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S U M M A R Y 

The combination of electrical resistivity and seismic refraction tomography is a common 

practice for the characterization of subsurface features. Presently, the cross-gradient inversion 

scheme stands out as one of the most robust joint approaches, and some authors modified it to 

manage complex topographies on unstructured meshes even if at the expense of introducing 

additional parameters in the inversion process. We propose in this work a cross-gradient 
algorithm for jointly inverting electrical and seismic tomographic data on structured meshes 
in cases with non-flat topography. The proposed approach preserves the benefit of the classical 
cross-gradient approach without the need to impose physical length scales, as for irregular 
meshes. The quality of the results is e v aluated in comparison with independent inversion 

through a new standardized cross-gradient index and a fuzzy c -means analysis that provides 
an assessment of the reconstruction accuracy through the membership function. The proposed 

method was applied to both synthetic models and field-scale examples located in Central 
Italy, where an accurate geophysical reconstruction is needed for the rehabilitation of existing 

dams. For all cases, joint inversion yielded superior results compared to independent inversion, 
demonstrating better agreement with available borehole data. The effectiveness of the joint 
approach was also demonstrated by the post-inversion tools, where the new cross-gradient 
index highlighted changes in structural similarity whilst fuzzy c -means clustering allowed for 
a quantitative reconstruction (position and shape) of the main units at the sites, facilitating the 
detection of site layering modifications. 

Key words: Joint inversion; Electrical resisti vity tomo graphy; Seismic tomo graphy; Machine 
learning. 
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.  I N T RO D U C T I O N  

mong the geophysical methods applied for civil and environmen-
al engineering, the combined use of electrical resistivity tomog-
aphy (ERT) and seismic refraction tomography (SRT) has shown
o be ef fecti v e for inv estigating the soil-structure interaction with
 particular focus on the hydro geolo gical conditions (e.g. Bi èvre
t al. 2017 ), since these methods are sensitive to different physical
roperties of the subsurface. Electrical resistivity is a good proxy
or sensing variations in water content, porosity and clay content,
hile seismic wave velocities are related to the elastic character-

stics of materials such as density, porosity and saturation (Toks öz
t al. 1976 ). Therefore, combining them in a joint inversion scheme
an potentially contribute to reducing the non-uniqueness (Doetsch
t al. 2010 ) thus reducing the intrinsic ambiguities in the interpre-
ation of the inverted models (Linder et al. 2010 ). 

For this reason, during the last decades joint inversions have
ecome increasingl y popular, and, consequentl y, man y dif ferent
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
pproaches have been implemented. The structural joint inversion
pproach employs structural attributes as common elements be-
ween different geophysical models, without introducing any re-
ationship between the investigated properties (Meju & Gallardo
016 ). In the very first examples of structurally coupled inversion
f electrical resistivity and seismic traveltime data, Zhang & Mor-
an ( 1996 ) and Haber & Oldenburg ( 1997 ) proposed new methods
ased on minimizing a measure of dissimilarity of the models in ad-
ition to the individual objective functions. In gradient-based algo-
ithms, the direction-dependent information plays a significant role
n enhancing structural features, while the magnitude of changes in
he estimated parameters aids in characterizing shared boundaries
Meju & Gallardo 2016 ). The cross-gradient inversion introduced
y Gallardo & Meju ( 2003 ) is presently one of the most robust
pproaches for jointly inverting ER T and SR T data as it has been
pplied to many real-world examples (e.g. Linde & Doetsch 2016 ).
n this approach structural similarity between the multiple physical
roperty distributions is achieved by imposing the constraint that the
oyal Astronomical Society. This is an Open Access 
 https://creati vecommons.org/licenses/b y/4.0/ ), which 
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cross-product of the gradients of the property fields should be zero 
at common boundaries (Gallardo & Meju 2003 ). Consequently, this 
inversion methodology can be successful where changes in the geo- 
physical properties are aligned or the gradient is zero for one prop- 
erty, which is a reasonable assumption in a wide range of scenarios. 
Currentl y, there are man y applications of cross-gradient joint inver- 
sion on structured meshes but only considering flat topography (e.g. 
Gallardo & Meju 2003 , 2004 , 2007 ; Hamdan & Vafidis 2013 ; Shi 
et al. 2017 ). For incorporating irregular tomographies, Jordi et al. 
( 2020 ) developed a novel scheme on unstructured (triangular and 
tetrahedral) meshes extending the approach after Leli èvre & Far- 
quharson ( 2013 ), which can also adapt to complex topographies. For 
this purpose, they modified the original cross-gradient calculation, 
in which the direct neighbourhood of a single cell is considered. To 
this end, they used all the cells lying within a pre-defined distance, 
at the cost of introducing an additional user-defined parameter (the 
radius of the selected length scale). The choice of the mesh is criti- 
cal during the joint inversion particularly for ERT, where it should 
be suf ficientl y coarse to reduce the degrees of freedom and the ill- 
posedness of the inversion problem and limit runtime and memory 
occupation, while, on the other hand, the forward calculation re- 
quires a very fine grid to provide accurate results (G ünther et al. 
2006 ). 

The impact of the coupled inversion scheme in comparison with 
independent inversion procedures has been classically assessed by 
the cross-gradient, since a reduction of this function can be seen 
as an improvement of the reconstruction (Meju & Gallardo 2016 ). 
Other post-inversion approaches for comparing the inverted models 
encompassed the use of scatterplots of inverted parameters (e.g. 
Linde et al. 2008 ; Doetsch et al. 2010 ), while only a few have 
explored the potential of machine-learning based techniques for 
joint and independent inversion (e.g. Hellman et al. 2017 ; Ronczka 
et al. 2017 ). 

