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Abstract:

Cholestatic liver diseases are named primarily due to the blockage of bile 
flow and buildup of bile acids in the liver. Cholestasis can occur in 
cholangiopathies, fatty liver diseases and during COVID-19 infection. 
Most literature evaluates damage occurring to the intrahepatic biliary 
tree during cholestasis; however, there may be associations between 
liver damage and gallbladder damage. Gallbladder damage can manifest 
as acute or chronic inflammation, perforation, polyps, cancer and most 
commonly gallstones. Considering the gallbladder is an extension of the 
intrahepatic biliary network, and both tissues are lined by biliary 
epithelial cells that share common mechanisms and properties, it is 
worth further evaluation to understand the association between bile duct 
and gallbladder damage. In this comprehensive review, we discuss 
background information of the biliary tree and gallbladder, from function, 
damage, and therapeutic approaches. We then discuss published findings 
that identify gallbladder disorders in various liver diseases. Lastly, we 
provide the clinical aspect of gallbladder disorders in liver diseases and 
ways to enhance diagnostic and therapeutic approaches for congruent 
diagnosis.
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ABSTRACT

Cholestatic liver diseases are named primarily due to the blockage of bile flow 

and buildup of bile acids in the liver. Cholestasis can occur in cholangiopathies, fatty 

liver diseases and during COVID-19 infection. Most literature evaluates damage 

occurring to the intrahepatic biliary tree during cholestasis; however, there may be 

associations between liver damage and gallbladder damage. Gallbladder damage can 

manifest as acute or chronic inflammation, perforation, polyps, cancer and most 

commonly gallstones. Considering the gallbladder is an extension of the intrahepatic 

biliary network, and both tissues are lined by biliary epithelial cells that share common 

mechanisms and properties, it is worth further evaluation to understand the 

association between bile duct and gallbladder damage. In this comprehensive review, 

we discuss background information of the biliary tree and gallbladder, from function, 

damage, and therapeutic approaches. We then discuss published findings that identify 

gallbladder disorders in various liver diseases. Lastly, we provide the clinical aspect 

of gallbladder disorders in liver diseases and ways to enhance diagnostic and 

therapeutic approaches for congruent diagnosis.

DIDACTIC SYNPOSIS: 

Major teaching points:

 The gallbladder is a specialized organ that plays roles in bile modification and 

digestion of fats.

 Gallbladder damage can manifest as acute or chronic inflammation 

(cholecystitis), perforation, polyps, cancer, and more commonly gallstones 

(cholelithiasis).
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 The gallbladder epithelial cells closely resemble those of the intrahepatic biliary 

tree, but distinct differences may account for specialized functions.

 Bile duct damage characterized by inflammation, fibrosis and ductular reaction 

can be found in primary sclerosing cholangitis (PSC), primary biliary cholangitis 

(PBC), alcohol-related liver disease (ARLD), non-alcoholic fatty liver disease 

(NAFLD), cholangiocarcinoma (CCA) and COVID-19. 

 There is an association between gallbladder disorders and bile duct damage, 

but direct links are unknown.

 In some liver diseases, having congruent gallbladder damage increases 

morbidity and mortality in patients.

 Current work is underway evaluating different modalities that may be beneficial 

for the diagnosis or treatment of gallbladder disorders, specifically in the setting 

of liver disease.

DIDACTIC FIGURE LEGENDS:

 Figure 1: This figure labels the different parts of the gallbladder and the 

connected extrahepatic bile duct.

 Figure 2: This figure illustrates the different layers of the gallbladder wall and 

highlights some key receptors and transporters that maintain gallbladder 

functions.

 Figure 3: This figure illustrates some differences and similarities between 

acute and chronic cholecystitis.

 Figure 4: This figure illustrates the main gallbladder disorders discussed in 

this review and the main characteristics associated with them.
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 Figure 5: This figure labels the human and mouse biliary tree and stem cell 

niches.

 Figure 6: This image shows an enlarged gallbladder in a PSC patient versus 

control.

 Figure 7: This photomicrograph shows a gallbladder stone and its needle-like 

crystals found in the gallbladder of Mdr2-/- mice.

 Figure 8: This image shows the layers of the gallbladder wall with 

corresponding tumor stage for gallbladder cancer.

 Figure 9: These graphs show changes in fasting gallbladder wall thickness 

and ejection fractions in control, steatosis and NASH patients.

 Figure 10: These images show low and high magnification of chronic 

cholecystitis in a patient with ARLD.

 Figure 11: This figure shows an inflamed liver in a patient with COVID-19 and 

qRT-PCR analysis confirming SARS-CoV-2 expression in the gallbladder with 

positive controls run as well.

INTRODUCTION ON THE GALLBLADDER

I. Gallbladder anatomy and function 

Anatomically, in humans the gallbladder is in the upper abdomen beneath the 

liver, and in mice, it is attached with the diaphragm via connective tissue and is situated 

between the left and right medial lobes of the rodent liver (1). Cholangiocytes are 

ciliated epithelial cells that line the biliary tree and line the lumen of the hollow 

gallbladder in both humans and rodents. Bile is synthesized by hepatocytes and is 

drained into the biliary tree which acts as a conduit for bile flow. Bile flows through the 

intrahepatic biliary network and is stored in the gallbladder until its eventual drainage 

into the common bile duct, that is connected to the gallbladder. The fundus, the widest 
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part of the gallbladder, gradually narrows and tapers to form the infundibulum which 

eventually connects with the cystic duct that joins the common hepatic duct to form 

the common bile duct (Figure 1) (1). Bile, after being secreted from the gallbladder, 

travels to the duodenum via the hepatopancreatic ampulla where the common bile 

duct and pancreatic duct merge to make entry into the duodenum. Bile secretion from 

the gallbladder, known as gallbladder emptying, is regulated by the gastric hormone, 

cholecystokinin (CKK). CKK regulates the contractility of the gallbladder thereby 

regulating the emptying process (2). Apart from the contribution of cholesterol, 

gallbladder contractility or gallbladder emptying can be another cause for gallstone 

formation. Gallbladder contractility (emptying and filling) is regulated by the entero-

hormone, CCK, and fibroblast growth factor (FGF)15 (in mice) and FGF19 (in human) 

respectively. CCK receptors are predominantly present in the muscularis (smooth 

muscle) of the gallbladder and are affected by high cholesterol levels. High circulating 

and membranous cholesterol induces hypomotility in the gallbladder (3). CCK-1 

receptors were found to be sequestered by elevated cholesterol levels in a caveolin-3 

dependent pathway (4). Sequestration of CCK-1 receptors would result in reduced 

gallbladder emptying and can result in increased risk of gallstone formation. Small and 

large cholangiocytes, which are distinct in structure and function, line the small and 

large bile ducts of the intrahepatic biliary tree in mice, which will be discussed in detail 

below. Cholangiocytes that line the gallbladder bear more resemblance to large 

cholangiocytes in mice. 

Besides storage of bile, the gallbladder also functions to concentrate the 

composition of bile by reabsorption of water and various biliary constituents, such as 

bile acids (BAs) (5). This procedure of altering bile composition requires the intricate 

functioning of membrane transport across the biliary epithelium which have been the 
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focus of several early studies. One of the earliest studies by Diamond et al. in 1964 

showed that the gallbladder regulates the concentration of bile by modulating isotonic 

reabsorption of water and sodium chloride through an active process (6). There are 

thirteen aquaporin (AQP) channels responsible for water absorption throughout the 

biliary tract, including the gallbladder (7). Among these channels, AQP1 and AQP8 

are the two most widely expressed channels in the gallbladder epithelium (8); 

however, there are conflicting reports regarding the localization of AQP1 and AQP8 in 

the gallbladder. One study emphasizes profuse expression of AQP1 on the apical 

membrane of the gallbladder epithelia (9), another study reports that AQP1 is 

expressed on both apical and basolateral membranes with AQP8 being expressed 

mainly in the apical membrane of the gallbladder epithelial (10). AQP1 knockout 

(AQP1-/-) mice have similar sized gallbladders as their wild-type (WT) controls, but had 

a significant difference in water permeability (9). Similarly, AQP8 may be involved in 

water absorption from the gallbladder, yet AQP8-/- mice didn’t have significant 

physiological defects compared to WT controls (11). Defects in other AQPs can lead 

to dysfunctional water absorption and clinical conditions including cholestasis, obesity, 

and insulin resistance (12, 13). From the existing genetic knockout studies, it can be 

surmised that AQPs have far reaching effects in the liver and gallbladder.

The gallbladder also secretes mucin and bicarbonate. Mucin secretion occurs 

because of calcium-dependent pathway and bicarbonate secretion is mediated by 

adenosine 3’,5’-cyclic monophosphate (cAMP)-dependent pathway. Both constituents 

are essential to exert cytoprotective effects on the gallbladder epithelia against toxic 

BAs. An electrogenic anion secretion study in isolated human gallbladder mucosa from 

normal and cystic fibrosis patients revealed that anion secretion in the gallbladder is 

facilitated by extracellular adenosine triphosphate (ATP) via purinergic receptor Y2 
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(P2Y2). This mechanism explains the altered and more toxic biliary composition during 

cystic fibrosis thereby contributing to hepatobiliary complications (14). Cystic fibrosis 

transmembrane conductance regulator protein (CFTR), the gene impaired in Cystic 

Fibrosis, regulates ion transport in the biliary epithelia. CFTR is a chloride channel 

regulated by the intracellular and extracellular concentration of cAMP. Its profuse 

localization in the apical membrane of biliary epithelia, including the gallbladder, is an 

indication of its significant role in regulating other ion channels. Ether-a-go-go-related 

gene 1 protein potassium channel is a voltage gated ion channel located in gallbladder 

smooth muscle which regulates contractility by modulating membrane potential (15). 

Taken together, the gallbladder physiology is mainly maintained by these ion channels 

that regulate transepithelial ion transport. 

Just like the rest of gastrointestinal tract, the gallbladder is profusely innervated 

from both the central nervous system and enteric nervous system and primarily 

regulated by a ganglionic plexus located on the wall of the gallbladder fundus. An early 

study on guinea pig gallbladder suggests that the organ is constituted of four main 

layers of tissues: (i) the mucosa, (ii) the muscularis, (iii) the perimuscular fibrous tissue 

and (iv) serosa which is the layer of subperitoneal connective tissue (16). Each of 

these layers are highly innervated by the cholinergic neurons, these neurons also 

express neuroendocrine factors like substance P, neuropeptide Y and somatostatin. 

In addition to the presence of cholinergic neurons, the gallbladder was also found to 

express purinoreceptors (P2X), P2X2 and P2X3, that mainly signal via ATP (17). By 

immunohistochemistry, it was found that in guinea pigs the P2X2 and P2X3 receptors 

were expressed in the ganglia of the nerve fibers in the gallbladder. Moreover, this 

study highlights that nerves that stained positive for alpha calcitonin gene related 

peptide were also positive for P2X2 and P2X3 receptors (9). The role of these 
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neuropeptides in modulating gallbladder physiology is not well studied; however, it can 

be surmised from the existing studies that complex neuropeptide signaling in the highly 

innervated gallbladder plays an important role in gallbladder emptying and 

transepithelial ion channel transport that can influence the composition of bile. The 

gallbladder is a dynamic contributor to bile flow, physiology, and composition due to 

its expression of these different transporters and receptors (Figure 2).

II. Gallbladder disease and gallstones

Most gallbladder diseases occur because of dysfunctional bile secretion, 

including the malabsorption of ions and water in both the intra- and extra-hepatic 

cholangiocytes. However, inflammation and epithelial overgrowth can lead to various 

gallbladder disorders as well. Another widely prevalent cause of gallbladder diseases 

is a poor diet, which mainly manifests as gallstones, or cholelithiasis. Gallbladder-

related diseases will be discussed in the following sections.

a. Gallbladder inflammation (cholecystitis)

Cholecystitis (i.e., gallbladder inflammation) is a multifactorial disorder, and one of the 

main causes of gallstone formation. Most gallstone cases lead to blockage of the cystic duct, 

resulting in bile accumulation that promotes inflammation (18); however, other biliary tract 

disorders, such as tumors and certain infections can promote cholecystitis (19, 20). In this 

section, we will focus on pathophysiology, diagnosis, and treatment of the most common 

gallbladder diseases, such as acute cholecystitis, chronic cholecystitis, and gallbladder 

perforation.

i. Acute cholecystitis

Acute cholecystitis is acute inflammation of the gallbladder due to obstruction 

of the cystic duct (21). The cystic duct can be blocked from gallstones or biliary sludge 

formation. Other less common causes can be due to the presence of a mass (primary 
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tumor or gallbladder polyp), parasites, or foreign bodies (22-24). Once the cystic duct 

is blocked, the gallbladder mucosa continues to produce mucus that is not drained, 

and the intraluminal pressure inside the gallbladder increases leading to an acute 

inflammatory response. Additionally, the secretion of prostaglandins, I2 and E2, can 

promote an inflammatory response (25). The pathophysiology of acute cholecystitis is 

characterized by three processes: (i) mechanical stimulus (gallbladder duct 

obstruction); (ii) bacterial infection; and (iii) irritation that promotes inflammation (18). 

There are two theories attempting to explain the pathogenesis of acute cholecystitis: 

(i) cystic duct obstruction and gallbladder artery occlusion  (18), and (ii) cystic duct 

obstruction and perpetual lithogenic bile (26). In 2006, Yokoe et al. developed the 

Tokyo Guidelines for the management of acute cholangitis and cholecystitis (27) that 

were approved as worldwide criteria.  Specifically, patients with acute cholecystitis 

have right upper quadrant or epigastric abdominal pain, Murphy's sign, and 

tenderness. If gallbladder inflammation persists, patients show fever, high levels of C-

reactive protein, and abnormal white blood cell count. Finally, different imaging 

approaches can be used to diagnose acute cholecystitis, such as transabdominal 

ultrasonography (US), cholescintigraphy, and magnetic resonance imaging (MRI); 

however, US and cholescintigraphy are used most frequently (27). One approach to 

manage acute cholecystitis is reduction of gallstones in the gallbladder that move into 

the cystic duct. If there is not proper breakdown of the gallstones, complications may 

occur; such as, advanced cholecystitis or gallbladder perforation (25). Acute 

cholecystitis management includes (i) fasting to reduce the stress of inflamed 

gallbladder, (ii) rehydration with intravenous fluids, (iii) antibiotics to counteract the 

infections, (iv) administration of analgesic for pain, (v) procedures to remove 

gallstones through medication (indomethacin (28) and diclofenac (29)) and/or removal 
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of the gallbladder (cholecystectomy, laparoscopic cholecystectomy), which is the gold 

standard approach (30). 

ii. Chronic cholecystitis

Chronic cholecystitis is characterized by continual inflammation of the 

gallbladder that drives mechanical and physiological dysfunction (31). Over 90% of 

chronic cholecystitis cases are associated with gallstone blockage in the cystic duct, 

leading to abdominal pain (biliary colic), episodic waves of epigastric pain, and 

discomfort (21). Studies show that lithogenic bile may promote gallbladder damage 

through free radical formation from hydrophobic BAs that, together with the reduction 

of the mucosa protection, induce a continuous inflammatory state (32, 33). 

Furthermore, the reduction in CCK receptor expression in the smooth muscle impairs 

gallbladder contraction leading to stasis and damaging lithogenic bile formation (31). 

Histological analysis showed that the gallbladder from patients with chronic 

cholecystitis has increased subepithelial and subserosal fibrosis, followed by 

mononuclear cell infiltration (21). Patients with chronic cholecystitis have continuous 

right upper abdominal pain that can extend into the back. Other symptoms include 

nausea, vomiting and anorexia (31).  Hepatobiliary scintigraphy (34) or a hepatobiliary 

iminodiacetic acid scan with CCK (31) are the major imaging procedures used to 

confirm the presence of chronic cholecystitis. The gold standard procedure to treat this 

disorder is laparoscopic cholecystectomy, which is characterized by low morbidity and 

invasiveness (21, 31). Differences and similarities in acute versus chronic cholecystitis 

are shown in Figure 3.

iii. Gallbladder perforation

Gallbladder perforation is characterized by a hole or an opening in the 

gallbladder wall usually as a complication of acute cholecystitis. Gallbladder 
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perforation has high morbidity and mortality rates due to delays in diagnosis (21, 35, 

36). Usually, a calculus is formed which blocks the drainage of bile from the cystic duct 

which increases intra-cholecystic pressure, epithelial injury, secretion of 

phospholipases, degradation of cell membranes, and intense inflammatory reaction, 

resulting in gallbladder perforation (37). Several studies observed that the most 

frequent site of perforation is the fundus (35, 38). Niemeier (1934) classified 

gallbladder perforation into three types: Type I, acute perforation into the free 

peritoneal cavity; Type II, subacute perforation where the 

perforated peritoneal cavity of the gallbladder is surrounded by an abscess; and Type 

III, chronic perforation with the presence of fistulous communication between the 

gallbladder and some other viscus (39). This classification was based on 

clinicopathological findings and was criticized by different studies. For instance, 

Anderson et al. reported a case series of cholecystobiliary fistulae and classified them 

as Type IV gallbladder perforation (40). The difficulty in diagnosing gallbladder 

perforation and distinguishing it from acute cholecystitis are documented (36, 41). 

Morbidity and mortality rates of gallbladder perforation are high due to delays in both 

diagnosis and treatment. Gallbladder perforation treatment includes cholecystectomy, 

drainage of abscess, if present, and abdominal lavage (35). In sum, an earlier 

diagnosis and immediate surgical intervention may reduce morbidity and mortality 

rates. 

b. Gallbladder polyps

Gallbladder polyps are an elevation of the gallbladder mucosa that extends into 

the lumen (42, 43). Polyps may be classified between “true” and “pseudopolyps” based 

on earlier pathological descriptions (42). True gallbladder polyps are adenomas of the 

gallbladder wall that can progress into malignant phenotypes. Indeed, they can be 

Page 14 of 201Comprehensive Physiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://pubmed.ncbi.nlm.nih.gov/?term=Niemeier%20OW%5BAuthor%5D


For Review Only

categorized as benign (fibromas, lipomas, and leiomyomas) or malignant 

(mesenchymal neoplasms, lymphoma, or metastases). Pseudopolyps do not have 

malignant potential and are categorized as cholesterol pseudopolyps, focal 

adenomyomatosis, and inflammatory pseudopolyps (42, 44). The progression of non- 

malignant gallbladder polyps to malignancy is characterized by different risk factors, 

including polyp size, Primary Sclerosing Cholangitis (PSC), Indian ethnicity, sessile 

polyps, gallstones, and gallbladder wall thickening (44, 45). The diagnosis of 

gallbladder polyps mostly occurs on accident during imaging (transabdominal 

ultrasound, multiparametric ultrasound, and endoscopic ultrasound) for diagnosis of 

intermittent right upper quadrant pain, nausea, and vomiting (46). According to the 

size of the polyps and the medical history of the patient, the management of gallstone 

polyps may be different. Briefly, if the polyps are 6-9 mm in a patient with the risk 

factors descried above, cholecystectomy is recommended; however, if the patient has 

6-9 mm gallbladder polyps and do not have any risk factors, serial US examinations 

are required at 6 months, 1 year and then early up to 5 years to monitor size (44, 47).

c. Gallbladder cancer

Gallbladder cancer is the most common malignancy of the biliary tract with poor 

diagnosis and variation in incidence across the world (48, 49). Epidemiological studies 

observed that Native Americans and Southeast Asians are at a higher risk to develop 

gallbladder cancer, followed by Eastern European including Polish, Czech, Slovakian, 

and Asian. On the other hand, South Americans of Indian descent, Israeli and 

Japanese persons have shown moderate risk of gallbladder cancer development (48, 

50, 51). This variability on the onset of gallbladder cancer is due to the combination of 

environmental and genetic factors. Indeed, women have a higher risk to develop 

gallbladder cancer compared to men (female:male ratio ~2.6:1), especially over 50 
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years of age (51). The enhanced incidence of gallbladder cancer in women is likely 

due to higher estrogen levels, which promotes the formation of gallstones through 

increasing cholesterol saturation in bile (52). Furthermore, there are other risk factors 

that can increase gallbladder cancer incidence, including body mass index (BMI), 

family history, cholelithiasis or other benign gallbladder pathologies, chronic infection 

with Salmonella or Helicobacter pylori, anomalous pancreatobiliary duct 

junction, porcelain gallbladder, gallbladder polyps, and obesity. Lastly, secondary 

risks factors including tobacco consumption, chemical exposure (benzene), high 

carbohydrate intake, and chronic diarrhea can influence gallbladder cancer risk (50, 

51). The symptoms of gallbladder cancer are very vague and mimic biliary colic, 

making it difficult to diagnose; however, the advanced stage of gallbladder cancer is 

characterized by weight loss and jaundice, and imaging approaches can help in the 

identification of the tumor mass (49, 51).  According to the American Joint Committee 

on Cancer’s 8th edition, the staging of gallbladder cancer is divided into tumor (T) and 

lymph node (N) categories (53). Specifically, the T categories describe the tumor 

penetration levels within the gallbladder wall and the N categories describe the number 

of metastases in the lymph nodes (51, 53). Gallbladder cancer can be treated by 

chemotherapy, targeted therapy, and surgery (54). Early-stage gallbladder cancer 

patients can undergo surgical resection, but most of the diagnosis occurs when the 

cancer is advanced. In this case, gallbladder cancer patients undergo chemotherapy 

and a series of surgical procedures to improve their lifespan (49, 51, 54).

d. Gallstones (cholelithiasis)

Cholelithiasis is the clinical manifestation of concreted bile salts, bilirubin and 

sterols in the gallbladder or common bile ducts popularly known as gallstones or bile 

duct stones, respectively. Cholelithiasis is a disorder involved in many liver diseases, 
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and thus most of this chapter will be spent discussing the intricacies of this injury. Over 

time, cholelithiasis leads to multiple compactions resulting in an inflamed gallbladder, 

or cholecystitis (described above). Gallstones are formed in the gallbladder and/or 

intrahepatic bile ducts and sporadically move into the common bile duct or the 

intestines (55, 56). The presence of gallstone disease has an incidence rate of about 

10% to 20% in the adult population (56, 57). Cholelithiasis can be symptomatic or 

asymptomatic depending on the lithiation or stone formation stage (58). The major 

factors leading to the formation of gallstones include defective gallbladder motility, 

metabolism and secretion of cholesterol and BAs (59). The gut microbiota is also 

involved in the regulation of BA metabolism and composition of the BA pool, 

contributing to gallstone formation (60, 61).

i. Types of gallstones (cholelithiasis) and formation

According to the composition of major constituents, gallstones are categorized 

into three types: pure cholesterol stones, pure pigment stones and mixed stones (62). 

Cholesterol gallstones are estimated to account for more than 80% of gallstones 

diagnoses (63). Several studies analyzing the composition of surgically removed 

gallstones found that cholesterol gallstones are the dominating cause of clinical 

gallstone disease (64). In a German study, cholesterol was observed to be the main 

constituent in 93.3% of gallstones, and pigment was in 5.5% of gallstones (65).

 The origin of cholesterol gallstones has common pathogenic links with broad 

metabolic abnormalities characterized by altered cholesterol homeostasis, such as 

obesity, dyslipidemia, type 2 diabetes, NAFLD and the metabolic syndrome (56, 66, 

67). In fact, many of these metabolic disorders have been associated with an elevated 

occurrence of cholesterol gallstones (68, 69).
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Pigment stones are mainly constituted by calcium bilirubinate and can further 

be classified into black and brown stones (70). Black pigment stones are often related 

to physiological and pathophysiologic conditions including increased production of 

unconjugated bilirubin and hemolysis, and clinical conditions such as cirrhosis, 

spherocytosis, thalassemia, sickle cell disease, and malaria (70, 71). There is a higher 

incidence of black pigment stones than cholesterol gallstones in developing and Asian 

countries (72-74); however, the prevalence of cholesterol gallstones is increasing in 

Asia due to an increase in Westernized lifestyle (73). Brown pigment stones, which 

contain more cholesterol and fatty acids (FAs) than black pigment stones (75), are 

observed in the hepatic ducts and believed to be caused by cholangitis, biliary stasis 

(76, 77), or parasitic infestations (71). Brown pigment stones are not as common in 

Western countries as they are in Asia (78, 79). A figure summarizing the main 

gallbladder diseases can be found in Figure 4.

ii. Genetic risk factors of cholelithiasis

Just like other gastrointestinal disorders, risk factors for gallstone formation 

include both genetic and environmental components. Cholelithiasis is a complex 

polygenetic disease since the association between some gene variants and gallstone 

formation have been verified. For example, the single nucleotide polymorphisms of the 

genes HHEX (rs1111875), MC4R (rs17782313), MAP2K5 (rs2241423) and NRXN3 

(rs10146997), were positively associated, but FAIM2 (rs7138803) was negatively 

associated with the occurrence of gallstone disease (80).

Extensive genetic analysis also identified a gallstone (Lith) gene map that is 

essential for the formation of gallstones. Lith1 is one such gene that affects 

cholesterol-induced gallstones in mice (81). By using gallstone-susceptible mice 

(C57BL/J) and gallstone-resistant mice (AKR/J), it has been identified that Lith1 and 
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Lith2 are related to gallstone formation. Lith1 is involved in the regulation of liver 

cholesterol hypersecretion, and Lith2 plays a role in the bile salt-dependent bile flow 

(82). In human species, ATP-binding cassette subfamily G 5 (ABCG5) and ABCG8 

are homologous to murine Lith1 and Lith2. ABCG5 and ABCG8 are expressed in 

hepatocytes and intestinal cells and can be transported from the endoplasmic 

reticulum to the apical membrane as heterodimers (83). ABCG5/G8 can transport 

neutral sterols into bile in hepatocytes or promote cholesterol efflux from the 

enterocyte back to the intestinal lumen for fecal excretion (84). When ABCG5/G8 is 

inactivated, reduced efflux of cholesterol into bile results in increases cholesterol levels 

in plasma and liver. While knockdown of ABCG5/8 may be a deterrent to gallstone 

formation by attenuation of cholesterol secretion, overexpression of ABCG5/G8 may 

increase cholesterol levels in the gallbladder, thus enhancing the likelihood of 

cholesterol crystal formation (85). Furthermore, ABCG5/G8 was observed to be 

related to cholesterol gallstone prevalence in patients, and the gallstone associated 

variants in ABCG5/G8 (ABCG5-R50C and ABCG8-D19H) were found in German, 

Chinese, Chilean and Indian populations. Overall, these findings show that these two 

genes influence gallstone disease.  

Even though ATP-binding cassette subfamily B member 11 (ABCB11) and liver 

X receptor alpha (LXRA) are in the interval of the Lith locus, no genetic susceptibility 

of gallstone formation was associated with these two genes in the German samples 

tested (86). Lith6 is another locus in the gene map which has two functional candidate 

genes associated with it, apolipoprotein B mRNA-editing protein (APOBEC1) and 

peroxisome proliferator-activated receptor gamma (PPARG) (87, 88). Like the 

previous study, analysis of German patient samples did not find an association of 

APOBEC1 or PPARG with gallstone susceptibility. More analysis and mapping of Lith1 
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and Lith6 loci are needed to identify more variants of gallstone susceptibility in humans 

(88).   

The apolipoprotein E4 allele is related to the prevalence of gallstone disease. 

The E4 allele was found to be positively associated with gallstone disease in a meta-

analysis of Chinese Han populations (89). Another study showed no correlation 

between apolipoprotein E genotypes and gallstone disease in a Danish population 

(90). No significant associations for E4 allele carriers were found in mixed ethnic 

populations or in white populations by meta-analysis (90). Meanwhile, conflicting 

results were reported for the E4 association in Hispanic and Spanish populations (91, 

92). In fact, the apolipoprotein E plays an important role in the regulation of the 

response to dietary cholesterol and cholesterol excretion into bile as evidenced in 

knockout mice (93). However, no influence on bile cholesterol excretion was found 

due to the E4 carrier state in Caucasians with gallstones (94).

 Young human adults with ATP binding cassette subfamily B member 4 

(ABCB4) gene mutations present with low phospholipid levels in bile, which is 

associated with cholelithiasis (95). Mutations in mucin (MUC)-related genes have been 

extensively studied to elucidate the role of mucin in the development of gallstones. For 

example, MUC5AC encodes for a gel forming mucin that, when in excess, can 

promote gallstone concretion that is heavily influenced by interleukin (IL)-1β (96, 97). 

