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Identification of patients with chronic
migraine by using sensory-evoked
oscillations from the
electroencephalogram classifier

Fu-Jung Hsiao1, Wei-Ta Chen1,2,3,4, Yen-Feng Wang2,3 ,
Shih-Pin Chen1,2,3 , Kuan-Lin Lai2,3 , Gianluca Coppola5

and Shuu-Jiun Wang1,2,3

Abstract

Background: To examine whether the modulating evoked cortical oscillations could be brain signatures among patients

with chronic migraine, we investigated cortical modulation using an electroencephalogram with machine learning

techniques.

Methods: We directly record evoked electroencephalogram activity during nonpainful, painful, and repetitive painful

electrical stimulation tasks. Cortical modulation for experimental pain and habituation processing was analyzed and used

to differentiate patients with chronic migraine from healthy controls using a validated machine-learning model.

Results: This study included 80 participants: 40 healthy controls and 40 patients with chronic migraine. Evoked

somatosensory oscillations were dominant in the alpha band. Longer latency (nonpainful and repetitive painful) and

augmented power (nonpainful and repetitive painful) were present among patients with chronic migraine. However, for

painful tasks, alpha increases were observed among healthy controls. The oscillatory activity ratios between repetitive

painful and painful tasks represented the frequency modulation and power habituation among healthy controls, respec-

tively, but not among patients with chronic migraine. The classification models with oscillatory features exhibited high

performance in differentiating patients with chronic migraine from healthy controls.

Conclusion: Altered oscillatory characteristics of sensory processing and cortical modulation reflected the neuropa-

thology of patients with chronic migraine. These characteristics can be reliably used to identify patients with chronic

migraine using a machine-learning approach.
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Introduction

Migraine leads to substantial functional disability and
causes considerable economic costs, especially when the
migraine evolves from episodic migraine (EM) to
chronic migraine (CM) (1). Early and accurate detec-
tion of CM is pivotal in clinical practice.

Patients with migraine are characterized by altered
cortical responsiveness, the malfunctioning of pain
control mechanisms, and altered cortical pain process-
ing (2). Consequently, cortical hyperexcitability or cen-
tral sensitisation is associated with the imbalance of
excitatory and inhibitory neurotransmission in the
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migraine brain (3). Specifically, deficits of cortical
habituation and attenuated somatosensory gating
have been linked to the severity or treatment outcomes
of patients with migraine (4–6). Regarding pain proc-
essing, the pain generator or mediator in the peripheral
trigeminal system, brainstem and midbrain (7,8), and
cortical areas and networks are involved in the dys-
functional modulatory mechanisms of sensory percep-
tion. Accordingly, abnormal quantitative sensory tests
(9), altered pain processing (4–6,10–12), and reduced
habituation (4,6,13) have been observed among
patients with migraine. However, whether modulating
cortical oscillations for painful (PF) and nonpainful
(NP) sensory processing represents a potential brain
signature that can be used to discern patients with
CM from those without migraine remains debatable.

Although studies have investigated the brain dys-
functions for migraine, they have often reported differ-
ences at the group level. Therefore, neurologists still
rely on traditional diagnostic tools to diagnose because
clinical decisions must be made at the individual level
(14). To achieve an individualised diagnosis, we applied
a supervised machine-learning (ML) approach (10) to
examining evoked oscillatory activities; algorithms
have been developed to automatically detect patterns
in the data, which are then used to predict or classify
future data. This approach may provide a high level of
individual characterisation suitable for routine clinical
use. Moreover, performing a ML analysis to distin-
guish a patient with CM can have several potential
benefits, even if the condition can be easily and reliably
identified on the basis of clinical data. First, clinical
diagnosis of patients with CM can be time-consuming
considering it starts with a one-month headache diary.
A ML based model could identify the CM after just an
electroencephalogram (EEG) recording. Second, ML
could potentially be used as a biomarker that deter-
mine the prognosis of certain treatments and could
lead to more personalized and effective treatments.
Third, ML can also be used to help researchers better
understand the underlying pathophysiological mecha-
nisms of CM.

