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Abstract: Ferritins are ideal nanoparticles as drug delivery systems due to their hollow-sphere struc-
ture and the ability to target specific receptors on the cell surface. Here, we develop and characterize a
new ferritin derived from the chimeric humanized A. fulgidus one, already designed to recognize the
TfR1 receptor. Starting from the synthetic gene of this chimeric protein, we replaced two positively
charged amino acids with two alanine residues to close the large triangular pores on its surface. These
mutations make the protein nanoparticle suitable to incorporate even small therapeutics without
leakage. Size-exclusion chromatography shows that the assembling/disassembling of this new pro-
tein cage can be easily fine-tuned by varying the HEPES buffer and MgCl2 concentration. The protein
cage can be opened using 150 mM HEPES buffer without magnesium ions. Adding this divalent
cation to the solution promotes the quick assembly of the ferritin as a 24-mer. The development of
this new protein cage paves the way for encapsulation and delivery studies of small molecules for
therapeutic and diagnostic purposes.

Keywords: ferritin; self-assembling; HEPES buffer; chromatography; gel filtration; TEM; nanoparti-
cles; mutagenesis

1. Introduction

Nowadays, the use of nanoparticles as a drug delivery system (DDS) takes the fore-
front in cancer treatment [1–5]. The nanoparticles used are different in structure and
composition, ranging from liposomes to more complex protein architectures [6–8]. Ferritins
occupy a special place among protein nanoparticles due to their size, biocompatibility,
and ability to recognize specific receptors on the cell surface [9,10]. Due to these features,
ferritins have been extensively studied as nanovectors to deliver therapeutic and contrast
agents [11–14]. From the structural point of view, ferritins consist of 24 subunits that as-
sociate to form a hollow sphere with an internal diameter of 8 nm (24-mer), capable of
hosting molecules of different nature with adequate dimensions [15,16]. However, the
ferritin must be dissociated and then reassociated in the presence of the selected cargo
to perform this function. This step is the most critical of the whole process. Typically,
the dissociation occurs at extreme pH values, which always leads to loss of protein and,
at times, of the cargo itself [17–20]. This issue prompted researchers to investigate the
structural determinants responsible for the nanoparticle self-assembly and design mutants
that could dissociate under milder conditions [21,22].

The discovery of an uncommon ferritin in the thermophilic bacterium A. fulgidus
(AfFt) boosted the research in this field [23]. AfFt is particularly promising for delivery
purposes having an association/dissociation equilibrium mediated exclusively by the
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saline concentration of the medium [24]. To make it suitable for recognizing the human
transferrin receptor (TfR1), this was engineered by replacing its BC loop with the human
H ferritin one [25,26]. The engineered protein named humanized Archaeoglobus ferritin
(HumFt) is efficiently uptaken by cells and can carry different cargoes, including proteins
and small therapeutic RNAs [27,28].

Unlike the human H ferritin, the quaternary structure of HumFt has four triangular
pores about 4 nm wide, which could cause uncontrolled leakage when encapsulating small
molecules. Previous studies have shown that two single amino acid substitutions (K150A
and R151A) on AfFt result in a canonical quaternary structure, devoid of the triangular
pores [29,30].

In this work, we introduced the same substitutions in HumFt and evaluated through
chromatographic techniques whether they alter the ability to dissociate in mild conditions
typical of Archaeoglobus ferritin. As a proof of concept, we demonstrated that this mutation
avoids uncontrolled leakage when encapsulating small molecules such as curcumin, making
it a promising theranostic tool.

2. Materials and Methods
2.1. Mutagenesis

K150A/R151A double mutation was introduced on HumFt gene using Stratagene’s
QuikChange® site-directed mutagenesis kit (Merck, Darmstadt, Germany), following the
manufacturer’s instruction. pET22HumFt plasmid, containing the HumFt synthetic gene
optimized for the expression in Escherichia coli cells, was used as a PCR template. The muta-
genic oligonucleotide primers were: forward 5′-CTGATTGGTGAAGATGCAGCTGCACTG
CTGTTTCTGG-3′ and reverse 5′-CCAGAAACAGCAGTGCAGCTGCATCTTCACCAATC
AG-3′. The PCR product was treated with DpnI enzyme to digest the template plasmid and
then transformed into DH5α competent cells. Once the introduced mutations were checked
by DNA sequencing, the resulting pET22HumFtR150A/K151A plasmid was transformed
into BL21DE3 competent cells for protein expression.