Tumor necrosis factor alpha (TNF-) was also found to be induced by prostaglandin 

2 which, in turn, induced the over expression of MUC2 gene that is involved in 

gallstone formation (97).

iii. Lifestyle and cholelithiasis

An increase in alcohol consumption was inversely related to occurrence of 

gallstone disease in females (98). The negative correlation between alcohol 
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consumption and cardiovascular disease may explain the protective effects of alcohol 

consumption on cholesterol homeostasis (99). These benefits are attributed to 

increased cardio-protective blood levels of high density lipoprotein cholesterol and an 

increase in BAs (100). Other preventive mechanisms of alcohol consumption on 

gallstone formation include enhanced gallbladder motor function together with 

stimulation of contractions, thus reducing bile stasis and gallstone formation   (101). 

Interestingly, a higher daily alcohol consumption was related to faster self-reported gut 

transit (102) and acute administration of alcohol was shown to stimulate propulsive 

pressure waves in the ileum but suppress impeding pressure waves in the jejunum 

(103). Therefore, the protective effects of alcohol consumption on gallstone disease 

may be due to the inhibition of secondary BA entry in the enterohepatic circulation.

Physical activity seems insignificant to gallstone disease. In a randomized 

controlled trial, an intervention of moderate or vigorous physical activity in pregnant 

women showed no influence on gallstone formation (104). Further, in the subgroup 

diagnosed with gallstones while being unaware of their status, physical activity was 

negatively related to clinical gallstone disease hospitalization when compared to a 

sedentary lifestyle (105). Furthermore, gallstone disease was inversely associated 

with physical activity in cohort studies (106). However, physical activity increases 

plasma CCK that enhance gallbladder contractions (107). These mechanisms may 

explain how physical activity exhibits beneficial impacts on pain related to gallstone 

disease. 

iv. Obesity, weight loss and cholelithiasis

It was observed that gallstone disease is associated with certain body fat tissue 

(except BMI), such as: waist-to-hip circumference ratio with screen-detected gallstone 

disease, and computed tomography that measured visceral or subcutaneous fat with 
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clinical gallstone disease (108, 109). However, many other studies demonstrated the 

association between elevated BMI and gallstone formation, indicate BMI as an 

independent risk factor for the development of gallstone disease (110, 111). It has 

been estimated that a rise of more than 5 points of the BMI value increases the risk of 

gallstone disease by 1.63-fold (112). This correlation has been positive for females, 

but for males there is a lower association (113). This kind of variability may be 

attributed to the greater part of lean mass in men compared with women (113). It must 

be considered that there are other predominant factors such as estrogen levels in 

females, which can increase the synthesis and secretion of hepatic cholesterol, along 

with greater cholesterol saturation index and crystals formation, which make gallstone 

disease more prevalent in female patients (58). 

On the other hand, excessive weight loss due to calorie restriction is also 

related to gallstone disease (114). There is more risk for incident screen-detected 

gallstone disease in patients undergoing bariatric surgery followed by rapid weight loss 

(115). The underlying mechanisms for gallstone disease prevalence during rapid 

weight loss may include an initial increase of bile cholesterol saturation, as well as 

impaired gallbladder motor function (116).

v. Estrogen and cholelithiasis

It has been reported that females are more predisposed to gallstone disease 

(98). This may be due to the binding of 17β-estradiol to intracellular estrogen receptors 

in the liver stimulating the excretion of cholesterol into bile, resulting in increased bile 

cholesterol saturation (117). Estrogen also promotes the activity of β-Hydroxy β-

methylglutaryl-CoA (HMG-CoA) reductase to facilitate endogenous cholesterol 

synthesis (117). In one study, women with higher urinary estrone levels had a higher 

risk of gallstones disease (118). Similarly, hormone-replacement therapy promotes 
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increased bile cholesterol saturation in postmenopausal women (119). Overall, bile 

cholesterol saturation may play a key role in female gallstone disease. 

vi. Microbiome influence on cholelithiasis

An increasing number of studies have shown the important role of the gut 

microbiome on cholelithiasis (61, 120). These complex microorganisms also exist in 

bile and the prevalence of gallstones is closely associated with abnormalities in bile 

duct flora. The microbiota of the gastrointestinal and biliary tracts are involved in 

almost all stages of bile formation, such as the regulation of cholesterol metabolism, 

lipid metabolism, biotransformation and enterohepatic circulation of BAs (121).

Studies have demonstrated the existence of living bacteria in gallstones. 

Microorganisms can enter the bile duct system from the duodenum via migration 

through the sphincter of Oddi, and they can also spread through the blood to the liver 

and next into bile (122). Microorganisms play a critical role in bile as nucleating factors, 

resulting in the formation of cholesterol and pigment gallstones (123). Gallstone 

formation can be regulated by bacteria properties in the gallbladder. For example, 

bacteria producing -glucuronidase and phospholipase promoted pigment gallstones, 

while bacteria causing mucus abnormalities promoted cholesterol stone formation 

(124). Biofilm-forming bacteria in the bile, gallbladder, and gallstones are closely 

related to gallstone formation (125, 126). By comparing cholesterol gallstones with 

pigment gallstones, gram-positive bacteria were common in most of cholesterol 

gallstones, but not observed in pigment stones. Furthermore, Helicobacter pylori, a 

Gram-negative, motile bacteria was found in patients with symptomatic gallstone 

disease (127). However, this finding is still controversial, and more research is 

necessary to elucidate the role of the microbiota in gallstone disease. There are a 
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variety of risk factors that are associated with gallstone disease (Table 1) that need to 

be considered.

vii. Mouse models of cholelithiasis

The role of diet and ion channels have been well studied in cholelithiasis, and 

diet-induced models of cholelithiasis have widely been used to explore the effects and 

contributions of different ion channels to the concentration of bile. A lithogenic diet, 

which is constituted of 15% dairy fat, 50% sucrose, 20% casein and 1% cholesterol, 

is fed to mice for 18 weeks to induce cholelithiasis; however, various mouse strains 

respond differently where 100% of the C57BL/J and A/J strain were susceptible to and 

developed gallstones (81). Even though mucin has been highlighted to form a 

protective barrier in the gallbladder, studies in hamsters have reported that over 

secretion of mucin precedes gallstone formation in a lithogenic diet-induced model of 

gallstone formation (128). From other existing studies on animal models, it can be 

concluded that mucin is an important constituent of the gallstone matrix. In highly 

concentrated bile, gallbladder mucin can accelerate cholesterol monohydrate 

nucleation, a process that constitutes gallstone formation (129-131). There are several 

genes related to mucin expression such as MUC1 and MUC2 in the gallbladder that 

pose a genetic risk factor for gallstone initiation, as discussed above (132, 133).

Impaired lipid metabolism in the liver can translate to gallstone formation. A 

murine model with genetic knockout of liver-specific fatty acid binding protein 1 (L-

Fabp-/- mice) fed with lithogenic diet for 2 weeks became significantly 

hypercholesterolemic along with developing more gallstones compared to the WT 

mice fed with lithogenic diet (134). L-Fabp-/- mice fed with chow diet also had increased 

fecal BA excretion and decreased ileal apical sodium-dependent bile acid transporter 

(Asbt) expression compared to the L-Fabp-/- mice fed with lithogenic diet, indicating 
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that enterohepatic shunting of BAs contributed to gallstone formation in this model 

(134). Knockdown of fatty acid transporter 2 (Fatp2-/- mice), which is also expressed 

in the gallbladder and the liver, showed reduced triglyceride content in the gallbladder 

and improved contractile strength in mice exposed to lithogenic diet (135). Fatp2 is 

encoded by the solute carrier family 27-member 2 gene and knockdown by adeno 

associated virus (AAV) reduced gallstone formation in mice fed with lithogenic diet for 

8 weeks (84). Interestingly, Fatp2 knockdown did not affect cholesterol concentration 

and solubility in bile, but instead increased FA content in bile [83]. Although the authors 

did not elucidate the involvement of a specific pathway for Fatp2 mediated effects, 

they did highlight the role of prostaglandins in mediating gallbladder contractility [83].

CLINICAL ASPECTS OF GALLBLADDER DISEASE

I. Background

Gallstones represent the most prevalent disease of the biliary tract in the 

Western world, affecting 10-15% of the general population (136, 137). Changes in 

prevalence are observed according to gender and ethnicity (138) with Pima Indians 

exhibiting a historically higher rate of the gallstones with ~50% of adults affected (139). 

The economic burden of gallstone treatment is also significant (>$5 billion per year in 

the U.S.) and seems to be increasing (136). Gallstone-related mortality is declining 

and is relatively low (approximately 0.6%) but given the frequency of the disease, as 

reported in a 1979-2004 U.S. analysis, more than 1,000 patients per year die due to 

gallstone disease (140).

II. Symptomatic gallstones

Symptomatic gallstones are generally regarded as a condition requiring 

treatment since they have an increased risk of developing complications. As reported 
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previously, symptoms may be vague and not directly drawing attention to gallstones; 

however, prompt recognition and diagnosis may prevent conditions with significant 

morbidity and mortality, as reported in the following paragraphs.

III. Asymptomatic gallstones

Despite the difficulties in defining asymptomatic or symptomatic gallstones, the 

differences in the natural history of these two classes has been an argument for some 

time (141). In early studies on cholelithiasis, the estimated risk to develop symptoms 

was 1-2% yearly (142, 143). Onset of complications was ten times lower in 

asymptomatic patients (0.1-0.3% yearly) in comparison with symptomatic cases (144). 

In asymptomatic populations, the risk of treatment (typically surgical) is reportedly 

higher than the benefits (145, 146) and current guidelines do not suggest an operative 

approach for this subset of patients.  Generally, observation of patients for onset of 

symptoms is advised (144, 147); however, exceptions may exist to this strategy.  The 

most important exception in general practice is represented by porcelain gallbladder 

(148). This condition was historically linked to a significant risk in developing 

gallbladder cancer. Porcelain gallbladder consists of calcium deposition on the 

gallbladder wall (easily detected on US or computed tomography [CT] scan) that may 

present as complete or selective, with the latter form preferentially associated with 

malignancy. The high rate of cancer reported for this condition in early studies (12-

33%), has been challenged by more recent data observing a lower rate of malignancy 

(≤6%) (148). Systematic gallbladder removal in patients with porcelain gallbladder 

remains controversial and consideration on a case-by-case evaluation seems wiser. 

IV. Diagnosis

a. Symptoms and manifestations
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Knowing the symptoms of gallstones in patients is of paramount importance to 

help distinguish between the two main clinical presentations, asymptomatic and 

symptomatic gallstone disease. For the past century, it is understood that the majority 

(nearly 70%) of gallstones are asymptomatic in nature, thus patients that complain of 

gastrointestinal issues are usually considered for treatment (141). However, the 

specific symptoms related to gallstone disease are not completely defined. A large 

cross-sectional Italian study, enrolling nearly 30,000 patients and focusing on 

gallstone symptoms concluded that right hypochondrium and/or epigastric pain (i.e., 

biliary colic), together with scarce tolerance to fatty meal, were among the more 

specific complaints (149). When these signs were present in the lack of gastro-

esophageal reflux disease, they were far more specific for the diagnosis of gallstones. 

Cholelithiasis may induce biliary colic (150), that includes pain radiation to the back 

(right scapula), can last for hours and is associated with vomiting and other 

gastrointestinal symptoms, due to stone impaction in the cystic duct. Another sign 

noted during physical examination is the exacerbation of pain when the medical 

examiner has their hand firmly kept under the costal margin of the right chest (i.e., 

Murphy maneuver). Despite these definitions, the ability to detect symptoms of 

cholelithiasis differs in geographic location leading to heterogenous rates of treatment, 

definition of relevant signs and guidelines (151). 

b. Blood biochemistry and imaging

There are no specific blood markers for the diagnosis of symptomatic 

cholelithiasis. Common liver function tests (alkaline phosphatase) and/or general 

inflammation indexes (C reactive protein levels and white blood cell counts) may be 

increased based on complications and the site of gallstone impaction. Some tests may 
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help in identifying specific complications, and these will be described in the 

corresponding paragraphs.

Beginning in the early 1980s, US emerged as an easy and specific imaging 

system for identifying gallstone disease (152). This technique has also been 

instrumental in identifying the natural history of gallstone formation in both 

asymptomatic and symptomatic forms. Typical stone US findings are iperechoic wall 

with a posterior shadow and, despite technical advancement, this technique remains 

superior in comparison with CT (153). MRI and cholangio-MRI have also had important 

applications for imaging gallstones. In fact, cholangio-MRI replaced diagnostic 

retrograde cholangio-pancreatography for gallstone detection since it accurately 

reproduces the anatomical picture of the biliary tree without safety issues. MRI is 

usually used as an integrative imaging approach when symptomatic gallstones are 

ruled out by US, but the potential presence of biliary stones need to be examined.

V. The clinical picture

The clinical picture of cholelithiasis may change widely ranging from 

asymptomatic forms to life-threatening conditions. The historical division of patients in 

two main classes (asymptomatic and symptomatic), even if it does not recapitulate the 

entire clinical horizon, is considered helpful in giving a general indication in selecting 

subjects needing treatment. Symptomatic patients may present with several 

complications and require closer monitoring or intervention. 

a. Acute cholecystitis

As reported by Friedman et al. (141), acute cholecystitis appears to be the most 

frequent complication of gallstones, involving approximately one out of ten 

symptomatic patients. While the exact combination of clinical, biochemical and 

imaging features unequivocally leading to acute cholecystitis diagnosis is not yet 
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defined, the presence of fever, right hypochondrium pain, increased inflammatory 

markers and finding of gallbladder thickening and stones at US usually lead to the 

diagnosis (154). In the absence of stone migration to the common bile duct (described 

in the next paragraph) surgical resection of gallbladder (cholecystectomy) is generally 

indicated. Contraindications to cholecystectomy include those of general surgery such 

as septic shock or severely impaired clinical conditions. Conservative management of 

acute cholecystitis in patients with limited symptoms, even if sometimes successful, is 

generally not advised since ~60% of these patients would later require surgery and 

approximately one third will experience complications (155, 156). Timing for surgery 

depends on patient symptoms and risk of complications; however, a Cochrane Review 

comparing early (within 7 days from symptoms) and delayed (>6 weeks from 

symptoms) cholecystectomy for acute cholecystitis did not find significant differences 

in patient outcomes (157). A shorter hospital stay has been suggested when early 

cholecystectomy is performed.

b. Gallstones in the biliary tract and related complications

Even if stone migration to the biliary tract is not canonically considered a 

complication, this condition, associated with cholelithiasis in 10-20% of cases, is 

responsible for the most serious adverse events (158, 159). Analyzing the Swedish 

GallRisks registry, it was found that ~25% of patients with common bile duct stones 

may experience complications (160) while spontaneous expulsion from the biliary tract 

into the intestines is also possible.  Common bile duct stone diagnosis is generally 

ruled out by the increase in liver function tests (usually normal if stones are retained 

in the gallbladder and/or cystic duct) and imaging (either US or MRI).  Since common 

bile duct stones may determine relevant sequelae including obstructive jaundice, 

cholangitis and pancreatitis, bile tract cleansing is generally advised by current 
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guidelines (158, 159). The most relevant adverse conditions determined by stone 

impaction in the biliary tract are reported below.

Gallstones are the most frequent benign cause of obstructive jaundice, which 

impairs the liver and other physiological functions (161). Regarding the kidneys, in a 

study including 20 patients with obstructive jaundice (duration ~2 weeks), signs of 

acute tubular necrosis were observed at histology despite normal renal tests (162). 

Obstructive jaundice may also impair hemodynamic stability, immune fitness and the 

intestinal barrier leading to possible endotoxemia (161). Finally, obstructive jaundice 

may lead to bacterial overgrowth in the biliary tract, thus determining cholangitis.

Cholangitis diagnosis has been generally related to the presence of fever with 

spikes in pain in the right hypochondrium and jaundice (Charcot’s triad); however, 

these signs were found to be present in just 22% of patients with cholangitis (163). 

Mortality of this condition remains significant, approaching 5% of cases (164). Broad 

spectrum antibiotics and, in severe cases, prompt biliary decompression is advised.

Gallstones are regarded as the most important cause of pancreatitis being 

responsible for more than one third of cases (165). Also, small stones/cholesterol 

crystals may sometimes give rise to acute pancreatitis (166). Epigastric pain increased 

pancreatic enzymes, and demonstration of stones at imaging may rule out the 

diagnosis. Mortality may occur in ~30% of severe cases (167).

There is an apparent association between gallbladder disorders, gallstones and 

bile duct damage. The role and occurrence of gallbladder disorders in cholestatic liver 

disease will be described in the following sections.

INTRODUCTION ON THE BILIARY TREE

I. Biliary tree structure, function and physiology
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a. Background

The biliary tree, named so due to the resemblance the structure has with the 

branches of a tree, refers to the network of ducts that transport bile from the 

hepatocytes to the gallbladder and intestines. This system is involved in metabolism, 

waste disposal, and the movement and recycling of nutrients in the body (168-170). 

Bile plays a crucial role in the digestion and absorption of FAs, it emulsifies FAs and 

allows the hydrophobic molecules to be absorbed and transported for use or storage 

(168). A small percentage of the bile is lost in feces, allowing for larger molecules that 

cannot be excreted through the kidneys to also be disposed (168). The remainder of 

bile is reabsorbed and sent back to the liver through a cyclic process called 

enterohepatic circulation (171). Finally, selected vitamins and minerals use the biliary 

excretory system as a shuttle to connect to tissues where they are needed (168). The 

gallbladder is a protrusion extending from the biliary tree, indicating close anatomical 

relationships, and 10-15% of gallstone patients also present with bile duct stones 

(172); therefore, it is important to understand the biliary system and related diseases 

and how they may intersect with cholelithiasis.

b. Anatomy of the biliary tree

The branches of the biliary tree start in the liver, joining with other branches 

over and over until the whole network combines to form a single duct.  The total length 

of the branches of the biliary tree in humans would be about 2 km (173). Different 

zones of the biliary tree can be separated by their area, diameter, morphology or 

physiology (174); however, in this review we will use luminal diameter to separate the 

different regions. The smallest sized bile ducts that make up the biliary tree begin at 

the canals of Hering, starting at just a few nanometers in diameter and lined by hepatic 

progenitor cells (HPCs) (171, 173). These canals separate canicular bile secreting 
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hepatocytes from the epithelial cholangiocytes that line the rest of the bile ducts. HPCs 

play a role in liver regeneration following injury, thus their presence in the canals of 

Hering is advantageous for hepatic recovery (175). The canals of Hering meet to form 

ductules, which come together as interlobular ducts, then septal ducts, each of which 

have consecutively larger diameters (170, 176). At this point, area ducts measure 300-

400 m in diameter and connect to the larger segmental ducts (400-800 m) (171). 

This is where the left and right hepatic ducts, named for the liver lobes they branch 

into, finally come together to form the single common hepatic duct, collecting all the 

bile fluid the liver secretes (176). These measurements are for humans, and it is 

important to note that in rodents, cholangiocytes are more simply divided into small 

and large subsets, named for their anatomical location on either the small (<15 m in 

diameter) or large (15 m in diameter) ducts (177).  

The common hepatic bile duct exits the liver then either diverts to the 

gallbladder through the cystic duct or continues from the liver as the common bile duct 

(171). The common bile duct meets the pancreatic duct after passing through the wall 

of the upper small intestine, to make the hepatopancreatic ampulla (i.e., the ampulla 

of Vater) (170, 176, 178). The ampulla of Vater consists of the conjoining pancreatic 

and common bile ducts, the sphincter of Oddi, and an extrusion of papilla where bile 

is released into the duodenum (168, 170, 178).

Along the murine intrahepatic large ducts and the human large segmental 

ducts, small peribiliary glands sporadically line the luminal wall (170, 171). The 

peribiliary glands are defined by their location, their mucinous secretions and their own 

stem cell niche that is separate from the HPCs (170). Secreting directly into the lumen 

of the bile ducts, intramural peribiliary glands have a mucosal epithelium and line the 

duct walls (170). Conversely, extramural peribiliary glands, located in the periductal 
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connective tissue, have their own conduits that transport their seromucosal secretions 

to the large bile duct lumen (170). Peribiliary glands have also been identified in the 

crypts of the gallbladder epithelium (179), indicating similar yet heterogenous 

cholangiocyte functions in the biliary tree and gallbladder. Branching of the biliary tree 

and its specific stem cell niches are shown in Figure 5.

While the inner walls of the ducts are lined by epithelial cholangiocytes and 

scattered peribiliary glands, a fibromuscular layer of tissue lays beneath (170, 178). 

This layer is made up of fibrous tissue and smooth muscle fibers (178). Where the 

ducts meet with the duodenum, the muscles form the sphincter of Oddi, which controls 

the release of the contents into the intestine (170, 176, 178). Additionally, the blood 

supply for the ducts comes from a network of vessels stemming from the hepatic artery 

(173). This network of vessels surrounds the bile ducts and is termed the peribiliary 

plexus (PBP) (173, 180). The PBP provides nutrients to the bile ducts to allow for 

growth, but it also allows for an alternative enterohepatic circulation route for BAs to 

be recycled back to hepatocytes via cholangiocytes in a process called cholehepatic 

shunting (169, 173). The normal route of enterohepatic circulation and recycling of 

BAs is through intestinal absorption, and then delivery to hepatocytes where they are 

secreted again into the ducts (168, 169). Interestingly, there is a concept of a 

cholecystohepatic shunt whereby the gallbladder coordinates BA uptake from bile to 

the liver (181).

c. Cholangiocytes

The differing physiologies of the cholangiocytes allow for a high level of control 

to alter the flow and composition of bile. Cholangiocytes, much like other epithelial 

cells, are polarized, have a multitude of transport proteins, and have distinct 

basolateral and apical membranes (174, 182). On the basolateral side, they connect 
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to basement membranes (170, 174) and on the apical side of cholangiocytes, microvilli 

and cilia line the lumen, and between these cells, tight junctions maintain cell polarity. 

Certain disease states can result in an interruption in tight junctions, interrupting the  

flow of bile (171). While all cholangiocytes have diverse physiologies, the size and 

location of the cells influence their form and function.

Starting just after the canals of Hering, narrow canalicular ducts (about 10 m) 

are lined by small cuboidal epithelial cholangiocytes, which have little resorptive and 

secretory abilities (174). The properties of small cholangiocytes rely heavily on altering 

intracellular levels of Ca2+, where large cholangiocyte activities are more dependent 

on cAMP levels (174, 183). Large cholangiocytes are longer, have less microvilli and 

cilia on their apical membrane, and have a lower cytoplasm to organelle ratio. Most of 

the larger cells’ intracellular space is taken up by rough endoplasmic reticulum, 

suggesting that large cholangiocytes play a more specialized, less variable role than 

their small counterpart (174, 183). Conversely, small cholangiocytes resemble 

progenitor cells, with a higher nuclei to cytoplasm ratio (183). Like bile ducts, the 

gallbladder is lined with specialized epithelial cells. As small columnar cells with 

moderate cilia present on the apical membrane, the morphology of the epithelial cells 

that line the gallbladder resemble an intermediate between small and large 

cholangiocytes (184). 

All cholangiocytes have a primary cilium, a thin peninsula-like extension of the 

cell to maximize the surface area of the membrane (173, 174). These cilia sample the 

passing fluid, allowing cholangiocytes to act as mechano-, osmo-, and chemosensors, 

recognizing and responding to changes in bile (174). Further, cholangiocyte action can 

be spurred by a variety of molecules, including hormones, BAs, neuropeptides, and 

alterations in luminal pressure, the action being the alteration of intracellular Ca2+ 
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and/or cAMP, with downstream effects altering the composition of bile, initiating 

cholangiocyte proliferation, or even signaling the activation of immune responses 

(173).  Interestingly, while gallbladder epithelial cells are not noted to have primary 

cilium, they are similarly sensitive to the contents of bile, with a focus on water and ion 

manipulation (5).

d. Bile formation and flow

Hepatocyte secretions generate the bulk of bile, with cholangiocytes only 

accounting for about 40% of the daily production (168, 174). Bile production is 

prompted due to a series of reactions initiated at the beginning of a meal, especially 

one high in FAs. As an emulsifier, bile is a critical facilitator of the absorption of 

hydrophobic FAs (171). Once delivered, micelles are created to enclose and transport 

the lipids through the body (168). Between the delivery of bile to the duodenum and 

being secreted by canalicular hepatocytes, bile composition, flow, and pH is monitored 

and altered through a variety of mechanisms, including alterations controlled by 

gallbladder epithelial cells (185).

Previous cholehepatic research has defined two types of bile flow: BA-

dependent flow and BA-independent flow (186). As previously stated, hepatocytes are 

the main facilitators of BA-dependent flow as the main producers and recyclers of BAs 

(187). For instance, hypercholeretic bile salts, such as the conjugated secondary bile 

salt nor-ursodeoxycholic acid (nor-UDCA), increase bile flow (171). This is especially 

noteworthy, as the composition of BAs has been noted to be linked to gallbladder 

motility (185). It is unknown if gallbladder hypomotility, or an increase in secondary 

BAs resulting in decreased biliary flow is the primary action, but the two have been 

highly correlated (185). Conversely, cholangiocytes support BA-independent flow 

(171, 186, 188).
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Bile mostly consists of water, with only about 5% of the volume being attributed 

to other materials (171). At any time, bile can be composed of BAs, cholesterol, amino 

acids, glucose, steroids, enzymes, vitamins, and even heavy metals (168, 171, 187). 

Xenobiotics and toxins can also be present in bile (168, 171, 186). The biliary tract 

also acts as direct transport to the gut, where immunoglobulin A secreted in bile can 

protect against pathogens and promote symbiotic microorganisms (171, 189, 190). 

Other substances that use the biliary tract for transport elsewhere in the body include 

hormones and pheromones, as well as a number of vitamins (171). Even with all the 

other constituents within bile, BAs are the most abundant component (187). While the 

main function of the gallbladder is to pull water out and concentrate bile, the 

composition of BAs also influences the motility of the gallbladder (185). 

BAs are mainly synthesized and secreted by hepatocytes (171, 173, 187, 191). 

The farnesoid X receptor (FXR) is the main regulator of the synthesis and secretion of 

BAs, and ASBT expressed by cholangiocytes regulates cholehepatic shunting (171, 

187, 191, 192). ASBT is not only expressed by intrahepatic cholangiocytes, but by 

gallbladder epithelial cells, as well (193-195). It has been demonstrated that the 

gallbladder is able to uptake BAs in bile via ASBT, setting up the concept of a 

cholecystohepatic shunt (193-195).  Primary BAs are generated from cholesterol and 

can be modified by additional side chains of taurine or glycine to become secondary 

BAs, which makes them a stronger acid and also decreases the chances of 

reabsorption (171, 187).  Hypomotility of the gallbladder is linked to higher 

concentrations of secondary BAs, which is associated with an increased risk of 

developing cholelithiasis or cholangiocarcinoma (CCA) (196).

Once created, BAs are actively secreted from hepatocytes into bile mainly 

through the bile salt export pump (BSEP) (187). BAs are 100-1000X more 
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concentrated in bile than in plasma; therefore, they must be actively transported 

against this gradient (187). Most other components of bile maintain nearly the same 

concentration within bile fluid that exists in plasma, kept relatively standard through 

gradients found in the PBP (171, 173, 187). The regulation of BAs within plasma is 

also tightly controlled; however, certain biliary diseases alter this, spurring researchers 

to investigate the number of BAs detected in plasma of individuals with different liver 

and biliary pathologies (192, 197). So far, these studies have elucidated expected 

trends, such as the use of UDCA (the unconjugated form of nor-UDCA) for cholestasis 

treatment resulting in altered plasma BA concentrations (192). Additionally, recent 

research by Farhat et al.  noted new trends, specifically that high levels of conjugated 

BAs in plasma link to increased risk for liver cancer or other progressive liver diseases 

(197). Additionally, higher levels of secondary BAs in plasma are associated with 

cholecystolithiasis and non-neoplastic polyps in the gallbladder (198, 199). Beyond 

the synthesis of BAs, bile pH and osmolarity are controlled by cholangiocyte activities 

(173). Interestingly, gallstone formation is not due to lower pH values directly, but is 

instead attributed to increased Ca2+ concentrations in the bile that subsequently lower 

the pH (200).

e. Bicarbonate Secretion

Chloride is exchanged for bicarbonate, making bile alkaline, and the BAs within 

are thus polar, de-pronated, and membrane impermeable (173, 201). This protective 

alkaline constitution of bile, termed the ‘biliary bicarbonate umbrella,’ shields 

cholangiocytes from BA-induced injury, and once secreted in the duodenum, it 

neutralizes the acidic gastric output, protecting the intestinal epithelium and bolstering 

the absorption of nutrients (168, 173). The initiation of chloride/bicarbonate exchange 

is stimulated by increased intracellular levels of cAMP (173, 183). This internal 
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increase in cAMP incites a rise in protein kinase A (PKA) activation, which results in 

the increased transportation of intracellular chloride to the apical membrane via 

vesicles with three specific proteins: CFTR, anion exchange protein 2 (AE2) and water 

channel AQP1 (173, 183, 190). CFTR is also expressed by gallbladder cells, and loss 

of CFTR leads to defects in gallbladder emptying and BA circulation (195). In response 

to CFTR loss, concentrations of secondary BAs (that are conjugated in the ileum) are 

reduced, and this is reversed with cholecystectomy, further indicating a 

cholecystohepatic shunt (195). Both CFTR and AE2 are highly expressed in the 

gallbladder compared to the intrahepatic ducts (181), and in the gallbladder epithelia 

CFTR is required for cAMP-dependent, AE2-mediated bicarbonate secretion (202). In 

patients with gallstones, bile bicarbonate levels are reduced, and thus bicarbonate is 

hypothesized to be the main buffer of bile similar to intrahepatic bile ducts (200).