These works applied hard clustering algorithms as post-inversion 
techniques to improve joint interpretation by reducing subjective 
bias (e.g. Marzan et al. 2021 ), but without providing an assess- 
ment of the reliability of the performed classification, which can 
be achieved through soft clustering analysis. In fact, unlike crisp 
clustering algorithms, which assign each data point to a specific 
cluster, soft clustering techniques assign each point in the multidi- 
mensional space to all subsets with varying degrees of membership 
and can be potentially suitable for capturing the reliability of the 
reconstruction (Paasche et al. 2010 ). In this work, we developed a 
new approach for the cross-gradient joint inversion of electrical and 
seismic tomographic data using structured mesh in the case of not- 
flat topographies. The inversion algorithm, developed in Python, is 
based on the original cross-gradient formulation (Gallardo & Meju 
2003 ), whose ef fecti veness is well demonstrated. Our approach was 
applied to both synthetic examples and field case studies related to 
geophysical investigations for rehabilitating dams. To assess the re- 
liability of the joint inversion with respect to the classical approach 
and to ease the interpretation of the results, we use a new formula- 
tion of the cross-gradient function (SCG index) and a soft clustering 
analysis through the fuzzy c -means (FCM) algorithm, which served 
as a tool for the assessment of the reliability of the classification 
using the membership function. 

2 .  M E T H O D O L O G Y  

The proposed method encompassed a three-step procedure (Fig. 1 ): 
(i) first, individual inversions of ERT and SRT data are carried out 
through the open-source pyGIMLi package (R ücker et al. 2017 ) 
properly adapted to work with a newly implemented structured 
mesh; (ii) then, cross-gradient joint inversion is performed using 
the same inversion parameters, including regularization settings, 
initial model, and forward calculation at each inversion step and 
(iii) at the end of the inversion procedure, the models (individual 
and joint) are compared in terms of SCG and of clustered models 
achieved with the fuzzy c -means algorithm for the final interpre- 
tation. In the following sections, the procedures and algorithms 
used for building a structured mesh with topography, for the cross- 
gradient joint inversion, the computation of the SCG index and the 
clustering analysis are described. 

2.1 Meshing 

The numerical resolution of the joint formulation requires a com- 
mon structured mesh to implement the cross-gradients calculation 
using the finite difference method. Since the pyGIMLi package 
(R ücker et al. 2017 ) manages not-flat topographies by unstructured 
meshes, where the direct neighbourhood of a single cell cannot be 
determined, we realized a new structured meshing algorithm able to 
manage even complex topographies called FlexiMesh . FlexiMesh 
incorporates electrode and shot/geophone points as fixed nodes of 
the mesh and allows the user to select the number of additional nodes 
placed on the surface for each sensor (1 by default). To add these 
additional points along the topographical surface, a linear interpo- 
lation of the given topography is carried out. The height of the cells 
is set equal to their width by default, but it can be customized by the 
user increasing with depth to compensate for the loss of resolution 
in ERT or changing the vertical versus horizontal ratio of the cell’s 
dimension. This mesh (Fig. 2 a) is then used during the individual 
and joint inversion procedures of both data sets as well as for the 
seismic forward computation. Conversely, for ERT data inversion a 
dual meshing procedure is needed for inverse and forward calcula- 
tions. To this end, we derived the forward electrical mesh from the 
parameter grid, by adding an external region to incorporate bound- 
ary conditions (Sasaki 1989 ), made up of triangular elements with 
pro gressi vel y larger dimensions to reduce the computational time 
(Fig. 2 c). Ho wever , such mesh needs to be refined in regions with 
high potential gradients to limit errors (R ücker et al. 2006 ). Hence, 
we increased the triangle density close to the left and right borders 
of the parameter grid and a global refinement of the latter has been 
realized by bisecting cell edges, so that each quadrilateral cell is 
subdivided into four equal-size cells (Fig. 2 d). 

2.2 Cross-gradient joint inversion 

Gallardo & Meju ( 2003 ) proposed a simultaneous joint inversion of 
electrical and seismic data for resistivity ( ρ) and P -wave velocity 
( v P ) in which the cross-gradients penalty function is applied to 
improve the resolution of common boundaries. This dimensionless 
function, defining the geometrical similarity of two models as a 
distribution of gradients, is defined as: 

t cg ( x , y , z ) = ∇ m r ( x , y , z ) × ∇ m s ( x , y , z ) , (1) 

where m r and m s are the resistivity ( ρ) and slowness (inverse of v P ) 
models, in a generic 3-D space. 

An additional flexibility of the technique is that the cross- 
gradients constraint is also satisfied where ∇m r or ∇m s vanish, 
thus admitting a boundary that has a significant change only in one 
of the two models (Gallardo & Meju 2003 ). In a 2-D case, as we 
consider in this work, t cg al wa ys points in the strike direction and 
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Figure 1. Flowchart of the approach used in this work. 

Figure 2. Meshes used during individual and joint inversions built by FlexiMesh : (a) mesh used for inversion of both data sets, (b) detail of its elements, (c) 
refined mesh for ERT forward calculation, (d) detail of the ERT forward mesh in the parametric region. 
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an be treated as a scalar. In this case, its y-component, referred to
s t , can be calculated as: 

 cg ( x, z ) = 

(
∂ m r ( x, z ) 

∂z 

) (
∂ m s ( x, z ) 

∂x 

)
−

(
∂ m r ( x, z ) 

∂x 

)(
∂ m s ( x, z ) 

∂z 

)
. (2) 

Estimating the deri v ati ves using the forw ard dif ference method,
q. ( 2 ) can be expressed as (Gallardo & Meju 2004 ): 

t cg ( i, j ) = 

1 

�x�z 
[ m r ( i, j ) ( m s ( i + 1 , j ) − m s ( i, j + 1 ) ) + m r ( i, j + 1 ) 

( m s ( i, j ) − m s ( i + 1 , j ) ) + m r ( i + 1 , j ) ( m s ( i, j + 1 ) − m s ( i, j ) ] , (3) 

here the indices i and j define the model parameters in the x and z
irection and � x and � z are the distances from the considered cell
o the following along the two directions, referring to the centres of
ach cell. 