2.2. Protein Expression and Purification

LB medium (6 L) was inoculated with overgrown BL21(DE3) cells containing
pET22HumFtR150A/K151A plasmid, and protein expression was induced at OD600 = 0.6
with 1 mM IPTG at 37 ◦C. After 16 h, the bacterial cells were harvested by centrifugation
and treated as described by Palombarini et al. [31] with slight modification. Briefly, the
bacterial paste was resuspended in 20 mM HEPES buffer containing 50 mM MgCl2 in the
presence of a protease Inhibitor Cocktail (Basel, Switzerland). After sonication, the soluble
fraction was subjected to two (NH4)2SO4 precipitations (20% and 70%). The pellet from
70% (NH4)2SO4 was recovered by centrifugation and extensively dialyzed versus 10 mM
sodium phosphate buffer pH 7.2 containing 20 mM MgCl2. The sample was digested
with deoxyribonuclease I from bovine pancreas (Merck, Darmstadt, Germany), and DNA
removal was achieved in a single step by means of crossflow ultrafiltration using a single
Vivaflow 200 module (Sartorius) with a cutoff of 100 kDa, coupled to a Masterflex L/S
pump system. Crossflow ultrafiltration was also used in diafiltration mode to exchange the
buffer with 20 mM HEPES pH 7.4 containing 50 mM MgCl2. Protein purity was monitored
by SDS-PAGE (Biorad, Hercules, CA, USA). DNA removal was followed by measuring a
260/280 nm ratio using a Jasco V-650 spectrophotometer (JASCO Deutschland).

2.3. Chromatographic Analyses

Protein association/dissociation equilibrium was studied with different chromato-
graphic techniques.

HP-SEC was performed using an Agilent Infinity 1260 HPLC apparatus (Agilent, Santa
Clara, CA, USA) equipped with a UV detector. Separation was carried out using an Agilent
AdvanceBio SEC 300 Å, 7.8× 150 mm, 2.7 µm, LC column. Protein association/dissociation
was evaluated by changing the mobile phase composition in the range of 20–150 mM HEPES
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buffer pH 7.4 with or without MgCl2. The separation was performed in isocratic mode at a
flow rate of 0.7 mL/min. HumFtR150A/K151A elution was performed using UV detection
at 280 nm. Protein standards were prepared in the same solution as the mobile phase.

Gel filtration analysis was performed using ÄKTA-Pure chromatography system (GE
Healthcare) equipped with two different gel filtration columns (HiPrep™ 16/60 Sephacryl®

S-300 HR (Cytiva, Danaher, Washington, DC, USA) and SepFastTM 16/60 6-600 HR (Clini-
Science, Guidonia Montecelio, Italy)) with absorbance at 280 nm. Separation was carried
at a flow rate of 0.6 mL/min using the following buffers as a mobile phase: (i) 20 mM
HEPES pH 7.4, (ii) 150 mM HEPES pH 7.4, and (iii) 20 mM HEPES pH 7.4 containing
50 mM MgCl2.

2.4. Transmission Electron Microscopy Negative Staining

Formvar-carbon coated grids were floated onto 30 µL of protein solutions
(0.05–0.005 mg/mL) for adsorption (3 min). The excess of solution was blotted gently
by filter paper, and the grids were air-dried and further stained with an aqueous solution of
1% (w/v) uranyl acetate for 3 min. The excess staining solution was removed carefully, and
the grids were analyzed by an EM208S TEM (FEI—Thermo Fisher Scientific; Eindhoven—
The Netherlands) at an acceleration voltage of 100 kV. Electron micrographs were taken
with a slow scan camera (MEGAVIEW II, OLYMPUS).

High-magnification protein images were analyzed by the freeware software ImageJ
(version 1.29, NIH, Bethesda, Rockville, MD, USA). Polymerized ferritins were approxi-
mated to an ellipse, and manual measurements of the areas with more than 100 particles
were taken for each sample. The ferritin average diameters distribution was further calcu-
lated by Excel 2016.