Other factors can affect bicarbonate secretion, including autonomic 

neurotransmitters (173, 174). Acetylcholine and phenylephrine upregulate biliary 

bicarbonate secretion, while gastrin-releasing peptide and vasoactive intestinal 

peptide (VIP) mediates a consistent baseline of bicarbonate (171, 173). Further, 

hormones such as somatostatin, endothelin, dopamine, and gastrin inhibit the rise of 

intracellular cAMP (171, 173, 201). Bile also contains nucleotides and nucleosides 

that, when interacting with P2Y receptors on the apical membrane, can result in 

increased bicarbonate secretion (171). It is interesting that many of these processes 

can be recapitulated in some fashion in the gallbladder. Acetylcholine promotes mucin 

release in the gallbladder as a defensive mechanism (203) which potentially aids in 

bicarbonate secretion since this process is found on intrahepatic bile ducts (204). 

Additionally, VIP is a potent stimulator of cAMP production in the human gallbladder 

epithelial cells that regulates fluid secretion, and VIP expression is higher in the 
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gallbladder than the intrahepatic bile ducts (181). Somatostatin decreases gallbladder 

motility (205), and endothelin is overproduced in acute cholecystitis and increases 

gallbladder tone (3,4). Lastly, P2Y2 is expressed on isolated gallbladder epithelial cells 

(34) and stimulates mucin secretion (49).

f. Biliary immune function

While cholangiocytes, including those of the gallbladder epithelium, play a 

crucial role in bile flow and composition, they also play a role in both the innate and 

adaptive immune systems (173, 174). Cholangiocytes and gallbladder epithelial cells 

have receptors to identify pathogen- and damage-associated molecular patterns, 

including some of the same proteins that B and T lymphocytes possess such as toll-

like receptors (206). Further, rather than being limited to downstream actions, 

cholangiocytes can proliferate and actively recruit immune cells to areas of injury (171, 

183, 201). Cholangiocyte proliferation is tightly regulated by paracrine and endocrine 

factors, including growth factors like transforming growth factor (TGF) and TNF, 

cytokines, neuropeptides, and hormones (173). For instance, progesterone and 

estrogen have been linked to increased proliferation, where anti-

progesterone/estrogen or a drop in levels of these hormones results in limited 

cholangiocyte growth, and even increased risk of disease states (173, 207, 208).

Cholangiocytes are attributed to the initiation of immune responses within the 

biliary tract due to their high level of intra- and extracellular communication (173), and 

following damage they secrete pro-inflammatory cytokines and chemokines, which 

communicate the location and type of injury to neighboring and immune cells (209).

While gallbladder epithelial cells have similar immune receptors and responses 

to those of cholangiocytes, they are located further down the biliary tract, and thus 

play a delayed, but still important immune role (210). One study found that gallbladder 
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epithelial cells express mRNA for a variety of cytokines and chemokines, as well as 

directly secrete TNF (210). Another study using donated human gallbladders, found 

the presence of multipotent endodermal stem cells within the gallbladder epithelium 

increased in pathologic gallbladders versus comparatively healthy gallbladders (211). 

Research on the potential immune functions of gallbladder epithelial cells is still 

ongoing and evolving.

g. Cholangiocyte-dependent fibrosis

Profibrotic factors can be released to incite downstream effects that promote 

fibrogenesis (212, 213). One study has shown that silencing one TGF- isoform may 

be an effective treatment for fibrotic biliary and liver diseases, limiting the expression 

of pro-fibrotic genes and conversely promoting antifibrotic PPAR expression (212). 

Further, chronic activation of cholangiocytes can result in the development of biliary 

fibrosis, damage, or cancer (212). Overly active fibrogenesis results in a buildup of 

scar tissue can result in decreased functionality of the biliary tract, eventually leading 

to biliary cirrhosis (201, 214). The gallbladder epithelial cells react similarly, with 

prolonged inflammation and immune response potentially resulting in severe fibrosis, 

perforation of the gallbladder, or even gallbladder cancer (215-217).

h. Cholestasis

Cholestasis refers to a decrease or halt in bile flow anywhere along the biliary 

tree. While there are a number of hereditary cholestatic disorders caused by genetic 

mutations, the most common forms of cholestasis are presented through PSC, primary 

biliary cholangitis (PBC), CCA, and cholelithiasis (218, 219). No matter the cause of 

cholestasis, there are few treatments available. The main treatment is to supplement 

with BA analogues, UDCA or obeticholic acid (OCA) that work to reduce BA synthesis. 

If UDCA or OCA treatment fails, a liver transplant is the last option (218, 220). UDCA, 
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when recognized by the biliary tract, increases bile flow, lessens toxicity, and 

encourages the recycling of nontoxic over toxic bile salts (221). Unfortunately, only 

about 40% of patients with cholestasis respond to UDCA treatment, highlighting the 

need for alternative therapies (192, 220). OCA works to reduce toxic BA levels by 

reducing BA synthesis and enhancing hepatic BA efflux (222). Clinical trials on OCA 

use in PBC, PSC and fatty liver diseases have proved promising, but more work 

regarding efficacy is necessary (222). 

LINKS BETWEEN THE GALLBLADDER AND CHOLESTATIC LIVER DISEASES

VI. Primary sclerosing cholangitis (PSC)

a. Background 

PSC is a rare cholangiopathy that firstly targets the bile ducts in the liver leading 

to inflammation, fibrosis, stricturing and eventual cirrhosis and liver cancer (223). The 

majority of PSC patients have extrahepatic and intrahepatic bile duct involvement, 

while a small proportion of diagnoses having intrahepatic only PSC (223). PSC affects 

more males than females, and the median age at diagnosis is 40 years (218, 224). 

Due to the initial unspecific manner of PSC symptoms at onset, PSC is not typically 

diagnosed until the disease has progressed (218). Currently, there are no approved 

therapies for the treatment of PSC, with BA therapeutics including UDCA and OCA 

being tested as potential therapeutics (218). PSC patients have a high risk of 

developing CCA and the only curative treatment for PSC is liver transplantation; 

however, recurrence rates are high demonstrating that this approach is not viable 

(218). While PSC primarily targets the biliary tree, the fibroinflammatory nature of PSC 

can lead to chronic inflammation which can subsequently affect the gallbladder. 

b. PSC, cholelithiasis and cholecystitis
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An early study from 1988 interrogated the incidence of gallbladder disease in 

PSC and found that 89% of PSC patients had abnormal gallbladders, and after 

excluding patients who had thickened gallbladder wall due to end-stage liver disease, 

41% of the remaining PSC patients presented with gallbladder abnormalities (225). 

PSC patients with abnormal gallbladders presented with gallstones, gallbladder 

dysfunction associated with PSC and neoplasms, indicating that gallbladder 

abnormalities are frequent among PSC patients (225). These findings were verified in 

a large study from 2008 that found that 41% of PSC patients present with gallbladder 

abnormalities, 25% have gallstones and 25% have cholecystitis (226). PSC patients 

also have papillary hyperplasia, pseudo gland formation, inflammation, smooth muscle 

hypertrophy and fibrosis in the gallbladder, but these abnormalities were found to a 

similar degree in chronic cholecystitis patients (227). PSC patients and chronic 

cholecystitis patients both presented with mononuclear cell infiltration of the 

epithelium, and although the incidence was higher in PSC it was not significant (227). 

Therefore, there may not be a distinct gallbladder signature in PSC patients compared 

to chronic cholecystitis. A separate study found that PSC-related cholecystitis showed 

diffuse infiltrate, predominantly plasma cells, within the lamina propria which was not 

significantly noted in chronic cholecystitis alone; therefore, the authors suggest that 

diffuse lymphoplasmacytic acalculous cholecystitis is a distinct form of PSC-

associated cholecystitis (228).  Incidence of cholecystitis is significantly higher (30%) 

in patients with extrahepatic PSC when compared to intrahepatic only PSC (9%) (226). 

These findings slightly differ from a Japanese cohort where ~12% of PSC patients 

were concomitantly diagnosed with gallstones (229), although this study did not 

distinguish between intra- and extra-hepatic PSC. 
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Transabdominal US is used to identify bile duct wall thickening and dilatations 

in PSC, but in one study this approach also identified that up to 41% of PSC patients 

presented with an enlarged gallbladder (Figure 6), gallstones, cholecystitis or mass 

lesions (230). The small study found that all PSC patients presented with irregularly 

thick gallbladder wall (230). This study further found that while PSC patients had 

enlarged gallbladders their rates of gallbladder emptying were normal (230). 

The gut influence on cholelithiasis was previously discussed, and it is also 

known that ~80% of PSC patients have concomitant inflammatory bowel disease (IBD) 

(231). Interestingly, around 50% of IBD patients present with hepatobiliary 

manifestations, including PSC, cholestasis and gallstones (232). Patients with Crohn’s 

Disease, severe ileitis or ileal resection have bile malabsorption leading to gallstone 

formation (232), further indicating the gut-liver axis in cholelithiasis.

Multidrug resistance 2 gene knockout (Mdr2-/-) mice are used as a model of 

PSC, and these mice spontaneously form cholecystolithiasis (233). The gallbladder in 

Mdr2-/- mice has needle-like cholesterol stones as early as 12 weeks of age (Figure 7) 

(233). The highly pro-inflammatory hepatobiliary environment might be contributing to 

the concretion of gallstones and aiding in cholecystitis. Moreover, the ability of Mdr2-/- 

mice to spontaneously generate gallstones without the induction from lithogenic diet 

makes it a versatile model to study the intricate signaling mechanisms involved in the 

concretion and crystallization of gallstones. Female Mdr2-/- mice  developed 50% more 

gallstones than male Mdr2-/- mice indicating a sexual dimorphic effect (233), but this 

dichotomous effect has not been published in humans with PSC. Abcb11 encodes 

BSEP that is responsible for the export of BAs from the hepatocyte to the bile 

canaliculus, and Abcb11 colocalizes with the Lith1 (responsible for cholesterol-

induced gallstone formation) quantitative trait locus (234). To understand if Abcb11 is 
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responsible for gallstone formation, the authors generated mice with overexpression 

of Abcb11 and subsequently fed them a lithogenic diet (234). It was found that Abcb11 

overexpression induced biliary BA secretion and bile flow but did not affect 

cholelithogenesis (234).

c. Gallbladder cancer in PSC

Aside from cholelithiasis and cholecystitis, there is an increased rate of 

gallbladder cancer in patients with PSC (235). Some patients present with gallbladder 

lesions, which more than half of the time represent adenocarcinoma, and as such 

cholecystectomy is recommended in all instances of gallbladder lesions regardless of 

size (236). Gallbladder carcinoma was associated with intrahepatic bile duct dysplasia, 

CCA and IBD in PSC patients, and gallbladder dysplasia was associated with 

hilar/intrahepatic bile duct dysplasia, CCA, IBD and older age at transplant; however, 

similar associations were not found for sex or PSC duration (235). From this study, the 

authors conclude that PSC patients have a neoplastic “field effect” along the intra- and 

extra-hepatic bile ducts in PSC, including the gallbladder (235). Importantly, in 40-50% 

of PSC patients with gallbladder neoplasms, these polyps are malignant (237). From 

these studies, one would consider cholecystectomy to be an important intervention for 

PSC patients presenting with gallbladder polyps. However, one study found that 40% 

of PSC patients that underwent cholecystectomy due to gallbladder polyp or mass 

presence had early postoperative complications (238).

VII. Primary biliary cholangitis (PBC) 

PBC is an autoimmune-mediated cholangiopathy that targets the interlobular 

(i.e., small) bile ducts of the biliary tree (239). Risk factors for PBC include being 

female, over 50 years old, and living in a Western country (218, 224). In early stages 
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(stage I/II) of PBC, there is a large degree immune cell influx to the peribiliary location, 

compensatory proliferation of the bile ducts, reduced presence of ductulo-canalicular 

junctions (necessary for bile outflow) and loss of the protective bicarbonate umbrella 

(240). As PBC progresses to later stages (stage III/IV) cytotoxic T cell mediated 

destruction of the bile ducts leads to ductopenia via apoptosis of the small 

cholangiocytes (239). Ductopenia has also been attributed to enhanced senescence 

and toxic BA-mediated cell death due to loss of the bicarbonate umbrella and ductulo-

canalicular junctions (240). These surmounting injuries lead to peribiliary fibrosis and 

cirrhosis if left untreated (239). UDCA and OCA are first-line therapies approved for 

the treatment of PBC, but a number of patients are non-responders to these 

approaches (241). While PBC is an autoimmune liver disease, patients do not respond 

to traditional immunosuppressants, making treatment of the inflammatory cascade 

challenging (241). Due to the pan-inflammatory presence in PBC, it is unsurprising 

that 73% of patients with PBC present with extrahepatic manifestations of autoimmune 

disease, including Sjogren’s syndrome, thyroid disease and systemic sclerosis 

involving the skin, lungs, gastrointestinal tract, heart or musculoskeletal system (241).

a. Gallbladder disorders and cholelithiasis in PBC

There are few studies that identify if changes in the gallbladder or gallbladder 

disease occur in patients with PBC. A case study found that a 70-year-old Hispanic 

woman with PBC/autoimmune hepatitis overlap syndrome and associated cirrhosis 

had multiple gallstones and bile duct stones, and a periampullary mass (242), but this 

may have been associated with cirrhosis and not driven by PBC. In one study, it was 

noted that patients with PBC did not have a significant difference in gallbladder size, 

wall thickness or emptying compared to controls (230). Another study conversely 

found that the gallbladders of PBC patients had epithelial hyperplasia, pseudo gland 
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formation, inflammation, fibrosis, smooth muscle hypertrophy and mononuclear cell 

infiltrate, but the degree is like what is found in chronic cholecystitis and PSC patients 

(227) indicating that gallbladder abnormalities may be non-specific in 

cholangiopathies. As well, it is unclear if these patients presented with cirrhosis, which 

in and of itself increases the risk of gallbladder disease regardless of etiology (243).

A national hospital-based study in Italy looked at hospitalized PBC patients and 

found that this cohort had an increased incidence of malignant neoplasms of the 

gallbladder, and this occurrence was higher in women than in men (244). In another 

study, cholelithiasis in PBC was significantly associated with intra- and extra-hepatic 

CCA (245). However, these are the only studies identifying associations between PBC 

and gallbladder cancer, thus more work is necessary.

b. Microbiota in PBC

PBC patients have decreased diversity of microbes and higher levels of genera 

associated with inflammation, but this dysbiosis is partially reversed by UDCA (246). 

As stated above, BAs and the microbiota can play a role in cholelithiasis; therefore, 

this association in PBC may be attractive. Interestingly, 75% of the bacterial clones 

isolated from gallbladder bile from PBC patients were gram-positive cocci, with only 

5% of gram-positive cocci found in gallbladder bile from patients with 

cholecystolithiasis (Table 2 and Table 3) (247). Staphylococcus aureus was the 

predominant gram-positive bacteria in PBC gallbladder bile (247). However, this study 

did not indicate if the PBC patients presented with gallbladder abnormalities, and thus 

the correlative or causative effect of dysbiosis in PBC on gallbladder disease is 

unknown.

There is a lack of understanding on the association of PBC and gallbladder 

diseases. While some abnormalities and cancer were noted, this may be a 
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consequence of cirrhosis and not etiology dependent. Furthermore, no studies have 

reported on gallbladder abnormalities or cholelithiasis in mouse models of PBC. 

Therefore, more investigation is key to answering this question.

VIII. Cholangiocarcinoma (CCA)

Cancer cells and the tumor microenvironment (TME) interact with each other to 

form multicellular systems, called tumors. The composition of the TME is characterized 

by extracellular matrix (ECM), and various cell types such as immune cells, endothelial 

cells, pericytes, and fibroblasts (248). CCA is cancer of the bile ducts and is the second 

largest primary liver malignancy, after hepatocellular carcinoma (HCC). CCA tends to 

escape immune surveillance, and for this reason it is associated with a poor prognosis 

and poorly defined symptoms (249). Most CCA cases are defined as an incurable 

malignancy, and the 5-year survival rate for CCA is abysmally low (250). CCA can be 

defined by the following subtypes: intrahepatic (iCCA), perihilar (pCCA), and distal 

(dCCA) (251). The last two groups of CCA, pCCA and dCCA, are regrouped under the 

term of extrahepatic CCA (eCCA) and can include gallbladder cancer (252). Many risk 

factors such as NAFLD, non-alcoholic steatohepatitis (NASH), alcohol-related liver 

disease (ARLD), and biliary fibroinflammatory response can contribute to CCA 

development (253, 254). MicroRNAs (miRNAs) are small non-coding RNAs that play 

various roles in the modulation of CCA (255). Various studies have shown that 

alteration of miRNAs may act as oncogenic or onco-suppressing in CCA. Furthermore, 

in gallstone disease, there is upregulation of miR-210 that reduces the expression of 

its target, ATPase phospholipid transporting 11A gene, in human gallbladder epithelial 

cells (256).  miR-130b inhibits the expression of the specific protein 1, and 

consequently there is decrease of MUC5AC expression. It is well known that 
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hepatolithiasis is strongly related to chronic inflammation and overexpression of 

MUC5AC as well, which can be a contributor to liver cancer initiation (257). 

a. Cholangiocarcinoma, cholelithiasis and gallbladder cancer

On occasion, gallstones can migrate into the bile ducts and induce 

complications. The presence of bile duct stones is considered a significant risk factor 

for the development of CCA due to repeated mechanical injury and inflammation of 

the intrahepatic biliary tract epithelium (258, 259).  The size, presence and number of 

gallstones are significantly associated with increased risk of CCA (260). 

Cholecystectomy reduced the risk of gallstones associated with CCA, with a greater 

risk reduction seen in eCCA than iCCA (261). This was mirrored in another study 

where gallstones increased the risk of iCCA and eCCA with a decline in risk following 

cholecystectomy (262). Another study contrarily found that dilation of the bile ducts is 

frequent following cholecystectomy and can cause inflammation and increase the risk 

of CCA (263); however, this was in a cohort of patients with normal bile ducts whereas 

the former was in a population of CCA patients. The biliary microbiome can regulate 

various damages within the liver, including cholelithiasis as discussed above. One 

study found that the relative abundance of Proteobacteria, Firmicutes, Bacteroidetes, 

and Actinobacteria was similar in patients with dCCA and new onset bile duct stones 

(264) identifying that shared microbial communities may be a link between gallstone 

formation and CCA development. In a rare case report, a 65-year-old woman 

presented with jaundice and concomitant cholecystitis due to an impacted gallstone 

(265). Following pancreaticoduodenectomy, histopathological analysis revealed that 

the patient had primary gallbladder malignancy along with CCA (265). While the link 

between gallstones and CCA risk is known, the incidence of concomitant CCA and 

gallbladder cancer appears to be rare. The incidence of other gallbladder disorders in 
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CCA seems unreported in the literature; thus, more work may be required in this area. 

Histological imaging of gallbladder cancer can be found in Figure 8.

IX. Non-alcoholic fatty liver disease (NAFLD)

NAFLD, also known as metabolic-associated fatty liver disease, is the most 

common chronic liver disorder globally (266). As the obesity epidemic continues to 

grow, the incidence of NAFLD is increasing worldwide. Approximately 24% of U.S. 

adults have NAFLD and about 10% of this population has an advanced form of NAFLD 

termed NASH. The incidence of NAFLD in children is also rising with about 10% of 

U.S. children aged 2-19 years having NAFLD (267).  NAFLD also shows ethnic 

disparities, with the highest incidence in Hispanic populations (268). The risk factors 

for NAFLD includes obesity, type 2 diabetes mellitus, hypertriglyceridemia, Western 

diet and sedentary lifestyle (269). Interestingly, a large scale study using the U.S. 

National Health and Nutrition Examination Survey revealed the positive correlation 

between glucose intolerance, plasma insulin levels and C-peptide content with 

gallstone incidence (270) 

The pathogenesis of NAFLD was first explained by the ‘two-hit’ theory (271, 

272), and later referred to as “muti-hit hypothesis”. The first ‘hit’ starts with insulin 

resistance caused by excessive FA accumulation in hepatocytes, a state known as 

hepatic steatosis (273, 274). A number of secondary ‘hits’ come after the exposure to 

chronic fat accumulation (272), including oxidative stress-induced mitochondria 

dysfunction, endoplasmic reticulum (ER) stress (275), apoptosis induced-regeneration 

(276), gut-derived endotoxin-induced inflammation (277), and cholestatic-induced lipid 

metabolism dysregulation (278). These multiple secondary hits synergistically, but not 

sequentially, happen during the progression of NAFLD. These events eventually lead 
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to chronic inflammation and fibrosis, resulting in NASH (279). NASH is characterized 

by hepatic ballooning, lobular inflammation, and macro steatosis. About 20% of NASH 

patients will develop cirrhosis, with potential risk of liver failure or hepatocellular 

carcinoma (280). 

A longitudinal cohort study showed increased risk of gallstone formation in 

NAFLD patients, especially in females (281). Further studies showed association 

between NAFLD and gallstones with a higher NAFLD incidence in women with 

gallstones (282-284). Additionally, gallbladder wall thickness and gallbladder 

dysfunction can occur in NAFLD patients that do not present with gallstones (Figure 

9) (285). It has also been shown that NASH prevalence in patients with gallbladder 

disease is 18% in the morbidly obese population, but mechanisms linking these factors 

is unknown (286). Lastly, cholelithiasis was not associated with advanced fibrosis or 

definite NASH in a NAFLD cohort, further complicating potential associations between 

gallbladder disease and NAFLD (287).

Human genome-wide association studies (GWAS) have revealed several 

genes that may explain the vulnerability and increased risk of NAFLD observed in 

some subpopulations. The most confirmed and studied genetic variant that is 

associated with NAFLD is PNPLA3 (288-290). The Rs738409 [G] I148M allele of 

PNPL3 correlated to increased risk of NAFLD and is most found in Hispanic 

populations. Furthermore, the Rs738409 [G] I148M mutation increased NAFLD risk 

and body weight gain (291), and an increased risk of higher steatosis, portal 

inflammation, fibrosis and oxidative stress (291-294). Conversely, rs6006460[T] is 

enriched in African American populations and shows protective effects against the 

development of NAFLD as the population shows a lower risk of NAFLD and lower 

hepatic fat content (289). However, a study did not find increased risk of gallstone 
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formation in patients with I148M mutation per se (295). Nevertheless, another genetic 

study showed that the polyunsaturated FAs were much higher in individuals with 

PNPLA3148M variants when compared to non-carriers. Other genetic variants with 

moderate effect sizes were shown in transmembrane 6 superfamily member 2, 

glucokinase regulator (GCKR), and membrane bound O-acyltransferase domain-

containing 7 (296). Another GWAS study also found GCKR variant showed increased 

risk of gallstone diseases (297). The DNA methylation of PPARG is associated with 

fibrosis severeness in NAFLD (298). Interestingly, activation of PPARG prevents 

cholesterol gallstone formation by increasing bile salt synthesis and enterohepatic 

circulation in lithogenic mice models (299).  The same study also noticed that PPARG 

activation alleviated hepatic steatosis and obesity symptoms (299). This indicates that 

both NAFLD and gallstone formation share some common mechanisms. 

a. Fatty acid (FA) uptake, storage and signaling

The rate of hepatic FA uptake is determined not just by the circulating 

concentrations that comes from the adipose tissue and gut, but also relies on FATP 

and caveolin (300-304). Meanwhile, vaveolin-1 depletion increased cholesterol 

crystallization in lithogenic diet-induced mice by inhibition of hepatic cholesterol levels 

and bile salts transportation (305). Cluster differentiation 36 (CD36), as the most 

studied lipid transporter, facilitates hepatocyte FA update and trafficking (306). 

Hepatocyte specific depletion of CD36 improved steatosis by decreasing the 

triglyceride, diacylglycerol, and cholesterol in a NAFLD genetic mouse model and diet 

induced model (307). In fact, oxidation is increased in CD36-/- mice via inhibition of 

sterol regulatory element-binding protein 1 (SREBP1) in diet-induced NAFLD (308). 

Further, circulating CD36, a soluble form of CD36, was found to be strongly associated 

with insulin resistance (309) in type 2 diabetes and advanced steatosis in NAFLD 
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(310). Depletion of CD36 also showed resistance to lithogenic diet induced gallstones 

in mice by altering the lipid composition in the biliary tract and enhanced gallbladder 

contractility (311). 

Besides FA uptake from exogenous sources, hepatic FA comes directly from 

de novo lipogenesis, that is converted from monocarbohydrates and proteins. In this 

process, acetyl-CoA is converted to malonyl-CoA and fatty acyl-CoA. This process 

adds FAs to hepatocytes and causes triglyceride accumulation in the cells by inhibiting 

fatty oxidation (312). SREBP1c and carbohydrate-responsive element-binding protein 

(ChREBP) also regulates de novo lipogenesis. Interestingly, both SREBP1c and 

ChREBP can be stimulated through activation of LXR which is regulated by insulin 

(313). Further, insulin could directly activate SREBP1c though translocation from the 

Golgi to the nucleus (314). LXR activation increased the susceptibility of gallstone 

formation in lithogenic-diet induced mice by elevated cholesterol and phospholipids 

concentration and decreased bile salt concentration (315). 

b. Bile acid metabolism

As previously mentioned, NAFLD starts with simple steatosis followed by 

multiple secondary insults. One of the offenses is the dysregulation of BA metabolism, 

which is mediated by the liver-gut axis (316). About 95% of BAs are recycled through 

the hepatic portal system, and BAs can regulate glucose and lipid homeostasis via 

nuclear receptor activation, including FXR (317). Interestingly, FXR-/- mice showed 

dysregulated lipid metabolism, enhanced serum BAs, cholesterol, and serum 

lipoprotein profile (318). While another study showed increased bile salt 

hydrophobicity and cholesterol crystallization in FXR-/- mice, which is an indication of 

gallstone formation. Further, the reactivation of FXR in these knockout mice prevented 

gallstone formation (319).  

Page 52 of 201Comprehensive Physiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

c. NAFLD, cardiovascular disease and cholelithiasis

As stated, the NAFLD spectrum varies from simple steatosis to metabolic 

steatohepatitis, and it can further progress to liver fibrosis, cirrhosis, and hepatocellular 

carcinoma. The coexistence of NAFLD and gallstone disease has been found, mainly 

due to several shared risk factors such as age, ethnicity, obesity, insulin resistance, 

and metabolic syndrome (320). A study has indicated an increased incidence of 

gallstone formation in patients with NAFLD (47%) versus patients without NAFLD 

(26%) (321). 