The objective function of the joint inversion scheme is: 

 = � d + λ� m 

+ λcg � cg , (4) 
in which λ and λcg are the individual and cross-gradient regular-
zation parameters, Фd is the data misfit term defined as: 

 d = 

∑ 

k= r,s 
|| D k ( d k − f k ( m k ) ) || 2 2 , (5) 

here r and s represent resistivity and slowness, D k are the data
eighting matrices (since data are assumed to be uncorrelated, these
atrices are diagonal and composed by the reciprocal of data er-

ors), d k the observed data and f k ( m k ) the forward operator acting
n the model m k . 

In eq. ( 4 ) Фm is the regularization term not including a reference
odel: 

 m 

= 

∑ 

k= r,s 
|| C k m k 

2 
2 || (6) 

ith C k the smoothness constraint matrices (Constable et al. 1987 ),
egularizing the model characteristics. The cross-g radient ter m con-
ains the l-2 norm of the cross-gradient penalty showed in eq. ( 1 ): 

 cg = || t cg ( m r , m s ) || 2 2 , (7) 

art/ggae326_f1.eps
art/ggae326_f2.eps
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The objective function is nonlinear, since resistivity and seismic 
forward problems, as well as the cross-gradients constraint, are 
nonlinear, so to minimize it we used a first-order Taylor expansion 
(i.e. the Gauss–Newton method) obtaining the following system 

formulated in terms of model perturbation: ⎡ 

⎣ 

D S 

p 

C √ 

λcg B 

p 

⎤ 

⎦ 

[
� m 

p+ 1 ] = 

⎡ 

⎣ 

D ̄d 

p 

−C m 

p 

−√ 

λcg t p 

⎤ 

⎦ , (8) 

being p the iteration number, 

D = 

[
D r 0 
0 D s 

]
, S 

p = 

[
S 

p 
r 

S 

p 
s 

]
, 

� m 

p+ 1 = 

[
� m 

p+ 1 
r 

� m 

p+ 1 
s 

]
, ̄d 

p = 

⎡ 

⎣ 

d r − f r 
(
m 

p 
r 

)

d s − f s 
(
m 

p 
s 

)
⎤ 

⎦ , 

C = 

[√ 

λr C r 0 
0 

√ 

λs C s 

]
, m 

p = 

[
m 

p 
r 

m 

p 
s 

]
, 

B 

p = 

[
B 

p 
r B 

p 
s 

]
. (9) 

and S 

p 
r and S 

p 
s are the Jacobian or sensitivity matrices containing 

the partial deri v ati ves of model responses with respect to the model 
parameters, whose terms are defined: 

S p k m,n = 

∂ 
(

f k 
(
m 

p 
k 

))
m 

∂ ( m k ) n 
(10) 

In eqs ( 9 ) and ( 10 ), k represents the considered model (resistivity 
or slowness) and the subscripts m and n indicate the row and the 
column of the matrix element being calculated. B 

p 
r and B 

p 
s are 

the cross-gradient Jacobian matrices expressing the deri v ati ves of t 
with respect to the model properties, used to approximate the cross- 
gradient function at the present iteration by a first-order Taylor 
expansion around the function at the previous iteration (Linde et al. 
2006 ): 

t p+ 1 ∼= 

t p + B 

p � m 

p+ 1 . (11) 

The cross-gradient sensitivity for cell m with respect to a change 
in model value m k,n is defined: 

B 

p 
km,n = 

∂ 
(
t p cg 

)
m 

∂ ( m k ) n 
= 

∂ 
(∇ m 

p 
r × ∇ m 

p 
s 

)
m 

∂ ( m k ) n 
. (12) 

These terms can be derived from the reduction of t in a 2-D 

domain shown in eq. ( 3 ), obtaining: 

∂t cg ( i, j ) 

∂m r ( i, j ) 
= 

1 

� x � z 
( m s ( i + 1 , j ) − m s ( i, j + 1 ) ) , 

∂t cg ( i, j ) 

∂m s ( i, j ) 

= 

1 

� x � z 
( m r ( i, j + 1 ) − m r ( i + 1 , j ) ) , 

∂t cg ( i, j ) 

∂m r ( i, j + 1 ) 
= 

1 

� x � z 
( m s ( i, j ) − m s ( i + 1 , j ) ) , 

∂t cg ( i, j ) 

∂m s ( i, j + 1 ) 

= 

1 

� x � z 
( m r ( i + 1 , j ) − m r ( i, j ) ) , 

∂t cg ( i, j ) 

∂m r ( i + 1 , j ) 
= 

1 

� x � z 
( m s ( i, j + 1 ) − m s ( i, j ) ) , 

∂t cg ( i, j ) 

∂m s ( i + 1 , j ) 

= 

1 

� x � z 
( m r ( i, j ) − m r ( i, j + 1 ) ) . (13) 

We solved the system in eq. ( 8 ) using a conjugate-gradient least- 
squares solver (G ünther et al. 2006 ), wherein an additional step 
of line search optimization is performed at each iteration to pre- 
vent the model from overshooting because of nonlinearity. The λcg 

weighting parameter was found by performing various inversions 
with different values and choosing the one corresponding to the 
lowest cross-gradient mean absolute value, as shown in Fig. 3 (a). 
The inversion process ends when the target data misfit is reached 
or when no additional reduction in data misfit is obtained from one 
iteration to the next (Fig. 3 b). 

2.3 Standardiz ed cross-g radient (SCG) 

Gallardo & Meju ( 2004 , 2007 ) introduced a method to assess the im- 
pact of the joint approach by visually comparing the cross-gradient 
(CG) values before and after the joint inversion approach, and 
this quantity was represented by setting a minimum and maximum 

threshold. Ne vertheless, in man y practical cases CG can fail to prop- 
erly assess the impact of the coupled scheme (readers can observe 
such evidence concerning the cases presented in this study from 

Fig. S1 in Supplementary material), since this index often spans 
several orders of magnitude and varies from case to case, so that a 
consistent assessment of the benefit of the joint inversion cannot be 
achie ved b y the anal ysis of such parameter. 