2.5. Curcumin-Loaded Nanoparticles

An amount of 0.3 mL of a curcumin solution (30 mg/mL DMSO) was added to 10 mL
of HumFtR150A/K151A and HumFt nanoparticles (10 mg/mL), dissociated in dimers in
the presence of 150 mM and 20 mM HEPES buffer pH 7.4 respectively. Each ferritin sample
was incubated in the dark under gentle stirring and then dialyzed versus 20 mM HEPES
buffer containing 50 mM MgCl2 for 48 h in the dark at room temperature. The incorporation
of curcumin was evaluated through UV-vis absorption by measuring a 280/425 nm ratio
(curcumin ε425 = 23,800 M−1cm−1).

3. Results and Discussion

Of all known ferritins, Archaeoglobus’ ferritin (AfFt) has the unique feature of associat-
ing and dissociating by just varying the concentration of divalent cations: Mg2+ promotes
the complete assembly of the 24-subunit sphere, which quickly dissociates into dimers
when removing these ions. Furthermore, it has been shown that its quaternary geometry
can change by replacing two basic amino acids with two aliphatic ones (K150A/R151A).
These mutations lead to the conversion of the tetrahedral structure into the octahedral one,
resulting in the closure of the large triangular pores typical of AfFt [29]. In this work, the
same amino acid substitutions were introduced on the humanized ferritin of A. fulgidus
(HumFt) to create a closed, easily dissociable nanoparticle that can recognize the TfR1
receptor (Figure 1).

DNA sequencing proved the correct replacement of the amino acids at positions 150
and 151 with two alanine residues. The resulting ferritin (HumFt K150A/R151A) is highly
expressed in soluble form in E. coli and can be purified through a chromatography-free
protocol, which involves fractional precipitations, thermal steps, filtrations, and ultrafiltra-
tion. At the end of the sequence, the protein is highly purified and free of contaminating
DNA. UV absorption spectra (Figure 2) show that DNA removal, typically challenging for
these proteins, is achieved after the last crossflow ultrafiltration step. Once purified, the
ferritin was characterized by high-performance size-exclusion chromatography (HP-SEC)
and transmission electron microscopy (TEM).
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sample filtered through Vivaflow200 module. DNA removal of samples 8, 9 and 10 was followed 

by UV absorption. 

The amino acid substitutions introduced do not substantially alter the molecular 

weight of HumFt but should modify the overall geometry of the 24-mer, as occurs in AfFt 

[29]. The HP-SEC analysis (Figure 3) confirms that the mutant we produced is pure and 

correctly assembled according to the elution volume. Interestingly, unlike the protein 

from which it is derived, HumFtR150A/K151A has an association/dissociation equilib-

rium all shifted towards the closed 24-meric structure. This is the first important differ-

ence compared to HumFt, which, in the same experimental conditions, always keeps a 

Figure 1. Structure of A. fulgidus ferritin (AfFt, pdb code 1S3Q), humanized A. fulgidus ferritin
(HumFt, pdb code 5LS9) and humanized A. fulgidus ferritin double mutant (HumFt K150A/R151A,
homology-modeling based on pdb codes 3KX9 and 5LS9). HumFt was obtained by grafting on AfFt
the human H ferritin’s BC loops (red loops). HumFt K150A/R151A derives from HumAfFt replacing
K150 and R151 (highlighted in blue) with two alanine residues (highlighted in red). This double
substitution results in the closure of the triangular pores.
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Figure 2. Protein expression and purification analyzed by SDS-PAGE and UV absorption. Lanes:
1. marker; 2. pre-induction; 3. post-induction; 4. sonication supernatant; 5. 20% ammonium sulfate
supernatant; 6. 70% ammonium sulfate pellet; 7. soluble fraction after heat treatment at 62 ◦C;
8. soluble fraction after heat treatment at 72 ◦C; 9. sample filtered through diatomaceous earth;
10. sample filtered through Vivaflow200 module. DNA removal of samples 8, 9 and 10 was followed
by UV absorption.