Recent studies have indicated that gallstone disease is closely associated with 

the occurrence of cardiovascular disease, and the occurrence of gallstone disease 

increases the incidence of cardiovascular disease (322). Based on a meta-analysis of 

10 published studies, patients with gallstone disease had a higher risk of diabetes, 

hypertension, coronary heart disease, atrial fibrillation, and hyperlipidemia. In addition, 

gallstone disease was found to be related to a 1.23-fold increase in the incidence of 

cardiovascular and cerebrovascular diseases. In another study of 5,928 subjects by 

Daniel et al., gallstone disease was closely related to many kinds of cardiovascular 

diseases (323). Gallstone disease, cardiovascular disease and NAFLD also share 

common risk factors such as obesity, age, sex, and disorders of lipid metabolism, and 

these factors are major risk factors for metabolic syndrome. Metabolic syndrome is 

closely related to cardiovascular disease and gallstones may be considered a 

characteristic of this (324). Cholesterol is transported into plasma by lipoproteins, 

micelles, and vesicles in bile. If excess cholesterol were accumulated in the arterial 

wall, atherosclerosis may occur. The excess cholesterol that is not dissolved by bile 

salts or phospholipids will precipitate as solid cholesterol monohydrate crystals, which 

can lead to the formation of cholesterol gallstones (84). 
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d. NAFLD, cholestasis and cholelithiasis

Gallstones are one of the causes of extrahepatic cholestasis, while cholestasis 

is linked to NAFLD progression in various studies. A case-control study conducted in 

2015 revealed more severe histological damage in NAFLD with cholestasis compared 

to NAFLD patients without cholestasis (325). This is further highlighted in a study 

conducted in 2018, where about 30% of NAFLD patients showed cholestasis (326). It 

is suggested that NAFLD patients with cholestasis show more pronounced hepatic 

inflammation, unbalanced carbohydrate and lipid metabolism, apoptosis, and fibrosis 

(326). Another study conducted with 90 NASH patients showed a positive association 

between centrilobular ductular reaction and fibrosis stage (327). Although this study 

did not provide direct evidence of cholestasis influence on the homeostasis of lipid and 

carbohydrates in the liver, a number of animal studies using an Mdr2-/- mouse model 

connect cholestatic liver injury and impaired liver function (278) to dysregulation of 

lipid metabolism and steatosis (328). Specifically, the genes that control lipid 

synthesis, storage, and oxidation is dysregulated. Interestingly, the same study found 

that the supplementation of nor-UDCA or high-fat diet showed a protective role in 

Mdr2-/- mice and reversed the fibrosis (328). 

Patients with NAFLD showed increased plasma BAs, specifically elevated 

primary and secondary BAs. Bacteria that metabolize taurine and glycine, two critical 

components in producing secondary BAs are increased (329). Furthermore, elevated 

primary BAs are also found in gallstone patients (198). On the other hand, intrahepatic 

cholestasis of pregnancy (IPC) showed significantly higher incidence in NAFLD 

patients when compared to other chronic diseases or pregnancies without chronic liver 

disease (330). Further, the incidence of gallstones in IPC is much higher in women 

who do not present IPC (331). Taken together, cholestasis and elevated BAs increase 
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the risk of NAFLD and gallstones. However, further work needs to be done in human 

association studies and molecular mechanisms underlying the BA metabolism, 

gallstone formation and NAFLD. 

X. Alcohol-related liver disease (ARLD)

ARLD has been the main cause of liver-associated mortality worldwide (332). 

This chronic liver disease is the most common and can progress from alcoholic fatty 

liver to alcoholic steatohepatitis (ASH) (333). Chronic ASH can eventually develop liver 

fibrosis and cirrhosis, which may lead to HCC. In addition, severe ASH (with or without 

cirrhosis) can cause alcoholic hepatitis (AH), which is an acute clinical presentation of 

ARLD that is associated with liver failure and high mortality (334). 

Most ARLD patients are diagnosed with jaundice or complications of cirrhosis 

when they reach the medical care (335). Screening of ARLD in the primary-care 

setting at an early stage and subsequent behavioral interventions should be 

encouraged. Abstinence from alcohol is the best treatment for all stages of ARLD (336, 

337). Unfortunately, ARLD patients in advanced stages who do not respond to medical 

therapy have a very low life expectancy, and the only therapeutic option associated 

with a survival benefit is liver transplantation (338). At 1-year post-transplantation, the 

survival rate has steadily improved to 80-85% in 2010 (339). In addition, transplant 

recipients with ARLD are at high risk of cardiovascular diseases, infections, and 

cancers (340, 341). Overall, more effective, and safer therapies are urgently needed 

to ultimately reduce the burden, morbidity, and mortality of ARLD.

a. Alcohol consumption and cholelithiasis

Almost forty years ago, a case-control study first reported that alcohol 

consumption was associated with a decreased risk of developing gallstones, whereas 
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increased intake of sugars was associated with an increased risk (342). Interestingly, 

the association of alcohol with reduced risk of gallstones was found in both males and 

females (342). However, women have been regarded to have a higher risk of gallstone 

formation due to sex hormone signaling (118). In this regard, the relation between 

alcohol intake and cholecystectomy were observed by Leitzmann et al. in a large 

cohort of women (343). Their study also revealed that the intake of all alcoholic 

beverages is inversely associated with the risk of cholecystectomy in women (343). In 

another large prospective study of over 1 million women that consume alcohol 

(patients were excluded if they had a clinical history of either liver cirrhosis or 

gallbladder disease before recruitment), Liu et al. further confirmed that alcohol 

consumption is associated with an increase in the risk of liver cirrhosis but a decrease 

in the risk of gallbladder disease (344).

b. Thickening of the gallbladder wall in alcoholic hepatitis

Thickening of the gallbladder wall is often seen with US in patients with ARLD. 

In a retrospective evaluation of 125 consecutive gallbladder sonograms, it was 

reported that gallbladder wall thickening was associated with hypoalbuminemia in the 

absence of chronic cholecystitis in a cohort of chronic alcoholics (345). However, 

another US evidence-based study suggested that portal hypertension, not 

hypoalbuminemia, is the dominant factor causing gallbladder wall thickening in 

cirrhotic patients (346). Therefore, more research may be required in this area to better 

understand the comorbidity of gallbladder wall thickening.

c. Gallbladder perforation and gallbladder variceal hemorrhage in ARLD

Gallbladder perforation is a relatively uncommon complication of ARLD-related 

cirrhosis and may happen with or without gallstones. The diagnosis of gallbladder 

perforation is challenging due to the lack of classical symptoms and signs of 
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perforation (347). Chu et al. reported the first case of a 41-year-old man with alcoholic 

cirrhosis who developed fatal spontaneous gallbladder variceal bleeding (348). 

Unfortunately, the diagnosis of gallbladder varices eluded conventional imaging and 

was made only at autopsy; therefore, direct causation of spontaneous gallbladder 

variceal bleeding with ARLD is unknown. One case study reported gallbladder 

perforation with alcoholic liver cirrhosis and asymptomatic gallstones (347). The 

patient was initially diagnosed as HCC-associated rupture based on CT scan images 

and the patient’s clinical history of alcohol-related liver cirrhosis; however, further 

laparotomy examination revealed that the patient has gangrenous cholecystitis with 

perforation, suggesting that gallbladder perforation should be taken into consideration 

as a potential cause of acute abdominal pain (Figure 10) (347). Furthermore, it was 

observed that a Child-Pugh A alcohol-related liver cirrhosis patient had developed 

acute gallbladder perforation with spillage of stones into the peritoneal cavity (349). 

Gallbladder perforation is a rare complication in ARLD and alcohol-related liver 

cirrhosis, but caution should be taken for those with specific risk factors. 

d. ARLD and cholelithiasis

Since alcohol-related cirrhosis is the advanced stage of ARLD, many studies 

evaluated prevalence and incidence of cholelithiasis with cirrhotic patients (350). 

Acalovschi et al. assessed the risk factors for gallstone formation and the 

characteristics of liver cirrhosis in 140 patients with multivariate analysis. Similar to 

what was discussed previously, they reported that alcohol-related cirrhosis and male 

gender (not female) were inversely correlated with cholelithiasis symptom presence 

(351). In cirrhotic female patients, the risk of developing cholelithiasis was significantly 

greater (351). However, another multivariate study shows that cholelithiasis was 
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significantly more frequent in cirrhotic patients with previous alcohol abuse with no 

difference in relation to sex (352). 

e. Animal studies on alcohol consumption and cholelithiasis

Animal studies are key for identifying molecular mechanisms regulating disease 

processes. Unfortunately, little work has been done to investigate ARLD and 

gallbladder diseases in murine models. One study evaluated the effect of alcohol 

consumption on BA profiles in a chronic gavage mouse model (353). Interestingly, 

ethanol intake significantly increased BA profiles (mainly free BAs and taurine-

conjugated BAs) in the gallbladder of 50% ethanol fed mice (353). The total BAs in the 

gallbladder were also significantly increased in the 50% ethanol treated groups (353). 

The authors also demonstrated that 50% ethanol increased the expression of BA-

related enzymes and transporters, including BSEP and ASBT in the liver (353). The 

close association with BAs, BA transporters and gallstone formation may indicate that 

very high alcohol consumption can contribute to cholelithiasis. However, this percent 

of ethanol intake is not physiologically relevant, and thus findings should be 

considered with caution.

XI. SARS-CoV-2-related liver disease

SARS-CoV-2, the virus responsible for COVID-19, has been under an intense 

lens of investigation since the identification of the highly contagious infection. At first, 

it was uncertain if patients with chronic liver or biliary disorders were more at risk for 

severe COVID-19 than others, with the American Association for the Study of Liver 

Diseases making a statement in 2020 that higher risk was probable due to the 

observed mechanistic interactions of the virus with angiotensin-converting enzyme 2 

(ACE-2) (354). ACE-2 acts as a functional transporter, allowing the virus entry into the 
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cell, making hepatocytes and cholangiocytes, which express ACE-2, targets for 

potential infection (354, 355). Over the past two years, research has begun to identify 

comorbidities that correlate to higher risk of fatality, as well as disease states and 

damage caused by fighting the infection. Further, COVID-19 patients with evidence of 

liver dysfunction account for about half of those infected (354, 356). Of importance, 

one case report found 3 adults that developed prolonged and severe cholestasis 

following COVID-19 infection, leading to the notion that there may be a rare COVID-

19-related cholangiopathy (357). Another study found that biomarkers of liver injury 

were elevated in 23.4% of Delta-infected and 18.8% of Omicron-infected COVID-19 

patients, with the predominant marker being identifiers of cholangiocyte damage (358). 

Interestingly, liver and cholangiocyte injury biomarkers did not differ between patients 

with or without pre-existing liver injury (358). This work is supported by another study 

indicating that 32.7% of COVID-19 infected patients had elevated markers of 

cholangiocyte damage, which correlated with longer hospital stays (359). The full 

impact of COVID-19 on cholestasis and biliary damage will likely not be determined 

until long into the future since the disease is relatively new. 

a. SARS-CoV-2 related gallbladder disease

Several COVID-19 patients have presented with severe cholecystitis. Like 

cholangiocytes, gallbladder epithelial cells present with high levels of ACE-2, which is 

thought to explain the presence of viral RNA present in the gallbladder epithelial cells 

of affected patients (Figure 11) (354, 355). As with hepatobiliary dysfunction, the 

severity of COVID-19 infection appears to directly influence the severity of 

cholecystitis, with over half the case studies identifying those patients with complicated 

or severe COVID-19 as having acalculous or gangrenous cholecystitis (354-356, 360). 

Conversely, some cholecystic COVID-19 patients had less severe COVID-19, but still 
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presented with acute cholecystitis (361-363). In one case report of a patient with 

COVID-19 and gangrenous cholecystitis, immune cell infiltration and blood vessel 

involvement can be seen in the gallbladder. This disparity between critically ill and 

non-critically ill COVID-19 patients with similar cholecystic presentations suggests that 

underlying risk factors may account for progression of the diseased state, including 

similar risk factors to cholestasis, genetic proclivity, and co-morbidities. Additionally, 

COVID-19-linked cholecystitis cases have been seen around the world, suggesting 

there may not be a strong connection to lifestyle or ethnicity.  As more individuals 

recover from COVID-19, it is important to explore any lasting damage induced by the 

virus.

CLINICAL ASPECTS OF GALLBLADDER DISEASE IN LIVER DISEASE

XII. Prevention and treatment

a. Prevention

Pigmented stones are less frequently observed and represent <10% of cases 

worldwide. Specific risk factors, such as parasitic biliary infection or blood diseases 

(hemolytic anemia) may attenuate brown stone prevalence (172). The burden of 

cholesterol gallstones seems worldwide, but prevention may not be an easy target 

since there is a complex interplay between genetic, metabolic, dietary, environmental 

and gender related factors contributing to stone formation (364). Among modifiable 

cholelithiasis risk factors, those related to lifestyle (diet and physical activity) have 

captured more attention. Reduced physical exercise (365) and obesity (366, 367) were 

consistently reported in association with increased risk of cholesterol stones. 

Regarding diet type and habits: i) reduction of carbohydrates, meat, and fats in favor 

of vegetables as well as; ii) avoidance of long fasting periods, seem protective for 

cholesterol stone formation (368). In this setting, alcohol consumption has been 
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suggested to be inversely correlated with gallstones (369); however, it is important to 

note that studies on diet or general physical activity are largely based on self-reported 

data and possibly altered by other personal and environmental factors thus justifying 

discrepancy between different studies. Finally, a condition in which gallstone 

prevention may be feasible and beneficial is related to rapid weight loss. A weight 

decrease >1.5 kg/week has been associated with an increased risk of gallstones (370) 

and similarly after bariatric surgery (particularly when Roux-en-Y gastric by-pass is 

performed) stone formation may be expected (371). In these situations, UDCA 

prophylactic therapy is advised (144, 372). 

b. Pharmacological treatment

UDCA consistently demonstrates gallstone dissolution capabilities. This effect 

was evident when UDCA was administered at a dose of 7 mg/kg with radio-

transparent, non-calcified stones ≤1 cm in size and in patients with a functional 

gallbladder (373). UDCA inhibition of cholesterol intestinal uptake and secretion in bile 

may explain its stone dissolution properties (374). Therapeutic application of UDCA, 

however, is hindered by high stone recurrence, accounting for more than 50% of cases 

on 10-year follow-up (375). This negative aspect is in part compensated by the 

observation that long-term treatment (up to 18 years) is associated with a decrease in 

biliary pain and acute cholecystitis in patients with symptomatic gallstones at baseline 

(376). In practice, UDCA dissolution therapy may be considered in symptomatic 

patients with elevated surgical risk or denying surgery.  In acute symptomatic 

gallstones, use of non-steroidal anti-inflammatory drugs is generally indicated. In acute 

cholecystitis, antibiotic therapy remains controversial while it remains useful in cases 

of concurrent biliary tract infection, such as cholangitis or abscess formation (144).

c. Surgical approaches
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An extensive examination of the operative procedures regarding the 

management of gallstones and their complications is behind the scope of this review 

since several publications and guidelines have focused on this issue (154, 159, 377). 

In this paragraph just the most relevant concepts on operative strategies for gallstones 

will be reported.  

Surgical removal of the gallbladder (cholecystectomy) remains the advised 

approach in symptomatic gallstone disease (144, 378). Cholecystectomy, in fact, is a 

measure to block stone recurrence since gallbladder dysfunction (dysmotility and 

changes in bile reabsorption/concentration process) contributes to cholesterol 

nucleation (57, 194). Starting from 1985 laparoscopic (mini-invasive) cholecystectomy 

has been a major advancement in gallbladder surgery reducing hospital stay and 

allowing a faster post-surgical recovery,  in comparison with open access (379). More 

than 90% of cholecystectomies are approached with the mini-invasive procedure 

presently; however, conversion or direct start with open surgery may be considered in 

difficult or complicated cases (144). For common bile duct stones, a specific mini-

invasive approach based on endoscopic-retrograde-cholangiopancreatography 

(ERCP) technique has been consistently suggested and adopted (158, 159). ERCP is 

successful for common bile duct stone extraction in approximately 90% of cases and 

is also able to solve other gallstone complications such as acute cholangitis or biliary 

pancreatitis (380, 381). Finally, percutaneous cholecystostomy may be considered to 

prevent complications of acute cholecystitis in less fit patients (377).

XIII. Gallstones in cholestatic liver disease 

a. Prevalence

Several studies converge in demonstrating an increased prevalence of 

gallstones in patients with liver diseases. In a cross-sectional and longitudinal study, 
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involving patients with liver cirrhosis, a gallstones prevalence of 29.5% was reported 

(382). The presence of stones was more prevalent according to age and severity of 

cirrhosis while it did not change according to gender or cause of disease. In the same 

study, a cumulative incidence of 40.8% at eight years was reported, similar to that 

observed in a previous study (383).  Data from patients undergoing liver 

transplantation also confirm this trend (384). Interestingly, and differently from the 

general population, the majority of gallstones in cirrhotic patients is represented by 

pigmented stones, possibly as a consequence of the unbalance between mono-

conjugated (less water soluble) and di-conjugated bilirubin in bile (385). Regarding 

chronic cholestatic adult liver diseases, a significant increase in cholecystectomy 

(27%) was reported in comparison with control (17%) in PBC patients (386). In another 

study, PSC patients were examined demonstrating a similar prevalence of gallstone 

and cholecystitis accounting for 25% of cases (226). Finally, regarding non-cirrhotic 

liver diseases, interest is gaining in the relationship between fatty liver and gallstones. 

In a study on patients with type 2 diabetes it was found that prevalence of gallstones 

was similar regardless of NAFLD presence (25.5% NAFLD vs. 23.6% control) even if 

this condition was more associated to symptoms and cholecystectomy (387). 

However, the possible relationship between fatty liver and gallstones remains complex 

due to the presence of several confounding factors (type 2 diabetes, obesity, etc.) and 

considering that gallstones may be an early indicator of the metabolic derangement 

leading to NASH (388).

b. Treatment

Since definitive therapy of symptomatic gallstones largely requires surgical 

and/or invasive procedures, and cirrhotic patients are considered extremely fragile in 

this regard, clinical management of these patients remains difficult. Portal 
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hypertension and reduced liver functions are factors setting cirrhotic patients in a class 

of high surgical risk. Gallbladder surgical removal (open cholecystectomy) was defined 

as “hazardous” in an early study reporting 83% mortality in patients with liver diseases 

and impaired prothrombin time (389). A more recent Danish study also confirmed a 

ten-fold increase in 30 days mortality after open cholecystectomy in cirrhotic patients 

in comparison with control (390). Providentially, this tragic picture had a relevant 

improvement due to the advent of laparoscopic approaches in recent decades (391, 

392). In a meta-analysis comparing open or laparoscopic gallbladder removal in 

cirrhosis, the latter was associated with a significant decrease in complications and 

hospital stay (393). However, a crucial point is represented by the stratification of risk 

in each single patient. Child-Turcotte-Pugh score has been historically developed to 

evaluate the surgical risk of cirrhotic patients (394). According to Child-Turcotte-Pugh 

evaluation and severity of liver disease, the patient may belong to class A, B or C. It 

is agreed that A or B patients may undergo laparoscopic cholecystectomy while those 

in C class are usually not considered for surgery due to poor conditions (144). More 

recently another scoring system has gained interest in the assessment of cirrhotic 

patient prognosis and their priority for liver transplant: the so-called model-(for)-end-

stage-liver–disease (MELD) (395). Even though a study demonstrated a preoperative 

MELD score >13 to be associated with cholecystectomy complications in cirrhotic 

patients (396), the cut-off for a safe procedure has not been identified so far.

In conclusion, while the prevalence of gallstones increases in patients with liver 

impairment, the usual therapeutic approaches are risky in a significant percentage of 

them, and other effective strategies are lacking. The evidence that stones are more 

frequent in advanced liver impairment (382) is also of concern demonstrating that 

those more in need of treatment are, at the same time, the ones with increased 

Page 64 of 201Comprehensive Physiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

contraindications. In this setting, medical therapy also seems of marginal help. In fact, 

cirrhotic patients are usually affected by pigmented stones and UDCA does not have 

significant effects on them. 

Extensive research is needed to find alternative (non-invasive/medical) 

approaches to gallstone treatment in patients with liver disease. Regarding this issue, 

it should also be considered that NAFLD is a rising pathological liver condition affecting 

more than one third of adult western populations (269) and is unfortunately associated 

with both liver cirrhosis and gallstone disease.

CONCLUSION

Gallbladder disorders and gallstones are significant occurrences that can 

impact quality of life and mortality in humans. The association of gallbladder diseases, 

specifically gallstones, with cholestatic disorders highlights an important association 

between the gallbladder and the intrahepatic biliary tree (Table 4). It is intuitive that 

these two tissues would be interlinked in both normal and pathological states 

considering that the gallbladder is an extension of the biliary tree, and they are lined 

by a similar epithelial cell type; however, research generally looks at either gallbladder 

disease or intrahepatic biliary disease separately. The fact that gallbladder damage, 

gallstones and even gallbladder cancer have been shown to be associated with 

different liver disorders highlights the notion that we should look closer into the 

mechanisms and crosstalk mediating these paracrine injuries during various 

cholestatic liver diseases. Research that better understands the occurrence of 

gallbladder injury in cholestasis and whether they feedback on each other to promote 

damage in one another is necessary to better define whether congruent damage in 

these tissues can be treated separately or if it highlights a different issue or necessary 

intervention.
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It is largely known that gallbladder damage and gallstones are highly regulated 

by cholesterol, BAs, lithogenic bile and bile stasis. These findings are not surprising 

since these components are found in high concentrations in bile and can remain in the 

gallbladder for an increased amount of time while waiting for the physiological signal 

that induces gallbladder emptying. This finding is also important to note since bile flow 

and BA circulation and conjugation can be regulated by intrahepatic cholangiocytes. 

This mechanism shows that processes mediated by the intrahepatic bile ducts may, 

in turn, regulate gallbladder damage or stone formation as a downstream 

consequence. This is also highlighted by the finding that both the intrahepatic and 

gallbladder cholangiocytes express transporters important for the transport of BAs. A 

similar expression profile was also noted for receptors and transporters necessary for 

water and bicarbonate secretion. Considering similar mechanism are found in these 

different biliary populations, it is unsurprising that damage in these two compartments 

may be linked; however, it is important to note expression discrepancies between the 

intrahepatic and gallbladder cholangiocytes, with higher expression profiles potentially 

noted in the gallbladder epithelia. Therefore, the gallbladder may play an important 

role in in bile modification that can in turn impact pathophysiology, which is something 

to be considered when discussing cholecystectomy.

One of the major treatments for gallbladder disorders is cholecystectomy; 

however, this may not always be feasible or desired by the patient. If we can better 

evaluate the link between cholestasis, biliary damage, and gallbladder disorders we 

could potentially find therapeutics to target these that do not include surgical 

intervention. In line with this, a better understanding of the intricacies linking the 

intrahepatic biliary tree and gallbladder can help to identify modalities or biomarker 

that can indicate gallbladder damage early on to better detect injury at earlier stages. 
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As discussed in the last part of this comprehensive review, much work is being done 

to identify new diagnostic and therapeutic approaches to counteract gallbladder 

disorders. It is necessary that future work, both in clinical trials, meta-analyses, and 

pre-clinical models, better evaluate the gallbladder during liver disease to better 

understand these issues and identify improved approaches for patients.
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FIGURE LEGENDS:

Figure 1: Image of the gallbladder and associated anatomical parts. The gallbladder 

can be divided into the fundus, body and neck and it then branches to the cystic duct 

that connects with the common bile duct. The common bile duct can further branch 

into the common hepatic duct, which further branch into left hepatic duct and right 

hepatic duct. Image made with BioRender.

Figure 2: Image of the layers of the gallbladder wall with various transporters and 

receptors important for gallbladder physiology. The gallbladder wall is divided into the 

following layers: mucosa, muscularis, perimuscular fibrous tissue and serosa. The 

epithelial in the mucosa layer modulate water, chloride, and bicarbonate secretion with 

aquaporin channels, cystic fibrosis transmembrane conductance regulator, and the 

purinergic Y2 receptor. The muscularis is involved with neuropeptide signaling and 

potassium release by ether-a-go-go related 1 potassium channel. Image made with 

BioRender.

Figure 3: Comparison of acute and chronic cholecystitis. Acute cholecystitis is an 

acute inflammatory response and can be due to cystic duct obstruction, 

overproduction of mucus, and/or lithogenic bile. Chronic cholecystitis is due to ongoing 

inflammation and is primarily associated with cystic duct blockage and lithogenic bile. 

Image made with BioRender.

Figure 4: Diagram of the main gallbladder disorders. Cholelithiasis is gallstone 

formation (either cholesterol, brown or black stones) and can complicate issues by 

becoming lodged in the cystic duct. Polyps are generally benign but can rarely be 

cancerous. Cholecystitis can be either acute or chronic, is mostly brought on by 

gallstones, is associated with abdominal pain and can result in gallbladder perforation. 
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Gallbladder cancer is a rare condition and is usually labeled as adenocarcinoma. 

Image made with BioRender.

Figure 5: Diagram of the different portions of the biliary tree in humans and mice. In 

humans, the biliary tree is separated from the most distal to the most proximal end as 

follows: canals of Hering, ductules, interlobular ducts, septal duct, area ducts, 

segmental ducts, left and right hepatic duct, and common hepatic duct. The mouse 

biliary tree is divided into two parts: the small ducts and the large ducts. Stem cell 

niches termed hepatic progenitor cells (HPCs) and the peribiliary glands can be found 

at the ends of small ducts or in the larger duct walls, respectively. Image made with 

BioRender.

Figure 6: Ultrasonography of the gallbladder (longitudinal and transversal scans) in a 

PSC patient (top and middle panels; length=12.3 cm; width=6.6 cm; height=6.0 cm; 

volume=253.0 mL) and a healthy control gallbladder (bottom panel; length=7.2 cm; 

width=2.5 cm; height=2.8 cm; volume=26.2 mL). Reprinted with permission from Gut. 

1996 Oct; 39(4):594-599.

Figure 7: Photomicrograph images of gallbladder stones in Mdr2-/- mice 

(magnification=400X). (A) Needle-like crystals (arrows) found on the edges of a 

yellow-colored stone. Needle-like crystals are short, straight, filamentous cholesterol 

crystals. (B) Radial crystal pattern of a stones core showing needle-like crystals 

(arrow). Reprinted with permission from Hepatology. 2004 Jan; 39(1):117-128.

Figure 8: Histological image of the layers of the gallbladder wall in gallbladder cancer, 

corresponding to T stage. HA=hepatic artery; PV=portal vein. Reprinted with 

permission from Gastroenterology Clinics of North America. 2010; 39:333.

Figure 9: (A) Fasting gallbladder wall thickness in healthy controls, steatotic patients 

and NASH patients. (B) Gallbladder ejection fractions in healthy controls, steatotic 
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patients and NASH patients. Reprinted with permission from Journal of 

Neurogastroenterology and Motility. 2016 Jul; 22(3):470-476.

Figure 10: Pathological imaging of hematoxylin and eosin (H&E) staining of the 

gallbladder from an ARLD patient. (A) 10X imaging of H&E staining and (B) 40X 

imaging of H&E staining showing chronic cholecystitis with suppurative inflammation 

(arrows). Reprinted with permission from Medicine (Baltimore). 2018 May; 97(18): 

e0414.

Figure 11: Radiological findings of the gallbladder and SARS-CoV2 qRT-PCR from a 

COVID-19 infected patient. (A) Abdominal CT scan showing cholecystitis. qRT-PCR 

was performed on gallbladder samples to assess SARS-CoV-2 presence and (B) 

shows 3 samples from the gallbladder that were positive for SARS-CoV-2, and (C) the 

RNA control was consistently positive. Reprinted with permission from Journal of 

Hepatology. 2020 Dec; 73(6):1566-1568.
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ABSTRACT

Cholestatic liver diseases are named primarily due to the blockage of bile flow 

and buildup of bile acids in the liver. Cholestasis can occur in cholangiopathies, fatty 

liver diseases and during COVID-19 infection. Most literature evaluates damage 

occurring to the intrahepatic biliary tree during cholestasis; however, there may be 

associations between liver damage and gallbladder damage. Gallbladder damage can 

manifest as acute or chronic inflammation, perforation, polyps, cancer and most 

commonly gallstones. Considering the gallbladder is an extension of the intrahepatic 

biliary network, and both tissues are lined by biliary epithelial cells that share common 

mechanisms and properties, it is worth further evaluation to understand the 

association between bile duct and gallbladder damage. In this comprehensive review, 

we discuss background information of the biliary tree and gallbladder, from function, 

damage, and therapeutic approaches. We then discuss published findings that identify 

gallbladder disorders in various liver diseases. Lastly, we provide the clinical aspect 

of gallbladder disorders in liver diseases and ways to enhance diagnostic and 

therapeutic approaches for congruent diagnosis.

DIDACTIC SYNPOSIS: 

Major teaching points:

 The gallbladder is a specialized organ that plays roles in bile modification and 

digestion of fats.

 Gallbladder damage can manifest as acute or chronic inflammation 

(cholecystitis), perforation, polyps, cancer, and more commonly gallstones 

(cholelithiasis).
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 The gallbladder epithelial cells closely resemble those of the intrahepatic biliary 

tree, but distinct differences may account for specialized functions.