In all cases examined in this work, CG al wa ys show ed a 
Gaussian-like distribution. For the sake of simplicity, in Fig. 4 
we reported only an example of a histogram of the CG val- 
ues computed for the synthetic example, where the Gaussian-like 
behaviour is well-visible, even though no significant differences 
were obtained for the other cases (readers can notice the trend of 
such distributions by referring to Fig. S2 in Supplementary ma- 
terial). Therefore, we defined a new standardized cross-gradient 
(SCG): 

SCG = 

∣∣t cg 

∣∣∣∣t CG , ind, 80 

∣∣ , (14) 

where t CG,ind,80 is the eightieth percentile of the cross-gradients 
distribution computed from indi viduall y inverted models, so that 
changes in the SCG after the structural inversion are solely 
due to the joint approach, and the previous ratio is calculated 
for each cell of the parameter mesh. The 80 per cent per- 
centile was chosen after a trial-and-error procedure in which 
we tried also other percentiles, namely one-standard-deviation 
(68.2 per cent) and two-standard-deviations (95 per cent) thresh- 
olds. We selected the 80 per cent as it is able for the analysed 
cases to discard the tails (linked to the main anomaly) but pre- 
serve the variability of the other (minor) cross-gradient anoma- 
lies. 

Low SCG values (approximating zero) indicate areas where geo- 
physical models exhibit a high structural similarity; conversely, SCG 

v alues increase tow ards 1 mark areas where the models are progres- 
si vel y dissimilar. Values higher than 1 are related to the tails of 
the distribution (10 per cent on both ne gativ e and positiv e values), 
where the maximum dissimilarity is displayed. The SCG index is 
therefore plotted in the next sections between 0 and 10 compressing 
the variation between 1 and 10 to well represent any case without 
the need for further site-specific amendments. 

2.4 Fuzzy c -means cluster analysis 

In this paper we applied a fuzzy c -means (FCM) algorithm (Bezdek 
1981 ) to both independent and joint inverted models to improve 
the final interpretation step. The purpose of the use of FCM is 
to highlight the modification made by the structural inversion to 
the multiparameter model, yielding quantitative integrated cross- 
sections that resemble both models. FCM minimizes within-cluster 
variances (squared Euclidean distances) through an iterative process 
that assigns points to clusters in a probabilistic way (Paasche et al. 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae326#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae326#supplementary-data
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Figure 3. (a) Example of selection of the cross-gradients weighting parameter as the minimum value in the considered range [10 −3 –10 3 ], (b) related convergence 
curves of the data misfit for both electrical and seismic data. 

Figure 4. Example of cross-gradients distribution. 
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2010 ) reducing the objective function: 

J = 

c ∑ 

i= 1 

n ∑ 

j= 1 

(
u i j 

) f || d j − v i || 2 2 , (15) 

where n is the number of data points, c the number of clusters, u ij 
the degree of membership of data point d j to cluster i defined by its 
centre v i and the exponent f , also called the ‘fuzzyfication’ parame- 
ter, controls the overlap between clusters. We set this exponent as 2, 
which is widely accepted as a suitable choice (Paasche et al. 2006 ). 
Membership values are constrained to be positive by imposing the 
relationship: 

c ∑ 

i= 1 
u i j = 1 . (16) 

After selecting the number of clusters and randomly defining their 
initial locations in the multiparameter space, iterative minimization 
yields the optimum locations of cluster centres and the distance of 
each data point to the centres. Data points are assigned to all clusters 
with partial memberships, therefore assigning each point to the 
cluster related to the highest membership (‘defuzzyfication’) makes 
it possible to define a single cluster with additional information 
about the membership. Finally, the output of fuzzy clustering is 
arranged in a unique plot achieved by developing the approach 
after Paasche et al. ( 2006 ), where primary colours denote different 
clusters while saturation is proportional to the degree of membership 
to the assigned cluster. In this representation, dark colours indicate 
membership values close to unity, whereas pale colours represent 
membership values near the smallest reliable one, the reciprocal 
of the number of clusters. Since geophysical measurements from 

different techniques can differ by several orders of magnitude, a 
preliminary logarithmic data scaling is executed to prevent one data 
set from dominating the distance used in clustering. 

Although statistical analysis can be made for finding the optimal 
number of clusters where a priori information is not a vailable, w e 
set the number of clusters to be equal to the number of true layers 
for synthetic models and to the number of geological units detected 
by borehole data or from the preliminary knowledge of the site for 
the field case studies. 

3 .  R E S U LT S  

3.1 Synthetic example 

The synthetic example (Fig. 5 a) simulates an embankment, where a 
surface conductive and soft layer ( ρ = 10 �m, v P = 600 m s −1 ) over- 
lays harder high-resistivity base ( ρ = 1000 �m, v P = 1800 m s −1 ), 
both lying over a lower resistivity and stiffer bedrock ( ρ = 100 �m, 
v P = 3000 m s −1 ). The synthetic ERT data set w as generated b y 
using 48 electrodes spaced 0.5 m apart with a dipole–dipole array 
having a maximum dipole length a max = 5 and a maximum dipole 
separation n max = 6. The resulting 945 apparent resistivity data 
points were contaminated with a zero-mean 3 per cent Gaussian 
error. Analo gousl y, geophones were located for SRT at the same 
electrode positions, simulating one shot every two geophones. A 

zero-mean Gaussian noise having a 0.1 ms standard deviation (me- 
dian traveltime is about 5 ms) was added to the 1128 traveltime 
measurements. 

Results from independent inversions are shown in Fig. 5 (b). The 
interface between superficial and intermediate layers, as well as the 
lateral extent of the latter are well defined in the resistivity section, 
while the transition from the base intermediate layer to the bedrock 
is not well reproduced. Structural joint inversion (Fig. 5 c) highly im- 
proves the resistivity model, so that the shape of the middle anomaly 
is properly reconstructed. Compared to the independent model, the 
jointly inverted velocity model exhibits a sharper transition from 

the shallo w (lo w-velocity) layer to the deeper (high-velocity) one, 
similar to the true model. The SCG values (Fig. 5 d) from indi- 
vidual inversions are generally higher compared to those from the 
joint inversion, particularly in the deep areas close to the bottom of 
the model and in the transition between surface layer and bedrock 
(lateral zones). 

