and a new MEN-like phenotype 
in rats and humans, further on named MEN4 (or MENX) 
syndrome [52, 53] (Fig. 1).

MEN4‑associated NETs

Epidemiology, clinical, and pathological features

The incidence of CDKN1B mutations in patients with 
MEN1-related neoplasia is difficult to estimate, but it 
is likely to be around 3% [49]. Due to very few cases of 
MEN4 being reported and many being undiagnosed, there 
are uncertainties regarding the exact incidence and preva-
lence of MEN4.

The most common and early presentation in MEN4 
syndrome is primary HPT due to parathyroid adenomas/
hyperplasia, followed by pituitary tumors (functional and 
nonfunctional) and GEP-NETs (Table 1) [54].

Primary HPT has been reported in up to 80%-90% of 
cases with MEN4 [19]. It occurs at a later age in MEN4 
compared to MEN1 patients, with a female predominance 
[53]. The second most common presentation is pituitary 
adenoma (either nonfunctional or functional) [55] (Table 1). 
The prevalence of NETs in MEN4 is approximately 25%, 
that is much lower than MEN1. These include duodeno- 
or gastric-pNETs, that could be non-functioning or asso-
ciated with various clinical syndromes, depending on the 
main substances secreted. The most common functioning 
NET is gastrinoma, causing the so-called Zollinger–Ellison 
syndrome due to excess release of gastrin and subsequent 
secretion of gastric acid (Tables 1 and 2). Up to date, there 
are no reported cases of insulinoma, VIPoma, glucaconoma, 
and ectopic-ACTH secreting NET.in MEN4 [55]. Adrenal 
tumors, testicular cancer, cervical carcinoma, papillary 

Fig. 1  Exemplification of the 
aberrant regulation/expres-
sion of signaling pathways 
downstream the mutated genes 
in MEN1 (MEN1 gene) and 
MEN4 (CDKN1B gene) syn-
dromes
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thyroid cancer, colon cancer, carcinoid, and meningioma 
are also reported [55, 56].

Therapies and outcomes

The management approach for either nonfunctional or func-
tional neuroendocrine GEP-NETs is similar to MEN1 [49]. 
In gastrinomas, medical treatment includes proton-pump 
inhibitors and SSAs (Table  2), whereas surgical resec-
tion may be curative in small, localized and not metastatic 
tumors that may be fully excised [57]. Currently, there are 
no established druggable targets to reactivate or increase p27 
expression in cancers, respective GEP-NETs. The E3 ubiq-
uitin ligase S-phase kinase-associated protein 2 (Skp2) is 
an important mediator of ubiquitination of various proteins 
including p27, rendering them to subsequent proteasomal 
degradation. Small-molecule inhibitors of the E3 ubiqui-
tin ligase Skp2 might be a promising future therapeutic 
approach in and then might also be worth to be investigated 
in GEP-NETs [58–60].

Von Hippel–Lindau (VHL) syndrome

Genetic and clinical features of the syndrome

Von Hippel-Lindau (VHL) disease is an autosomal domi-
nantly hereditary tumor syndrome with an incidence of 
1:36,000 newborns and estimated prevalence in Europe 
about 1–9/100,000. It is caused by germline mutations in 
the VHL tumor-suppressor gene located on the short arm 

of chromosome 3 (3p25.3) with lots of roles ranging from 
targeting hypoxia-inducible factor α (HIFα) for degradation 
and suppression of aneuploidy to microtubule stabiliza-
tion (Table 1) [61–63]. The VHL protein (pVHL) acts as 
a subunit of a multiprotein ubiquitin ligase that negatively 
regulates expression of a large number of hypoxia-inducible 
genes controlled by HIFα. Downstream genes are involved in 
regulation of angiogenesis, cell proliferation, energy metab-
olism, and tumor progression, and include vascular endothe-
lial growth factor (VEGF), platelet-derived growth factor 
(PDGF), transforming growth factor α (TGFα), epidermal 
growth factor (EGFR), and erythropoietin (EPO), to men-
tion a few. pVHL acts as a tumor suppressor by binding to 
HIFα, preventing inappropriate expression of these hypoxia-
inducible genes. Loss of pVHL results in high HIFα levels 
and subsequent overproduction of these growth factors, such 
as VEGF, PDGF, and TGFα, favoring tumorigenesis and 
neoangiogenesis (Table 1) [61–63].