 Bile duct damage characterized by inflammation, fibrosis and ductular reaction 

can be found in primary sclerosing cholangitis (PSC), primary biliary cholangitis 

(PBC), alcohol-related liver disease (ARLD), non-alcoholic fatty liver disease 

(NAFLD), cholangiocarcinoma (CCA) and COVID-19. 

 There is an association between gallbladder disorders and bile duct damage, 

but direct links are unknown.

 In some liver diseases, having congruent gallbladder damage increases 

morbidity and mortality in patients.

 Current work is underway evaluating different modalities that may be beneficial 

for the diagnosis or treatment of gallbladder disorders, specifically in the setting 

of liver disease.

DIDACTIC FIGURE LEGENDS:

 Figure 1: This figure labels the different parts of the gallbladder and the 

connected extrahepatic bile duct.

 Figure 2: This figure illustrates the different layers of the gallbladder wall and 

highlights some key receptors and transporters that maintain gallbladder 

functions.

 Figure 3: This figure illustrates some differences and similarities between 

acute and chronic cholecystitis.

 Figure 4: This figure illustrates the main gallbladder disorders discussed in 

this review and the main characteristics associated with them.
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 Figure 5: This figure labels the human and mouse biliary tree and stem cell 

niches.

 Figure 6: This image shows an enlarged gallbladder in a PSC patient versus 

control.

 Figure 7: This photomicrograph shows a gallbladder stone and its needle-like 

crystals found in the gallbladder of Mdr2-/- mice.

 Figure 8: This image shows the layers of the gallbladder wall with 

corresponding tumor stage for gallbladder cancer.

 Figure 9: These graphs show changes in fasting gallbladder wall thickness 

and ejection fractions in control, steatosis and NASH patients.

 Figure 10: These images show low and high magnification of chronic 

cholecystitis in a patient with ARLD.

 Figure 11: This figure shows an inflamed liver in a patient with COVID-19 and 

qRT-PCR analysis confirming SARS-CoV-2 expression in the gallbladder with 

positive controls run as well.

INTRODUCTION ON THE GALLBLADDER

I. Gallbladder anatomy and function 

Anatomically, in humans the gallbladder is in the upper abdomen beneath the 

liver, and in mice, it is attached with the diaphragm via connective tissue and is situated 

between the left and right medial lobes of the rodent liver (1). Cholangiocytes are 

ciliated epithelial cells that line the biliary tree and line the lumen of the hollow 

gallbladder in both humans and rodents. Bile is synthesized by hepatocytes and is 

drained into the biliary tree which acts as a conduit for bile flow. Bile flows through the 

intrahepatic biliary network and is stored in the gallbladder until its eventual drainage 

into the common bile duct, that is connected to the gallbladder. The fundus, the widest 
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part of the gallbladder, gradually narrows and tapers to form the infundibulum which 

eventually connects with the cystic duct that joins the common hepatic duct to form 

the common bile duct (Figure 1) (1). Bile, after being secreted from the gallbladder, 

travels to the duodenum via the hepatopancreatic ampulla where the common bile 

duct and pancreatic duct merge to make entry into the duodenum. Bile secretion from 

the gallbladder, known as gallbladder emptying, is regulated by the gastric hormone, 

cholecystokinin (CKK). CKK regulates the contractility of the gallbladder thereby 

regulating the emptying process (2). Apart from the contribution of cholesterol, 

gallbladder contractility or gallbladder emptying can be another cause for gallstone 

formation. Gallbladder contractility (emptying and filling) is regulated by the entero-

hormone, CCK, and fibroblast growth factor (FGF)15 (in mice) and FGF19 (in human) 

respectively. CCK receptors are predominantly present in the muscularis (smooth 

muscle) of the gallbladder and are affected by high cholesterol levels. High circulating 

and membranous cholesterol induces hypomotility in the gallbladder (3). CCK-1 

receptors were found to be sequestered by elevated cholesterol levels in a caveolin-3 

dependent pathway (4). Sequestration of CCK-1 receptors would result in reduced 

gallbladder emptying and can result in increased risk of gallstone formation. Small and 

large cholangiocytes, which are distinct in structure and function, line the small and 

large bile ducts of the intrahepatic biliary tree in mice, which will be discussed in detail 

below. Cholangiocytes that line the gallbladder bear more resemblance to large 

cholangiocytes in mice. 

Besides storage of bile, the gallbladder also functions to concentrate the 

composition of bile by reabsorption of water and various biliary constituents, such as 

bile acids (BAs) (5). This procedure of altering bile composition requires the intricate 

functioning of membrane transport across the biliary epithelium which have been the 
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focus of several early studies. One of the earliest studies by Diamond et al. in 1964 

showed that the gallbladder regulates the concentration of bile by modulating isotonic 

reabsorption of water and sodium chloride through an active process (6). There are 

thirteen aquaporin (AQP) channels responsible for water absorption throughout the 

biliary tract, including the gallbladder (7). Among these channels, AQP1 and AQP8 

are the two most widely expressed channels in the gallbladder epithelium (8); 

however, there are conflicting reports regarding the localization of AQP1 and AQP8 in 

the gallbladder. One study emphasizes profuse expression of AQP1 on the apical 

membrane of the gallbladder epithelia (9), another study reports that AQP1 is 

expressed on both apical and basolateral membranes with AQP8 being expressed 

mainly in the apical membrane of the gallbladder epithelial (10). AQP1 knockout 

(AQP1-/-) mice have similar sized gallbladders as their wild-type (WT) controls, but had 

a significant difference in water permeability (9). Similarly, AQP8 may be involved in 

water absorption from the gallbladder, yet AQP8-/- mice didn’t have significant 

physiological defects compared to WT controls (11). Defects in other AQPs can lead 

to dysfunctional water absorption and clinical conditions including cholestasis, obesity, 

and insulin resistance (12, 13). From the existing genetic knockout studies, it can be 

surmised that AQPs have far reaching effects in the liver and gallbladder.

The gallbladder also secretes mucin and bicarbonate. Mucin secretion occurs 

because of calcium-dependent pathway and bicarbonate secretion is mediated by 

adenosine 3’,5’-cyclic monophosphate (cAMP)-dependent pathway. Both constituents 

are essential to exert cytoprotective effects on the gallbladder epithelia against toxic 

BAs. An electrogenic anion secretion study in isolated human gallbladder mucosa from 

normal and cystic fibrosis patients revealed that anion secretion in the gallbladder is 

facilitated by extracellular adenosine triphosphate (ATP) via purinergic receptor Y2 
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(P2Y2). This mechanism explains the altered and more toxic biliary composition during 

cystic fibrosis thereby contributing to hepatobiliary complications (14). Cystic fibrosis 

transmembrane conductance regulator protein (CFTR), the gene impaired in Cystic 

Fibrosis, regulates ion transport in the biliary epithelia. CFTR is a chloride channel 

regulated by the intracellular and extracellular concentration of cAMP. Its profuse 

localization in the apical membrane of biliary epithelia, including the gallbladder, is an 

indication of its significant role in regulating other ion channels. Ether-a-go-go-related 

gene 1 protein potassium channel is a voltage gated ion channel located in gallbladder 

smooth muscle which regulates contractility by modulating membrane potential (15). 

Taken together, the gallbladder physiology is mainly maintained by these ion channels 

that regulate transepithelial ion transport. 

Just like the rest of gastrointestinal tract, the gallbladder is profusely innervated 

from both the central nervous system and enteric nervous system and primarily 

regulated by a ganglionic plexus located on the wall of the gallbladder fundus. An early 

study on guinea pig gallbladder suggests that the organ is constituted of four main 

layers of tissues: (i) the mucosa, (ii) the muscularis, (iii) the perimuscular fibrous tissue 

and (iv) serosa which is the layer of subperitoneal connective tissue (16). Each of 

these layers are highly innervated by the cholinergic neurons, these neurons also 

express neuroendocrine factors like substance P, neuropeptide Y and somatostatin. 

In addition to the presence of cholinergic neurons, the gallbladder was also found to 

express purinoreceptors (P2X), P2X2 and P2X3, that mainly signal via ATP (17). By 

immunohistochemistry, it was found that in guinea pigs the P2X2 and P2X3 receptors 

were expressed in the ganglia of the nerve fibers in the gallbladder. Moreover, this 

study highlights that nerves that stained positive for alpha calcitonin gene related 

peptide were also positive for P2X2 and P2X3 receptors (9). The role of these 
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neuropeptides in modulating gallbladder physiology is not well studied; however, it can 

be surmised from the existing studies that complex neuropeptide signaling in the highly 

innervated gallbladder plays an important role in gallbladder emptying and 

transepithelial ion channel transport that can influence the composition of bile. The 

gallbladder is a dynamic contributor to bile flow, physiology, and composition due to 

its expression of these different transporters and receptors (Figure 2).

II. Gallbladder disease and gallstones

Most gallbladder diseases occur because of dysfunctional bile secretion, 

including the malabsorption of ions and water in both the intra- and extra-hepatic 

cholangiocytes. However, inflammation and epithelial overgrowth can lead to various 

gallbladder disorders as well. Another widely prevalent cause of gallbladder diseases 

is a poor diet, which mainly manifests as gallstones, or cholelithiasis. Gallbladder-

related diseases will be discussed in the following sections.

a. Gallbladder inflammation (cholecystitis)

Cholecystitis (i.e., gallbladder inflammation) is a multifactorial disorder, and one of the 

main causes of gallstone formation. Most gallstone cases lead to blockage of the cystic duct, 

resulting in bile accumulation that promotes inflammation (18); however, other biliary tract 

disorders, such as tumors and certain infections can promote cholecystitis (19, 20). In this 

section, we will focus on pathophysiology, diagnosis, and treatment of the most common 

gallbladder diseases, such as acute cholecystitis, chronic cholecystitis, and gallbladder 

perforation.

i. Acute cholecystitis

Acute cholecystitis is acute inflammation of the gallbladder due to obstruction 

of the cystic duct (21). The cystic duct can be blocked from gallstones or biliary sludge 

formation. Other less common causes can be due to the presence of a mass (primary 
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tumor or gallbladder polyp), parasites, or foreign bodies (22-24). Once the cystic duct 

is blocked, the gallbladder mucosa continues to produce mucus that is not drained, 

and the intraluminal pressure inside the gallbladder increases leading to an acute 

inflammatory response. Additionally, the secretion of prostaglandins, I2 and E2, can 

promote an inflammatory response (25). The pathophysiology of acute cholecystitis is 

characterized by three processes: (i) mechanical stimulus (gallbladder duct 

obstruction); (ii) bacterial infection; and (iii) irritation that promotes inflammation (18). 

There are two theories attempting to explain the pathogenesis of acute cholecystitis: 

(i) cystic duct obstruction and gallbladder artery occlusion  (18), and (ii) cystic duct 

obstruction and perpetual lithogenic bile (26). In 2006, Yokoe et al. developed the 

Tokyo Guidelines for the management of acute cholangitis and cholecystitis (27) that 

were approved as worldwide criteria.  Specifically, patients with acute cholecystitis 

have right upper quadrant or epigastric abdominal pain, Murphy's sign, and 

tenderness. If gallbladder inflammation persists, patients show fever, high levels of C-

reactive protein, and abnormal white blood cell count. Finally, different imaging 

approaches can be used to diagnose acute cholecystitis, such as transabdominal 

ultrasonography (US), cholescintigraphy, and magnetic resonance imaging (MRI); 

however, US and cholescintigraphy are used most frequently (27). One approach to 

manage acute cholecystitis is reduction of gallstones in the gallbladder that move into 

the cystic duct. If there is not proper breakdown of the gallstones, complications may 

occur; such as, advanced cholecystitis or gallbladder perforation (25). Acute 

cholecystitis management includes (i) fasting to reduce the stress of inflamed 

gallbladder, (ii) rehydration with intravenous fluids, (iii) antibiotics to counteract the 

infections, (iv) administration of analgesic for pain, (v) procedures to remove 

gallstones through medication (indomethacin (28) and diclofenac (29)) and/or removal 
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of the gallbladder (cholecystectomy, laparoscopic cholecystectomy), which is the gold 

standard approach (30). 

ii. Chronic cholecystitis

Chronic cholecystitis is characterized by continual inflammation of the 

gallbladder that drives mechanical and physiological dysfunction (31). Over 90% of 

chronic cholecystitis cases are associated with gallstone blockage in the cystic duct, 

leading to abdominal pain (biliary colic), episodic waves of epigastric pain, and 

discomfort (21). Studies show that lithogenic bile may promote gallbladder damage 

through free radical formation from hydrophobic BAs that, together with the reduction 

of the mucosa protection, induce a continuous inflammatory state (32, 33). 

Furthermore, the reduction in CCK receptor expression in the smooth muscle impairs 

gallbladder contraction leading to stasis and damaging lithogenic bile formation (31). 

Histological analysis showed that the gallbladder from patients with chronic 

cholecystitis has increased subepithelial and subserosal fibrosis, followed by 

mononuclear cell infiltration (21). Patients with chronic cholecystitis have continuous 

right upper abdominal pain that can extend into the back. Other symptoms include 

nausea, vomiting and anorexia (31).  Hepatobiliary scintigraphy (34) or a hepatobiliary 

iminodiacetic acid scan with CCK (31) are the major imaging procedures used to 

confirm the presence of chronic cholecystitis. The gold standard procedure to treat this 

disorder is laparoscopic cholecystectomy, which is characterized by low morbidity and 

invasiveness (21, 31). Differences and similarities in acute versus chronic cholecystitis 

are shown in Figure 3.

iii. Gallbladder perforation

Gallbladder perforation is characterized by a hole or an opening in the 

gallbladder wall usually as a complication of acute cholecystitis. Gallbladder 
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perforation has high morbidity and mortality rates due to delays in diagnosis (21, 35, 

36). Usually, a calculus is formed which blocks the drainage of bile from the cystic duct 

which increases intra-cholecystic pressure, epithelial injury, secretion of 

phospholipases, degradation of cell membranes, and intense inflammatory reaction, 

resulting in gallbladder perforation (37). Several studies observed that the most 

frequent site of perforation is the fundus (35, 38). Niemeier (1934) classified 

gallbladder perforation into three types: Type I, acute perforation into the free 

peritoneal cavity; Type II, subacute perforation where the 

perforated peritoneal cavity of the gallbladder is surrounded by an abscess; and Type 

III, chronic perforation with the presence of fistulous communication between the 

gallbladder and some other viscus (39). This classification was based on 

clinicopathological findings and was criticized by different studies. For instance, 

Anderson et al. reported a case series of cholecystobiliary fistulae and classified them 

as Type IV gallbladder perforation (40). The difficulty in diagnosing gallbladder 

perforation and distinguishing it from acute cholecystitis are documented (36, 41). 

Morbidity and mortality rates of gallbladder perforation are high due to delays in both 

diagnosis and treatment. Gallbladder perforation treatment includes cholecystectomy, 

drainage of abscess, if present, and abdominal lavage (35). In sum, an earlier 

diagnosis and immediate surgical intervention may reduce morbidity and mortality 

rates. 

b. Gallbladder polyps

Gallbladder polyps are an elevation of the gallbladder mucosa that extends into 

the lumen (42, 43). Polyps may be classified between “true” and “pseudopolyps” based 

on earlier pathological descriptions (42). True gallbladder polyps are adenomas of the 

gallbladder wall that can progress into malignant phenotypes. Indeed, they can be 
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categorized as benign (fibromas, lipomas, and leiomyomas) or malignant 

(mesenchymal neoplasms, lymphoma, or metastases). Pseudopolyps do not have 

malignant potential and are categorized as cholesterol pseudopolyps, focal 

adenomyomatosis, and inflammatory pseudopolyps (42, 44). The progression of non- 

malignant gallbladder polyps to malignancy is characterized by different risk factors, 

including polyp size, Primary Sclerosing Cholangitis (PSC), Indian ethnicity, sessile 

polyps, gallstones, and gallbladder wall thickening (44, 45). The diagnosis of 

gallbladder polyps mostly occurs on accident during imaging (transabdominal 

ultrasound, multiparametric ultrasound, and endoscopic ultrasound) for diagnosis of 

intermittent right upper quadrant pain, nausea, and vomiting (46). According to the 

size of the polyps and the medical history of the patient, the management of gallstone 

polyps may be different. Briefly, if the polyps are 6-9 mm in a patient with the risk 

factors descried above, cholecystectomy is recommended; however, if the patient has 

6-9 mm gallbladder polyps and do not have any risk factors, serial US examinations 

are required at 6 months, 1 year and then early up to 5 years to monitor size (44, 47).

c. Gallbladder cancer

Gallbladder cancer is the most common malignancy of the biliary tract with poor 

diagnosis and variation in incidence across the world (48, 49). Epidemiological studies 

observed that Native Americans and Southeast Asians are at a higher risk to develop 

gallbladder cancer, followed by Eastern European including Polish, Czech, Slovakian, 

and Asian. On the other hand, South Americans of Indian descent, Israeli and 

Japanese persons have shown moderate risk of gallbladder cancer development (48, 

50, 51). This variability on the onset of gallbladder cancer is due to the combination of 

environmental and genetic factors. Indeed, women have a higher risk to develop 

gallbladder cancer compared to men (female:male ratio ~2.6:1), especially over 50 
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years of age (51). The enhanced incidence of gallbladder cancer in women is likely 

due to higher estrogen levels, which promotes the formation of gallstones through 

increasing cholesterol saturation in bile (52). Furthermore, there are other risk factors 

that can increase gallbladder cancer incidence, including body mass index (BMI), 

family history, cholelithiasis or other benign gallbladder pathologies, chronic infection 

with Salmonella or Helicobacter pylori, anomalous pancreatobiliary duct 

junction, porcelain gallbladder, gallbladder polyps, and obesity. Lastly, secondary 

risks factors including tobacco consumption, chemical exposure (benzene), high 

carbohydrate intake, and chronic diarrhea can influence gallbladder cancer risk (50, 

51). The symptoms of gallbladder cancer are very vague and mimic biliary colic, 

making it difficult to diagnose; however, the advanced stage of gallbladder cancer is 

characterized by weight loss and jaundice, and imaging approaches can help in the 

identification of the tumor mass (49, 51).  According to the American Joint Committee 

on Cancer’s 8th edition, the staging of gallbladder cancer is divided into tumor (T) and 

lymph node (N) categories (53). Specifically, the T categories describe the tumor 

penetration levels within the gallbladder wall and the N categories describe the number 

of metastases in the lymph nodes (51, 53). Gallbladder cancer can be treated by 

chemotherapy, targeted therapy, and surgery (54). Early-stage gallbladder cancer 

patients can undergo surgical resection, but most of the diagnosis occurs when the 

cancer is advanced. In this case, gallbladder cancer patients undergo chemotherapy 

and a series of surgical procedures to improve their lifespan (49, 51, 54).

d. Gallstones (cholelithiasis)

Cholelithiasis is the clinical manifestation of concreted bile salts, bilirubin and 

sterols in the gallbladder or common bile ducts popularly known as gallstones or bile 

duct stones, respectively. Cholelithiasis is a disorder involved in many liver diseases, 
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and thus most of this chapter will be spent discussing the intricacies of this injury. Over 

time, cholelithiasis leads to multiple compactions resulting in an inflamed gallbladder, 

or cholecystitis (described above). Gallstones are formed in the gallbladder and/or 

intrahepatic bile ducts and sporadically move into the common bile duct or the 

intestines (55, 56). The presence of gallstone disease has an incidence rate of about 

10% to 20% in the adult population (56, 57). Cholelithiasis can be symptomatic or 

asymptomatic depending on the lithiation or stone formation stage (58). The major 

factors leading to the formation of gallstones include defective gallbladder motility, 

metabolism and secretion of cholesterol and BAs (59). The gut microbiota is also 

involved in the regulation of BA metabolism and composition of the BA pool, 

contributing to gallstone formation (60, 61).

i. Types of gallstones (cholelithiasis) and formation

According to the composition of major constituents, gallstones are categorized 

into three types: pure cholesterol stones, pure pigment stones and mixed stones (62). 

Cholesterol gallstones are estimated to account for more than 80% of gallstones 

diagnoses (63). Several studies analyzing the composition of surgically removed 

gallstones found that cholesterol gallstones are the dominating cause of clinical 

gallstone disease (64). In a German study, cholesterol was observed to be the main 

constituent in 93.3% of gallstones, and pigment was in 5.5% of gallstones (65).

 The origin of cholesterol gallstones has common pathogenic links with broad 

metabolic abnormalities characterized by altered cholesterol homeostasis, such as 

obesity, dyslipidemia, type 2 diabetes, NAFLD and the metabolic syndrome (56, 66, 

67). In fact, many of these metabolic disorders have been associated with an elevated 

occurrence of cholesterol gallstones (68, 69).
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Pigment stones are mainly constituted by calcium bilirubinate and can further 

be classified into black and brown stones (70). Black pigment stones are often related 

to physiological and pathophysiologic conditions including increased production of 

unconjugated bilirubin and hemolysis, and clinical conditions such as cirrhosis, 

spherocytosis, thalassemia, sickle cell disease, and malaria (70, 71). There is a higher 

incidence of black pigment stones than cholesterol gallstones in developing and Asian 

countries (72-74); however, the prevalence of cholesterol gallstones is increasing in 

Asia due to an increase in Westernized lifestyle (73). Brown pigment stones, which 

contain more cholesterol and fatty acids (FAs) than black pigment stones (75), are 

observed in the hepatic ducts and believed to be caused by cholangitis, biliary stasis 

(76, 77), or parasitic infestations (71). Brown pigment stones are not as common in 

Western countries as they are in Asia (78, 79). A figure summarizing the main 

gallbladder diseases can be found in Figure 4.

ii. Genetic risk factors of cholelithiasis

Just like other gastrointestinal disorders, risk factors for gallstone formation 

include both genetic and environmental components. Cholelithiasis is a complex 

polygenetic disease since the association between some gene variants and gallstone 

formation have been verified. For example, the single nucleotide polymorphisms of the 

genes HHEX (rs1111875), MC4R (rs17782313), MAP2K5 (rs2241423) and NRXN3 

(rs10146997), were positively associated, but FAIM2 (rs7138803) was negatively 

associated with the occurrence of gallstone disease (80).

Extensive genetic analysis also identified a gallstone (Lith) gene map that is 

essential for the formation of gallstones. Lith1 is one such gene that affects 

cholesterol-induced gallstones in mice (81). By using gallstone-susceptible mice 

(C57BL/J) and gallstone-resistant mice (AKR/J), it has been identified that Lith1 and 
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Lith2 are related to gallstone formation. Lith1 is involved in the regulation of liver 

cholesterol hypersecretion, and Lith2 plays a role in the bile salt-dependent bile flow 

(82). In human species, ATP-binding cassette subfamily G 5 (ABCG5) and ABCG8 

are homologous to murine Lith1 and Lith2. ABCG5 and ABCG8 are expressed in 

hepatocytes and intestinal cells and can be transported from the endoplasmic 

reticulum to the apical membrane as heterodimers (83). ABCG5/G8 can transport 

neutral sterols into bile in hepatocytes or promote cholesterol efflux from the 

enterocyte back to the intestinal lumen for fecal excretion (84). When ABCG5/G8 is 

inactivated, reduced efflux of cholesterol into bile results in increases cholesterol levels 

in plasma and liver. While knockdown of ABCG5/8 may be a deterrent to gallstone 

formation by attenuation of cholesterol secretion, overexpression of ABCG5/G8 may 

increase cholesterol levels in the gallbladder, thus enhancing the likelihood of 

cholesterol crystal formation (85). Furthermore, ABCG5/G8 was observed to be 

related to cholesterol gallstone prevalence in patients, and the gallstone associated 

variants in ABCG5/G8 (ABCG5-R50C and ABCG8-D19H) were found in German, 

Chinese, Chilean and Indian populations. Overall, these findings show that these two 

genes influence gallstone disease.  

Even though ATP-binding cassette subfamily B member 11 (ABCB11) and liver 

X receptor alpha (LXRA) are in the interval of the Lith locus, no genetic susceptibility 

of gallstone formation was associated with these two genes in the German samples 

tested (86). Lith6 is another locus in the gene map which has two functional candidate 

genes associated with it, apolipoprotein B mRNA-editing protein (APOBEC1) and 

peroxisome proliferator-activated receptor gamma (PPARG) (87, 88). Like the 

previous study, analysis of German patient samples did not find an association of 

APOBEC1 or PPARG with gallstone susceptibility. More analysis and mapping of Lith1 
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and Lith6 loci are needed to identify more variants of gallstone susceptibility in humans 

(88).   

The apolipoprotein E4 allele is related to the prevalence of gallstone disease. 

The E4 allele was found to be positively associated with gallstone disease in a meta-

analysis of Chinese Han populations (89). Another study showed no correlation 

between apolipoprotein E genotypes and gallstone disease in a Danish population 

(90). No significant associations for E4 allele carriers were found in mixed ethnic 

populations or in white populations by meta-analysis (90). Meanwhile, conflicting 

results were reported for the E4 association in Hispanic and Spanish populations (91, 

92). In fact, the apolipoprotein E plays an important role in the regulation of the 

response to dietary cholesterol and cholesterol excretion into bile as evidenced in 

knockout mice (93). However, no influence on bile cholesterol excretion was found 

due to the E4 carrier state in Caucasians with gallstones (94).

 Young human adults with ATP binding cassette subfamily B member 4 

(ABCB4) gene mutations present with low phospholipid levels in bile, which is 

associated with cholelithiasis (95). Mutations in mucin (MUC)-related genes have been 

extensively studied to elucidate the role of mucin in the development of gallstones. For 

example, MUC5AC encodes for a gel forming mucin that, when in excess, can 

promote gallstone concretion that is heavily influenced by interleukin (IL)-1β (96, 97). 

Tumor necrosis factor alpha (TNF-) was also found to be induced by prostaglandin 

2 which, in turn, induced the over expression of MUC2 gene that is involved in 

gallstone formation (97).

iii. Lifestyle and cholelithiasis

An increase in alcohol consumption was inversely related to occurrence of 

gallstone disease in females (98). The negative correlation between alcohol 
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consumption and cardiovascular disease may explain the protective effects of alcohol 

consumption on cholesterol homeostasis (99). These benefits are attributed to 

increased cardio-protective blood levels of high density lipoprotein cholesterol and an 

increase in BAs (100). Other preventive mechanisms of alcohol consumption on 

gallstone formation include enhanced gallbladder motor function together with 

stimulation of contractions, thus reducing bile stasis and gallstone formation   (101). 

Interestingly, a higher daily alcohol consumption was related to faster self-reported gut 

transit (102) and acute administration of alcohol was shown to stimulate propulsive 

pressure waves in the ileum but suppress impeding pressure waves in the jejunum 

(103). Therefore, the protective effects of alcohol consumption on gallstone disease 

may be due to the inhibition of secondary BA entry in the enterohepatic circulation.

Physical activity seems insignificant to gallstone disease. In a randomized 

controlled trial, an intervention of moderate or vigorous physical activity in pregnant 

women showed no influence on gallstone formation (104). Further, in the subgroup 

diagnosed with gallstones while being unaware of their status, physical activity was 

negatively related to clinical gallstone disease hospitalization when compared to a 

sedentary lifestyle (105). Furthermore, gallstone disease was inversely associated 

with physical activity in cohort studies (106). However, physical activity increases 

plasma CCK that enhance gallbladder contractions (107). These mechanisms may 

explain how physical activity exhibits beneficial impacts on pain related to gallstone 

disease. 

iv. Obesity, weight loss and cholelithiasis

It was observed that gallstone disease is associated with certain body fat tissue 

(except BMI), such as: waist-to-hip circumference ratio with screen-detected gallstone 

disease, and computed tomography that measured visceral or subcutaneous fat with 
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clinical gallstone disease (108, 109). However, many other studies demonstrated the 

association between elevated BMI and gallstone formation, indicate BMI as an 

independent risk factor for the development of gallstone disease (110, 111). It has 

been estimated that a rise of more than 5 points of the BMI value increases the risk of 

gallstone disease by 1.63-fold (112). This correlation has been positive for females, 

but for males there is a lower association (113). This kind of variability may be 

attributed to the greater part of lean mass in men compared with women (113). It must 

be considered that there are other predominant factors such as estrogen levels in 

females, which can increase the synthesis and secretion of hepatic cholesterol, along 

with greater cholesterol saturation index and crystals formation, which make gallstone 

disease more prevalent in female patients (58). 