Finall y, cluster anal ysis (Fig. 6 ) reflects the improvement of the 
joint inversion procedure compared to individual inversions in terms 
of shape and position of the middle cluster (cluster no. 3–red). 
Additionally, the cross-gradient inversion yields higher membership 
values (more saturated tones) compared to the standard one also 
for the bottom layer (cluster no. 2–blue), thus demonstrating the 
reliability of the joint reconstruction. 

3.2 Field case 1 

3.2.1 Site 1: the Sterpeto dam 

The embankment, located around 50 km nor ther n of Rome (central 
Ital y), w as built to create a reservoir for irrigation and fire control 
(Fig. 7 a). The core of the earthen dam, about 11 m high and 175 m 

long, is made of a quite homogeneous material, except for possible 
inclusion of internal drains or drainage pipes. In particular, the dam 

is constituted of the clayey material distributed widespread in the 
area, while the in-situ formations are Holocene sandy and marly 
clays superimposed to Pliocene low-permeability clays. 

Ho wever , at the time of the survey, the dam was currently out 
of service to investigate the reasons for seepage phenomena which 
prevented the establishment of the originally designed working con- 
ditions. 

Therefore, the geophysical surv e y was performed on a 166-m 

long profile along the crest of the dam, normally to its axis, to 
highlight the inner layering and the soil foundation. A string of 80 
steel electrodes spaced 2 m apart was used for the ERT investigation, 
while the seismic surv e y was carried out using 8 Hz geophones with 
a 3-m spacing and a sledgehammer stricken vertically on a metal 
plate. For further details on acquisition, the reader can refer to 
Cardarelli et al. ( 2014 ). For testing the algorithm also for rough 
topography, we extracted the elevation profile acquired along the 
investigated line (Fig. 7 b), without appl ying an y filter for smoothing 
topographic data. 

3.2.2 Site 1: results 

Results from the independent inversion are shown in Fig. 8 (a). In the 
resistivity model (Fig. 8 a-left) the dam body is characterized by low 

resisti vity v alues (10–13 �m) typical of clayey materials, except 
for a surface weathered zone, with a maximum thickness of about 
1 m. At the sides of the dam, the resistivities are higher, indicating 
the presence of the alluvial deposits in the area of the embankment 
closure, which e xtends be yond the surv e yed line at the right side of 
the section. Although deeper increases in resistivity are observed 
from about z = 52 m a.s.l. along the entire extent of the dam, it is not 
possible to clearly identify the exact position and thickness of the 
alluvial lay er, w hich lacks lateral continuity, as well as the transition 
to the underlying Pliocene clays, in a deep low-sensitivity area. As is 
well known a typical issue of the isolated ERT method is a decrease 
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Figure 5. Synthetic example: (a) true model, (b) independent inversion, (c) cross-gradient joint inversion, (d) standardized cross-gradient. Superimposed lines 
indicate the true position of the interfaces. 

Figure 6. Synthetic example: cluster analysis. (a) Independent inversion, (b) Structural joint inversion. Superimposed lines indicate the true position of the 
interfaces. 
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n sensitivity at greater depths, which can result in lower resolu-
ion for deep sharp variations. The velocity model (Fig. 8 a-right)
hows the shift from the overlying low-velocity zone, including the
am body and alluvial deposits, to the underlying low-permeability
lays (v elocities e xceeding 900 m s −1 ), which occurs at z = 47 m
.s.l. in the central part of the line and becomes pro gressi vel y shal-
o wer to wards the edges of the dam. The jointl y inverted resisti vity
odel (Fig. 8 b-left) remains substantially unchanged compared to
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Figure 7. Site 1: (a) aerial plan of the surv e yed area with location of ERT 

and SRT profile, (b) rough topographic profile. 
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the independent model in the upper part (dam body), whereas, at a 
depth varying between 51 and 53 m a.s.l. along the line, a contin- 
uous higher resistivity zone ( ρ = 22–25 �m) associated with the 
detrital material appears. This layer is uniform in its lateral extent 
and characterized by a thickness between 3 and 5 m. Below this 
layer, at an ele v ation of about 48 m a.s.l., the low-resistivity un- 
derlying clay is clearly detectable. Conv ersely, the P -wav e v elocity 
model remains nearly unchanged (Fig. 8 b-right). The SCG index 
(Fig. 8 c) shows lower values for the joint approach compared to the 
independent one in the area below z = 53 m a.s.l. along the entire 
profile, where the improvement in the resistivity model is significant 
in the description of the detritic material and the underlying clay, as 
pre viousl y observed. 

The integration through the fuzzy cluster analysis is presented in 
Fig. 9 . The cross-plots in the log-10 transformed space (Figs 9 a and 
b) show four well-separated clusters, with a more concentrated dis- 
tribution of model parameters from the joint results (Fig. 9 b). The 
high-velocity area is divided into two clusters in both reconstruc- 
tions (clusters no. 3–red and no. 4–y ellow), but, w hile clustering 
from the independent inversions defines these clusters with substan- 
tially ov erlapping v elocity ranges, the y are separated in terms of both 
resistivity and velocity values from the joint approach. The clus- 
tered section from indi viduall y inverted models (Fig. 9 c) ef fecti vel y 
describes the dam body, differentiating the surface-weathered part 
(cluster no. 1–green) from the almost homogeneous body (cluster 
no. 2–blue). Ho wever , cluster no. 3 and 4 are not able to distinguish 
the alluvial deposits from the underlying clays. The cross-section 
resulting from the joint approach (Fig. 9 d) describes the dam body 
(clusters no. 1 and 2) similarly to the independent results, but clus- 
ters no. 3 and 4 are significantly redefined and able to distinguish 
the alluvial zone (cluster no. 3) from the underlying clays (cluster 
no. 4), with generally higher membership values (darker satura- 
tions). 