In this study, we used an EEG to directly record
evoked cortical activity in PF and NP stimulations;
to analyse the oscillatory responses within an early
time window (0–150ms) in the primary somatosensory
cortex; and to examine the cortical modulation for
experimental pain and habituation processing. We
hypothesized that oscillatory dynamics during sensory
processing can define the pathophysiological character-
istics of patients with CM, which can then be used to
identify diagnoses. This study aimed to unveil the elec-
trophysiological pain-related oscillatory attributes
underlying the CM neuropathology and differentiate

patients with CM from healthy controls (HC) by
using a validated ML model.

Materials and methods

Participants

All participants were 20–60 years old, had no history of
systemic or major neurological diseases, and were
recruited from the headache clinic of Taipei Veterans
General Hospital. Patients with CM were diagnosed
according to the International Classification of
Headache Disorders, Third Edition (1), and they were
naı̈ve to preventive treatment of migraine with prophy-
lactic drugs. Patients with medication overuse head-
ache were excluded. None of the HC participants had
personal or family histories of pain disorders. The hos-
pital’s Institutional Review Board approved the study
protocol (VGHTPE: IRB 2020-11-004C), and all par-
ticipants provided written informed consent before
study commencement.

Study design

All participants completed semistructured question-
naires that included demographic information, head-
ache profile including the headache days per month
and duration of headache attack, and psychometric
scales such as the Hospital Anxiety and Depression
Scale (HADS) (15). The degree to which the situations
in one’s life were considered stressful was examined
using the Perceived Stress Scale (PSS). The Headache
Impact Test-6 (HIT-6) was used to measure the effects
of headache burden (16). Moreover, the Migraine
Disability Assessment questionnaire was administered
to evaluate migraine-related disability (17). All patients
maintained a headache diary after recruitment.

Each participant underwent EEG recording to pro-
vide evoked oscillations. The presence of a background
or interval headache during this period was allowed for
patients with CM (5). For patients with CM, the
recording was conducted during the interictal period,
arbitrarily defined as the absence of an acute
migraine attack in the 2 days before and after the
EEG recording. The EEG recording was rescheduled
in the event of an acute attack or the use of analgesics,
triptans, or ergots for any reason in the 48 h before the
recording.

Electroencephalogram recording

Scalp EEG data were collected from an EEG cap hous-
ing a 64-electrode BrainVision actiCAP system (Brain
Products, Germany) that covered the brain in accor-
dance with the extended international 10–20 system.
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EEG study design included transcutaneous nonpainful

(NP), painful (PF), and repetitive painful (RP) tasks

(Figure 1). In the first session, participants performed

the NP task; after a three minute break, the PF task

was performed. For the study of habituation, the
second repetitive painful task (RP) task commenced

immediately after varying the stimulating area used in

the PF task. All electrical stimulations were delivered

on the left thumb pulp. Before the NP task, the percep-

tual (i.e., NP) electrical intensity of the left thumb pulp

was obtained, which was the subjective sensory

threshold. Before the PF task, the painful electrical
intensity was measured and rated 3–4/10 on the numer-

ical rating scale. The painful electrical intensity during

the RP task was identical to that during the PF task;

however, to avoid skin damage, the stimulation area on

the left thumb pulp was slightly moved before the stim-

ulation. A Digitimer DS7A device (Digitimer, UK) was

used in addition to a planar concentric stimulating elec-
trode with 0.2-ms constant-current square-wave pulses

(0.2-ms width, proximal cathode). Evoked brain activ-

ity was recorded continuously at a digital sampling rate

of 1000Hz. To reduce external interference and mini-

mize data distortion during pre-processing, we

employed two methods. Firstly, we manually reviewed

the data and discarded any epochs with aberrant wave-
forms. Secondly, we applied bandpass filters with a

range of 0.1Hz to 150Hz to eliminate high-frequency

noise and direct current (DC) drift. For each task, we

collected 30 artifact-free evoked epochs with an inter-

stimulus interval of 3.5–4.5 s. Each epoch consisted of a

prestimulus baseline of 50ms and poststimulus mea-

surement of 150ms. During recording, participants
were comfortably seated on a chair in an illuminated

room and asked to remain awake with their eyes

closed.

