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The first evaluation of the FY-3D/MERSI-2 sensor’s thermal 
infrared capabilities for deriving land surface temperature in 
volcanic regions: a case study of Mount Etna
S. Aveni and M. Blackett

Centre for Agroecology, Water and Resilience, Coventry University, Coventry, UK

ABSTRACT
In November 2017, the China Meteorological Administration launched 
a new polar orbiting satellite in its Fengyun (FY) series: FY-3D. With its 
main purpose being the collection of meteorological data, FY-3D 
featured a comprehensive payload that is equally exploitable by var-
ious Earth Science disciplines. One of its sensors, the MEdium 
Resolution Spectral Imager-2 (MERSI-2), provides visible and infrared 
imagery at spatial resolutions of 250 – 1000 m. These characteristics 
make MERSI-2 suitable for volcanological remote sensing and make it 
comparable to the National Aeronautics and Space Administration’s 
(NASA’s) Moderate Resolution Imaging Spectroradiometer (MODIS) 
sensors which themselves, have been widely used in volcanological 
applications. This paper evaluates the first clear and near-coincident 
MODIS – MERSI-2 images of Mount Etna (Italy) during an active volca-
nic phase in 2019 and in turn, provides the first assessment of MERSI- 
2’s utility in observing volcanic activity in the Thermal InfraRed (TIR). To 
ensure the comparability of both scenes, data from each were con-
verted to Land Surface Temperature (LST) and comparisons were 
encouraging, with an r2 of 0.92, a mean temperature discrepancy of 
0.26 K and a root mean squared error of 0.75 K. Having ascertained 
comparability, we focussed on the absolute temperatures detected at 
the eruption site, with the highest being 317.3 K and 328.1 K for MODIS 
and MERSI-2, respectively. The 20 minute gap between the acquisi-
tions is the most likely the cause of this temperature discrepancy, 
suggesting variations in lava effusion rates and activity were occurring 
at Mount Etna over such timescales. This study confirms the applic-
ability of MERSI-2 for observing volcanic activity and emphasises the 
significance of TIR volcanic monitoring and the importance that addi-
tional spaceborne platforms might have in reducing temporal gaps 
between image acquisitions. Given its unique characteristics, future 
studies should investigate the applicability of MERSI-2 in more varied 
volcanic settings.
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1. Introduction

Since the late 1980s, the China Meteorological Administration (CMA) has launched 
a range of meteorological satellites named Fengyun, or ‘wind-cloud’ (Lu et al. 2020). 
The first and third series of these satellites, Fengyun-1 and -3, were polar orbiting and 
the second and fourth (Fengyun-2 and -4) were geostationary. The Fengyun-3 series was 
first presented to the world in 2002 (Meng, Sun and Dong 2002) and the first experimental 
satellite of the range, FY-3A, was launched in 2008, followed by FY-3B and FY-3C in 2010 
and 2013, respectively. The missions of the FY-3 series included obtaining three- 
dimensional thermal and moisture soundings of the atmosphere for input into numerical 
weather prediction tools and imaging large-scale meteorological/hydrological events for 
disaster management purposes (Dong et al. 2009). The latest satellite in the FY-3 series, 
FY-3D, was launched in November 2017. The FY-3D possesses the most comprehensive 
payload of the FY-3 series, including the MEdium Resolution Spectral Imager-2 (MERSI-2) 
which is an advanced spectral imager with infrared-observational capabilities and which 
replaced and merged MERSI on FY-3A/3B and VIRR on FY-3A/3B/3C (i.e. Yang et al. 2019a, 
2019b; Wang et al. 2020). With regard to infrared observations, there are a whole host of 
applications outside of meteorology, including the retrieval of land surface temperatures 
(LST) which, in the field of geology, has particular utility in the monitoring of volcanic 
activity (Blackett 2017).

1.1. Remote sensing of volcanic activity

The infrared remote sensing of volcanoes is a discipline that extends back to the early 
days of Earth observation, with active volcanoes being particularly suited to infrared 
observation by virtue of their emissions of heat (Oppenheimer 1998). Numerous studies 
(e.g. Wooster and Rothery 1997; Hirn et al. 2008; Wright, Glaze and Baloga 2011; Vieira, 
Teodoro and Gomes 2016; Nádudvari et al. 2020) have since demonstrated the direct 
relationship between infrared emissions and volcanic activity, and have provided crucial 
information for the volcanological community (for a historical perspective and compre-
hensive review, see Blackett 2017).