On the other hand, excessive weight loss due to calorie restriction is also 

related to gallstone disease (114). There is more risk for incident screen-detected 

gallstone disease in patients undergoing bariatric surgery followed by rapid weight loss 

(115). The underlying mechanisms for gallstone disease prevalence during rapid 

weight loss may include an initial increase of bile cholesterol saturation, as well as 

impaired gallbladder motor function (116).

v. Estrogen and cholelithiasis

It has been reported that females are more predisposed to gallstone disease 

(98). This may be due to the binding of 17β-estradiol to intracellular estrogen receptors 

in the liver stimulating the excretion of cholesterol into bile, resulting in increased bile 

cholesterol saturation (117). Estrogen also promotes the activity of β-Hydroxy β-

methylglutaryl-CoA (HMG-CoA) reductase to facilitate endogenous cholesterol 

synthesis (117). In one study, women with higher urinary estrone levels had a higher 

risk of gallstones disease (118). Similarly, hormone-replacement therapy promotes 
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increased bile cholesterol saturation in postmenopausal women (119). Overall, bile 

cholesterol saturation may play a key role in female gallstone disease. 

vi. Microbiome influence on cholelithiasis

An increasing number of studies have shown the important role of the gut 

microbiome on cholelithiasis (61, 120). These complex microorganisms also exist in 

bile and the prevalence of gallstones is closely associated with abnormalities in bile 

duct flora. The microbiota of the gastrointestinal and biliary tracts are involved in 

almost all stages of bile formation, such as the regulation of cholesterol metabolism, 

lipid metabolism, biotransformation and enterohepatic circulation of BAs (121).

Studies have demonstrated the existence of living bacteria in gallstones. 

Microorganisms can enter the bile duct system from the duodenum via migration 

through the sphincter of Oddi, and they can also spread through the blood to the liver 

and next into bile (122). Microorganisms play a critical role in bile as nucleating factors, 

resulting in the formation of cholesterol and pigment gallstones (123). Gallstone 

formation can be regulated by bacteria properties in the gallbladder. For example, 

bacteria producing -glucuronidase and phospholipase promoted pigment gallstones, 

while bacteria causing mucus abnormalities promoted cholesterol stone formation 

(124). Biofilm-forming bacteria in the bile, gallbladder, and gallstones are closely 

related to gallstone formation (125, 126). By comparing cholesterol gallstones with 

pigment gallstones, gram-positive bacteria were common in most of cholesterol 

gallstones, but not observed in pigment stones. Furthermore, Helicobacter pylori, a 

Gram-negative, motile bacteria was found in patients with symptomatic gallstone 

disease (127). However, this finding is still controversial, and more research is 

necessary to elucidate the role of the microbiota in gallstone disease. There are a 
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variety of risk factors that are associated with gallstone disease (Table 1) that need to 

be considered.

vii. Mouse models of cholelithiasis

The role of diet and ion channels have been well studied in cholelithiasis, and 

diet-induced models of cholelithiasis have widely been used to explore the effects and 

contributions of different ion channels to the concentration of bile. A lithogenic diet, 

which is constituted of 15% dairy fat, 50% sucrose, 20% casein and 1% cholesterol, 

is fed to mice for 18 weeks to induce cholelithiasis; however, various mouse strains 

respond differently where 100% of the C57BL/J and A/J strain were susceptible to and 

developed gallstones (81). Even though mucin has been highlighted to form a 

protective barrier in the gallbladder, studies in hamsters have reported that over 

secretion of mucin precedes gallstone formation in a lithogenic diet-induced model of 

gallstone formation (128). From other existing studies on animal models, it can be 

concluded that mucin is an important constituent of the gallstone matrix. In highly 

concentrated bile, gallbladder mucin can accelerate cholesterol monohydrate 

nucleation, a process that constitutes gallstone formation (129-131). There are several 

genes related to mucin expression such as MUC1 and MUC2 in the gallbladder that 

pose a genetic risk factor for gallstone initiation, as discussed above (132, 133).

Impaired lipid metabolism in the liver can translate to gallstone formation. A 

murine model with genetic knockout of liver-specific fatty acid binding protein 1 (L-

Fabp-/- mice) fed with lithogenic diet for 2 weeks became significantly 

hypercholesterolemic along with developing more gallstones compared to the WT 

mice fed with lithogenic diet (134). L-Fabp-/- mice fed with chow diet also had increased 

fecal BA excretion and decreased ileal apical sodium-dependent bile acid transporter 

(Asbt) expression compared to the L-Fabp-/- mice fed with lithogenic diet, indicating 
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that enterohepatic shunting of BAs contributed to gallstone formation in this model 

(134). Knockdown of fatty acid transporter 2 (Fatp2-/- mice), which is also expressed 

in the gallbladder and the liver, showed reduced triglyceride content in the gallbladder 

and improved contractile strength in mice exposed to lithogenic diet (135). Fatp2 is 

encoded by the solute carrier family 27-member 2 gene and knockdown by adeno 

associated virus (AAV) reduced gallstone formation in mice fed with lithogenic diet for 

8 weeks (84). Interestingly, Fatp2 knockdown did not affect cholesterol concentration 

and solubility in bile, but instead increased FA content in bile [83]. Although the authors 

did not elucidate the involvement of a specific pathway for Fatp2 mediated effects, 

they did highlight the role of prostaglandins in mediating gallbladder contractility [83].

CLINICAL ASPECTS OF GALLBLADDER DISEASE

I. Background

Gallstones represent the most prevalent disease of the biliary tract in the 

Western world, affecting 10-15% of the general population (136, 137). Changes in 

prevalence are observed according to gender and ethnicity (138) with Pima Indians 

exhibiting a historically higher rate of the gallstones with ~50% of adults affected (139). 

The economic burden of gallstone treatment is also significant (>$5 billion per year in 

the U.S.) and seems to be increasing (136). Gallstone-related mortality is declining 

and is relatively low (approximately 0.6%) but given the frequency of the disease, as 

reported in a 1979-2004 U.S. analysis, more than 1,000 patients per year die due to 

gallstone disease (140).

II. Symptomatic gallstones

Symptomatic gallstones are generally regarded as a condition requiring 

treatment since they have an increased risk of developing complications. As reported 
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previously, symptoms may be vague and not directly drawing attention to gallstones; 

however, prompt recognition and diagnosis may prevent conditions with significant 

morbidity and mortality, as reported in the following paragraphs.

III. Asymptomatic gallstones

Despite the difficulties in defining asymptomatic or symptomatic gallstones, the 

differences in the natural history of these two classes has been an argument for some 

time (141). In early studies on cholelithiasis, the estimated risk to develop symptoms 

was 1-2% yearly (142, 143). Onset of complications was ten times lower in 

asymptomatic patients (0.1-0.3% yearly) in comparison with symptomatic cases (144). 

In asymptomatic populations, the risk of treatment (typically surgical) is reportedly 

higher than the benefits (145, 146) and current guidelines do not suggest an operative 

approach for this subset of patients.  Generally, observation of patients for onset of 

symptoms is advised (144, 147); however, exceptions may exist to this strategy.  The 

most important exception in general practice is represented by porcelain gallbladder 

(148). This condition was historically linked to a significant risk in developing 

gallbladder cancer. Porcelain gallbladder consists of calcium deposition on the 

gallbladder wall (easily detected on US or computed tomography [CT] scan) that may 

present as complete or selective, with the latter form preferentially associated with 

malignancy. The high rate of cancer reported for this condition in early studies (12-

33%), has been challenged by more recent data observing a lower rate of malignancy 

(≤6%) (148). Systematic gallbladder removal in patients with porcelain gallbladder 

remains controversial and consideration on a case-by-case evaluation seems wiser. 

IV. Diagnosis

a. Symptoms and manifestations
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Knowing the symptoms of gallstones in patients is of paramount importance to 

help distinguish between the two main clinical presentations, asymptomatic and 

symptomatic gallstone disease. For the past century, it is understood that the majority 

(nearly 70%) of gallstones are asymptomatic in nature, thus patients that complain of 

gastrointestinal issues are usually considered for treatment (141). However, the 

specific symptoms related to gallstone disease are not completely defined. A large 

cross-sectional Italian study, enrolling nearly 30,000 patients and focusing on 

gallstone symptoms concluded that right hypochondrium and/or epigastric pain (i.e., 

biliary colic), together with scarce tolerance to fatty meal, were among the more 

specific complaints (149). When these signs were present in the lack of gastro-

esophageal reflux disease, they were far more specific for the diagnosis of gallstones. 

Cholelithiasis may induce biliary colic (150), that includes pain radiation to the back 

(right scapula), can last for hours and is associated with vomiting and other 

gastrointestinal symptoms, due to stone impaction in the cystic duct. Another sign 

noted during physical examination is the exacerbation of pain when the medical 

examiner has their hand firmly kept under the costal margin of the right chest (i.e., 

Murphy maneuver). Despite these definitions, the ability to detect symptoms of 

cholelithiasis differs in geographic location leading to heterogenous rates of treatment, 

definition of relevant signs and guidelines (151). 

b. Blood biochemistry and imaging

There are no specific blood markers for the diagnosis of symptomatic 

cholelithiasis. Common liver function tests (alkaline phosphatase) and/or general 

inflammation indexes (C reactive protein levels and white blood cell counts) may be 

increased based on complications and the site of gallstone impaction. Some tests may 
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help in identifying specific complications, and these will be described in the 

corresponding paragraphs.

Beginning in the early 1980s, US emerged as an easy and specific imaging 

system for identifying gallstone disease (152). This technique has also been 

instrumental in identifying the natural history of gallstone formation in both 

asymptomatic and symptomatic forms. Typical stone US findings are iperechoic wall 

with a posterior shadow and, despite technical advancement, this technique remains 

superior in comparison with CT (153). MRI and cholangio-MRI have also had important 

applications for imaging gallstones. In fact, cholangio-MRI replaced diagnostic 

retrograde cholangio-pancreatography for gallstone detection since it accurately 

reproduces the anatomical picture of the biliary tree without safety issues. MRI is 

usually used as an integrative imaging approach when symptomatic gallstones are 

ruled out by US, but the potential presence of biliary stones need to be examined.

V. The clinical picture

The clinical picture of cholelithiasis may change widely ranging from 

asymptomatic forms to life-threatening conditions. The historical division of patients in 

two main classes (asymptomatic and symptomatic), even if it does not recapitulate the 

entire clinical horizon, is considered helpful in giving a general indication in selecting 

subjects needing treatment. Symptomatic patients may present with several 

complications and require closer monitoring or intervention. 

a. Acute cholecystitis

As reported by Friedman et al. (141), acute cholecystitis appears to be the most 

frequent complication of gallstones, involving approximately one out of ten 

symptomatic patients. While the exact combination of clinical, biochemical and 

imaging features unequivocally leading to acute cholecystitis diagnosis is not yet 
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defined, the presence of fever, right hypochondrium pain, increased inflammatory 

markers and finding of gallbladder thickening and stones at US usually lead to the 

diagnosis (154). In the absence of stone migration to the common bile duct (described 

in the next paragraph) surgical resection of gallbladder (cholecystectomy) is generally 

indicated. Contraindications to cholecystectomy include those of general surgery such 

as septic shock or severely impaired clinical conditions. Conservative management of 

acute cholecystitis in patients with limited symptoms, even if sometimes successful, is 

generally not advised since ~60% of these patients would later require surgery and 

approximately one third will experience complications (155, 156). Timing for surgery 

depends on patient symptoms and risk of complications; however, a Cochrane Review 

comparing early (within 7 days from symptoms) and delayed (>6 weeks from 

symptoms) cholecystectomy for acute cholecystitis did not find significant differences 

in patient outcomes (157). A shorter hospital stay has been suggested when early 

cholecystectomy is performed.

b. Gallstones in the biliary tract and related complications

Even if stone migration to the biliary tract is not canonically considered a 

complication, this condition, associated with cholelithiasis in 10-20% of cases, is 

responsible for the most serious adverse events (158, 159). Analyzing the Swedish 

GallRisks registry, it was found that ~25% of patients with common bile duct stones 

may experience complications (160) while spontaneous expulsion from the biliary tract 

into the intestines is also possible.  Common bile duct stone diagnosis is generally 

ruled out by the increase in liver function tests (usually normal if stones are retained 

in the gallbladder and/or cystic duct) and imaging (either US or MRI).  Since common 

bile duct stones may determine relevant sequelae including obstructive jaundice, 

cholangitis and pancreatitis, bile tract cleansing is generally advised by current 
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guidelines (158, 159). The most relevant adverse conditions determined by stone 

impaction in the biliary tract are reported below.

Gallstones are the most frequent benign cause of obstructive jaundice, which 

impairs the liver and other physiological functions (161). Regarding the kidneys, in a 

study including 20 patients with obstructive jaundice (duration ~2 weeks), signs of 

acute tubular necrosis were observed at histology despite normal renal tests (162). 

Obstructive jaundice may also impair hemodynamic stability, immune fitness and the 

intestinal barrier leading to possible endotoxemia (161). Finally, obstructive jaundice 

may lead to bacterial overgrowth in the biliary tract, thus determining cholangitis.

Cholangitis diagnosis has been generally related to the presence of fever with 

spikes in pain in the right hypochondrium and jaundice (Charcot’s triad); however, 

these signs were found to be present in just 22% of patients with cholangitis (163). 

Mortality of this condition remains significant, approaching 5% of cases (164). Broad 

spectrum antibiotics and, in severe cases, prompt biliary decompression is advised.

Gallstones are regarded as the most important cause of pancreatitis being 

responsible for more than one third of cases (165). Also, small stones/cholesterol 

crystals may sometimes give rise to acute pancreatitis (166). Epigastric pain increased 

pancreatic enzymes, and demonstration of stones at imaging may rule out the 

diagnosis. Mortality may occur in ~30% of severe cases (167).

There is an apparent association between gallbladder disorders, gallstones and 

bile duct damage. The role and occurrence of gallbladder disorders in cholestatic liver 

disease will be described in the following sections.

INTRODUCTION ON THE BILIARY TREE

I. Biliary tree structure, function and physiology
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a. Background

The biliary tree, named so due to the resemblance the structure has with the 

branches of a tree, refers to the network of ducts that transport bile from the 

hepatocytes to the gallbladder and intestines. This system is involved in metabolism, 

waste disposal, and the movement and recycling of nutrients in the body (168-170). 

Bile plays a crucial role in the digestion and absorption of FAs, it emulsifies FAs and 

allows the hydrophobic molecules to be absorbed and transported for use or storage 

(168). A small percentage of the bile is lost in feces, allowing for larger molecules that 

cannot be excreted through the kidneys to also be disposed (168). The remainder of 

bile is reabsorbed and sent back to the liver through a cyclic process called 

enterohepatic circulation (171). Finally, selected vitamins and minerals use the biliary 

excretory system as a shuttle to connect to tissues where they are needed (168). The 

gallbladder is a protrusion extending from the biliary tree, indicating close anatomical 

relationships, and 10-15% of gallstone patients also present with bile duct stones 

(172); therefore, it is important to understand the biliary system and related diseases 

and how they may intersect with cholelithiasis.

b. Anatomy of the biliary tree

The branches of the biliary tree start in the liver, joining with other branches 

over and over until the whole network combines to form a single duct.  The total length 

of the branches of the biliary tree in humans would be about 2 km (173). Different 

zones of the biliary tree can be separated by their area, diameter, morphology or 

physiology (174); however, in this review we will use luminal diameter to separate the 

different regions. The smallest sized bile ducts that make up the biliary tree begin at 

the canals of Hering, starting at just a few nanometers in diameter and lined by hepatic 

progenitor cells (HPCs) (171, 173). These canals separate canicular bile secreting 
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hepatocytes from the epithelial cholangiocytes that line the rest of the bile ducts. HPCs 

play a role in liver regeneration following injury, thus their presence in the canals of 

Hering is advantageous for hepatic recovery (175). The canals of Hering meet to form 

ductules, which come together as interlobular ducts, then septal ducts, each of which 

have consecutively larger diameters (170, 176). At this point, area ducts measure 300-

400 m in diameter and connect to the larger segmental ducts (400-800 m) (171). 

This is where the left and right hepatic ducts, named for the liver lobes they branch 

into, finally come together to form the single common hepatic duct, collecting all the 

bile fluid the liver secretes (176). These measurements are for humans, and it is 

important to note that in rodents, cholangiocytes are more simply divided into small 

and large subsets, named for their anatomical location on either the small (<15 m in 

diameter) or large (15 m in diameter) ducts (177).  

The common hepatic bile duct exits the liver then either diverts to the 

gallbladder through the cystic duct or continues from the liver as the common bile duct 

(171). The common bile duct meets the pancreatic duct after passing through the wall 

of the upper small intestine, to make the hepatopancreatic ampulla (i.e., the ampulla 

of Vater) (170, 176, 178). The ampulla of Vater consists of the conjoining pancreatic 

and common bile ducts, the sphincter of Oddi, and an extrusion of papilla where bile 

is released into the duodenum (168, 170, 178).

Along the murine intrahepatic large ducts and the human large segmental 

ducts, small peribiliary glands sporadically line the luminal wall (170, 171). The 

peribiliary glands are defined by their location, their mucinous secretions and their own 

stem cell niche that is separate from the HPCs (170). Secreting directly into the lumen 

of the bile ducts, intramural peribiliary glands have a mucosal epithelium and line the 

duct walls (170). Conversely, extramural peribiliary glands, located in the periductal 
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connective tissue, have their own conduits that transport their seromucosal secretions 

to the large bile duct lumen (170). Peribiliary glands have also been identified in the 

crypts of the gallbladder epithelium (179), indicating similar yet heterogenous 

cholangiocyte functions in the biliary tree and gallbladder. Branching of the biliary tree 

and its specific stem cell niches are shown in Figure 5.

While the inner walls of the ducts are lined by epithelial cholangiocytes and 

scattered peribiliary glands, a fibromuscular layer of tissue lays beneath (170, 178). 

This layer is made up of fibrous tissue and smooth muscle fibers (178). Where the 

ducts meet with the duodenum, the muscles form the sphincter of Oddi, which controls 

the release of the contents into the intestine (170, 176, 178). Additionally, the blood 

supply for the ducts comes from a network of vessels stemming from the hepatic artery 

(173). This network of vessels surrounds the bile ducts and is termed the peribiliary 

plexus (PBP) (173, 180). The PBP provides nutrients to the bile ducts to allow for 

growth, but it also allows for an alternative enterohepatic circulation route for BAs to 

be recycled back to hepatocytes via cholangiocytes in a process called cholehepatic 

shunting (169, 173). The normal route of enterohepatic circulation and recycling of 

BAs is through intestinal absorption, and then delivery to hepatocytes where they are 

secreted again into the ducts (168, 169). Interestingly, there is a concept of a 

cholecystohepatic shunt whereby the gallbladder coordinates BA uptake from bile to 

the liver (181).

c. Cholangiocytes

The differing physiologies of the cholangiocytes allow for a high level of control 

to alter the flow and composition of bile. Cholangiocytes, much like other epithelial 

cells, are polarized, have a multitude of transport proteins, and have distinct 

basolateral and apical membranes (174, 182). On the basolateral side, they connect 
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to basement membranes (170, 174) and on the apical side of cholangiocytes, microvilli 

and cilia line the lumen, and between these cells, tight junctions maintain cell polarity. 

Certain disease states can result in an interruption in tight junctions, interrupting the  

flow of bile (171). While all cholangiocytes have diverse physiologies, the size and 

location of the cells influence their form and function.

Starting just after the canals of Hering, narrow canalicular ducts (about 10 m) 

are lined by small cuboidal epithelial cholangiocytes, which have little resorptive and 

secretory abilities (174). The properties of small cholangiocytes rely heavily on altering 

intracellular levels of Ca2+, where large cholangiocyte activities are more dependent 

on cAMP levels (174, 183). Large cholangiocytes are longer, have less microvilli and 

cilia on their apical membrane, and have a lower cytoplasm to organelle ratio. Most of 

the larger cells’ intracellular space is taken up by rough endoplasmic reticulum, 

suggesting that large cholangiocytes play a more specialized, less variable role than 

their small counterpart (174, 183). Conversely, small cholangiocytes resemble 

progenitor cells, with a higher nuclei to cytoplasm ratio (183). Like bile ducts, the 

gallbladder is lined with specialized epithelial cells. As small columnar cells with 

moderate cilia present on the apical membrane, the morphology of the epithelial cells 

that line the gallbladder resemble an intermediate between small and large 

cholangiocytes (184). 

All cholangiocytes have a primary cilium, a thin peninsula-like extension of the 

cell to maximize the surface area of the membrane (173, 174). These cilia sample the 

passing fluid, allowing cholangiocytes to act as mechano-, osmo-, and chemosensors, 

recognizing and responding to changes in bile (174). Further, cholangiocyte action can 

be spurred by a variety of molecules, including hormones, BAs, neuropeptides, and 

alterations in luminal pressure, the action being the alteration of intracellular Ca2+ 
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and/or cAMP, with downstream effects altering the composition of bile, initiating 

cholangiocyte proliferation, or even signaling the activation of immune responses 

(173).  Interestingly, while gallbladder epithelial cells are not noted to have primary 

cilium, they are similarly sensitive to the contents of bile, with a focus on water and ion 

manipulation (5).

d. Bile formation and flow

Hepatocyte secretions generate the bulk of bile, with cholangiocytes only 

accounting for about 40% of the daily production (168, 174). Bile production is 

prompted due to a series of reactions initiated at the beginning of a meal, especially 

one high in FAs. As an emulsifier, bile is a critical facilitator of the absorption of 

hydrophobic FAs (171). Once delivered, micelles are created to enclose and transport 

the lipids through the body (168). Between the delivery of bile to the duodenum and 

being secreted by canalicular hepatocytes, bile composition, flow, and pH is monitored 

and altered through a variety of mechanisms, including alterations controlled by 

gallbladder epithelial cells (185).

Previous cholehepatic research has defined two types of bile flow: BA-

dependent flow and BA-independent flow (186). As previously stated, hepatocytes are 

the main facilitators of BA-dependent flow as the main producers and recyclers of BAs 

(187). For instance, hypercholeretic bile salts, such as the conjugated secondary bile 

salt nor-ursodeoxycholic acid (nor-UDCA), increase bile flow (171). This is especially 

noteworthy, as the composition of BAs has been noted to be linked to gallbladder 

motility (185). It is unknown if gallbladder hypomotility, or an increase in secondary 

BAs resulting in decreased biliary flow is the primary action, but the two have been 

highly correlated (185). Conversely, cholangiocytes support BA-independent flow 

(171, 186, 188).
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Bile mostly consists of water, with only about 5% of the volume being attributed 

to other materials (171). At any time, bile can be composed of BAs, cholesterol, amino 

acids, glucose, steroids, enzymes, vitamins, and even heavy metals (168, 171, 187). 

Xenobiotics and toxins can also be present in bile (168, 171, 186). The biliary tract 

also acts as direct transport to the gut, where immunoglobulin A secreted in bile can 

protect against pathogens and promote symbiotic microorganisms (171, 189, 190). 

Other substances that use the biliary tract for transport elsewhere in the body include 

hormones and pheromones, as well as a number of vitamins (171). Even with all the 

other constituents within bile, BAs are the most abundant component (187). While the 

main function of the gallbladder is to pull water out and concentrate bile, the 

composition of BAs also influences the motility of the gallbladder (185). 

BAs are mainly synthesized and secreted by hepatocytes (171, 173, 187, 191). 

The farnesoid X receptor (FXR) is the main regulator of the synthesis and secretion of 

BAs, and ASBT expressed by cholangiocytes regulates cholehepatic shunting (171, 

187, 191, 192). ASBT is not only expressed by intrahepatic cholangiocytes, but by 

gallbladder epithelial cells, as well (193-195). It has been demonstrated that the 

gallbladder is able to uptake BAs in bile via ASBT, setting up the concept of a 

cholecystohepatic shunt (193-195).  Primary BAs are generated from cholesterol and 

can be modified by additional side chains of taurine or glycine to become secondary 

BAs, which makes them a stronger acid and also decreases the chances of 

reabsorption (171, 187).  Hypomotility of the gallbladder is linked to higher 

concentrations of secondary BAs, which is associated with an increased risk of 

developing cholelithiasis or cholangiocarcinoma (CCA) (196).

Once created, BAs are actively secreted from hepatocytes into bile mainly 

through the bile salt export pump (BSEP) (187). BAs are 100-1000X more 
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concentrated in bile than in plasma; therefore, they must be actively transported 

against this gradient (187). Most other components of bile maintain nearly the same 

concentration within bile fluid that exists in plasma, kept relatively standard through 

gradients found in the PBP (171, 173, 187). The regulation of BAs within plasma is 

also tightly controlled; however, certain biliary diseases alter this, spurring researchers 

to investigate the number of BAs detected in plasma of individuals with different liver 

and biliary pathologies (192, 197). So far, these studies have elucidated expected 

trends, such as the use of UDCA (the unconjugated form of nor-UDCA) for cholestasis 

treatment resulting in altered plasma BA concentrations (192). Additionally, recent 

research by Farhat et al.  noted new trends, specifically that high levels of conjugated 

BAs in plasma link to increased risk for liver cancer or other progressive liver diseases 

(197). Additionally, higher levels of secondary BAs in plasma are associated with 

cholecystolithiasis and non-neoplastic polyps in the gallbladder (198, 199). Beyond 

the synthesis of BAs, bile pH and osmolarity are controlled by cholangiocyte activities 

(173). Interestingly, gallstone formation is not due to lower pH values directly, but is 

instead attributed to increased Ca2+ concentrations in the bile that subsequently lower 

the pH (200).

e. Bicarbonate Secretion

Chloride is exchanged for bicarbonate, making bile alkaline, and the BAs within 

are thus polar, de-pronated, and membrane impermeable (173, 201). This protective 

alkaline constitution of bile, termed the ‘biliary bicarbonate umbrella,’ shields 

cholangiocytes from BA-induced injury, and once secreted in the duodenum, it 

neutralizes the acidic gastric output, protecting the intestinal epithelium and bolstering 

the absorption of nutrients (168, 173). The initiation of chloride/bicarbonate exchange 

is stimulated by increased intracellular levels of cAMP (173, 183). This internal 
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increase in cAMP incites a rise in protein kinase A (PKA) activation, which results in 

the increased transportation of intracellular chloride to the apical membrane via 

vesicles with three specific proteins: CFTR, anion exchange protein 2 (AE2) and water 

channel AQP1 (173, 183, 190). CFTR is also expressed by gallbladder cells, and loss 

of CFTR leads to defects in gallbladder emptying and BA circulation (195). In response 

to CFTR loss, concentrations of secondary BAs (that are conjugated in the ileum) are 

reduced, and this is reversed with cholecystectomy, further indicating a 

cholecystohepatic shunt (195). Both CFTR and AE2 are highly expressed in the 

gallbladder compared to the intrahepatic ducts (181), and in the gallbladder epithelia 

CFTR is required for cAMP-dependent, AE2-mediated bicarbonate secretion (202). In 

patients with gallstones, bile bicarbonate levels are reduced, and thus bicarbonate is 

hypothesized to be the main buffer of bile similar to intrahepatic bile ducts (200).

Other factors can affect bicarbonate secretion, including autonomic 

neurotransmitters (173, 174). Acetylcholine and phenylephrine upregulate biliary 

bicarbonate secretion, while gastrin-releasing peptide and vasoactive intestinal 

peptide (VIP) mediates a consistent baseline of bicarbonate (171, 173). Further, 

hormones such as somatostatin, endothelin, dopamine, and gastrin inhibit the rise of 

intracellular cAMP (171, 173, 201). Bile also contains nucleotides and nucleosides 

that, when interacting with P2Y receptors on the apical membrane, can result in 

increased bicarbonate secretion (171). It is interesting that many of these processes 

can be recapitulated in some fashion in the gallbladder. Acetylcholine promotes mucin 

release in the gallbladder as a defensive mechanism (203) which potentially aids in 

bicarbonate secretion since this process is found on intrahepatic bile ducts (204). 