Electroencephalogram oscillatory analysis

The EEG evoked responses for NP, PF, and RP tasks

were transformed into a time–frequency map by using

a Morlet wavelet analysis and ranged from 1 to 40Hz

in frequency and �50 to 150ms in time. The averaged

time–frequency representation for each task was calcu-

lated across 30 epochs. Oscillatory activities were nor-

malized to a prestimulus period of �50 to 0ms. The

electrode with the maximal oscillatory activities over

the somatosensory cortex contralateral to the electrical

stimulation was selected through visual inspection.

A single-electrode investigation would be advantageous

for future routine clinical use due to its ease of setup,

rapidity, and straightforward analysis. The peak laten-

cy, power, and frequency of contralateral evoked

activities were extracted for each task and participant.

Moreover, the response ratios of oscillatory activities

of NP:PF and RP:PF for each participant were

extracted to estimate the differences in evoked oscilla-

tory power between tactile processing and combined

tactile and nociceptive processing and the changes in

evoked oscillatory power for habituation effect, respec-

tively. Notably, to obtain the cortical localisation of

peak oscillatory activities, oscillatory activation was

mapped onto the T1-weighted magnetic resonance imag-

ing (MRI), which was calculated by performing a weight-

ed minimum norm estimate analysis with symmetric

boundary element (18) and inverse operator methods.

Data analysis was performed using Brainstorm software

(19), which has been partially described in our previous

studies (4,6,11,20).

Machine-learning analysis

This study applied all the features obtained from the

oscillatory analysis and the selected features that
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Figure 1. Electroencephalogram experimental design. Participants took a break before painful tasks; after painful stimulation finished,
repetitive painful tasks were performed immediately. ISI, interstimulus interval.

Hsiao et al. 3



exhibited significant differences between groups, which
were then used to construct data sets imported to the
classification model. The models used supervised ML
algorithms, including decision trees, a discriminant
analysis, naı̈ve Bayes classifiers, a support vector
machine (SVM), and k-nearest neighbours (KNN), to
decode two conditions in a pairwise manner (i.e., CM
vs. HC). Bayesian optimization was used to automate
the selection of hyperparameter values. To avoid over-
fitting: 1) 80% of the oscillatory data were randomly
selected as a training data set, and the others 20% were
selected as an independent testing data set; 2) the
models were trained based on a fivefold leave-one-out
cross-validation technique. All analyses were per-
formed using the ML toolbox from MATLAB soft-
ware (R2019a).

Statistical analysis

Demographics (age and gender), clinical profiles
(HADS and PSS), stimulus intensity, and all EEG
measures (i.e., peak latency, power and frequency of
the evoked oscillatory activities for each task, and the
ratios of oscillatory activities in NP:PF and RP:PF)
were compared between groups by conducting indepen-
dent t, nonparametric Kolmogorov-Smirnov Z or chi-
squared tests when appropriate. To evaluate the psy-
chiatric impact on evoked oscillatory responses, the
oscillatory responses were examined the nonparametric
ANCOVA (Quade’s) analysis with the HADS as covar-
iate. All statistical analyses were performed using SPSS
version 22.0 (IBM, USA) or Statistics toolbox from
MATLAB software (R2019a; The Mathworks, USA).
Regarding the classification model on the independent
testing data set, the statistical significance was estimat-
ed using nonparametric permutation tests (10,000
times) to obtain the statistical significance of predictive
accuracy. A p value of 0.05 was considered statistically
significant.