The VHL syndrome is associated with an increased risk 
of developing various benign and malignant tumors [64, 65]. 
These include retinal capillary hemangioblastomas (RCH), 
central nervous system haemangioblastomas, phaeochro-
mocytomas, renal cysts and clear cell renal cell carcinomas 
(ccRCC), endolymphatic sac tumors (ELST), cystadenomas 
of the epididymis and the broad ligament, as well as pan-
creatic cysts and pNET (Fig. 2). The disease penetrance is 
high, and more than 90% of patients harboring a VHL muta-
tion develop clinical symptoms before the age of 65 years 
(100% by age 75 yrs) [64]. As a consequence, if a diagnosis 
of VHL disease is established, patients should undergo an 

Fig. 2  Location of the most 
common benign and malignant 
tumors in patients with Von 
Hippel–Lindau (VHL) disease

Table 3  Routine surveillance protocol for VHL disease

Annual ophthalmic examination (direct and indirect ophthalmoscopy) beginning at age 1 to screen for retinal hemangioblastoma
Contrast-enhanced MRI of brain and full spine to screen for CNS hemangioblastomas beginning at age 12. Annual or biennial depending on 

clinical manifestations
MRI examination of the abdomen every 12 months to screen for renal cell carcinoma and pancreatic tumors beginning from the age of 12 years
Annual blood pressure monitoring and 24-h urine studies for catecholamine metabolites starting at age 4 to screen for pheochromocytoma. 

Alternatively, measuring plasma free metanephrines
Biennial audiogram starting at age 16 to screen for endolymphatic sac tumours
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annual screening program [66] (Table 3). Tumor location 
and dynamics of development, disease severity, as well as 
age at first symptoms are considerably variable [66]. RCH 
and RCC are associated with a high morbidity and mortal-
ity due to potential blindness, life-threatening elevation of 
intracranial pressure, paraplegia, and metastases.

The overall life expectancy of VHL patients used to be 
limited with a median survival of around 50 years [64]. 
However, the introduction of clinical screening leads to 
significantly improved disease management with 10 year 
additional life expectancy [67].

VHL syndrome‑associated NETs

Epidemiology and clinical features

pNETs were established as VHL component tumors in 
1998 [68]. They are observed in 10–17% of VHL patients 
(Table 4, adapted from [69]) with a mean age at presentation 
of 35 years for solid lesions and a mean age of 37 years for 
cystic lesions [70, 71].

These tumors are usually asymptomatic, non-functional, 
multifocal and distributed throughout the pancreas [11] with 
a slow-growing pattern and favorable prognosis compared 
to sporadic tumors [72]. Although pNETs are an uncom-
mon cause of mortality, they have malignant potential [73]. 
Interestingly, missense mutations in exon 3, especially of 
codons 161/167 are at enhanced risk for metastatic pNETs 

[74]. Additional risk factors for malignant VHL-associated 
pNETs include tumor size greater than 3 cm, short tumor 
diameter doubling time (less than 500 days), and other 
genetic factors [75–78].

Therapies and outcomes

Tumors with a diameter over 2.8 cm should be treated sur-
gically to avoid metastasis in accordance to a recent multi-
center study [74]. According to the new VHL disease guide-
lines for diagnosis and surveillance [79], medical treatment 
should follow the guidelines for non-functioning -pNETs: 
patients with disseminated disease, grade 1 and 2 NET and 
Ki67 index < 10% can be treated with SSA, and patients with 
disseminated disease, grade 2 NET (Ki6710–20%) or NEC 
(Ki67 > 20%) may be treated with conventional chemiothera-
pies (temozolomide + capecitabine, strptozotocin + 5FU or 
carboplatin + etoposide) or with molecular targeted thera-
pies, including everolimus and sunitinib.

Data from small retrospective studies or case reports have 
suggested the promising efficacy of sunitinib for patients 
with VHL disease, including for VHL-related pNET [45, 
80–83]. Noteworthy, a single drug could treat more than one 
neoplastic manifestation of VHL. However, larger prospec-
tive clinical trials are warranted to determine the efficacy in 
VHL-related pNET.

Less data are available about everolimus in VHL-
related pNET. The only study available failed to provide 
conclusive data about its efficacy due to the low number of 
patients examined [45]. Finally, pVHL is a negative regu-
lator of HIF1α that can act as a potential drug target for 
cancer therapy. Also, the downstream growth factor VEGF, 
that is typically overexpressed in VHL-related neoplasms, 
may be therapeutically relevant using the neutralizing anti-
VEGF antibody, bevacizumab. Drugs that modulate the 
downstream targets of the pVHL/HIF pathway, including 
sunitinib, sorafenib, temsirolimus, and bevacizumab, have 
proven benefit in treating ccRCC and RCH [84, 85], but no 
data are available on their use/efficacy in VHL-associated 
NET.

Finally, PRRT has been proven to be an effective systemic 
treatment in the management of patients with advanced met-
astatic, or, inoperable slowly progressing NETs with high 
SSTR expression (86, 87).