One of the key principles in the remote sensing of volcanic activity is Wien’s 
Displacement Law. This Law shows that the peak wavelength of radiant emissions from 
an object will decrease as its temperature increases (Wien 1896; Rothery, Francis and 
Wood 1988). This dictates that at average Earth surface temperatures (e.g. 288 K), the chief 
wavelengths of radiant emissions will be 7.0 – 15.0 µm (i.e. in the Thermal InfraRed [TIR] 
portion of the spectrum), whereas those from active volcanic surfaces (which may exceed 
1000 K), will be 1.5 – 4.0 µm (i.e. within the ShortWave InfraRed [SWIR] and Middle 
InfraRed [MIR] portions of the spectrum). Consequently, the SWIR and MIR bands of 
remote sensors have been regularly used to monitor active volcanism (Francis and 
Rothery 1987; Rothery, Francis and Wood 1988; Wright, Flynn and Harris 2001; Blackett 
and Wooster 2011; Marchese et al. 2018; Massimetti et al. 2020) although they have one 
significant drawback: they are typically associated with a poorer temporal resolution that 
is sub-optimal for monitoring rapidly changing volcanic activity. The TIR bands of satellite 
sensors in contrast, possess a higher temporal resolution by virtue of their lower spatial 
resolution. Fortunately however, the TIR bands do retain sensitivity to the extreme 
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temperatures associated with volcanism because of the fact that just a small region of 
intense temperature on the surface will significantly raise the TIR pixel temperatures 
detected and will thus cause volcanic surfaces to appear anomalous in comparison to 
their surroundings (e.g. Wright et al. 2002, 2004; Coppola et al. 2015).

To date, the majority of satellite-based volcanological observations have been made 
using the various National Aeronautics and Space Administration (NASA) series of satellite 
sensors, for reasons of ease of access, length of timeseries available and indeed, high 
quality of data provision (Wooster and Rothery 1997; Rothery, Coppola and Saunders 
2005; Pieri and Abrams 2005; Murphy et al. 2013; Blackett 2015; Carr, Clarke and 
Vanderkluysen 2016; Trifonov et al. 2017). Of the NASA satellite series, the MODerate 
resolution Imaging Spectroradiometer (MODIS) sensor has been most widely applied 
volcanologically (Wright et al. 2002; Watson et al. 2004; Rothery, Coppola and Saunders 
2005; Coppola et al. 2012, 2015). Other agencies, however, have launched comparable 
satellites, including the European Space Agency with its Copernicus Programme (i.e. 
Sentinel-2 and Sentinel-3) – the satellites of which have also been used for volcanological 
observations (Corradino et al. 2019; Massimetti et al. 2020). In contrast, sensors of the CMA 
are yet to be tried and tested with regard to their volcanological observations and as such, 
this study will address this omission.

This study will examine MERSI-2 infrared imagery of Mount Etna, taken during an active 
phase in 2019 and in turn, will provide the first assessment of the sensor’s utility in 
observing thermally anomalous volcanic activity. Confirmation of MERSI-2’s volcanologi-
cal utility, by comparison with concurrent MODIS imagery, will reveal a valid new source 
of data for the remote study and monitoring of active volcanism.

1.2. The FY-3D satellite and MERSI-2

The payload of FY-3D includes microwave sounders and imagers (MWTS-2, MWHS-2 and 
MWRI), similar to those on its predecessors, and a new Greenhouse gases Absorption 
Spectrometer (GAS), Hyperspectral InfraRed Atmospheric Sounder (HiRAS), Global 
Navigation Satellite System (GNSS) and Occultation Sounder (GNOS) (Wang et al. 2018; 
Fang 2018; NSMC 2018; EOportal 2021). Of most relevance to this study, however, is 
MERSI-2, which provides visible and infrared imagery over 25 bands and at spatial 
resolutions of 250 m − 1000 m (Table 1). The characteristics of MERSI-2 make it compar-
able to MODIS on-board NASA’s Terra and Aqua satellites (Yan et al. 2021). Indeed, Wang 
et al. (2019a) has shown good agreement in LSTs from MODIS and MERSI-2 but no studies 
have yet confirmed this agreement with regard to volcanic observations.