Results

Demographic data

This study included 80 participants—40 HCs (age:
29.6� 8.7 years old; male–female ratio¼ 13:27) and
40 patients with CM (age: 31.9� 7.2 years old; male–
female ratio¼ 10:30). The two groups did not signifi-
cantly differ in terms of age or gender (Table 1).
Anxiety (HADS_A) and depression (HADS_D) scores
were higher in the CM group than in the HC group
(HADS_A, CM: 8.5� 3.4, HC: 3.9� 3.5, t¼ 5.4;
HADS_A, CM: 6.2� 3.6, HC: 2.9� 3.0, t¼ 4.3; all
p< 0.001), and the PSS values were higher in the CM
group (CM: 28.5� 7.9, HC: 21.9� 9.3, t¼ 2.9,

p¼ 0.005). The electrical intensity did not differ between

groups for NP (p¼ 0.6) and PF tasks (p¼ 0.65).

Evoked oscillatory activities among healthy controls

and patients with chronic migraine

The grand-averaged oscillatory responses from one

EEG electrode, which were selected from the contralat-

eral sensorimotor area, for the NP and PF stimulations

of the HC (n¼ 40) and CM (n¼ 40) groups are

depicted in Figure 2 (a). Time–frequency representa-

tions indicated prominent event-related oscillatory

responses following electrical stimulations during all

three tasks between both groups, which peaked at

50–80ms in latency and 9–12Hz in frequency. For

example, the oscillatory responses to painful stimula-

tion from one representative HC (Figure 2 [b]) peaked

at 8Hz and 66ms. The topographic pattern at 8Hz and

66ms revealed a contralateral activation over the pari-

etal area, which mapped onto the MRI and indicated

the activation of the somatosensory cortex.

Altered pain processing in chronic migraine

In the peak latency responses (Figure 3), patients with

CM exhibited longer latency than HCs in the NP (CM:

69.8� 5.3ms, HC: 49.5� 1.0ms; z¼ 2.12, p< 0.001)

and RP (CM: 77.4� 6.7ms, HC: 51.4� 1.4ms;

z¼ 1.56, p¼ 0.015) tasks. With respect to peak power

in the PF tasks, HCs demonstrated larger power

Table 1. Demographics and clinical profiles.

HC CM p-value

N 40 40

Demographics

Age (years) 29.6� 8.7 31.9� 7.2 0.23

Gender 27F/13M 30F/10M 0.58

Psychometric scores

HADS_A 3.9� 3.5 8.5� 3.4 <0.001

HADS_D 2.9� 3.0 6.2� 3.6 <0.001

PSS 21.9� 9.3 28.5� 7.9 0.005

Stimulus intensity

Non-painful task (mA) 2.57� 3.05 2.90� 2.22 0.60

Painful task (mA) 7.65� 8.93 6.82� 6.27 0.65

Migraine profile

Headache days

(month)

– 19.8� 6.6 –

Disease duration

(months)

– 17.2� 6.8 –

HIT6 – 58.2� 6.8 –

MIDAS scores – 47.7� 46.7 –

HC, Healthy control; CM, Chronic migraine; F, Female; M, Male; HADS,

Hospital anxiety and depression score; A, Anxiety; D, Depression; PSS,

Perceived Stress Scale; HIT6, Headache Impact Test-6; MIDAS, Migraine

disability assessment.
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Figure 2. (a) Grand-averaged time–frequency plots of evoked oscillatory activities for nonpainful, painful, and repetitive painful tasks
at a frequency of 0 to 40Hz and a latency of �50 to 150ms among HCs (n¼ 40) and patients with CM (n¼ 40) groups and
(b) Representative oscillatory activities for painful stimulation from one HC (#14) are depicted in the time–frequency plot (upper left),
time- and frequency-varying power dynamics (lower left), and the topography and cortical mapping (right panel). HC, healthy control;
CM, chronic migraine; L, left; R, right.
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increases than patients with CM (CM: 47.1%� 4.0%,