Tuberous sclerosis complex (TSC)

Genetic and clinical features of the syndrome

Tuberous sclerosis complex (TSC) is an autosomal dominant 
genetic disorder characterized by hamartomas and mostly 
benign neoplasms involving multiple organs, such as brain, 
skin, kidneys, heart, lungs, and eyes [88]. The estimated 

Table 4  Lifetime risks of von Hippel–Lindau syndrome (VHL)-asso-
ciated tumors

*Adapted from Gläsker, H. P.H. Neumann, C. A. Koch, A. Vort-
meyer, K. R et al. Von Hippel–Lindau disease Endotex 2018 [45]

Tumor Risk Mean age at diag-
nosis (youngest 
age)

CNS hemangioblastoma 60–80% 30 (9) years
 Cerebellar 44–72% 31 (9)
 Brainstem 10–25% 32 (9)
 Spinal 13–50% 33 (8)

Retinal angioma/hemangioblastoma 25–60% 25
Renal 25–75% 39 (12)
 Cyst 42% 37 (12)
 Clear cell carcinoma 17–70% 44 (44)

Pheochromocytoma 10–25% 27 (2)
Endolymphatic sac tumor 10–15% 22 (6)
Pancreatic 35–75% 36 (5)
 Cyst 21% 33 (5)
 Neuroendocrine tumor 10–17% 35 (16)

Papillary cystadenoma
 Epididymis 25–60% 24 (16)
 Broad ligament 10% NA (16)
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incidence is approximately 1 in 6000 to 1 in 10,000 live 
births, while the prevalence is 1 in 20,000 [89]. The underly-
ing genetic alteration is a germline mutation in TSC1 (9q34) 
or in TCS2 (16p13.3) genes, which encode for hamartin and 
tuberin respectively, TSC2 mutations being 2.5–5 times 
more common than TSC1 mutations [90]. Loss of function 
of TSC1 or TSC2 leads to aberrant mTOR pathways, which 
promote tumorigenesis by interfering with cell growth, dif-
ferentiation and survival [90, 91]. Due to the significant inter 
and intra-familial variability, TSC exhibits a wide spectrum 
of clinical features including also potentially malignant 
tumors such as NETs [88].

TSC‑associated NETs

Epidemiology, clinical, and pathological features

The majority of NETs in the setting of TSC are represented 
by pNET with an overall prevalence ranging from 1 to 9% 
[88, 92–95]. The association between TSC and other NETs 
in the gastrointestinal tract remains still largely unknown 
[96]. It is difficult to assess the natural course and the risk 
of aggressive behavior of pNETs in this cohort of patients. 
Accumulating evidence suggest that TSC-associated pNETs 
usually appear well-differentiated, benign and indolent [96, 
97]. However, rare cases of pNETs with local or distant 
metastasis and one case of recurrence after surgery were 
reported [86, 88, 98, 99]. Moreover, a more frequent associa-
tion of pNETs with TSC2 germline mutations is observed, 
but no clear genotype–phenotype correlations have been 
identified. The majority of TSC-related pNETs are non-
functional, and so far, no cases of functional transformation 
were found in literature [88]. Functional pNETs are pre-
dominantly insulinomas, but rare cases of gastrinomas or 
glucagonomas were also documented [96, 97]. Compared to 
the general population, pNETs in TSC individuals present 
an earlier age at onset [88, 93] and a major trend to arise 
as cystic lesions [95, 100]. TSC-related pNETs tend to be 
predominantly solitary and not multifocal [95]. However, 
two cases of multiple pNETs in SCT patients were detected 
[88, 92].

Therapies and outcomes

At present, there are no guidelines for management of NETs 
in TSC and current clinical practice may follow standard-
ized recommendations for sporadic NETs. Surgical resection 
represents the first-line treatment for localized GEP-NETs 
and as most of the NETs occurring in TSC patients appear 
to be well-differentiated, surgery alone may be curative 
with a favorable prognosis [97]. A more accurate knowl-
edge of TSC and NETs’ pathogenesis have encouraged the 
exploration of targeted agents such as the mTOR inhibitors 

