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Abstract

To evaluate a radiomic strategy for predicting progression in advanced gastroentero-

pancreatic neuroendocrine tumor (GEP-NET) patients treated with somatostatin ana-

logs (SSAs). Fifty-eight patients with GEP-NETs and liver metastases, with baseline

computerized tomography (CT) scans from June 2013 to November 2020, were stud-

ied retrospectively. Data collected included progression-free survival (PFS), overall

survival (OS), tumor grading, death, and Ki67 index. Patients were categorized into

progressive and non-progressive groups. Two radiologists performed 3D liver seg-

mentation on baseline CT scans using 3DSlicer v4.10.2. One hundred six radiomic

features were extracted and analyzed (T-test or Mann–Whitney). Radiomic feature

efficacy was evaluated via receiver operating characteristic curves, and both univari-

ate and multivariate logistic regression were used to develop predictive models. A

significance level of p < .05 was maintained. Of 55 patients, 38 were progressive

(median PFS and OS: 14 and 34 months, respectively), and 17 were non-progressive

(median PFS and OS: 58 months each). Six radiomic features significantly differed

between groups (p < .05), with an area under the curve (AUC) range of 0.64–0.74.

Ki67 was the only clinical parameter significantly associated with progression risk

(odds ratio (OR) = 1.14, p < .05). The combined radiomic features and Ki67 model

proved most effective, showing an AUC of 0.814 (p = .008). The radiomic model

alone did not reach statistical significance (p = .07). A combined model incorporating

radiomic features and the Ki67 index effectively predicts disease progression in GEP-

NET patients eligible for SSA treatment.
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1 | INTRODUCTION

Neuroendocrine neoplasms (NENs) are rare and heterogeneous dis-

eases whose prognosis depends on several factors, including the pri-

mary tumor site, tumor grading, disease staging, and the expression of

somatostatin receptors.1,2 Among these, tumor grade is widely consid-

ered the strongest prognostic factor, capable of predicting patient sur-

vival and response probability to medical treatments. It is usually

assessed by evaluating the Ki67 immunohistochemical proliferative

activity. This method discriminates well-differentiated neuroendocrine

tumors (NET) into G1 grade (Ki67 lower than 3%), G2 grade (Ki67 3%–

20%), and G3 grade (Ki67 higher than 20%). When the tumor exhibits

poorly differentiated morphology, it is termed neuroendocrine carci-

noma (NEC), which, by definition, has high proliferative activity

(G3 grade).3 Although Ki67 is adept at predicting clinical outcomes, it

has limitations due to potential heterogeneity within the same lesion,

differences between primary tumors and metastatic sites, and assess-

ment challenges related to low tissue availability, especially in

advanced disease where tissue sampling often relies on a single biopsy

obtained via percutaneous or endoscopic-ultrasonography approach.4

The therapeutic landscape for advanced NEN includes somato-

statin analogs (SSAs), targeted agents, radioligand therapy (RLT), and

systemic chemotherapy. Selecting the optimal therapeutic sequence

can be challenging due to the disease above heterogeneity. However,

it is well-recognized that SSAs are the first-line treatment in advanced,

well-differentiated G1-G2 gastroenteropancreatic (GEP) NETs expres-

sing somatostatin receptors.5 In this context, SSAs have been shown

to inhibit tumor growth in 50%–80% of patients, as demonstrated by

phase-3 randomized controlled trials.6,7 Since this scenario represents

approximately 70% of cases, SSAs are commonly considered the initial

therapeutic approach for most GEP-NET patients. Nonetheless,

despite favorable prognostic factors, a proportion of well-differenti-

ated GEP-NETs exhibit a disappointing response to SSAs, showing

progression after a few months of therapy. Early identification of

these patients is crucial for physicians managing these cases, as it

allows for planning stricter follow-ups and an early switch to more

effective second-line treatments, including RLT.

Through radiomic analysis, quantitative imaging is emerging as a

potential new imaging biomarker in oncology, particularly for identify-

ing NEN patients with poorer prognoses and unfavorable outcomes.