HC: 71.9%� 6.9%; z¼ 1.45, p¼ 0.029). However,

larger power increases were observed among patients

with CM than HCs during the NP (CM: 44.2%�
3.1%, HC: 35.3%� 1.2%; z¼ 1.56, p¼ 0.015) and

RP (CM: 45.2%� 3.4%, HC: 36.9%� 1.5%;

z¼ 1.45, p¼ 0.029) tasks. Regarding habituation for

pain processing (Figure 4), the RP:PF ratios on the

frequency were lower among patients with CM (CM:

1.02� 0.02, HC: 1.26� 0.06; z¼ 1.79, p¼ 0.003);

whereas those on the peak latency were increased in

patients with CM (CM: 1.05� 0.03, HC: 0.93� 0.06;

z¼ 1.45, p¼ 0.029). Additionally, the ratios of power

responses were higher among patients with CM (CM:

1.01� 0.04, HC: 0.68� 0.05; z¼ 1.90, p¼ 0.001), which

implied that the oscillatory responses for RP stimula-

tion did not habituate among patients with CM.
To estimate evoked oscillatory responses while con-

trolling the psychiatric effects, nonparametric

ANCOVA (Quade’s) analysis showed longer latency

responses in patients with CM were observed in the

NP and RP conditions (NP: F¼ 5.92, p¼ 0.017; RP:

F¼ 4.39, p¼ 0.039). Moreover, the evoked oscillatory

powers were increased among patients with CM in the

NP and PF conditions (NP: F¼ 3.9, p¼ 0.05; PF:

F¼ 4.32, p¼ 0.04). As for the habituation effects, the

RP:PF ratios among patients with CM were higher on

the latency and power responses (latency: F¼ 4.9,

p¼ 0.03; power: F¼ 8.2, p¼ 0.005); moreover, the

ratios of frequency responses were lower in patients

with CM (F¼ 5.49, p¼ 0.022).

Classification model using evoked oscillatory

responses for chronic migraine

To construct the data sets for ML, we used all 15 fea-

tures from the oscillatory analysis. Additionally, the

responses that significantly differed between groups

were also used to establish the data sets. Therefore,

8 features were also applied to the models, which
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comprised the oscillatory power of all three tasks, NP
and RP latency, and latency, frequency and power
ratios of RP:PF. By using 15 features, the training
models for differentiating CM from HC achieved an
accuracy of 71.9%–81.2% and an AUC of 0.78–0.84
by using decision trees, a discriminant analysis, naı̈ve
Bayes classifiers, SVM, and KNN algorithms (Table 2).
When using the 8 features with significant group differ-
ences, the classifiers had an accuracy of 73.4%–87.5%
and an AUC of 0.80–0.86 from all algorithms. The
optimal algorithm of the training model was the deci-
sion tree, which yielded a performing accuracy of
87.5%, sensitivity of 81%, specificity of 93.8%, and
AUC of 0.84 (Figure 5 [a]). We further examined the
generalizability of the classification model featuring
decision tree algorithms by using an independent data
set of eight patients with CM and eight HCs. The clas-
sification model also exhibited high performance (accu-
racy: 87.5%, AUC: 0.875, sensitivity: 0.875, specificity:
0.875; p¼ 0.0001) (Figure 5 [b]). Thus, these findings
validated that our model had favorable generalizability
for identifying patients with CM.

Discussion

In this study, patients with CM demonstrated an
altered peak latency and power of evoked oscillatory
responses over the contralateral sensorimotor cortex
during PF or NP processing. Moreover, the ratios of
oscillatory activities in NP:PF and RP:PF tasks
revealed significant frequency modulation and power
habituation among HCs, which were not present
among patients with CM. By using evoked oscillatory
data to develop classification models, we discovered

that the model with the oscillatory features exhibited
high performance in differentiating patients with CM
from HCs. These findings indicated that oscillatory
characteristics of sensory processing can be reliable
for identifying patients with CM.