(mTORi) for TSC-associated NETs. The theoretical ration-
ale in favor for the use of these novel drugs is provided 
by the demonstrated driver role of aberrant TSC1/TSC2/
mTOR pathways in sporadic NETs tumorigenesis [91, 95, 
97, 101] and by the documented efficacy of mTORi ther-
apy both in sporadic and TSC-associate NETs [101–104]. 
Schrader et al. investigated the role of everolimus as a first-
line adjuvant therapy for a metastatic pNETs associated to 
TSC and documented a partial remission of liver metastasis 
after 3 months of mTORi therapy and a 46% reduction of 
liver tumor burden after 6 months [105]. In a case series of 
TSC-related nonfunctional pNETs by Mowrey et al., tumor 
growth rate appeared slightly reduced in the 8 patients who 
received mTORi treatment (oral everolimus or sirolimus) 
in comparison with their non-mTORi counterparts, despite 
the difference was not statistically significant [88]. In the 
retrospective study of Koc et al., two individuals with TSC-
associated pNET were treated with everolimus as a first-
line therapy and their tumor decreased in size or remained 
stable. A favorable response with NET size reduction was 
also observed in a third patient who was submitted both to 
surgical resection of the tumor and to everolimus treatment 
initiated for other benign tumors related to TSC [94]. Ishida 
et al. documented a singular case of a neuroendocrine car-
cinoma (NEC) of the esophagogastric junction occurred in 
a TSC patient, already on sirolimus, an mTOR inhibitor, 
due to lymphangioleiomyomatosis (LAM). Despite multiple 
chemotherapy regimens, in combination also with targeted 
drugs such as Nivolumab (anti-PD-1) and Ramucirumab 
(anti-VEGFR-2), the patient deceased 23 months after diag-
nosis due to disease progression. Considering the occurring 
of NEC despite the inhibition of the AKT/mTOR oncogenic 
cascade, this case may be suggestive of the significant het-
erogeneous pathogenesis of NETs and NECs also in the set-
ting of TSC [106]. Table 5 summarizes the above-mentioned 
publications, which provide preliminary evidence in favor 
for the use of mTORi in TSC-associated pNETs. However, 
further rigorous research is required to assess the efficacy 
of mTORi for NETs in this cohort of patients and to inves-
tigate whether the use of these drugs should be a potential 
pharmacological strategy as an alternative to surgery [88].

Neurofibromatosis 1 (NF‑1) or von Recklinghausen’s 
disease

Genetic and clinical features of the syndrome

NF-1 syndrome is an autosomal dominant tumor predisposi-
tion syndrome occurring in 1:3000–4000 live births [107]. It 
is caused by germline mutations in the NF-1 gene, a tumor-
suppressor gene located on chromosome 17q, which encodes 
for the neurofibromin protein, that is especially expressed in 
the nervous system (Table 1) [108]. Neurofibromin acts as 
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a tumor suppressor, affecting cell proliferation/growth and 
metabolism by regulating the activation of p21 Ras, modu-
lating adenylate cyclase activity, binding microtubules, and 
interacting with the cellular cytoskeleton. Sinergistically 
with tuberin, the TSC2 gene product, neurofibromin regu-
lates mTOR pathways [109].

NF-1 affects multiple organs and tissues, with highly 
variable expressivity, but it is predominantly characterized 
by nervous system involvement and cutaneous findings, 
including cafe au lait spots (> 99%), neurofibromas (cutane-
ous > 99%, deep-seated-44%), skinfold freckling or Crowe's 
sign (85%), and iris Lisch hamartomas (> 95%) [110, 111]. 
Multiple neoplasms may arise in different organs and tissue, 
mainly the connective tissue and the central nervous sys-
tem, and represent an increased cause of death. Indeed, NF-1 

patients have a 10–15 year decrease in life-span (median 
ageof death—59 years), the most common cause of death 
being malignancy [112]. Pheochromocytomas (2%) and an 
increase risk of hypertension are clinically relevant in some 
patients [110].

NF‑1‑associated NETs

Epidemiology, clinical, and pathological features

GEP-NET tumors are reported in up to 10% of patients with 
NF-1 syndrome, most frequently somatostatinomas aris-
ing from the duodenum (Table 1) [113–117]. These duo-
denal somatostinomas are almost always hormonally silent 
and do not cause a functional syndrome, but they typically 

Table 5  Summary of the studies providing preliminary evidence in favor for the use of mTOR inhibitors in TSC-associated NENs

TSC tuberous sclerosis complex, mTORi mTOR inhibitors, NA not available, yo years old

Publication Age at NEN 
diagnosis 
(yo)

Sex TSC1/TSC2 Location Dimen-
sion 
(mm)

Target therapy Surgery Outcome

Mowrey et al. 2021 [88]
#1 8 M TSC1 Pancreas-head 10 mTORi (everolimus 

or sirolimus)
No Slightly reduced 

tumor growth rate 
vs non-mTORi 
counterparts

#2 13 M NA Pancreas-tail 14 mTORi (everolimus 
or sirolimus)

No

#3 16 F TSC2 Pancreas-body 7 mTORi (everolimus 
or sirolimus)

No

#4 21 F TSC2 Pancreas-body 17 mTORi (everolimus 
or sirolimus)

No

#5 6 M NA Pancreas-tail 20 mTORi (everolimus 
or sirolimus)

Yes

#6 10 F NA Pancreas-body 10 mTORi (everolimus 
or sirolimus)

Yes

#7 9 F TSC2 Pancreas-head 16 mTORi (everolimus 
or sirolimus)

No

#8 32 M NA Pancreas-head 38 mTORi (everolimus 
or sirolimus)

NA

Schrader et al. 2017 
[105]