2. Methods

2.1. Data acquisition

On 20 July 2019, the first clear and near-coincident MODIS (Aqua) – MERSI-2 image 
acquisitions occurred. At 00.45 UTC, MODIS acquired TIR imagery of Mount Etna during 
an active and effusive episode and, 20 min later, FY-3D captured the same event. The 
MODIS scene was obtained from NASA’s Atmosphere Archive & Distribution System 
(LAADS) Distributed Active Archive Centerin the format of the MODIS Level 1B 
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Calibrated Radiances product (MYD021 KM) (MCST 2017) in which the radiance data are 
provided in W/(m2 µm sr). The corresponding Level 1 FY-3D MERSI-2 product 
(FY3D_MERSI_GBAL_L1) was downloaded from the Chinese National Satellite 
Meteorological Centre’s Fengyun Satellite Data Center (NSMC 2013), distributed in mW/ 
(m2 cm−1 sr) units.

2.2. Data processing

The following methods were applied in the derivation of LST from the data acquired by 
each sensor. These methods were equally applicable to the non-volcanic and active 
volcanic surfaces that were captured on 20 July 2019, with the only difference being 
the values retrieved, which were, as expected, higher and indeed, more variable between 
the acquisition times.

In contrast to data from the L1B MODIS product, the MERSI-2 data came as two 
separate files: one of pixel-level digital numbers (DNs) and one with corresponding 
georeferencing data. This meant that further data processing was required to access the 
calibrated radiance data of MERSI-2, and few sources of literature provide much detail on 
how to do this (CGMS (Coordination Group for Meteorological Satellites) 2018, 2020; 
Zhang 2019; Zhang et al. 2020). Georeferencing was initially undertaken by deriving 
a Geographic Lookup Table from the MERSI-2 georeferencing dataset using the ENVI 5.3 
software (ENVI-IDL Technology Hall 2014). The 1 km × 1 km pixels of each scene were then 
aligned to facilitate the objective comparison of the observations of each sensor. 
Calibration of the MERSI-2 DN values to radiance (Lv , where v is the channel wavenumber 
in cm−1), in units: mW/(m2 cm−1 sr), was then conducted following Na (2018) and Na et al. 
(2019) which showed: 

Lv ¼ DN� slopeþ intercept (1) 

Where: slope and intercept are available in the metadata.
The comparable TIR bands 32 and 25 from MODIS and MERSI-2, respectively, were 

those of interest in this study. Despite their similarity in terms of spectral characteristics 
(Figure 1), their small differences meant that it was not possible to compare their 

Table 1. Medium Resolution Spectral Imager-2 (MERSI-2) bands wavelenght and resolution.
Band MERSI-2 (μm) Spatial Resolution (m) Band MERSI-2 (μm) Spatial Resolution (m)

1 0.470 250* 14 0.746 1000
2 0.550 250* 15 0.865 1000
3 0.650 250* 16 0.905 1000
4 0.865 250* 17 0.936 1000
5 1.38 250* 18 0.940 1000
6 1.64 1000 19 1.03 1000
7 2.13 1000 20 3.8 1000
8 0.412 1000 21 4.05 1000
9 0.443 1000 22 7.2 1000
10 0.490 1000 23 8.55 1000
11 0.555 1000 24 10.8 250*
12 0.670 1000 25 12.0 250*
13 0.709 1000

*The product FY3D_MERSI_GBAL_L1_yymmdd_hhmm_1000M_MS (used in this study) provides these bands as aggre-
gated to 1 km.
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calibrated radiance retrievals directly and as such, these were converted to land surface 
temperature (LST). The derivation of LST from MODIS calibrated infrared radiance data 
follows a well-established procedure (e.g. Wan and Snyder 1996; Mao et al. 2005) whereas 
for MERSI-2 data, some additional steps were required (Wang et al. 2019a). For both 
datasets, however, the common principle is the fact that the spectral radiance emitted by 
a black-body at a particular temperature and in a particular wavelength (Lλ TSð Þ), is directly 
related to its brightness temperature (Ts), according to the Planck Function: 

Lλ Tsð Þ ¼
c1

λ5 e
c2

λTs � 1

0

@

1

A

(2) 

Where: λ is the channel wavelength (in μm), and c1 and c2 are constants of 1. 19,104 ×  
108 W/m2 sr μm−4 and 1. 43,877 × 104 μm K, respectively (Wang et al. 2019b).