Additionally, VIP is a potent stimulator of cAMP production in the human gallbladder 

epithelial cells that regulates fluid secretion, and VIP expression is higher in the 
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gallbladder than the intrahepatic bile ducts (181). Somatostatin decreases gallbladder 

motility (205), and endothelin is overproduced in acute cholecystitis and increases 

gallbladder tone (3,4). Lastly, P2Y2 is expressed on isolated gallbladder epithelial cells 

(34) and stimulates mucin secretion (49).

f. Biliary immune function

While cholangiocytes, including those of the gallbladder epithelium, play a 

crucial role in bile flow and composition, they also play a role in both the innate and 

adaptive immune systems (173, 174). Cholangiocytes and gallbladder epithelial cells 

have receptors to identify pathogen- and damage-associated molecular patterns, 

including some of the same proteins that B and T lymphocytes possess such as toll-

like receptors (206). Further, rather than being limited to downstream actions, 

cholangiocytes can proliferate and actively recruit immune cells to areas of injury (171, 

183, 201). Cholangiocyte proliferation is tightly regulated by paracrine and endocrine 

factors, including growth factors like transforming growth factor (TGF) and TNF, 

cytokines, neuropeptides, and hormones (173). For instance, progesterone and 

estrogen have been linked to increased proliferation, where anti-

progesterone/estrogen or a drop in levels of these hormones results in limited 

cholangiocyte growth, and even increased risk of disease states (173, 207, 208).

Cholangiocytes are attributed to the initiation of immune responses within the 

biliary tract due to their high level of intra- and extracellular communication (173), and 

following damage they secrete pro-inflammatory cytokines and chemokines, which 

communicate the location and type of injury to neighboring and immune cells (209).

While gallbladder epithelial cells have similar immune receptors and responses 

to those of cholangiocytes, they are located further down the biliary tract, and thus 

play a delayed, but still important immune role (210). One study found that gallbladder 
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epithelial cells express mRNA for a variety of cytokines and chemokines, as well as 

directly secrete TNF (210). Another study using donated human gallbladders, found 

the presence of multipotent endodermal stem cells within the gallbladder epithelium 

increased in pathologic gallbladders versus comparatively healthy gallbladders (211). 

Research on the potential immune functions of gallbladder epithelial cells is still 

ongoing and evolving.

g. Cholangiocyte-dependent fibrosis

Profibrotic factors can be released to incite downstream effects that promote 

fibrogenesis (212, 213). One study has shown that silencing one TGF- isoform may 

be an effective treatment for fibrotic biliary and liver diseases, limiting the expression 

of pro-fibrotic genes and conversely promoting antifibrotic PPAR expression (212). 

Further, chronic activation of cholangiocytes can result in the development of biliary 

fibrosis, damage, or cancer (212). Overly active fibrogenesis results in a buildup of 

scar tissue can result in decreased functionality of the biliary tract, eventually leading 

to biliary cirrhosis (201, 214). The gallbladder epithelial cells react similarly, with 

prolonged inflammation and immune response potentially resulting in severe fibrosis, 

perforation of the gallbladder, or even gallbladder cancer (215-217).

h. Cholestasis

Cholestasis refers to a decrease or halt in bile flow anywhere along the biliary 

tree. While there are a number of hereditary cholestatic disorders caused by genetic 

mutations, the most common forms of cholestasis are presented through PSC, primary 

biliary cholangitis (PBC), CCA, and cholelithiasis (218, 219). No matter the cause of 

cholestasis, there are few treatments available. The main treatment is to supplement 

with BA analogues, UDCA or obeticholic acid (OCA) that work to reduce BA synthesis. 

If UDCA or OCA treatment fails, a liver transplant is the last option (218, 220). UDCA, 
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when recognized by the biliary tract, increases bile flow, lessens toxicity, and 

encourages the recycling of nontoxic over toxic bile salts (221). Unfortunately, only 

about 40% of patients with cholestasis respond to UDCA treatment, highlighting the 

need for alternative therapies (192, 220). OCA works to reduce toxic BA levels by 

reducing BA synthesis and enhancing hepatic BA efflux (222). Clinical trials on OCA 

use in PBC, PSC and fatty liver diseases have proved promising, but more work 

regarding efficacy is necessary (222). 

LINKS BETWEEN THE GALLBLADDER AND CHOLESTATIC LIVER DISEASES

VI. Primary sclerosing cholangitis (PSC)

a. Background 

PSC is a rare cholangiopathy that firstly targets the bile ducts in the liver leading 

to inflammation, fibrosis, stricturing and eventual cirrhosis and liver cancer (223). The 

majority of PSC patients have extrahepatic and intrahepatic bile duct involvement, 

while a small proportion of diagnoses having intrahepatic only PSC (223). PSC affects 

more males than females, and the median age at diagnosis is 40 years (218, 224). 

Due to the initial unspecific manner of PSC symptoms at onset, PSC is not typically 

diagnosed until the disease has progressed (218). Currently, there are no approved 

therapies for the treatment of PSC, with BA therapeutics including UDCA and OCA 

being tested as potential therapeutics (218). PSC patients have a high risk of 

developing CCA and the only curative treatment for PSC is liver transplantation; 

however, recurrence rates are high demonstrating that this approach is not viable 

(218). While PSC primarily targets the biliary tree, the fibroinflammatory nature of PSC 

can lead to chronic inflammation which can subsequently affect the gallbladder. 

b. PSC, cholelithiasis and cholecystitis
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An early study from 1988 interrogated the incidence of gallbladder disease in 

PSC and found that 89% of PSC patients had abnormal gallbladders, and after 

excluding patients who had thickened gallbladder wall due to end-stage liver disease, 

41% of the remaining PSC patients presented with gallbladder abnormalities (225). 

PSC patients with abnormal gallbladders presented with gallstones, gallbladder 

dysfunction associated with PSC and neoplasms, indicating that gallbladder 

abnormalities are frequent among PSC patients (225). These findings were verified in 

a large study from 2008 that found that 41% of PSC patients present with gallbladder 

abnormalities, 25% have gallstones and 25% have cholecystitis (226). PSC patients 

also have papillary hyperplasia, pseudo gland formation, inflammation, smooth muscle 

hypertrophy and fibrosis in the gallbladder, but these abnormalities were found to a 

similar degree in chronic cholecystitis patients (227). PSC patients and chronic 

cholecystitis patients both presented with mononuclear cell infiltration of the 

epithelium, and although the incidence was higher in PSC it was not significant (227). 

Therefore, there may not be a distinct gallbladder signature in PSC patients compared 

to chronic cholecystitis. A separate study found that PSC-related cholecystitis showed 

diffuse infiltrate, predominantly plasma cells, within the lamina propria which was not 

significantly noted in chronic cholecystitis alone; therefore, the authors suggest that 

diffuse lymphoplasmacytic acalculous cholecystitis is a distinct form of PSC-

associated cholecystitis (228).  Incidence of cholecystitis is significantly higher (30%) 

in patients with extrahepatic PSC when compared to intrahepatic only PSC (9%) (226). 

These findings slightly differ from a Japanese cohort where ~12% of PSC patients 

were concomitantly diagnosed with gallstones (229), although this study did not 

distinguish between intra- and extra-hepatic PSC. 
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Transabdominal US is used to identify bile duct wall thickening and dilatations 

in PSC, but in one study this approach also identified that up to 41% of PSC patients 

presented with an enlarged gallbladder (Figure 6), gallstones, cholecystitis or mass 

lesions (230). The small study found that all PSC patients presented with irregularly 

thick gallbladder wall (230). This study further found that while PSC patients had 

enlarged gallbladders their rates of gallbladder emptying were normal (230). 

The gut influence on cholelithiasis was previously discussed, and it is also 

known that ~80% of PSC patients have concomitant inflammatory bowel disease (IBD) 

(231). Interestingly, around 50% of IBD patients present with hepatobiliary 

manifestations, including PSC, cholestasis and gallstones (232). Patients with Crohn’s 

Disease, severe ileitis or ileal resection have bile malabsorption leading to gallstone 

formation (232), further indicating the gut-liver axis in cholelithiasis.

Multidrug resistance 2 gene knockout (Mdr2-/-) mice are used as a model of 

PSC, and these mice spontaneously form cholecystolithiasis (233). The gallbladder in 

Mdr2-/- mice has needle-like cholesterol stones as early as 12 weeks of age (Figure 7) 

(233). The highly pro-inflammatory hepatobiliary environment might be contributing to 

the concretion of gallstones and aiding in cholecystitis. Moreover, the ability of Mdr2-/- 

mice to spontaneously generate gallstones without the induction from lithogenic diet 

makes it a versatile model to study the intricate signaling mechanisms involved in the 

concretion and crystallization of gallstones. Female Mdr2-/- mice  developed 50% more 

gallstones than male Mdr2-/- mice indicating a sexual dimorphic effect (233), but this 

dichotomous effect has not been published in humans with PSC. Abcb11 encodes 

BSEP that is responsible for the export of BAs from the hepatocyte to the bile 

canaliculus, and Abcb11 colocalizes with the Lith1 (responsible for cholesterol-

induced gallstone formation) quantitative trait locus (234). To understand if Abcb11 is 

Page 135 of 201 Comprehensive Physiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

responsible for gallstone formation, the authors generated mice with overexpression 

of Abcb11 and subsequently fed them a lithogenic diet (234). It was found that Abcb11 

overexpression induced biliary BA secretion and bile flow but did not affect 

cholelithogenesis (234).

c. Gallbladder cancer in PSC

Aside from cholelithiasis and cholecystitis, there is an increased rate of 

gallbladder cancer in patients with PSC (235). Some patients present with gallbladder 

lesions, which more than half of the time represent adenocarcinoma, and as such 

cholecystectomy is recommended in all instances of gallbladder lesions regardless of 

size (236). Gallbladder carcinoma was associated with intrahepatic bile duct dysplasia, 

CCA and IBD in PSC patients, and gallbladder dysplasia was associated with 

hilar/intrahepatic bile duct dysplasia, CCA, IBD and older age at transplant; however, 

similar associations were not found for sex or PSC duration (235). From this study, the 

authors conclude that PSC patients have a neoplastic “field effect” along the intra- and 

extra-hepatic bile ducts in PSC, including the gallbladder (235). Importantly, in 40-50% 

of PSC patients with gallbladder neoplasms, these polyps are malignant (237). From 

these studies, one would consider cholecystectomy to be an important intervention for 

PSC patients presenting with gallbladder polyps. However, one study found that 40% 

of PSC patients that underwent cholecystectomy due to gallbladder polyp or mass 

presence had early postoperative complications (238).

VII. Primary biliary cholangitis (PBC) 

PBC is an autoimmune-mediated cholangiopathy that targets the interlobular 

(i.e., small) bile ducts of the biliary tree (239). Risk factors for PBC include being 

female, over 50 years old, and living in a Western country (218, 224). In early stages 
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(stage I/II) of PBC, there is a large degree immune cell influx to the peribiliary location, 

compensatory proliferation of the bile ducts, reduced presence of ductulo-canalicular 

junctions (necessary for bile outflow) and loss of the protective bicarbonate umbrella 

(240). As PBC progresses to later stages (stage III/IV) cytotoxic T cell mediated 

destruction of the bile ducts leads to ductopenia via apoptosis of the small 

cholangiocytes (239). Ductopenia has also been attributed to enhanced senescence 

and toxic BA-mediated cell death due to loss of the bicarbonate umbrella and ductulo-

canalicular junctions (240). These surmounting injuries lead to peribiliary fibrosis and 

cirrhosis if left untreated (239). UDCA and OCA are first-line therapies approved for 

the treatment of PBC, but a number of patients are non-responders to these 

approaches (241). While PBC is an autoimmune liver disease, patients do not respond 

to traditional immunosuppressants, making treatment of the inflammatory cascade 

challenging (241). Due to the pan-inflammatory presence in PBC, it is unsurprising 

that 73% of patients with PBC present with extrahepatic manifestations of autoimmune 

disease, including Sjogren’s syndrome, thyroid disease and systemic sclerosis 

involving the skin, lungs, gastrointestinal tract, heart or musculoskeletal system (241).

a. Gallbladder disorders and cholelithiasis in PBC

There are few studies that identify if changes in the gallbladder or gallbladder 

disease occur in patients with PBC. A case study found that a 70-year-old Hispanic 

woman with PBC/autoimmune hepatitis overlap syndrome and associated cirrhosis 

had multiple gallstones and bile duct stones, and a periampullary mass (242), but this 

may have been associated with cirrhosis and not driven by PBC. In one study, it was 

noted that patients with PBC did not have a significant difference in gallbladder size, 

wall thickness or emptying compared to controls (230). Another study conversely 

found that the gallbladders of PBC patients had epithelial hyperplasia, pseudo gland 
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formation, inflammation, fibrosis, smooth muscle hypertrophy and mononuclear cell 

infiltrate, but the degree is like what is found in chronic cholecystitis and PSC patients 

(227) indicating that gallbladder abnormalities may be non-specific in 

cholangiopathies. As well, it is unclear if these patients presented with cirrhosis, which 

in and of itself increases the risk of gallbladder disease regardless of etiology (243).

A national hospital-based study in Italy looked at hospitalized PBC patients and 

found that this cohort had an increased incidence of malignant neoplasms of the 

gallbladder, and this occurrence was higher in women than in men (244). In another 

study, cholelithiasis in PBC was significantly associated with intra- and extra-hepatic 

CCA (245). However, these are the only studies identifying associations between PBC 

and gallbladder cancer, thus more work is necessary.

b. Microbiota in PBC

PBC patients have decreased diversity of microbes and higher levels of genera 

associated with inflammation, but this dysbiosis is partially reversed by UDCA (246). 

As stated above, BAs and the microbiota can play a role in cholelithiasis; therefore, 

this association in PBC may be attractive. Interestingly, 75% of the bacterial clones 

isolated from gallbladder bile from PBC patients were gram-positive cocci, with only 

5% of gram-positive cocci found in gallbladder bile from patients with 

cholecystolithiasis (Table 2 and Table 3) (247). Staphylococcus aureus was the 

predominant gram-positive bacteria in PBC gallbladder bile (247). However, this study 

did not indicate if the PBC patients presented with gallbladder abnormalities, and thus 

the correlative or causative effect of dysbiosis in PBC on gallbladder disease is 

unknown.

There is a lack of understanding on the association of PBC and gallbladder 

diseases. While some abnormalities and cancer were noted, this may be a 
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consequence of cirrhosis and not etiology dependent. Furthermore, no studies have 

reported on gallbladder abnormalities or cholelithiasis in mouse models of PBC. 

Therefore, more investigation is key to answering this question.

VIII. Cholangiocarcinoma (CCA)

Cancer cells and the tumor microenvironment (TME) interact with each other to 

form multicellular systems, called tumors. The composition of the TME is characterized 

by extracellular matrix (ECM), and various cell types such as immune cells, endothelial 

cells, pericytes, and fibroblasts (248). CCA is cancer of the bile ducts and is the second 

largest primary liver malignancy, after hepatocellular carcinoma (HCC). CCA tends to 

escape immune surveillance, and for this reason it is associated with a poor prognosis 

and poorly defined symptoms (249). Most CCA cases are defined as an incurable 

malignancy, and the 5-year survival rate for CCA is abysmally low (250). CCA can be 

defined by the following subtypes: intrahepatic (iCCA), perihilar (pCCA), and distal 

(dCCA) (251). The last two groups of CCA, pCCA and dCCA, are regrouped under the 

term of extrahepatic CCA (eCCA) and can include gallbladder cancer (252). Many risk 

factors such as NAFLD, non-alcoholic steatohepatitis (NASH), alcohol-related liver 

disease (ARLD), and biliary fibroinflammatory response can contribute to CCA 

development (253, 254). MicroRNAs (miRNAs) are small non-coding RNAs that play 

various roles in the modulation of CCA (255). Various studies have shown that 

alteration of miRNAs may act as oncogenic or onco-suppressing in CCA. Furthermore, 

in gallstone disease, there is upregulation of miR-210 that reduces the expression of 

its target, ATPase phospholipid transporting 11A gene, in human gallbladder epithelial 

cells (256).  miR-130b inhibits the expression of the specific protein 1, and 

consequently there is decrease of MUC5AC expression. It is well known that 

Page 139 of 201 Comprehensive Physiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

hepatolithiasis is strongly related to chronic inflammation and overexpression of 

MUC5AC as well, which can be a contributor to liver cancer initiation (257). 

a. Cholangiocarcinoma, cholelithiasis and gallbladder cancer

On occasion, gallstones can migrate into the bile ducts and induce 

complications. The presence of bile duct stones is considered a significant risk factor 

for the development of CCA due to repeated mechanical injury and inflammation of 

the intrahepatic biliary tract epithelium (258, 259).  The size, presence and number of 

gallstones are significantly associated with increased risk of CCA (260). 

Cholecystectomy reduced the risk of gallstones associated with CCA, with a greater 

risk reduction seen in eCCA than iCCA (261). This was mirrored in another study 

where gallstones increased the risk of iCCA and eCCA with a decline in risk following 

cholecystectomy (262). Another study contrarily found that dilation of the bile ducts is 

frequent following cholecystectomy and can cause inflammation and increase the risk 

of CCA (263); however, this was in a cohort of patients with normal bile ducts whereas 

the former was in a population of CCA patients. The biliary microbiome can regulate 

various damages within the liver, including cholelithiasis as discussed above. One 

study found that the relative abundance of Proteobacteria, Firmicutes, Bacteroidetes, 

and Actinobacteria was similar in patients with dCCA and new onset bile duct stones 

(264) identifying that shared microbial communities may be a link between gallstone 

formation and CCA development. In a rare case report, a 65-year-old woman 

presented with jaundice and concomitant cholecystitis due to an impacted gallstone 

(265). Following pancreaticoduodenectomy, histopathological analysis revealed that 

the patient had primary gallbladder malignancy along with CCA (265). While the link 

between gallstones and CCA risk is known, the incidence of concomitant CCA and 

gallbladder cancer appears to be rare. The incidence of other gallbladder disorders in 
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CCA seems unreported in the literature; thus, more work may be required in this area. 

Histological imaging of gallbladder cancer can be found in Figure 8.

IX. Non-alcoholic fatty liver disease (NAFLD)

NAFLD, also known as metabolic-associated fatty liver disease, is the most 

common chronic liver disorder globally (266). As the obesity epidemic continues to 

grow, the incidence of NAFLD is increasing worldwide. Approximately 24% of U.S. 

adults have NAFLD and about 10% of this population has an advanced form of NAFLD 

termed NASH. The incidence of NAFLD in children is also rising with about 10% of 

U.S. children aged 2-19 years having NAFLD (267).  NAFLD also shows ethnic 

disparities, with the highest incidence in Hispanic populations (268). The risk factors 

for NAFLD includes obesity, type 2 diabetes mellitus, hypertriglyceridemia, Western 

diet and sedentary lifestyle (269). Interestingly, a large scale study using the U.S. 

National Health and Nutrition Examination Survey revealed the positive correlation 

between glucose intolerance, plasma insulin levels and C-peptide content with 

gallstone incidence (270) 

The pathogenesis of NAFLD was first explained by the ‘two-hit’ theory (271, 

272), and later referred to as “muti-hit hypothesis”. The first ‘hit’ starts with insulin 

resistance caused by excessive FA accumulation in hepatocytes, a state known as 

hepatic steatosis (273, 274). A number of secondary ‘hits’ come after the exposure to 

chronic fat accumulation (272), including oxidative stress-induced mitochondria 

dysfunction, endoplasmic reticulum (ER) stress (275), apoptosis induced-regeneration 

(276), gut-derived endotoxin-induced inflammation (277), and cholestatic-induced lipid 

metabolism dysregulation (278). These multiple secondary hits synergistically, but not 

sequentially, happen during the progression of NAFLD. These events eventually lead 
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to chronic inflammation and fibrosis, resulting in NASH (279). NASH is characterized 

by hepatic ballooning, lobular inflammation, and macro steatosis. About 20% of NASH 

patients will develop cirrhosis, with potential risk of liver failure or hepatocellular 

carcinoma (280). 

A longitudinal cohort study showed increased risk of gallstone formation in 

NAFLD patients, especially in females (281). Further studies showed association 

between NAFLD and gallstones with a higher NAFLD incidence in women with 

gallstones (282-284). Additionally, gallbladder wall thickness and gallbladder 

dysfunction can occur in NAFLD patients that do not present with gallstones (Figure 

9) (285). It has also been shown that NASH prevalence in patients with gallbladder 

disease is 18% in the morbidly obese population, but mechanisms linking these factors 

is unknown (286). Lastly, cholelithiasis was not associated with advanced fibrosis or 

definite NASH in a NAFLD cohort, further complicating potential associations between 

gallbladder disease and NAFLD (287).

Human genome-wide association studies (GWAS) have revealed several 

genes that may explain the vulnerability and increased risk of NAFLD observed in 

some subpopulations. The most confirmed and studied genetic variant that is 

associated with NAFLD is PNPLA3 (288-290). The Rs738409 [G] I148M allele of 

PNPL3 correlated to increased risk of NAFLD and is most found in Hispanic 

populations. Furthermore, the Rs738409 [G] I148M mutation increased NAFLD risk 

and body weight gain (291), and an increased risk of higher steatosis, portal 

inflammation, fibrosis and oxidative stress (291-294). Conversely, rs6006460[T] is 

enriched in African American populations and shows protective effects against the 

development of NAFLD as the population shows a lower risk of NAFLD and lower 

hepatic fat content (289). However, a study did not find increased risk of gallstone 
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formation in patients with I148M mutation per se (295). Nevertheless, another genetic 

study showed that the polyunsaturated FAs were much higher in individuals with 

PNPLA3148M variants when compared to non-carriers. Other genetic variants with 

moderate effect sizes were shown in transmembrane 6 superfamily member 2, 

glucokinase regulator (GCKR), and membrane bound O-acyltransferase domain-

containing 7 (296). Another GWAS study also found GCKR variant showed increased 

risk of gallstone diseases (297). The DNA methylation of PPARG is associated with 

fibrosis severeness in NAFLD (298). Interestingly, activation of PPARG prevents 

cholesterol gallstone formation by increasing bile salt synthesis and enterohepatic 

circulation in lithogenic mice models (299).  The same study also noticed that PPARG 

activation alleviated hepatic steatosis and obesity symptoms (299). This indicates that 

both NAFLD and gallstone formation share some common mechanisms. 

a. Fatty acid (FA) uptake, storage and signaling

The rate of hepatic FA uptake is determined not just by the circulating 

concentrations that comes from the adipose tissue and gut, but also relies on FATP 

and caveolin (300-304). Meanwhile, vaveolin-1 depletion increased cholesterol 

crystallization in lithogenic diet-induced mice by inhibition of hepatic cholesterol levels 

and bile salts transportation (305). Cluster differentiation 36 (CD36), as the most 

studied lipid transporter, facilitates hepatocyte FA update and trafficking (306). 

Hepatocyte specific depletion of CD36 improved steatosis by decreasing the 

triglyceride, diacylglycerol, and cholesterol in a NAFLD genetic mouse model and diet 

induced model (307). In fact, oxidation is increased in CD36-/- mice via inhibition of 

sterol regulatory element-binding protein 1 (SREBP1) in diet-induced NAFLD (308). 

Further, circulating CD36, a soluble form of CD36, was found to be strongly associated 

with insulin resistance (309) in type 2 diabetes and advanced steatosis in NAFLD 
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(310). Depletion of CD36 also showed resistance to lithogenic diet induced gallstones 

in mice by altering the lipid composition in the biliary tract and enhanced gallbladder 

contractility (311). 

Besides FA uptake from exogenous sources, hepatic FA comes directly from 

de novo lipogenesis, that is converted from monocarbohydrates and proteins. In this 

process, acetyl-CoA is converted to malonyl-CoA and fatty acyl-CoA. This process 

adds FAs to hepatocytes and causes triglyceride accumulation in the cells by inhibiting 

fatty oxidation (312). SREBP1c and carbohydrate-responsive element-binding protein 

(ChREBP) also regulates de novo lipogenesis. Interestingly, both SREBP1c and 

ChREBP can be stimulated through activation of LXR which is regulated by insulin 

(313). Further, insulin could directly activate SREBP1c though translocation from the 

Golgi to the nucleus (314). LXR activation increased the susceptibility of gallstone 

formation in lithogenic-diet induced mice by elevated cholesterol and phospholipids 

concentration and decreased bile salt concentration (315). 

b. Bile acid metabolism

As previously mentioned, NAFLD starts with simple steatosis followed by 

multiple secondary insults. One of the offenses is the dysregulation of BA metabolism, 

which is mediated by the liver-gut axis (316). About 95% of BAs are recycled through 

the hepatic portal system, and BAs can regulate glucose and lipid homeostasis via 

nuclear receptor activation, including FXR (317). Interestingly, FXR-/- mice showed 

dysregulated lipid metabolism, enhanced serum BAs, cholesterol, and serum 

lipoprotein profile (318). While another study showed increased bile salt 

hydrophobicity and cholesterol crystallization in FXR-/- mice, which is an indication of 

gallstone formation. Further, the reactivation of FXR in these knockout mice prevented 

gallstone formation (319).  
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c. NAFLD, cardiovascular disease and cholelithiasis

As stated, the NAFLD spectrum varies from simple steatosis to metabolic 

steatohepatitis, and it can further progress to liver fibrosis, cirrhosis, and hepatocellular 

carcinoma. The coexistence of NAFLD and gallstone disease has been found, mainly 

due to several shared risk factors such as age, ethnicity, obesity, insulin resistance, 

and metabolic syndrome (320). A study has indicated an increased incidence of 

gallstone formation in patients with NAFLD (47%) versus patients without NAFLD 

(26%) (321). 

Recent studies have indicated that gallstone disease is closely associated with 

the occurrence of cardiovascular disease, and the occurrence of gallstone disease 

increases the incidence of cardiovascular disease (322). Based on a meta-analysis of 

10 published studies, patients with gallstone disease had a higher risk of diabetes, 

hypertension, coronary heart disease, atrial fibrillation, and hyperlipidemia. In addition, 

gallstone disease was found to be related to a 1.23-fold increase in the incidence of 

cardiovascular and cerebrovascular diseases. In another study of 5,928 subjects by 

Daniel et al., gallstone disease was closely related to many kinds of cardiovascular 

diseases (323). Gallstone disease, cardiovascular disease and NAFLD also share 

common risk factors such as obesity, age, sex, and disorders of lipid metabolism, and 

these factors are major risk factors for metabolic syndrome. Metabolic syndrome is 

closely related to cardiovascular disease and gallstones may be considered a 

characteristic of this (324). Cholesterol is transported into plasma by lipoproteins, 

micelles, and vesicles in bile. If excess cholesterol were accumulated in the arterial 

wall, atherosclerosis may occur. The excess cholesterol that is not dissolved by bile 

salts or phospholipids will precipitate as solid cholesterol monohydrate crystals, which 

can lead to the formation of cholesterol gallstones (84). 
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d. NAFLD, cholestasis and cholelithiasis

Gallstones are one of the causes of extrahepatic cholestasis, while cholestasis 

is linked to NAFLD progression in various studies. A case-control study conducted in 

2015 revealed more severe histological damage in NAFLD with cholestasis compared 

to NAFLD patients without cholestasis (325). This is further highlighted in a study 

conducted in 2018, where about 30% of NAFLD patients showed cholestasis (326). It 

is suggested that NAFLD patients with cholestasis show more pronounced hepatic 

inflammation, unbalanced carbohydrate and lipid metabolism, apoptosis, and fibrosis 

(326). Another study conducted with 90 NASH patients showed a positive association 

between centrilobular ductular reaction and fibrosis stage (327). Although this study 

did not provide direct evidence of cholestasis influence on the homeostasis of lipid and 

carbohydrates in the liver, a number of animal studies using an Mdr2-/- mouse model 

connect cholestatic liver injury and impaired liver function (278) to dysregulation of 

lipid metabolism and steatosis (328). Specifically, the genes that control lipid 

synthesis, storage, and oxidation is dysregulated. Interestingly, the same study found 

that the supplementation of nor-UDCA or high-fat diet showed a protective role in 

Mdr2-/- mice and reversed the fibrosis (328). 

Patients with NAFLD showed increased plasma BAs, specifically elevated 

primary and secondary BAs. Bacteria that metabolize taurine and glycine, two critical 

components in producing secondary BAs are increased (329). Furthermore, elevated 

primary BAs are also found in gallstone patients (198). On the other hand, intrahepatic 

cholestasis of pregnancy (IPC) showed significantly higher incidence in NAFLD 

patients when compared to other chronic diseases or pregnancies without chronic liver 

disease (330). Further, the incidence of gallstones in IPC is much higher in women 

who do not present IPC (331). Taken together, cholestasis and elevated BAs increase 
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the risk of NAFLD and gallstones. However, further work needs to be done in human 

association studies and molecular mechanisms underlying the BA metabolism, 

gallstone formation and NAFLD. 

X. Alcohol-related liver disease (ARLD)

ARLD has been the main cause of liver-associated mortality worldwide (332). 