41 NA TSC2 Pancreas-tail NA Everolimus Yes 46% reduction of 
liver tumor burden 
after 6 months of 
everolimus

Koc et al. 2017 [94]
#1 19 F NA Pancreas-body 27 Everolimus No Stable tumor size
#2 13 M NA Pancreas-tail 40 Everolimus No Decreased tumor size
#3 5 M NA Pancreas-tail 26 Everolimus Yes Decreased tumor size 

on everolimus, then 
surgical resection

Ishida et al. 2020 
[106]

46 F NA Esophagogastric 
junction

NA Everolimus, then 
nivolumab and 
ramucirumab in 
combination to 
multiple cytotoxic 
chemotherapy 
regimens

No Patient’s decease at 
23 months after 
diagnosis due to 
disease progression
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occur in the periampullary region, often leading to obstruc-
tive symptoms and signs (biliary dilatation, pain, nausea, 
bleeding or vomiting, pancreatitis). Metastases to liver and/
or lymph nodes occur in up to 30% of cases. Rarely, NF-1 
patients have been diagnosed with pancreatic somatostati-
noma, gastrinoma, insulinoma, or NF-pNETs, while it has 
been increasing the number of patients with gastrointestinal 
(GI) stromal tumors, that are becoming the most common 
NF-1-associated GI tumor [110].

Therapies and outcomes

NETs are not a significant cause of mortality, but do increase 
morbidity (risk for obstruction because of their prevalent 
periampullary location) in patients with NF-1. Taking into 
account the risk of obstruction, the possible malignancy 
(up to 30%) and the frequent preoperative understaging 
of the tumor, surgery is recommended, particularly for 
pNETs > 2 cm [110, 118]. The role of pharmacological 
therapy warrants further research.

Other rare syndromes

Glucagon cell hyperplasia neoplasia (GCHN)

Glucagon cell hyperplasia and neoplasia (GCHN) has 
been recently recognized as a distinct pathological entity 
according to 2017 World Health Organization Classifica-
tion (WHO) of Tumors of Endocrine Organs [119]. GCHN 
is genetically and clinically heterogeneous and is classified 
into three variants: functional, non-functional, and reactive 
GCHN. Functional GCHN is characterized by hypergluca-
gonemia associated to glucagonoma syndrome, while non-
functional GCHN by normal levels of glucagonemia. The 
pathogenesis of these two types remains still unclear [120]. 
The familial endocrine tumor syndrome is represented by the 
reactive variant, also known as Mahvash disease, an auto-
somal recessive disorder caused by inactivating mutations 
of the glucagone receptor gene (GCGR) (Table 1) [120]. 
To date, 9 GCGR pathogenic alterations have been iden-
tified, all determining decreased or absent GCGR activity 
[121]. Mahvash disease is characterized by hypergluca-
gonemia without glucagonoma syndrome in association to 
coexisting histological features of diffuse alfa cell hyper-
plasia, dysplasia, micro-pancreatic neuroendocrine tumors 
(pNET), and gross pNET [120]. This disorder is rare and 
probably under-recognized with an estimated prevalence of 
4 per million [120]. It presents full penetrance and affects 
both sexes with an average age at diagnosis ranging from 
25 to 74 years [120]. Given the rarity of GCHN, its natural 
history has not been well defined yet [121]. Accumulating 
data suggest that pNETs in Mahvash disease appear to be 
slow-growing tumors, predominantly glucagonomas and 

clinically non-functioning [120]. The gross pNETs may arise 
anywhere in the pancreas with size varying from 1 to 8 cm 
[120]. In most cases, no recurrence of pNETs after surgery 
has been identified during a follow-up period of 2–13 years 
[120, 122–125]. So far, only one case of distant metastasis to 
the liver was reported by Tang et al. [121, 123]. Due to the 
limited clinical evidence on Mahvash disease, current man-
agement may be extrapolated by the guidelines used for the 
treatment of other inherited pNET syndromes such as MEN1 
[120]. Specifically, nonfunctional pNETs less than 2 cm may 
be monitored by active surveillance, whereas functional or 
pNETs larger than 2 cm may be submitted to surgical resec-
tion. The role of pharmacological therapy warrants further 
research. The benefits of SSAs are difficult to assess, since 
they may improve hyperglucagonemia, but are associated 
with a major risk of hypoglycemia [121]. Moreover, also 
one case of recurrent liver failure was reported by Robbins 
et al. after octreotide administration in a patient with Mah-
vash disease [126]. Due to the limited data and the rarity of 
the disorder, the efficacy of other target therapies remains 
unclear. Since mTOR activation might present a possible 
role in the pathogenesis of alpha cells’ proliferation induced 
by high levels of amino acids in reactive GCHN, a potential 
use of mTOR inhibitors therapy may be investigated in this 
cohort of patients [119]. Novel drugs such as pharmaco-
logical chaperones are under current exploration, since the 
chaperones deputed to transport mutant GCGR to the plasma 
membrane may reduce glucagon levels and improve GCHN 
[120, 121, 127].