The amino acid substitutions introduced do not substantially alter the molecular
weight of HumFt but should modify the overall geometry of the 24-mer, as occurs in
AfFt [29]. The HP-SEC analysis (Figure 3) confirms that the mutant we produced is
pure and correctly assembled according to the elution volume. Interestingly, unlike the
protein from which it is derived, HumFtR150A/K151A has an association/dissociation
equilibrium all shifted towards the closed 24-meric structure. This is the first important
difference compared to HumFt, which, in the same experimental conditions, always keeps
a percentage of dimer > 15% (Figure 3). The second difference is a shift in the elution
volume of the 24-mer: HumFtK150A/K151A, having a lower molecular weight and a more
compact geometry, elutes with a slight delay compared to HumFt.
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Figure 3. HP-SEC analysis of purified HumFt R150A/K151A compared to HumFt. When using
20 mM HEPES and 50 mm MgCl2 as the stationary phase, HumFt R150A/K151A is completely as-
sembled (red chromatogram), whereas HumFt is partially dissociated as a dimer (blue chromatogram,
6.1 mL elution volume).

TEM imaging shows that HumFt R150A/K151A has the classic donut morphology of
ferritins in which uranyl salt staining highlights the protein core (Figure 4). This represents
direct evidence of the correct assembly of ferritin that is smaller than HumFt in diameter
(11.58 nm versus 13.19 nm) [27], as confirmed by the chromatographic data.
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Figure 4. TEM imaging of HumFt R150A/K151A. TEM analysis was performed at different protein
dilutions (panel (A) 0.5 µg/mL; panel (B) 0.005 µg/mL) in the presence of 20 mM HEPES buffer and
50 mM MgCl2 (scale bar: 0.1 µm). Ferritin nanoparticles show the typical donut morphology with a
diameter of 11.58 nm ± 0.9 (panel (C)).

This new ferritin can be suitable as a drug delivery system as long as it can be opened
and closed without affecting the stability of both protein and cargo. Given that HumFt
dissociates by removing magnesium ions from the medium, it is reasonable to assume that
HumFtR150A/K151A also keeps the same features. We tested this hypothesis through
HP-SEC. As expected, the 50 mM MgCl2 and the 20 mM HEPES buffer solutions mediate
the full assembly of the protein cage (Figure 3), but magnesium ion removal fails to promote
efficient disassembly (Figure 5, blue chromatogram). Surprisingly, this behavior was not
reported when the same amino acid substitutions were introduced on AfFt [29]. Indeed,
the octahedral, closed structure of Archaeoglobus ferritin is 85% dissociated as a dimer in
25 mM HEPES buffer, without salt. Perhaps the simultaneous presence of both the double
amino acid substitution and the human BC loop stabilizes this new ferritin in the 24-meric
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form. The chromatographic conditions used (20 mM HEPES as mobile phase) lead to
a poor peak resolution that does not allow an accurate evaluation of the protein shell
disassembly. To improve resolution in the absence of magnesium ions, we tested mobile
phases with increasing concentrations of HEPES. As shown in Figure 5, this strategy led
to three outcomes: (i) as the buffer concentration increases, the 24-mer and dimer peaks
are well resolved; (ii) HEPES by itself can favor the dissociation of 24-mer into dimer;
and (iii) the maximum dissociation is obtained with 150 mM HEPES. At higher HEPES
concentrations (≥200 mM), about 20% of protein is lost without substantial improvement
of the degree of dissociation.
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Figure 5. Effect of HEPES buffer concentration on HP-SEC analysis of purified HumFt R150A/K151A.
Increasing HEPES buffer concentration from 20 mM to 150 mM leads to a better resolution of 24-mer
and dimer, shifting at the same time the equilibrium towards the dimeric form.

To confirm that the concentration of the HEPES buffer could indeed favor the disso-
ciation of the protein cage, we performed new experiments by changing the stationary
phase. Specifically, we used two additional size-exclusion resins made of highly cross-
linked polysaccharide composites of dextran and agarose (SepFast), or allyl dextran and
N,N′-methylenebisacrylamide (Sephacryl). When the chromatographic separations were
carried out on these columns, very similar results were obtained (Figure 6). Ferritin is fully
assembled when the analysis is performed using 50 mM MgCl2 and 20 mM HEPES as the
mobile phase, while in the absence of magnesium ions (20 mM HEPES), it continues to
be predominantly assembled (74.85 ± 13.8%). At 150 mM HEPES, the protein is mainly
dissociated (85.3 ± 5.68% dimer, see Figure 6).