This approach analyzes medical images to extract numerous numerical

parameters that reflect the microarchitecture and heterogeneity of

tumors.8 While not replacing traditional tumor profiling methods,

radiomics is a supplementary tool, bridging the gap between generic

and personalized medicine. Recent studies highlight its effectiveness in

tumor grading, differential diagnosis, and predicting responses to Ever-

olimus in GEP-NETs.8–11 These findings suggest that radiomics could

enhance cancer profiling and minimize the risks of subjective bias in

clinical assessments.8–10 However, data on the ability of radiomics to

predict the efficacy of SSAs are currently lacking in the literature.

In this study, we aimed to investigate the potential value of radio-

mics in identifying patients with advanced GEP-NETs who are at a

higher risk of non-response to SSA therapy.

2 | MATERIALS AND METHODS

2.1 | Study design

This retrospective observational study was in line with the Declara-

tion of Helsinki. All steps of recruitment and data collecting were

approved by the ENETS Center of Excellence—Sant'Andrea University

Hospital, Rome. The data for this study were analyzed as part of the

data entered in the NET database, approved by the ethical committee

of the ENETS Center of Excellence S. Andrea (CE 5454_2019);

informed consensus for data collection was obtained from all patients.

The population was created among patients with advanced GEP-

NETs, with a particular focus on liver metastases, screened from the

ENETS Center of Excellence repository of Rome and Bologna from

July 2013 to November 2020. Clinical-epidemiological data (sex, age,

tumor grading, primary, and Ki67) and outcome data (date of progres-

sion, progression-free survival [PFS], and overall survival [OS]) were

collected.

All patients were selected following the inclusion criteria:

(I) histological diagnosis of well-differentiated G1-G2 GEP-NETs,

(II) presence of liver metastases, (III) availability of contrast-enhanced

baseline CT scans, and (IV) clinical history of SSAs used as first-line

therapy. The exclusion criteria were (I) previous liver locoregional

treatment, (II) patients with grading G3 according to WHO classifica-

tion, and (III) SSAs associated with other therapies.

The occurrence of progression was evaluated according to

RECIST 1.1 criteria12 in the follow-up CT scans by an expert onco-

logical expert radiologist with RECIST Qualification (DC). PFS was

assessed from the time the SSAs’ treatment began. Although the

methods and timing of follow-up were not pre-determined as this

was a retrospective study, the follow-up was conducted according

to the ENETS recommendations13,14 and the protocols adopted by

the Center of Excellence. These included an initial radiological

check with computerized tomography (CT) or magnetic resonance

imaging (MRI) after 3–6 months from the start of treatment, fol-

lowed by the repetition of the same exams with chest and abdomi-

nal studies every 6–12 months, depending on the specific

characteristics of the tumor. Starting from an initial population of

84 patients, the final population of 55 patients with liver metastases

in GEP-NETs was selected and treated with SSAs upfront, with

grading G1 and G2.

2.2 | CT acquisition protocol

All patients underwent baseline contrast-enhanced CT scans. The

exams were performed by using 128-slices CT (GE Revolution EVO

Slice CT Scanner, GE Healthcare, Milwaukee, WI, USA) with the par-

ticipants in the supine position. The scans were made in inspiration, in

cranio-caudal direction, including the entire abdomen for all phases:

unenhanced, late arterial, and portal venous.

The amount of contrast medium (CM) was calculated by lean

body weight (LBW),15,16 according to the following formula:
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CMvolume mLð Þ¼ 0:7gI�LBW kgð Þ
CMconcentration mgI

mL

� �

The contrast media injection system (MEDRAD® Centargo CT

Injection System) was used for CM administration in bolus (Iomeprolo

400 mg I/mL, Iomeron 400; Bracco Imaging) and the saline solution

(40 mL) through an antecubital venous access (18–20 gauge) with a

flow rate of 3/3.5 mL/s. For all CT scans, the bolus-tracking method

(Smart Prep, GE, Milwaukee, WI) was used, which outlines the region

of interest at the level of the celiac tripod in the abdominal aorta, set-

ting 150 HU-threshold. All CT scans were performed with a multi-

phase protocol: unenhanced phase, a delay of 18 for the late arterial

phase, and a delay of 70 s for the portal venous phase. For all exams

were set specific technical parameters: 100 kV tube voltage; 130–300

mAs for the automatic current modulation by using Auto-mAs

(GE Healthcare, Milwaukee, USA); 0.625 � 64 mm for the collimation;

0.984:1 of spiral pitch factor, 0.6 s of gantry speed. Iterative Recon-

struction at 40% (ASiR-V, GE Healthcare, Milwaukee, USA) was used

for all standard soft tissue reconstruction at 1.25 of slice thickness.