Familial small‑intestinal NETs

Familial small-intestine neuroendocrine tumors (SI-NETs) 
represent a relatively new inherited disorder, defined as 
at least two cases in first-degree relatives not associated 
with other genetic syndromes [128]. Hereditary SI-NETs 
are rare with an estimated prevalence among all SI-NETs 
of 2.6–3.7% [129]. Epidemiological evidence in European 
and US families suggest an autosomal dominant inherit-
ance with incomplete penetrance (Table 1) [128]. How-
ever, underlying molecular pathogenesis still remains 
unclear. Inositol polyphosphate multikinase (IPMK) gene 
alterations are considered potential driver mutations for 
tumorigenesis by causing aberrant p53 apoptotic pathways 
and increased survival of neoplastic cells [130]. Additional 
predisposing abnormalities not associated with IPMK-
sequence may be involved and may not differ from those 
of sporadic SI-NETs (Table 1) [129]. Familial SI-NETs are 
commonly well-differentiated, slow-growing and present 
similar clinic-pathological features to the sporadic variants 
[129]. The disease course initially is paucisymptomatic 
with the onset of abdominal pain, intestinal obstruction, or 
carcinoid syndrome usually at advanced stages. Compared 
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to the sporadic counterparts, familial SI-NETs often pre-
sent an earlier age at diagnosis and occur more frequently 
as multiple synchronous primary tumors with most lesions 
located in the ileum and secondly in the jejunum [128, 
131]. Familial SI-NETs seem to be more often associated 
with distant metastasis and carcinoid syndrome than the 
sporadic ones [129]. Nevertheless, no evidence of a worse 
prognosis of the hereditary variant has been demonstrated 
[132]. To date, there are no standardized screening pro-
grams for asymptomatic at-risk family members. How-
ever, for earlier diagnosis, active surveillance should be 
provided for asymptomatic relatives extended for at least 
a 2–3-year period of time due to the indolent nature of 
SI-NETs. If familial SI-NET occurs, a multidisciplinary 
approach is essential to evaluate personalized treatment 
strategies. Given the rarity of the disorder and lacking 
guidelines for therapeutic management of hereditary SI-
NETs, current clinical practice may follow the actual rec-
ommendations regarding sporadic SI-NETs. In the setting 
of a locoregional disease, surgical resection of the primary 
tumor with extensive lymph-node dissection represents the 
only curative approach [132, 133]. When metastatic dis-
ease occurs, primary tumor(s) resection should be consid-
ered, since it appears associated with better survival out-
comes [128, 133, 134]. In case of unreseactable metastatic 
SI-NET, several target therapies may be evaluated [128, 
135–137]. SSAs represent so far the first-line systemic 
therapy, which leads to a major control of carcinoid syn-
drome and to tumor growth inhibition [34, 128, 134]. The 
antiproliferative effects of SSAs were confirmed in GEP-
NETs by trials such as PROMID and CLARINET [11, 12, 
138]. The mTOR inhibitor everolimus may be a potential 
second-line treatment, which appears associated to a major 
progression-free survival as documented by RADIANT-4 
trial [103]. Another important second-line therapy is rep-
resented by PRRT. The landmark trial NETTER-1 dem-
onstrated a significantly longer progression-free survival 
and a higher response rate of 177Lu-Dotatate compared 
with high-dose octreotide LAR in patients with advanced 
midgut NET [137]. Other novel agents investigated in met-
astatic SI-NETs such as tyrosine kinase inhibitors: suni-
tinib, sorafenib, and pazopanib revealed in phase 2 trials’ 
disease stabilization and improvement of progression-free 
survival [134, 139–142]. Another potential therapeutical 
option, although less preferred than the former strategies, 
is interferon alpha, which is associated with a reduced risk 
of tumor progression documented in some studies [134] 
when administered alone or combined with other targeted 
drugs. Also bevacizumab, a VEGF inhibitor, was explored 
confronted with interferon alpha both drugs in combina-
tion to octreotide. A higher radiological response rate was 
reported in the bevacizumab group; however, the differ-
ence was not statistically significant [103, 134].

Familial insulinomatosis

First described in 2009 by Anlauf et al. [143], adult-onset 
familial insulinomatosisis is a rare disorder characterized 
by recurrent, severe hypoglycemia caused by multiple 
insulin-secreting pancreatic tumors. It occurs more fre-
quently in females, and the mean age at the diagnosis is 
39.5 years [144–146]. Up to date, a few cases have been 
reported in the literature, so that the prevalence/incidence 
of the disorder in the general population cannot be esti-
mated. In large studies, insulinomatosis is responsible for 
less than 5% of all patients with hyperinsulinemic hypo-
glycemia [143, 147].

The cause of the disorder is represented by loss-of-func-
tion mutations in the β V-Maf avian musculoaponeurotic 
fibrosarcoma oncogene homolog A (MAFA) gene, encod-
ing for a transcription factor, the MAFA protein, that is a 
key coordinator of β-cell insulin secretion [145, 146, 148] 
(Table 1).