Our data show that HumFtR150A/K151A can be opened under mild conditions by
simply changing the ionic strength of the buffer. Once disassembled, this ferritin must
close just as easily to function as a drug delivery system. We show that adding MgCl2
to a solution containing the opened ferritin (HEPES 150 mM) leads to the progressive
and complete closure of the protein cage (Figure 7). Unlike HumFt, which never fully
associates with high concentrations of MgCl2, this mutant is already 100% associated with
30 mM MgCl2.
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Figure 6. Size-exclusion chromatography of HumFtR150A/K151A. SEC analysis performed with
three different stationary phases (HiPrep Sephacryl, SepFast and AdvanceBioSec) using different
mobile phase compositions (20 mM HEPES containing 50 mM MgCl2; 20 mM HEPES; 150 mM
HEPES). At 150 mM HEPES, HumFtR150A/K151A is mainly present as a dimer (histogram on the
right, data are presented as mean ± SD, n = 3).
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Figure 7. MgCl2 effect on HumFtR150A/K151A assembly compared to HumFt. HumFtR150A/
K151A in 150 mM HEPES buffer is dissociated at 15%. The addition of 50 mM MgCl2 induces the
complete closure of the protein cage (red line). At the same concentration of MgCl2, HumFt is still
partially dissociated (blue line).

The influence of buffer molecules on protein–protein interaction is a phenomenon
recently studied in detail for many proteins. It was reported that the propensity of different
ions to influence the aggregation state of proteins can be correlated to their hydration
properties [32,33]. HEPES buffer, thanks to its positive viscosity index (0.60 at 25 ◦C and
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pH 7.0), acts as a kosmotropic agent. It can interact with the positively charged amino
acids on HumFtR150A/K151A surface, reducing the charge on the protein molecules,
thus decreasing the electrostatic stabilization of the 24-mer. Conversely, the main effect
of increasing MgCl2 concentration might be the neutralization of the negatively charged
amino acids by ion binding, thus lowering the electrostatic barrier to assembly.

As a proof of concept, to prove that the double mutation avoids the release of a
given payload from the nanoparticle, we loaded both HumFt and HumFtR150A/K151A
with curcumin. We selected curcumin because it is a small hydrophobic molecule with
potential therapeutic applications and a characteristic absorption spectrum in the visible.
When curcumin is encapsulated inside the protein cage, the visible spectrum shows a
characteristic blue shift at 400 nm [34], which allows a rough estimate of the number
of loaded molecules. By UV-vis spectrum analysis (Figure 8), about eighteen curcumin
molecules are encapsulated within the HumFtR150A/K151A protein cage. When the
loaded nanoparticle is dialyzed versus 20 mM HEPES buffer containing 50 mM MgCl2, no
uncontrolled leakage occurs over 48 hours (Figure 8). Under these experimental conditions,
the 280/400 nm ratio is 0.7 for HumFtR150A/K151A, while it is considerably lower for
HumFt (0.4).
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Figure 8. Loading of HumFtR150A/K151A and HumFt with curcumin. Left panel: UV-vis spectra
of curcumin in 20 mM HEPES buffer pH 7.4 containing 50 mM MgCl2 (black line) and of curcumin
encapsulated in HumFtR150A/K151A (blue line) and in HumFt (orange line) after 48 hours dialysis.
Right panel: Picture of samples containing HumFtR150A/K151A loaded with curcumin or curcumin
alone in buffer.

4. Conclusions

In this paper, we have developed and characterized a new ferritin, which has high
potential as DDS. This molecule derives from the humanized ferritin of A. fulgidus, on which
two alanine residues have replaced two basic amino acids. These substitutions changed the
overall geometry of the particle, closing the large triangular pores on its surface. In this way,
it becomes suitable to encapsulate even small hydrophobic molecules such as curcumin,
without leakage. We have shown that the assembly/disassembly of this new protein cage
can be easily fine-tuned by varying the HEPES buffer and MgCl2 concentration. In fact, the
protein cage can be disassembled in 150 mM HEPES buffer in the absence of magnesium
ions. When this divalent cation is added to the solution, the ferritin can reassemble as a
24-mer. The development of this new protein cage paves the way for encapsulation and
delivery studies of small molecules for therapeutic and diagnostic purposes.
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