By inverting Eq. 2, the temperature of an observed black-body surface can be calcu-
lated but, to derive this from the signal detected by a sensor at the top of the atmosphere 
(LλðTλÞ), corrections are needed based on the effects of the atmosphere, in terms of 

transmittance (τλ) and up- and down-welling path radiances (L"λ and L#λ , respectively) at 
particular wavelengths (λ), and emissivity and reflectance of the surface (ελ and 1 � ελ, 
respectively). These adjustments can be applied as follows (from Wang et al. 2019a): 

LλðTλÞ ¼ Lλ Tsð Þελτλ þ L"λ þ 1 � ελð ÞL#λ τλ (3) 

Following Singh, Satpathy and Jeyaseelan (2010) and Kim et al. (2019), this atmospheric 
correction was undertaken using the Thermal Atmospheric Correction (TAC) module of 
the ENVI 5.3 software. This process is again straightforward for MYD021 KM, given that its 
data are in units W/(m2 µm sr), however, for FY-3D, prior to this step, the radiance data had 
to be converted to comparable units from those of its original distribution.

The TAC has long been used to remove atmospheric artefacts from TIR bands acquisi-
tions (i.e. Bustamante et al. 2016, Abdelmalik 2018, Kim et al. 2019), and applies the In- 
Scene Atmospheric Compensation (ISAC) algorithm developed by Johnson and Young 
(1998). The method assumes a constant atmosphere layer over a scene and L#λ ¼ 0 (which 

Figure 1. Spectral response functions of FY-3D and MODIS (Aqua) TIR bands 25 (12.00 μm) and 32 
(12.02 μm), respectively.
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is an appropriate assumption in the TIR (DiStasio and Resmini 2010)). It then calculate L"λ 
and τλ estimating first the surface temperature of each pixel used to approximate TS using 
the Planck function (Eq. 2), assuming ε = 1; and then, fitting a line to a scatter plot of 

radiance vs. TS, with L"λ and τλ derived from the slope and offset of this line, respectively 
(Anul Haq, Jain and Menon 2012) (for method’s details see Young, Johnson and Hackwell 
2002). The ENVI module outputs the atmospherically corrected radiance values (Lλ Tτð Þ) in 
units W/(m2 µm sr). Following application of this step, and the methods of Singh, Satpathy 
and Jeyaseelan (2010) and Dar, Qadir and Shukla (2019), TS (K) was then derived for the FY- 
3D data using the inverse Planck function:  

TS ¼
c2

λln c1=λ5Lλ Tτð Þ
� �

þ 1Þ
(4) 

And in turn, the LST (K) could be derived via inclusion of the emissivity (εÞ term and 
application of the following (from Gupta 2003): 

LST ¼
1
ε1

4
TS (5) 

Values of emissivity were obtained from the MODIS/Aqua Land Surface Temperature/ 
Emissivity Daily L3 Global 1 km SIN Grid (MYD11A1) product but from a slightly earlier 
date: 6th July, 2019 (the closest, cloud-free image of the surface) (from NASA LP DAAC 
2015). Despite the fact that this might slightly differ from the conditions experienced by 
the investigated scenes at the time of acquisition, its effect on the retrieved LST for the 
comparative purpose of this study is negligible. In fact, considering the short gap between 
the acquisitions, it is reasonable to assume that ε remained quasi-identical across the two 
scenes, allowing an unbiased comparison of the two sensors. Besides, emissivity values 
ranging from 0.96 to 0.99 used in this work are consistent with those identified by other 
authors who investigated the LST of Sicily (i.e. Mincapilli et al. 2016), suggesting that ε 
values used in this work are indeed representative of the investigated region.

With regard to the hot volcanic surface, similar studies conducted on active lava flows 
at Mount Etna using the TIR portion of the spectrum suggested that a typical and constant 
ε between 0.95 and 0.98 can be used (Neri et al. 2017; Nádudvari et al. 2020), hence 
including the emissivity range used in this work.

One additional step was required to extract the LST values from MERSI-2 data: an 
adjustment based on various band-specific coefficients and as detailed in Na (2018) and 
Na et al. (2018; 2019). This adjustment had a negligible impact on the outcomes, consist-
ing of multiplying the MERSI-2-derived LST by 1.00065 and the addition of 0.0875 
K (where these coefficients were drawn from the Global Attribute metadata of the 
MERSI-2 file).