Typically, along to few macrotumors (usually 0.5–1 cm), 
multiple microtumors are found throughout the entire pan-
creas, all secreting insulin. Although these multifocal insu-
linomas are usually benign, rare occurrence of metastases 
has been reported. Due to the small size and the multicentric 
occurrence of the tumors, surgical intervention is often not 
curative as hypoglycaemia might recur from unresectable 
microscopic functional lesions, or potential occult metas-
tases (Snaith et al., 2020). No data are available on the use/
efficacy of targeted therapies in this disorder.

Syndromes predisposing to thoracic 
neuroendocrine tumors

Thoracic neuroendocrine tumors can occur in MEN1: both 
bronchopulmonary (B-NET) and thymus (T-NET) NET are 
reported [149, 150], generally in adulthood with a pene-
trance of 2% under 40 years [151].

Bronchopulmonary neuroendocrine tumors

The WHO classification of B-NETs is reported in Table 6. 
B-NETs are diagnosed in 4.7–6.6% of MEN1 patients 
[152–154] between 20 and 69 years with no sex prevalence 
or correlation with smoking and MEN1 genotype [153–155]. 
Most of the B-NET are well-differentiated bronchial carci-
noma (BC). Specifically, BC are present in the 5% of MEN1 
patients in both sex [150], usually typical carcinoid [156]. BC 
could be silent or associated with carcinoid syndrome (most 
common clinical syndrome), ectopic Cushing syndrome, or 
paraneoplastic syndrome of inappropriate antidiuretic hor-
mone secretion (pSIADH) (Table 2) [157, 158]. B-NET local 
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symptoms include dyspnea, cough, and hemoptysis, but are 
often absent [152–154].

The main treatment for BC is surgery, if localized [138, 
159, 160]. If surgery is not feasible (occult or not resectable 
primary tumor) and in advanced BC, first-line therapy is repre-
sented by SSA, to control both hormonal secretion and tumor 
growth [161]. PRRT has been proposed in advanced and/or 
metastatic BC in progression with SSAs therapy, and in par-
ticular [176], Lu-DOTATATE monotherapy seems the best 
[162, 163]. Other targeted therapies are poorly studied in this 
type of tumor, everolimus being the only approved according 
to a phase III clinical trial [164]. Novel targeted therapies with 
antiangiogenic agents and immunotherapies have been also 
under evaluation [103, 139, 142].

Thymus neuroendocrine tumors

T-NET are rare and silent tumors, present in only the 2–8% 
of MEN1 patients [152, 165–167], generally male (male to 
female ratio 4:1), but with a high mortality [168] and with 
10-year survival of 33.3% [149]. Indeed, T-NET are causa-
tive of 19% of deaths related to MEN1 [169]. The mortality 
is associated with the following predictor factors: presence 
of metastasis, age (> 43 years), and diameter of tumor > 5 cm 
[149]. In addition, men and smoker are more affected, princi-
pally in Asia than Europa and USA where the adjuvant therapy 
following the surgery [149].

Thus, T-NET represent a crucial feature of the MEN1 syn-
drome [149], to the extent that a computed tomography or 
a magnetic resonance imaging of the chest is recommended 
every 1 to 2 years [17]. The treatment is based on surgery as 
soon as possible to reduce the incidence of metastasis [123, 
125, 126], while radiotherapy and/or chemotherapy are indi-
cated in advanced/metastatic tumors [135]. A phase 2 study 
is evaluating whether the TKI lenvatinib plus pembrolizumab 
benefits patients with type B3 thymoma or thymic carcinoma 
[170].

From the molecular alteration to the targeted 
therapy: the role of the pathologist

The development of novel drugs targeting specific genes/pro-
teins and molecular pathways involved in tumor cell growth, 
survival, and spread must be coupled with identification of 
theranostic biomarkers that predict response tothose drugs 
and provide a rationale for their use in clinical practice (for 
instance, SSTRs, druggable pathways such as PI3K/AKT/
mTOR and the angiogenetic VEGF/VEGFR pathway). As a 
consequence, in recent years, the competence of the patholo-
gist was enriched with the introduction of predictive markers 
aimed at evaluating the immunohistochemical expression of 
drug targetable proteins.