This chronic liver disease is the most common and can progress from alcoholic fatty 

liver to alcoholic steatohepatitis (ASH) (333). Chronic ASH can eventually develop liver 

fibrosis and cirrhosis, which may lead to HCC. In addition, severe ASH (with or without 

cirrhosis) can cause alcoholic hepatitis (AH), which is an acute clinical presentation of 

ARLD that is associated with liver failure and high mortality (334). 

Most ARLD patients are diagnosed with jaundice or complications of cirrhosis 

when they reach the medical care (335). Screening of ARLD in the primary-care 

setting at an early stage and subsequent behavioral interventions should be 

encouraged. Abstinence from alcohol is the best treatment for all stages of ARLD (336, 

337). Unfortunately, ARLD patients in advanced stages who do not respond to medical 

therapy have a very low life expectancy, and the only therapeutic option associated 

with a survival benefit is liver transplantation (338). At 1-year post-transplantation, the 

survival rate has steadily improved to 80-85% in 2010 (339). In addition, transplant 

recipients with ARLD are at high risk of cardiovascular diseases, infections, and 

cancers (340, 341). Overall, more effective, and safer therapies are urgently needed 

to ultimately reduce the burden, morbidity, and mortality of ARLD.

a. Alcohol consumption and cholelithiasis

Almost forty years ago, a case-control study first reported that alcohol 

consumption was associated with a decreased risk of developing gallstones, whereas 
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increased intake of sugars was associated with an increased risk (342). Interestingly, 

the association of alcohol with reduced risk of gallstones was found in both males and 

females (342). However, women have been regarded to have a higher risk of gallstone 

formation due to sex hormone signaling (118). In this regard, the relation between 

alcohol intake and cholecystectomy were observed by Leitzmann et al. in a large 

cohort of women (343). Their study also revealed that the intake of all alcoholic 

beverages is inversely associated with the risk of cholecystectomy in women (343). In 

another large prospective study of over 1 million women that consume alcohol 

(patients were excluded if they had a clinical history of either liver cirrhosis or 

gallbladder disease before recruitment), Liu et al. further confirmed that alcohol 

consumption is associated with an increase in the risk of liver cirrhosis but a decrease 

in the risk of gallbladder disease (344).

b. Thickening of the gallbladder wall in alcoholic hepatitis

Thickening of the gallbladder wall is often seen with US in patients with ARLD. 

In a retrospective evaluation of 125 consecutive gallbladder sonograms, it was 

reported that gallbladder wall thickening was associated with hypoalbuminemia in the 

absence of chronic cholecystitis in a cohort of chronic alcoholics (345). However, 

another US evidence-based study suggested that portal hypertension, not 

hypoalbuminemia, is the dominant factor causing gallbladder wall thickening in 

cirrhotic patients (346). Therefore, more research may be required in this area to better 

understand the comorbidity of gallbladder wall thickening.

c. Gallbladder perforation and gallbladder variceal hemorrhage in ARLD

Gallbladder perforation is a relatively uncommon complication of ARLD-related 

cirrhosis and may happen with or without gallstones. The diagnosis of gallbladder 

perforation is challenging due to the lack of classical symptoms and signs of 
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perforation (347). Chu et al. reported the first case of a 41-year-old man with alcoholic 

cirrhosis who developed fatal spontaneous gallbladder variceal bleeding (348). 

Unfortunately, the diagnosis of gallbladder varices eluded conventional imaging and 

was made only at autopsy; therefore, direct causation of spontaneous gallbladder 

variceal bleeding with ARLD is unknown. One case study reported gallbladder 

perforation with alcoholic liver cirrhosis and asymptomatic gallstones (347). The 

patient was initially diagnosed as HCC-associated rupture based on CT scan images 

and the patient’s clinical history of alcohol-related liver cirrhosis; however, further 

laparotomy examination revealed that the patient has gangrenous cholecystitis with 

perforation, suggesting that gallbladder perforation should be taken into consideration 

as a potential cause of acute abdominal pain (Figure 10) (347). Furthermore, it was 

observed that a Child-Pugh A alcohol-related liver cirrhosis patient had developed 

acute gallbladder perforation with spillage of stones into the peritoneal cavity (349). 

Gallbladder perforation is a rare complication in ARLD and alcohol-related liver 

cirrhosis, but caution should be taken for those with specific risk factors. 

d. ARLD and cholelithiasis

Since alcohol-related cirrhosis is the advanced stage of ARLD, many studies 

evaluated prevalence and incidence of cholelithiasis with cirrhotic patients (350). 

Acalovschi et al. assessed the risk factors for gallstone formation and the 

characteristics of liver cirrhosis in 140 patients with multivariate analysis. Similar to 

what was discussed previously, they reported that alcohol-related cirrhosis and male 

gender (not female) were inversely correlated with cholelithiasis symptom presence 

(351). In cirrhotic female patients, the risk of developing cholelithiasis was significantly 

greater (351). However, another multivariate study shows that cholelithiasis was 
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significantly more frequent in cirrhotic patients with previous alcohol abuse with no 

difference in relation to sex (352). 

e. Animal studies on alcohol consumption and cholelithiasis

Animal studies are key for identifying molecular mechanisms regulating disease 

processes. Unfortunately, little work has been done to investigate ARLD and 

gallbladder diseases in murine models. One study evaluated the effect of alcohol 

consumption on BA profiles in a chronic gavage mouse model (353). Interestingly, 

ethanol intake significantly increased BA profiles (mainly free BAs and taurine-

conjugated BAs) in the gallbladder of 50% ethanol fed mice (353). The total BAs in the 

gallbladder were also significantly increased in the 50% ethanol treated groups (353). 

The authors also demonstrated that 50% ethanol increased the expression of BA-

related enzymes and transporters, including BSEP and ASBT in the liver (353). The 

close association with BAs, BA transporters and gallstone formation may indicate that 

very high alcohol consumption can contribute to cholelithiasis. However, this percent 

of ethanol intake is not physiologically relevant, and thus findings should be 

considered with caution.

XI. SARS-CoV-2-related liver disease

SARS-CoV-2, the virus responsible for COVID-19, has been under an intense 

lens of investigation since the identification of the highly contagious infection. At first, 

it was uncertain if patients with chronic liver or biliary disorders were more at risk for 

severe COVID-19 than others, with the American Association for the Study of Liver 

Diseases making a statement in 2020 that higher risk was probable due to the 

observed mechanistic interactions of the virus with angiotensin-converting enzyme 2 

(ACE-2) (354). ACE-2 acts as a functional transporter, allowing the virus entry into the 
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cell, making hepatocytes and cholangiocytes, which express ACE-2, targets for 

potential infection (354, 355). Over the past two years, research has begun to identify 

comorbidities that correlate to higher risk of fatality, as well as disease states and 

damage caused by fighting the infection. Further, COVID-19 patients with evidence of 

liver dysfunction account for about half of those infected (354, 356). Of importance, 

one case report found 3 adults that developed prolonged and severe cholestasis 

following COVID-19 infection, leading to the notion that there may be a rare COVID-

19-related cholangiopathy (357). Another study found that biomarkers of liver injury 

were elevated in 23.4% of Delta-infected and 18.8% of Omicron-infected COVID-19 

patients, with the predominant marker being identifiers of cholangiocyte damage (358). 

Interestingly, liver and cholangiocyte injury biomarkers did not differ between patients 

with or without pre-existing liver injury (358). This work is supported by another study 

indicating that 32.7% of COVID-19 infected patients had elevated markers of 

cholangiocyte damage, which correlated with longer hospital stays (359). The full 

impact of COVID-19 on cholestasis and biliary damage will likely not be determined 

until long into the future since the disease is relatively new. 

a. SARS-CoV-2 related gallbladder disease

Several COVID-19 patients have presented with severe cholecystitis. Like 

cholangiocytes, gallbladder epithelial cells present with high levels of ACE-2, which is 

thought to explain the presence of viral RNA present in the gallbladder epithelial cells 

of affected patients (Figure 11) (354, 355). As with hepatobiliary dysfunction, the 

severity of COVID-19 infection appears to directly influence the severity of 

cholecystitis, with over half the case studies identifying those patients with complicated 

or severe COVID-19 as having acalculous or gangrenous cholecystitis (354-356, 360). 

Conversely, some cholecystic COVID-19 patients had less severe COVID-19, but still 
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presented with acute cholecystitis (361-363). In one case report of a patient with 

COVID-19 and gangrenous cholecystitis, immune cell infiltration and blood vessel 

involvement can be seen in the gallbladder. This disparity between critically ill and 

non-critically ill COVID-19 patients with similar cholecystic presentations suggests that 

underlying risk factors may account for progression of the diseased state, including 

similar risk factors to cholestasis, genetic proclivity, and co-morbidities. Additionally, 

COVID-19-linked cholecystitis cases have been seen around the world, suggesting 

there may not be a strong connection to lifestyle or ethnicity.  As more individuals 

recover from COVID-19, it is important to explore any lasting damage induced by the 

virus.

CLINICAL ASPECTS OF GALLBLADDER DISEASE IN LIVER DISEASE

XII. Prevention and treatment

a. Prevention

Pigmented stones are less frequently observed and represent <10% of cases 

worldwide. Specific risk factors, such as parasitic biliary infection or blood diseases 

(hemolytic anemia) may attenuate brown stone prevalence (172). The burden of 

cholesterol gallstones seems worldwide, but prevention may not be an easy target 

since there is a complex interplay between genetic, metabolic, dietary, environmental 

and gender related factors contributing to stone formation (364). Among modifiable 

cholelithiasis risk factors, those related to lifestyle (diet and physical activity) have 

captured more attention. Reduced physical exercise (365) and obesity (366, 367) were 

consistently reported in association with increased risk of cholesterol stones. 

Regarding diet type and habits: i) reduction of carbohydrates, meat, and fats in favor 

of vegetables as well as; ii) avoidance of long fasting periods, seem protective for 

cholesterol stone formation (368). In this setting, alcohol consumption has been 
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suggested to be inversely correlated with gallstones (369); however, it is important to 

note that studies on diet or general physical activity are largely based on self-reported 

data and possibly altered by other personal and environmental factors thus justifying 

discrepancy between different studies. Finally, a condition in which gallstone 

prevention may be feasible and beneficial is related to rapid weight loss. A weight 

decrease >1.5 kg/week has been associated with an increased risk of gallstones (370) 

and similarly after bariatric surgery (particularly when Roux-en-Y gastric by-pass is 

performed) stone formation may be expected (371). In these situations, UDCA 

prophylactic therapy is advised (144, 372). 

b. Pharmacological treatment

UDCA consistently demonstrates gallstone dissolution capabilities. This effect 

was evident when UDCA was administered at a dose of 7 mg/kg with radio-

transparent, non-calcified stones ≤1 cm in size and in patients with a functional 

gallbladder (373). UDCA inhibition of cholesterol intestinal uptake and secretion in bile 

may explain its stone dissolution properties (374). Therapeutic application of UDCA, 

however, is hindered by high stone recurrence, accounting for more than 50% of cases 

on 10-year follow-up (375). This negative aspect is in part compensated by the 

observation that long-term treatment (up to 18 years) is associated with a decrease in 

biliary pain and acute cholecystitis in patients with symptomatic gallstones at baseline 

(376). In practice, UDCA dissolution therapy may be considered in symptomatic 

patients with elevated surgical risk or denying surgery.  In acute symptomatic 

gallstones, use of non-steroidal anti-inflammatory drugs is generally indicated. In acute 

cholecystitis, antibiotic therapy remains controversial while it remains useful in cases 

of concurrent biliary tract infection, such as cholangitis or abscess formation (144).

c. Surgical approaches
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An extensive examination of the operative procedures regarding the 

management of gallstones and their complications is behind the scope of this review 

since several publications and guidelines have focused on this issue (154, 159, 377). 

In this paragraph just the most relevant concepts on operative strategies for gallstones 

will be reported.  

Surgical removal of the gallbladder (cholecystectomy) remains the advised 

approach in symptomatic gallstone disease (144, 378). Cholecystectomy, in fact, is a 

measure to block stone recurrence since gallbladder dysfunction (dysmotility and 

changes in bile reabsorption/concentration process) contributes to cholesterol 

nucleation (57, 194). Starting from 1985 laparoscopic (mini-invasive) cholecystectomy 

has been a major advancement in gallbladder surgery reducing hospital stay and 

allowing a faster post-surgical recovery,  in comparison with open access (379). More 

than 90% of cholecystectomies are approached with the mini-invasive procedure 

presently; however, conversion or direct start with open surgery may be considered in 

difficult or complicated cases (144). For common bile duct stones, a specific mini-

invasive approach based on endoscopic-retrograde-cholangiopancreatography 

(ERCP) technique has been consistently suggested and adopted (158, 159). ERCP is 

successful for common bile duct stone extraction in approximately 90% of cases and 

is also able to solve other gallstone complications such as acute cholangitis or biliary 

pancreatitis (380, 381). Finally, percutaneous cholecystostomy may be considered to 

prevent complications of acute cholecystitis in less fit patients (377).

XIII. Gallstones in cholestatic liver disease 

a. Prevalence

Several studies converge in demonstrating an increased prevalence of 

gallstones in patients with liver diseases. In a cross-sectional and longitudinal study, 
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involving patients with liver cirrhosis, a gallstones prevalence of 29.5% was reported 

(382). The presence of stones was more prevalent according to age and severity of 

cirrhosis while it did not change according to gender or cause of disease. In the same 

study, a cumulative incidence of 40.8% at eight years was reported, similar to that 

observed in a previous study (383).  Data from patients undergoing liver 

transplantation also confirm this trend (384). Interestingly, and differently from the 

general population, the majority of gallstones in cirrhotic patients is represented by 

pigmented stones, possibly as a consequence of the unbalance between mono-

conjugated (less water soluble) and di-conjugated bilirubin in bile (385). Regarding 

chronic cholestatic adult liver diseases, a significant increase in cholecystectomy 

(27%) was reported in comparison with control (17%) in PBC patients (386). In another 

study, PSC patients were examined demonstrating a similar prevalence of gallstone 

and cholecystitis accounting for 25% of cases (226). Finally, regarding non-cirrhotic 

liver diseases, interest is gaining in the relationship between fatty liver and gallstones. 

In a study on patients with type 2 diabetes it was found that prevalence of gallstones 

was similar regardless of NAFLD presence (25.5% NAFLD vs. 23.6% control) even if 

this condition was more associated to symptoms and cholecystectomy (387). 

However, the possible relationship between fatty liver and gallstones remains complex 

due to the presence of several confounding factors (type 2 diabetes, obesity, etc.) and 

considering that gallstones may be an early indicator of the metabolic derangement 

leading to NASH (388).

b. Treatment

Since definitive therapy of symptomatic gallstones largely requires surgical 

and/or invasive procedures, and cirrhotic patients are considered extremely fragile in 

this regard, clinical management of these patients remains difficult. Portal 
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hypertension and reduced liver functions are factors setting cirrhotic patients in a class 

of high surgical risk. Gallbladder surgical removal (open cholecystectomy) was defined 

as “hazardous” in an early study reporting 83% mortality in patients with liver diseases 

and impaired prothrombin time (389). A more recent Danish study also confirmed a 

ten-fold increase in 30 days mortality after open cholecystectomy in cirrhotic patients 

in comparison with control (390). Providentially, this tragic picture had a relevant 

improvement due to the advent of laparoscopic approaches in recent decades (391, 

392). In a meta-analysis comparing open or laparoscopic gallbladder removal in 

cirrhosis, the latter was associated with a significant decrease in complications and 

hospital stay (393). However, a crucial point is represented by the stratification of risk 

in each single patient. Child-Turcotte-Pugh score has been historically developed to 

evaluate the surgical risk of cirrhotic patients (394). According to Child-Turcotte-Pugh 

evaluation and severity of liver disease, the patient may belong to class A, B or C. It 

is agreed that A or B patients may undergo laparoscopic cholecystectomy while those 

in C class are usually not considered for surgery due to poor conditions (144). More 

recently another scoring system has gained interest in the assessment of cirrhotic 

patient prognosis and their priority for liver transplant: the so-called model-(for)-end-

stage-liver–disease (MELD) (395). Even though a study demonstrated a preoperative 

MELD score >13 to be associated with cholecystectomy complications in cirrhotic 

patients (396), the cut-off for a safe procedure has not been identified so far.

In conclusion, while the prevalence of gallstones increases in patients with liver 

impairment, the usual therapeutic approaches are risky in a significant percentage of 

them, and other effective strategies are lacking. The evidence that stones are more 

frequent in advanced liver impairment (382) is also of concern demonstrating that 

those more in need of treatment are, at the same time, the ones with increased 
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contraindications. In this setting, medical therapy also seems of marginal help. In fact, 

cirrhotic patients are usually affected by pigmented stones and UDCA does not have 

significant effects on them. 

Extensive research is needed to find alternative (non-invasive/medical) 

approaches to gallstone treatment in patients with liver disease. Regarding this issue, 

it should also be considered that NAFLD is a rising pathological liver condition affecting 

more than one third of adult western populations (269) and is unfortunately associated 

with both liver cirrhosis and gallstone disease.

CONCLUSION

Gallbladder disorders and gallstones are significant occurrences that can 

impact quality of life and mortality in humans. The association of gallbladder diseases, 

specifically gallstones, with cholestatic disorders highlights an important association 

between the gallbladder and the intrahepatic biliary tree (Table 4). It is intuitive that 

these two tissues would be interlinked in both normal and pathological states 

considering that the gallbladder is an extension of the biliary tree, and they are lined 

by a similar epithelial cell type; however, research generally looks at either gallbladder 

disease or intrahepatic biliary disease separately. The fact that gallbladder damage, 

gallstones and even gallbladder cancer have been shown to be associated with 

different liver disorders highlights the notion that we should look closer into the 

mechanisms and crosstalk mediating these paracrine injuries during various 

cholestatic liver diseases. Research that better understands the occurrence of 

gallbladder injury in cholestasis and whether they feedback on each other to promote 

damage in one another is necessary to better define whether congruent damage in 

these tissues can be treated separately or if it highlights a different issue or necessary 

intervention.
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It is largely known that gallbladder damage and gallstones are highly regulated 

by cholesterol, BAs, lithogenic bile and bile stasis. These findings are not surprising 

since these components are found in high concentrations in bile and can remain in the 

gallbladder for an increased amount of time while waiting for the physiological signal 

that induces gallbladder emptying. This finding is also important to note since bile flow 

and BA circulation and conjugation can be regulated by intrahepatic cholangiocytes. 

This mechanism shows that processes mediated by the intrahepatic bile ducts may, 

in turn, regulate gallbladder damage or stone formation as a downstream 

consequence. This is also highlighted by the finding that both the intrahepatic and 

gallbladder cholangiocytes express transporters important for the transport of BAs. A 

similar expression profile was also noted for receptors and transporters necessary for 

water and bicarbonate secretion. Considering similar mechanism are found in these 

different biliary populations, it is unsurprising that damage in these two compartments 

may be linked; however, it is important to note expression discrepancies between the 

intrahepatic and gallbladder cholangiocytes, with higher expression profiles potentially 

noted in the gallbladder epithelia. Therefore, the gallbladder may play an important 

role in in bile modification that can in turn impact pathophysiology, which is something 

to be considered when discussing cholecystectomy.

One of the major treatments for gallbladder disorders is cholecystectomy; 

however, this may not always be feasible or desired by the patient. If we can better 

evaluate the link between cholestasis, biliary damage, and gallbladder disorders we 

could potentially find therapeutics to target these that do not include surgical 

intervention. In line with this, a better understanding of the intricacies linking the 

intrahepatic biliary tree and gallbladder can help to identify modalities or biomarker 

that can indicate gallbladder damage early on to better detect injury at earlier stages. 
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As discussed in the last part of this comprehensive review, much work is being done 

to identify new diagnostic and therapeutic approaches to counteract gallbladder 

disorders. It is necessary that future work, both in clinical trials, meta-analyses, and 

pre-clinical models, better evaluate the gallbladder during liver disease to better 

understand these issues and identify improved approaches for patients.
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FIGURE LEGENDS:

Figure 1: Image of the gallbladder and associated anatomical parts. The gallbladder 

can be divided into the fundus, body and neck and it then branches to the cystic duct 

that connects with the common bile duct. The common bile duct can further branch 

into the common hepatic duct, which further branch into left hepatic duct and right 

hepatic duct. Image made with BioRender.

Figure 2: Image of the layers of the gallbladder wall with various transporters and 

receptors important for gallbladder physiology. The gallbladder wall is divided into the 

following layers: mucosa, muscularis, perimuscular fibrous tissue and serosa. The 

epithelial in the mucosa layer modulate water, chloride, and bicarbonate secretion with 

aquaporin channels, cystic fibrosis transmembrane conductance regulator, and the 

purinergic Y2 receptor. The muscularis is involved with neuropeptide signaling and 

potassium release by ether-a-go-go related 1 potassium channel. Image made with 

BioRender.

Figure 3: Comparison of acute and chronic cholecystitis. Acute cholecystitis is an 

acute inflammatory response and can be due to cystic duct obstruction, 

overproduction of mucus, and/or lithogenic bile. Chronic cholecystitis is due to ongoing 

inflammation and is primarily associated with cystic duct blockage and lithogenic bile. 

Image made with BioRender.

Figure 4: Diagram of the main gallbladder disorders. Cholelithiasis is gallstone 

formation (either cholesterol, brown or black stones) and can complicate issues by 

becoming lodged in the cystic duct. Polyps are generally benign but can rarely be 

cancerous. Cholecystitis can be either acute or chronic, is mostly brought on by 

gallstones, is associated with abdominal pain and can result in gallbladder perforation. 
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Gallbladder cancer is a rare condition and is usually labeled as adenocarcinoma. 

Image made with BioRender.

Figure 5: Diagram of the different portions of the biliary tree in humans and mice. In 

humans, the biliary tree is separated from the most distal to the most proximal end as 

follows: canals of Hering, ductules, interlobular ducts, septal duct, area ducts, 

segmental ducts, left and right hepatic duct, and common hepatic duct. The mouse 

biliary tree is divided into two parts: the small ducts and the large ducts. Stem cell 

niches termed hepatic progenitor cells (HPCs) and the peribiliary glands can be found 

at the ends of small ducts or in the larger duct walls, respectively. Image made with 

BioRender.

Figure 6: Ultrasonography of the gallbladder (longitudinal and transversal scans) in a 

PSC patient (top and middle panels; length=12.3 cm; width=6.6 cm; height=6.0 cm; 

volume=253.0 mL) and a healthy control gallbladder (bottom panel; length=7.2 cm; 

width=2.5 cm; height=2.8 cm; volume=26.2 mL). Reprinted with permission from Gut. 

1996 Oct; 39(4):594-599.

Figure 7: Photomicrograph images of gallbladder stones in Mdr2-/- mice 

(magnification=400X). (A) Needle-like crystals (arrows) found on the edges of a 

yellow-colored stone. Needle-like crystals are short, straight, filamentous cholesterol 

crystals. (B) Radial crystal pattern of a stones core showing needle-like crystals 

(arrow). Reprinted with permission from Hepatology. 2004 Jan; 39(1):117-128.

Figure 8: Histological image of the layers of the gallbladder wall in gallbladder cancer, 

corresponding to T stage. HA=hepatic artery; PV=portal vein. Reprinted with 

permission from Gastroenterology Clinics of North America. 2010; 39:333.

Figure 9: (A) Fasting gallbladder wall thickness in healthy controls, steatotic patients 

and NASH patients. (B) Gallbladder ejection fractions in healthy controls, steatotic 
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patients and NASH patients. Reprinted with permission from Journal of 

Neurogastroenterology and Motility. 2016 Jul; 22(3):470-476.

Figure 10: Pathological imaging of hematoxylin and eosin (H&E) staining of the 

gallbladder from an ARLD patient. (A) 10X imaging of H&E staining and (B) 40X 

imaging of H&E staining showing chronic cholecystitis with suppurative inflammation 

(arrows). Reprinted with permission from Medicine (Baltimore). 2018 May; 97(18): 

e0414.

Figure 11: Radiological findings of the gallbladder and SARS-CoV2 qRT-PCR from a 

COVID-19 infected patient. (A) Abdominal CT scan showing cholecystitis. qRT-PCR 

was performed on gallbladder samples to assess SARS-CoV-2 presence and (B) 

shows 3 samples from the gallbladder that were positive for SARS-CoV-2, and (C) the 

RNA control was consistently positive. Reprinted with permission from Journal of 

Hepatology. 2020 Dec; 73(6):1566-1568.
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figure 11 
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Table 1: Risk factors associated with cholelithiasis

Positive (+) risk association for the development of cholelithiasis; Negative (-) risk 
association for the development of cholelithiasis. HHEX=Hematopoietically expressed 
homeobox; MC4R=Melanocortin-4-receptor; MAP2K5=Mitogen-activated protein kinase 
kinase 5; NRXN3=Neurexin-3; FAIM2=Fas apoptotic inhibitory molecule 2; 
Lith=Lithogenic gene; ABCG=ATP-binding cassette subfamily G; ABCB=ATP-binding 
cassette subfamily B

Risk factors Cholelithiasis

Aging 
Indian ethnicity
Genetic:

- SNPs:
- HHEX, MC4R, MAP2K5 and NRXN3;
- FAIM2;

- Lith 1/2 genes (mouse);
- ABCG5/8 genes (human);
- Apolipoprotein E4 allele;
- Mutation in ABCB4;
- Mucin related genes;

Lifestyle:
- Alcohol consumption;
- Low physical activity;

Female sex;
Obesity;
Rapid weight lost;
Microbiome:

- Bacteria producing -glucuronidase and 
phospholipase;

- Bacteria causing mucus abnormalities
- Helicobacter pylori

+
+

+
-
+
+
+
+
+

-
+
+
+
+

+

+
+
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Table 2: Bacterial species detected in the bile of PBC patients.

Bacterial species Sequenced 
colonies

Detected 
case

Staphylococcus aureus* 40 (40%) 1, 2, 4, 5

Enterococcus faecium* 20 (20%) 3, 6

Streptococcus pneumoniae or 
other streptococci* 15 (15%) 9, 10

Lactobacillus plantarum 8 (8%) 7

Helicobacter pylori 4 (4%) 10

Propionibacterium acnes 5 (5%) 1, 8

Lactobacillus gasseri 2 (2%) 7

Corynebacterium otitidis 2 (2%) 8

Agrobacterium tumefaciens 1 (1%) 8

Flavobacterium breve 1 (1%) 8

Clostridium sordellii 1 (1%) 8

Micrococcus luteus 1 (1%) 8

100 colonies 10 cases

Gram-positive cocci are marked*
Reprinted with permission from Journal of Hepatology. 2000 July; 33(1):9-18.
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Table 3: Bacterial species detected in the bile of cholecystolithiasis patients.

Bacterial species Sequenced colonies Detected case

Pseudomonas aeruginosa** 23 (28.8%) 28, 29, 30, 32

Escherichia coli** 20 (25%) 26, 31

Clostridium perfringens 18 (22.5%) 27, 29, 30, 33

Sutterella wadsworthia 8 (10%) 27, 28, 29

Propionibacterium acnes 7 (8.8%) 33

Enterococcus faecium* 4 (5%) 27

80 colonies 8 cases

Gram-positive cocci are marked*; gram-negative cocci are marked**
Reprinted with permission from Journal of Hepatology. 2000 July; 33(1):9-18.
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Table 4: Gallbladder disorders found in different liver diseases

Liver Disease Gallbladder Disorder(s)

Primary Sclerosing Cholangitis (PSC) - Gallbladder abnormalities
- Gallstones
- Cholecystitis
- Gallbladder polyps
- Cancer

Extrahepatic PSC - 30% have cholecystitis

Intrahepatic PSC - 9% have cholecystitis

PSC-IBD - Gallbladder cancer

Cholangiocarcinoma (CCA) - Gallbladder cancer

Primary Biliary Cholangitis (PBC) - Neoplastic phenotype of 
gallbladder

- Cholelithiasis 
Non-alcoholic fatty liver disease (NAFLD) - Cholesterol gallstone formation

- Cholelithiasis
Alcohol-related liver disease (ARLD) - Gallstone formation

- Gallbladder wall thickening
- Gallbladder perforation
- Gallbladder variceal hemorrhage
- Cholelithiasis

SARS-CoV-2-related liver disease - Acute cholecystitis
- Gangrenous cholecystitis

PSC=Primary sclerosing cholangitis; IBD=Inflammatory bowel disease; 
CCA=Cholangiocarcinoma; PBC=Primary biliary cholangitis; NAFLD=Non-alcoholic fatty 
liver disease; ARLD=Alcohol-related liver disease
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