3. Results

The calibrated radiance MODIS and MERSI-2 scenes of Sicily from 20 July 2019 are 
displayed in Figure 2 and their data are compared, at the 1 km pixel level, in Figure 3. 
The data from each scene agree strongly, with a Spearman’s Rank Correlation Coefficient 
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(ρ) = 98.04% and Coefficient of Determination (r2) = 96.12%. At this wide scale, the small 
discrepancy in data between both scenes is likely attributable to subtle differences in pixel 
alignment, image acquisition geometry and time and spectral response.

The corresponding LST data are displayed in Figure 4 and compared in Figure 5. Not 
unexpectedly, high levels of agreement are again revealed (ρ = 94.48%; r2 = 91.96 and 
RMSE = 0.75 K), with very similar whole-scene LST values (290.0 K and 289.8 K for MODIS 
and MERSI-2, respectively). In fact, the mean temperature discrepancy (ΔT, i.e. the mean 
LST difference between comparable pixels) for the whole scene of 0.26 K, compares very 
favourably to that derived from similar comparisons, with Wang et al. (2019a) finding ΔT =  
1.37 K in MERSI-2 - MODIS LST comparison. The corresponding statistical distributions of 

Figure 2. Calibratred radiance scenes of Sicily, as acquired from MODIS and MERSI-2 at 00.45 and 01.05 
(UTC), respectively. Both images are displayed in units of W/(m2 µm sr).

Figure 3. Density plot showing the relationship between MODIS and MERSI-2 radiance values, prior 
corrections, over 144,139 data points (from Figure 2). Each data point relates to corresponding pixels 
as imaged by each sensor.
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extracted LST data from Figure 4 and 5 (see Figure 6) reveal that the main source of 
discrepancy is a higher frequency of slightly higher temperature pixels being isolated by 
MODIS, while the overall peak LST, as detected by MERSI-2, is higher. The strength of 
agreement, however, does appear to be spatially variant, with Figure 7 showing pixel- 
level discrepancies and revealing that these are highest in areas of steep topography – 
most particularly on the flanks of Mount Etna. This is confirmed in Figure 8 and 9 which 
plot LST transects over the mountain and showing marked discrepancies on the volcano’s 
steeply rising flanks. Figure 8 also shows the LST retrievals of both sensors compared with 
their maximum temperature detection limit (i.e. saturation temperature). Reassuringly 

Figure 4. LST (in Kelvin) obtained for the entire Sicily Region from MODIS (Aqua) and MERSI-2, from 
left to right, respectively. the whole scene mean LSTs are 290.0 K and 289.8 K for MODIS and MERSI-2, 
respectively. the missing data to the west of Sicily is due to a gap in data from the MODIS emissivity 
product (MYD11A1).

Figure 5. Density plot showing the relationship between MODIS and MERSI-2 LST values over 29,869 
data points (from Figure 4). Each data point relates to corresponding pixels as imaged by each sensor.
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from the perspective of quantitative analysis, even when imaging these active volcanic 
processes, saturation was never reached for either sensor, with the highest temperature 
detected by MODIS being 317.28 K as compared with the highest MERSI-2 temperature of 
328.09 K (Figure 8).

To understand the influence of topography on the discrepancies between MODIS and 
MERSI-2 LST retrievals, it is important to understand that pixel-level temperatures are 
derived from the average of surface temperatures within each pixel’s 1 km × 1 km field of 
view. On viewing topographically steep surfaces, even slightly offset pixels will view 
surfaces of different altitude and temperature, hence rendering such discrepancies as 

Figure 6. Statistical distribution of LST from the data in Figure 4. Mean temperatures are 290.0 K and 
289.8 K for MODIS and MERSI-2, respectively.

Figure 7. Temperature discrepancy (in Kelvin) between MODIS (Aqua) and MERSI-2. the μT for the 
whole scene is 0.26 K.
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much more common. The discrepancy evident at the summit of the volcano therefore (i.e. 
Figure 7), will be partly attributable to these phenomena. The influence of the 20-min gap 
between image acquisitions must also be considered, with Venzke (2019) showing that 
Etna was in a particularly active state during this period, displaying Strombolian activity 
and lava effusion. Such active lava flows at Mount Etna have been shown to have thermal 
emission variability on the scale of minutes (Bailey et al. 2006). This means that only 

Figure 8. (Top) Temperature differences along a vertical and horizontal transects over Etna crossing 
the active lava flow. (Bottom) Temperatures (in K) retrieved from MODIS and MERSI-2. Levels of 
saturation are also displayed for each sensor: 340 K for MODIS Aqua (Pinheiro et al. 2007*) and 329.4 
for MERSI-2 (empirically derived from Wang et al. 2019a**).