3.3 Field case 2 

3.3.1 Site 2: the Penne dam 

The second field case study is the Penne concrete dam located in 
central Italy (around 130 km east of Rome) and built in the second 
half of the sixties as a reservoir for irrigation. The hydro geolo gi- 
cal layout of the site consists of Pliocene marly flysch having low 

permeability (hydraulic conductivity K < 10 −6 m s −1 ), covered by 
Holocene ancient and recent alluvial deposits of the Tavo River. The 
alluvium is subdivided into a fine-grained shallower unit (clay and 
sandy silt) and a coarse-g rained high-per meable ( K > 10 −2 m s −1) 
deeper one (sand and gravel). The dam was operating with a maxi- 
mum w ater le vel well below the originally designed working condi- 
tions (256 m a.s.l.) due to seepage phenomena occurring at the right 
abutment, which occurred when the reservoir level was higher than 
250 m a.s.l. (Cardarelli et al. 2018 ). These effects are mainly driven 
by the coarse-grained highly permeable alluvium and, therefore, 
assessing its shape, thickness, and lateral extension is pivotal for 
a correct design of the planned rehabilitation intervention (cut-off 
wall). To this end, both ERT and SRT were performed along a 142 m 

alignment (Fig. 10 ), with equally 2 m spaced sensors (electrodes and 
geophones). ERT profile was acquired using the IRIS Instruments 
Syscal Pro resistivity-metre with 48 stainless steel electrodes in 
a pole-dipole array configuration, while P -wave seismic data were 
recorded employing a 48-channel system of 8 Hz vertical geophones 
by running a shot every two geophones using an 8-gauge Minibang 
shotgun. Three boreholes spaced 40 m apart along the geophysical 
line were drilled for validating the geophysical surface investiga- 
tions as shown in Fig. 10 , also performing downhole tests through 
a 7-kg sledgehammer stricken vertically on a metal plate ( P -wave 
source) and a 3-C 14 Hz borehole geophone (Geostuff), lowered 
pro gressi vel y with a step of 1 m until reaching the bottom of the 
holes. Readers can refer to Cardarelli et al. ( 2018 ) for full results of 
the downhole tests. 

3.3.2 Site 2: results 

Results of Site 2 data in versions, sho wn in Figs 11 (a) (individual) 
and 11 (b) (joint), were v alidated b y the superimposition of borehole 
data after Cardarelli et al. ( 2018 ). Geophysical models resulting 
from individual inversion (Fig. 11 a) exhibit a three-layer geometry 
in generally good agreement with borehole data: low resistivity 
and P -wave velocity values (10–40 �m, 400–800 m s −1 ) at shallow 

depths indicate the presence of fine-grained soft alluvial deposits, 
followed by a resistive and stiffer formation ( ρ = 100–300 �m, 
v P = 1000–1800 m s −1 ), linked to the coarse-graded alluvium and 
then by a deep low-resistivity and high-velocity medium ( ρ = 

5–10 �m, v P > 1800 m s −1) revealing the presence of the flysch 
unit, even if the reconstruction of this layer is strongly limited by the 
low sensitivity in the bottom zones. The coarse alluvium was only 
found in BH1 (x = 23.5 m) and BH2 (x = 63.5 m) with a thickness 
of 7 m (from 253 to 246 m a.s.l.) and 8 m (at the same ele v ation), 
respecti vel y, but it was not detected in BH3 (x = 103.5 m), so we can 
deduce it ends between 63.5 and 103.5 m. Independent resistivity 
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Figure 8. Site 1: (a) independent inversion, (b) cross-gradient joint inversion, (c) standardized cross-gradient. 

Figure 9. Site 1: (a) scatter plots of clustering results from independent inversion, (b) scatter plots of clustering results from structural joint inversion, (c) 
cluster analysis from independent inversion, (d) cluster analysis from structural joint inversion. 
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odel (Fig. 11 a-left) is able to reproduce the thickness of the coarse
lluvium, except in the left part of the section (close to BH1), where
he increased thickness is likely the result of a 3-D effect due to the
roximity of the dam (see the aerial view in Fig. 10 ). Ho wever , its
ateral extent towards BH3 (x > 90 m) cannot be accurately deter-
ined because of the low resolution in the bottom right part of the
odel (resulting from the increase in ele v ation) which is reflected

n smoother resistivity transitions compared to the left part of the
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Figure 10. Site 2 at the Penne dam (Central Italy): aerial view with location of the ER T/SR T line and of the three boreholes. 
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section. In agreement with the results of downhole investigations, 
the indi vidual P -w av e v elocity model (Fig. 11 b-right) shows a pro- 
gressive increase of v P with depth in the left part, while in the right 
part, a low coverage area is seen around 100 m as expected due to 
the v elocity inv ersion. Therefore, the depth of inv estigation of SRT 

is significantly affected by this effect and consequently, it is difficult 
to reconstruct the shape of the coarse-graded alluvium only through 
the v P model. The jointly inverted resistivity model (Fig. 11 b-left) 
displays a similar shape and thickness to the individual one, but 
its lateral extent is reduced, ending around 75–80 m in better 
agreement with borehole data. Conversely, the P -wave velocity 
model remains nearly unchanged (Fig. 11 b-right). The SCG index 
(Fig. 11 c) shows lower v alues achie ved almost everywhere for the 
joint inversion approach compared to the independent one and a 
sharp decrease of SCG is seen in the middle-right part of the model 
(x > 75 m), where there is a noteworthy benefit of the coupled 
approach on the resistivity cross-section, as seen before. 