Abnormal evoked oscillatory activities in chronic
migraine

By using planar concentric stimulating electrodes,
central neural activities were elicited through the co-
excitation of a considerable proportion of large mye-
linated A-beta fibres (21,22). Thus, cortical evoked
oscillatory activities that peaked at 50–90ms were
recorded over the primary somatosensory cortex,
which was consistent with other studies (21,22). The
spectral power of evoked oscillatory activities was asso-
ciated with stimulus intensity (23); therefore, in the HC
group, higher oscillatory power was observed for PF
stimulation compared with NP stimulation when the
electrical intensity differed. Additionally, repeated
painful stimuli resulted in a diminished cortical
response that resembled habituation, which could be
a physiological defense response of an inhibitory anti-
nociceptive type. HC group showed this response by
having lower power in the evoked oscillations during
RP stimulation (24). The study tasks elicited sensory
processing, which revealed the cortical modulation
from the oscillatory powers regarding the effects of
stimulus intensity and repetition among HCs.

Among the patients with CM, the peak power of
oscillatory responses was not correspondingly modu-
lated for the effects of pain afferent and stimulus rep-
etition, which indicated deficits in cortical sensory and

Table 2. Optimized models and their performance.

Models

Feature Performance Note

N Accuracy AUC Hyperparameters

Decision Trees 15 79.7% 0.81 Maximum number of splits: 7; Split criterion: Gini’s

diversity index

8 87.5% 0.84 Maximum number of splits: 4; Split criterion:

Maximum deviance reduction

Discriminant Analysis 15 75.0% 0.83 Discriminant type: Diagonal Quadratic

8 73.4% 0.82 Discriminant type: Diagonal Quadratic

Naı̈ve Bayes 15 75.0% 0.83 Distribution names: Gaussian; Kernel type:

Epanechnikov

8 73.4% 0.82 Distribution names: Gaussian; Kernel type: Box

SVM 15 71.9% 0.78 Kernel function: Gaussian; Kernel scale: 16.9

8 81.2% 0.86 Kernel function: Quadratic; Box constraint level: 6.115

KNN 15 81.2% 0.84 Number of neighbors: 2; Distance metric: Cubic;

Distance weight: Equal

8 79.7% 0.80 Number of neighbors: 1; Distance metric: Minkowski;

Distance weight: Inverse

N, number; AUC, area under the curve; SVM, support vector machine; KNN, k-nearest neighbors.
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anti-nociceptive defensive processing (2,24,25). With
respect to cortical sensory processing, evoked powers
were abnormally augmented for NP, which supported
the central hyperexcitability in CM (4,6). Nevertheless,
in contrast to HC, oscillatory powers for PF stimula-
tion did not increase among patients with CM; the
stimulus intensity increased, which might indicate
that pain processing was altered and the somatosensory
activation coding of the stimulus intensity was defec-
tive. The saliency of the stimulus was associated with
the cortical responses following PF input (26), which
might explain the unchanging pain-evoked power
among patients with CM who often undergo the pain
attacks. Furthermore, the habituation deficit to repet-
itive noxious stimuli was recognized in CM because no
power changes occurred during RP stimulation, which
suggested that the cortical activities of patients with
CM was characterised by the dysfunctional inhibitory
antinociceptive capabilities over the sensory cortex
(4,6) or reduced salience to pain stimuli (27). Thus,
the oscillatory powers of the sensory responses and

their modulations for pain afferent and repetition
might be pivotal for identifying patients with CM.