A best-known feature of neuroendocrine neoplasms, 
mainly well-differentiated forms, is the overexpression of 
SSTRs, mainly subtype 2, that is homogeneously distributed 
at the surface of neoplastic cells. Due to the suppression 
of hormone release, antiproliferative, and antiangiogenic 
effects, the SSAs were introduced into the therapeutic pro-
tocol for neuroendocrine neoplasms. Although their action 
can be exerted also by indirect mechanisms, the effective 
efficacy of the therapy depends on the tumor expression of 
the specific receptor [171, 172]. Furthermore, besides hav-
ing a predictive role, SSTR2 was shown to be a valuable 
prognostic marker: high immunohistochemical expression 
of this receptor was associated with longer overall survival 
(OS), and it proved to be a stronger prognostic indicator than 
the Ki-67 score [173, 174]. A specific immunohistochemi-
cal score based on membrane cellular staining was shown 
to correlate well with SSTR scintigraphy [175]. In the last 
years, the pathologist has also been making use of digital 
image analysis that could provide a good alternative for pre-
dicting response to SSAs in evaluating SSTR2 immunore-
activity of GI-NETs [171]. In a recent study by Mennetrey 
et al. focusing on a group of 108 MEN1-affected patients, it 
was demonstrated that SSTR-based imaging is superior and 

Table 6  WHO classification 
of Bronchial neuroendocrine 
tumors (NETs)

Classification Mitotic rate and necrosis

Well-differentiated
Typical carcinoid, NET G1 Mitotic rate < 2 and absence of necrosis
Atypical carcinoid, NET G2 Mitotic rate 2–10 and/or presence of necrosis
Poorly differentiated
Neuro-endocrine carcinomas
 Small-cell type
 Large-cell type

Mitotic rate > 10
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complementary to conventional imaging in the vast majority 
of cases in the assessment of lymph-node or distant metasta-
ses, independently from the disease stage [176].

Most of the knowledge on the biology of NETs con-
cerns the pancreatic forms. It was demonstrated that several 
molecular pathways are involved. In most pNET, TSC2 and 
PTEN genes, which are key inhibitors of the mTOR path-
way, are underexpressed. Everolimus is the only inhibitory 
drug approved for the treatment of this pathology, but cur-
rently patient selection is not based on the expression of a 
predictive marker [15].

In non-functioning pNETs, DAXX and ATRX gene 
changes are associated with abnormal alternative telomere 
lengthening (ALT) status and poor prognosis [177]; hence, 
the assessment of their immunohistochemical expression 
(178) could be a valuable and practical tool as an alternative 
to more complex techniques (e.g., FISH analysis).

The resistance to alkylating agents in MGMT (O6-meth-
ylguanine DNA methyltransferase)-proficient cells is well 
known in neuroendocrine tumors; less clear is the best way 
to assess MGMT methylation status. It was tested by immu-
nohistochemistry [179], by PCR or next-generation sequenc-
ing [180], but no one of them is supported for routine use.

Finally, NETs are highly vascularized and have an 
increased expression of proangiogenic factors and their 
receptors, which can represent both valuable prognostic 
markers of tumor growth and aggressiveness and a valid 
target for drugs directed against VEGF/VEGFR pathway 
[181, 182].

Conclusions and perspectives

Gastroenteropancreatic and thoracic NETs can occur in 
the context of a large number of hereditary predisposi-
tion syndromes. Some of these are well known and rou-
tinely screened in clinical practice, while others have been 
recently described and not fully known to date, and others 
are probably to be discovered yet. The general hallmarks 
of a hereditary predisposition syndrome include: multiple 
primary tumors (in the same or different organs), rarity of 
the disorders, young age of diagnosis (usually under the age 
of 40), and characteristic pattern of cancer within families. 
These syndromes are monogenic, highly penetrant with all 
carriers exhibiting at least part of the phenotype, and display 
variable expressivity with affected individuals showing dif-
ferent presentations of the disorder.

Recognizing NETs in the setting of inherited syndromes 
has significant implications for patient’s outcomes and 
provides opportunity for early detection and appropri-
ately timed treatment. Indeed, these syndromes are typi-
cally associated to early onset of tumors in childhood/

adolescence, lifelong risk for further tumors development 
and multi-organ involvement. Additionally, the natural 
history of NETs in the setting of a hereditary condition 
may be different than would be expected in a sporadic 
form of the disease. For example, in some circumstances, 
the risk of metastatic disease is lower, and the disease 
displays an indolent course, while in others, the tumor is 
more aggressive and metastatic spread more frequent than 
commonly seen. Genetic counseling and testing is manda-
tory for a correct diagnosis in all patients with a suspicion 
for a hereditary endocrine neoplasia syndrome, and should 
be offered to close family members for risk stratification 
and appropriate management. Comprehensive molecular 
testing of all targetable alterations is critical to ensure that 
patients receive the most appropriate care. Experienced 
pathologists can also contribute to the diagnosis and man-
agement of these patients, all reason to support referral to 
high-volume centers.

Whereas genetic diagnosis to identify individuals with 
germline mutations has facilitated appropriate targeting 
of clinical approach to this high-risk group of patients, 
increased knowledge and understanding of genetic and epi-
genetic mechanisms and targetable alterations of related 
tumors may provide a rational and molecular basis for 
implementation of treatments and development of novel 
targeted therapies.
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