Fig. 12 presents the quantitative integration of geophysical mod- 
els through cluster analysis, in terms of cross-plots in the log-10 
transformed space (Figs 12 a and b) and resulting clustered sections 
(Figs 12 c and d) for both inversion procedures. The cross-plots 
show that the three clusters are well separated for both methods, 
confirming the choice of the optimal number of clusters, with a 
slightly denser distribution of model parameters from joint inver- 
sion (Fig. 12 b): this effect is particularly visible for clusters no. 1 
and 2, suggesting a better resolution of the interfaces between these 
clusters (layers). The final clustered section can reconstruct the three 
main geological units of the study area in both cases, even though 
the joint approach better reconstructs the final part of the coarse 
alluvium unit (cluster no.3–red). In fact, it ends around x = 85 m, 
while is indeed extended towards the right boundary of the model 
(that is towards BH3 where the coarse-graded unit is not present) in 
the individual section. 

3.3.3 Site 2: A-posteriori synthetic simulation 

To further validate our results we performed a-posteriori synthetic 
simulation, choosing stratigraphy and geophysical parameters in 
agreement with both inverted models and borehole data. Therefore, 
we defined a three-layer resistivity model (Fig. 13 a), which recalled 
the shape and the values of the inverted one (Fig. 11 ): a shallow 

unit simulating the fine-graded alluvium ( ρ = 30 �m) is followed 
b y a high-resisti vity sand and gravel medium ( ρ = 200 �m) with 
a thickness of 7 m, which becomes thinner from about x = 75 m 

until vanishing at x = 83.5 m, both lying over a conductive layer 
representing the marly flysch ( ρ = 5 �m). 

The P -wave velocity model is derived from both inverted model 
and do wnhole in v estigations, where fiv e la yers w ere detected. Ve- 
locities of the deeper layers (sand/gravel and flysch) are 1700 and 
2400 m s −1 , respecti vel y, while the fine-graded unit is sub-divided 
into three zones with v P equal to 426, 750 and 1424 m s −1 . Measure- 
ments were generated by using the same configurations employed 
for field data acquisition, and additional zero-mean Gaussian noise 
was added as 3 per cent for apparent resistivities and 1 ms for trav- 
eltimes. 

The results of individual inversions (Fig. 13 b) show a good re- 
construction of the shallow units and the vertical transition to the 
middle layer simulating the coarse alluvium at a depth of 256 a.s.l. 
Ho wever , the lateral extent of this unit is not correctly detected by 
independent inversion, as it extends horizontally well beyond its 
actual position for ERT, due to the lack of resolution close to the 
bottom of the model, and it is not well reconstructed by SRT. The 
latter effect is mostly due to the velocity inversion displayed in the 
right part of the model which prevents a good ray coverage, thus, 
affecting the depth of investigation in the deeper zones. Coupled 
models (Fig. 13 c) demonstrate an improvement in the resolution of 
the geophysical target (coarse alluvium), particularly for ERT re- 
construction. In fact, in the resistivity model this layer ends around 
x = 75–80 m consistent with its true position, while a slight benefit 
arising from the joint inversion is also visible in the velocity model 
in terms of the shape of the final part of the high-velocity layer 
(around x = 75–80 m), which better resembles the true target, and 
in the reconstruction of the velocity values ( v P ∼ 1400 m s −1 ) of 
the right part of the model (x > 100 m) which better correspond 
to the true ones. The comparison of SCG sections from individual 
and jointly inverted models (Fig. 13 d) reflects the improvement of 
the coupled approach, exhibiting an overall decrease of the cross- 
gradient values with a drastic reduction in the deep zones of the 
cross-sections (x > 83 m), where the benefit the joint approach is 
significant. 
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Figure 11. Site 2: (a) independent inversion, (b) cross-gradient joint inversion, (c) standardized cross-gradient. 
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The integrated cross-sections resulting from the cluster analysis
Fig. 14 ) performed by fixing the number of clusters equal to 3, that
s the number of simulated geological units (fine alluvium, coarse
lluvium, flysch), confirm the added value of the joint inversion
pproach mainly on the bottom layers (clusters no. 2 and 3). In fact,
luster 3 (coarse alluvium) is extended to the end of the section
sing indi viduall y inverted models (F ig. 14 a), w hile it sharply ends
round x = 80 m for the joint inversion approach (Fig. 14 b) accord-
ng to its true position. As an additional benefit of joint inversion
he membership values in the bottom-right part of the joint clus-
ered section are higher (darker tones), thus indicating increased
onfidence in the reconstruction. 

.  D I S C U S S I O N  

his work is focused on the study of the enhanced accuracy in the
etection of geophysical targets that can be guaranteed through a
tructural joint cross-gradient inversion incorporating topography.
he need for a joint inversion approach (at the expense of an increas-

ng computational effort) can be justified for complex geological or
nthropogenic scenarios, where high accuracy in the detection of
he different layers is required to improve the cost-effectiveness of
he project. The independent inversions surely provided the main in-
ormation about the layering at the two study sites, though being in-
f fecti ve for reconstructing accurately the shape and position of the
am foundation (Site 1) and the high-per meability sand/g ra vel la yer
Site 2). Both the synthetic example and the field cases demonstrated
hat the benefit of the joint approach is particularly significant for
he low-sensitivity areas and/or where resistivity or velocity exhibit
harp transitions at great depths (Figs 5 and 8 ) or for low-velocity
ones embedded between higher velocities layers (velocity inver-
ion), with a significant reduction in seismic ray density (Figs 11
nd 13 ). These results are in agreement with previous works where
tructural joint inversion mainl y af fected the low-sensitivity areas of
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Figure 12. Site 2: (a) scatter plots of clustering results from individual inversion, (b) scatter plots of clustering results from structural joint inversion, (c) cluster 
analysis from independent inversion, (d) cluster analysis from structural joint inversion. 
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one technique through the assistance of the other, thereby obtaining 
more reliable models (e.g. Yari et al. 2021 ). 