Longer peak oscillatory latencies of sensory process-
ing were observed among patients with CM. This
implies a general hyporeactivity to innocuous and pain-
ful stimuli as one critical feature of migraine chronifi-
cation. Because the electrical stimuli were delivered
through a planar concentric electrode, the latency dif-
ferences might be due to the proportion of co-
excitation from large myelinated A-beta and A-delta
fibres (21,22). The A-beta fibre was dominant in the
cortical processing of HCs, whereas the sensory input
after concentric-electrode stimulation transmitted
through the A-delta afferent in a larger proportion in
patients with CM, which led to prolonged oscillatory
latencies. The latency of evoked oscillation elicited
using concentric stimulating electrode was rarely inves-
tigated among migraine patients; one study reported
that the latency of an early somatosensory component
was related to migraine treatment (28), which implied
that the latency responses represented the
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Figure 5. (a) Confusion matrix and receiver operating characteristic (ROC) plot for differentiating patients with chronic migraine
(CM) from healthy controls (HCs) and (b) Confusion matrix and ROC plot from the independent data set to identify patients with CM
(left and middle column). Overall prediction accuracy of this model was determined using a permutation test and independent testing
data set (right column). AUC, area under the curve.
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pathophysiology of migraine. Thus, the measurement

of somatosensory latency was reported to be a poten-

tially prominent feature for identifying patients with

migraine (29).

Identifying patients with chronic migraine using

machine learning

The classification model of the present study exhibited

favorable performance in differentiating patients with

CM from HCs. Studies have examined classifying

patients with migraine and HCs. When measuring the

latency and amplitude responses of somatosensory-

evoked activities (29), ML models exhibited accuracies

of >80% in identifying patients with migraine. Using

the structural MRI, Schwedt et al. (30) reported a clas-

sification accuracy of 86.3% in distinguishing patients

with CM from HCs. Resting-state functional MRI con-

nectivity data had an accuracy of 86.1% in identifying

patients with migraine (31). In our previous study (10),

the resting-state magnetoencephalographic functional

connectivity within pain-related areas was used to

establish a model that achieved excellent performance

in distinguishing patients with CM from HCs.

Generally, an ML approach combined with neuroim-

aging data might be capable of identifying of patients

with migraine. In contrast to fMRI and magnetoen-

cephalography (MEG techniques, EEG recording is

low cost and convenient to perform in clinics; more-

over, the present findings verified reliability and gener-

alizability for identifying patients with CM. Therefore,

EEG recordings are the optimal candidate for clinical

settings. Moreover, the oscillatory signatures from the

EEG that were used in this classification model might

represent the prominent signatures for monitoring and
evaluating migraine progression and severity.

Limitations

This study has several limitations. First, EEG-based
evoked oscillatory characteristics were examined and
validated. However, our sample size was small for
implementing ML algorithms, and future studies with
larger sample sizes and additional test dataset are nec-
essary to further validate the results and examine the
impacts of psychiatric comorbidity or other chronic
pain disorders. Second, all CM patients were naı̈ve to
any migraine preventive medication, which precluded
determining whether the oscillatory features and the
classification model could be generalized to patients
taking such treatments. Finally, prolonged latency
responses may have resulted from median nerve
entrapment at the wrist. Although none of the recruited
patients reported numbness at the stimulation site on
their left hand, unfortunately, electromyographic
(EMG) examinations were not conducted to evaluate
their nerve conduction.

Conclusion

This study revealed that one-electrode oscillatory char-
acteristics for the sensory processing can be reliable for
identifying patients with CM. By using interpretable
ML techniques, our findings contribute to the knowl-
edge of the underlying pathophysiological mechanisms
of CM and predicting patients with CM. Further stud-
ies with a larger sample size and that evaluate other
chronic pain disorders are warranted to verify the reli-
ability and generalizability of our model.

Article highlights

• Aberrant pain-related oscillatory responses might represent the underlying neuropathological mechanisms
in CM.

• Patients with CM were characterized with altered peak latency and power over the sensorimotor cortex, as
well as the deficits of habituation.

• The classification model with the EEG oscillatory signatures could be reliable for identifying patients
with CM.
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