Figure 9. Discrepancies in LST between MODIS and MERSI-2, over Etna, as associated with the slope of 
the ground. Grey shaded areas represent the beginning of the volcanic edifice (note the change in 
slope); the yellow shaded area highlights the lava flow.
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complete temporal coincidence of remotely sensed volcanic imagery could result in 
complete agreement, thus offering an additional explanation for the largest LST discre-
pancies as seen at the active peak of Mount Etna during this time.

4. Discussion

This initial LST comparison for all of Sicily suggests that MERSI-2 and MODIS TIR data are 
quasi-equivalent in terms of their capacity for thermal remote sensing of Earth surfaces at 
ambient temperatures and this is in-spite of some of the assumptions made in the 
methods applied. Having established this equivalence, the applicability of the MERSI-2 
sensor for TIR volcanic observations has also been confirmed, with a positive comparison 
to corresponding MODIS imagery of Mount Etna having been established. It has been 
shown that, despite visualizing an active lava flow, neither the pixels of MERSI-2 nor 
MODIS were saturated, which is encouraging for the volcanological remote sensing 
community. Considering the range of bands available at 1 km resolution, and those at 
250 m resolution (including TIRs at 10.8 and 12.0 μm), MERSI-2 might be particularly useful 
in monitoring thermal volcanic activity by providing higher-resolution images in TIR 
channels (as compared with MODIS) while at the same time, also increasing the avail-
ability of unsaturated satellite data to monitor the evolution of volcanic events.

We were fortunate in the data presented here that the gap between MODIS and MERSI- 
2 observations was only 20 min but even in this time, discrepancies in temperature 
detections were observed. These discrepancies are partly explainable by a variation in 
lava effusion rates. For example, Harris et al. (2009) showed that a decrease in the lava 
effusive rates results in the development of a cooler, hardened outer layer. This outer layer 
traps the heat while also allowing the liquid lava flow freely, thereby reducing the 
emissions of heat and resulting in a cooler surface temperature detections (Gray Burton- 
Johnson and Fretwell 2019; Ramsey et al. 2019). Such changes can readily happen on the 
scale of tens of minutes (Blackett 2014). Despite this, this evidence of relatively compar-
able observations, even when acquisitions are separated by tens of minutes, might be of 
significance when included, for instance, in already operating remote volcanic- 
observation systems, such as HOTSAT (Ganci, Vicari and Negro 2011) or MIROVA 
(Coppola et al. 2015) and/or those utilizing satellite-derived Time Averaged Discharge 
Rates (TADR) (Bonny et al. 2018).

5. Conclusion

In this preliminary study we have examined the capacity of MERSI-2’s FY-3D instrument 
for observing and quantifying active volcanic surfaces using its TIR bands, based on 
imagery of a 2019 eruption at Mount Etna. After converting the MERSI-2 data to LST, we 
compared it with a near-concurrent scene obtained from the MODIS Aqua sensor. 
Similarity of the LSTs derived for the whole of Sicily was confirmed, finding r2 = 91.96%, 
ΔT = 0.26 K and RMSE = 0.75. Endorsement of MERSI-2 data for quantitative observations 
of volcanic activity, is also confirmed, as compared with MODIS data retrievals. 
Discrepancies in the temperature maxima of each scene (317.28 K and 328.09 K for 
MODIS and MERSI-2, respectively) were found, however. It is suggested that such dis-
crepancies were the result of variations in lava effusion rates, therefore highlighting the 
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importance of TIR volcanic monitoring, and the importance of new spaceborne platforms 
for reducing the temporal gaps between image acquisitions. Indeed, there is every 
possibility that the MERSI-2 data could be integrated into already-operative volcanic 
monitoring systems or employed to elaborate the retrieval of TADRs, thereby allowing 
for better volcano monitoring. Such developments will allow scientists and researchers to 
better understand the dynamics, eruptive regimes and risks posed by volcanoes 
worldwide.

Within this paper, we also provided a guidance for processing FY-3D MERSI-2 imagery, 
given that official guidance could not be found. We hope this will facilitate and encourage 
the use of FY-3D data in future research. Future studies should further investigate the 
applicability of MERSI-2 for monitoring volcanic activity, considering the benefits of its 
usage and the contribution that it can make to the field of volcanic remote sensing.
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