In recent years, some authors modified the original cross-gradient 
joint inversion scheme to adapt it to unstructured meshes capable 
of handling complex topographies (e.g. Jordi et al. 2020 ) using tri- 
angular or tetrahedral elements. Compared to these studies, which 
introduced a user-defined length scale parameter to compute cross- 
gradients and their sensitivity matrix, we preferred to adapt the 
original formulation (Gallardo & Meju 2003 ) for complex topog- 
raphy. This approach introduces only one additional parameter (the 
cross-gradients weighting parameter), which can be estimated by 
achieving the minimum of the mean absolute cross-gradient. Our 
choice is also moti v ated b y the fact that increasing the number of 
unknown parameters can accentuate the ill-posedness of the inverse 
problem by expanding the set of admissible models, potentially 
leading to improper convergence of the whole inversion process. 
In any case, independent inversion should be al wa ys performed 
in advance to ensure that models are not e xcessiv ely different, 
which might indicate that they are not structurally similar (Linde 
et al. 2008 ). The structural joint approach might be advantageous 
only where independent geophysical models exhibit at least partial 
structural similarity, as per the presented examples. In such cases, 
the additional time needed for tuning the cross-gradient weighting 
parameter and performing the joint inversion can be justified; con- 
v ersely, independent inv ersions can be sufficient to image the main 
features of the subsurface. 

The post-inv ersion strate gy presented in this work for assessing 
the results of the joint inversion approach is based on a combi- 
nation of the SCG index and the fuzzy c -means clustering. Com- 
pared to the unchanged cross-gradients (e.g. Gallardo & Meju 2004 , 
2007 ), the SCG index can e v aluate changes in structural similarity 
in the presented models, particularly for highlighting the benefit 
of the joint approach on the whole model and not only on the 
main anomaly, whose high magnitude can mask the other contribu- 
tions. Although able to correctly evaluate the changes (between 
joint and independent inversions) related to the main anomaly, 
the unchanged cross-gradient, in f act, f ails to properly highlight 
the benefits of the joint inversion in other areas of the model, 
where the amplitude of the cross-gradient is often many orders 
of magnitude weaker (readers may refer to Fig. S1 in Supple- 
mentary material). This metric has been calibrated for the param- 
eters under study at the selected sites. Therefore, other choices for 
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Figure 13. A-posteriori synthetic simulation of the Penne dam case study: (a) true model, (b) independent inversion, (c) cross-gradient joint inversion, (d) 
standardized cross-gradient. 
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ormalizing or standardizing the cross-gradient can be also suitable
o enhance the improvement of the joint inversion, but this topic is
eyond the scope of this paper and will be investigated thoroughly
n future research. Bennington et al. ( 2015 ) already proposed a
ormalization of the cross-gradients penalty function, which was
ncorporated into the joint procedure to remove the dominance of
he higher CG values in the near-surface over those at the maximum
epths, exceeding 10 km in their investigations. In our applications,
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Figure 14. A-posteriori synthetic simulation of the Penne dam case study: cluster analysis. (a) Independent inversion, (b) Structural joint inversion. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/239/2/1155/7754185 by la sapienza user on 01 O

ctober 2024
where the maximum investigation depths are on the order of a few 

tens of metres similar to Gallardo & Meju ( 2003 , 2004 , 2007) , 
the cross-gradients constraint was fully effective during the joint 
inversion, and we only introduced a statistical reduction of the stan- 
dard parameter through the computation of the a-posteriori SCG 

index. 
Soft clustering algorithms have been rarely applied for a posterior 

e v aluation of the joint inversion approach, even if there are some 
examples of application of the FCM within the objective function 
of a joint inversion procedure (e.g. Sun & Li 2016 ). Other alterna- 
tives are a purely qualitative comparison between separate and joint 
models (e.g. Hamdan & Vafidis 2013 ; Shi et al. 2017 ; Yari et al. 
2021 ), or the isolated use of crisp clustering algorithms (e.g. Hell- 
man et al. 2017 ; Ronczka et al. 2017 ). For the presented three cases, 
the advantage is twofold: on one hand, we obtained an integrated 
comparison between independent and joint inverted models infor- 
mation using the clustered sections; on the other hand, the value of 
the membership function can be a good proxy for assessing of the 
reliability of the reconstruction. Although a confidence interval for 
the reconstruction can be achieved only with a stochastic inversion 
of geophysical data, membership values can be practically inter- 
preted as the probability of a model cell belonging to a geologic 
unit or anthropogenic features (Sun & Li 2015 ). 

5 .  C O N C LU S I O N S  

We presented a new algorithm to jointly invert ERT and SRT data on 
structured mesh incorporating topography using quadrangular ele- 
ments for preserving the original formulation of the cross-gradient 
inversion. The benefits of the proposed approach were quantita- 
ti vel y e v aluated through a post-inversion procedure in which a new 

standardization of the cross-gradients assesses the improvement in 
structural similarity and a fuzzy cluster analysis evaluates the im- 
pact in terms of integrated clustered sections. Our approach was 
applied to a synthetic example and two field cases concerning 
the investigation of dams through geophysical tomographic tech- 
niques. The synthetic example showed the reliability of the pro- 
posed algorithm for improving accuracy in model reconstruction in 
comparison to individual inversions, particularly for the resistivity 
model and in the low-sensitivity areas or in case of sharp transi- 
tions of resistivity and velocity. The application to the real cases 
confirmed that the advantage of the joint inversion is significant 
in the low-sensitivity deep zones, close to the interfaces between 
different layers and in case of abrupt changes of the geophysical 
properties. 
In all cases, the SCG index quantitati vel y highlights areas where 
the joint inversion predominantly acts, whereas cluster analysis 
clearly detected the cluster associated with the desired targets, 
as validated by the good agreement with synthetic models and 
boreholes. Therefore, the application of the presented algorithm 

followed by the proposed post-inversion approach can be highly 
ef fecti ve in those problems (e.g. in man y ci vil and environmental 
engineering applications), where indi viduall y in verted models sho w 

structural similarity and high accuracy is needed for optimizing the 
design choices and improving the cost-ef fecti veness ratio of the 
whole project. 
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