2.3 | CT scan segmentation analysis

The volumetric liver segmentations were performed by two abdominal

expert radiologists independently for all baseline CT scans through a

dedicated open-source software (3D Slicer software, version 4.10.2,

http://www.slicer.org). All segmentations were performed manually,

slice by slice, on the late arterial phase based on literature data,9,10

avoiding any principal liver vessels and the main bile duct (Figure 1).

2.4 | Radiomic features extraction

One hundred and seven radiomic features were extracted from all

segmentations using a dedicated extension of 3D Slicer Radiomics

(radiomics library),17 among these were both shape and first- and sec-

ond-order parameters: 2D and 3D Shape 13 features, First-Order sta-

tistics 19 features, Gray Level Dependence Matrix (GLDM)

14 features, Gray Level Size Zone Matrix (GLSZM) 16 features, Gray

Level Co-Occurrence Matrix (GLCM) 24 features, Neighboring Gray

Tone Difference Matrix (NGTDM) 5 features, Gray Level Run Length

Matrix (GLRLM) 16 features. Among GLDM features, the Gray Level

Non-Uniformity Normalized was excluded according to the investiga-

tions on redundancy and similarity performed and published by pyra-

diomics (https://pyradiomics.readthedocs.io).

2.5 | Statistical analysis

Statistical analyses were performed with MedCalc (MedCalc Software,

version 15, Ostend, Belgium). The radiomic features were reduced

with interobserver variability to identify only the stable features, con-

sidering unstable the values of intraclass correlation coefficient (ICC)

< 0.75, stable 0.75 ≤ ICC < 0.9, and very good ICC ≥ 0.9. All continu-

ous variables were expressed as mean ± standard deviation, and the

comparisons were performed with the Student's T-test and Mann–

Whitney U test, according to Gaussian normality or not, respectively.

All categorical variables were expressed with numbers and percent-

ages. The radiomic features were significantly compared to the two

groups tested with the receiver operating curve (ROC) to express the

area under the curve (AUC), sensitivity, specificity, and cut-off values

having the progression as an endpoint.

The univariate enter logistic regression analysis was applied for all

clinical and radiomic features to predict the progression from the

baseline CT scans. The features with significant results (p < .05) were

entered in the multivariable enter logistic regression analysis to build

the predictive models: radiomic and combined models. The value of

p < .05 was the reference to assess the statistical significance.

3 | RESULTS

3.1 | Study population

The final population includes 55 patients (median age: 54 years),

including 25/55 pancreatic NETs (45.5%) and 30/55 ileal NETs

F IGURE 1 The 3D manual
segmentation of metastatic liver
performed on the arterial phase
of baseline CT scans.
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(54.5%). Concerning the grading, 35/55 were G2 NETs (63.6%), and

20/5 were G1 NETs (36.4%) (Table 1). All patients had liver metasta-

ses 55/55 (100%), and 14/55 (25.5%) patients also had concomitant

extra-liver metastases (lymph nodes, 8 patients; bone 4 patients; peri-

toneum, 4 patients). All patients had positive results at Ga68-DOTA-

TOC-PET/CT before starting SSAs. Concerning the treatment, 26/55

(47.3%) were treated with lanreotide and 29/55 (52.7%) with octreo-

tide. No patient received an above-standard dose of SSA.

According to follow-up data, the population was divided into two

groups: 38/55 progressive (69%) and 17/55 non-progressive (31%)

(Figure 2). Among the 55 patients studied, the progressive group (38/

55) comprised 17 (30.9%) with ileal primary tumors and 21 (38.1%)

with pancreatic primary tumors. In contrast, the non-progressive

group (17/55) included 13 (23.6%) patients with ileal NETs and only

4 (7.27%) with pancreatic primary tumors. Of the 55 patients

included, baseline chromogranin A (CgA) levels were available in

37 patients (67% of the cohort), with a median value of 197 ng/mL

(CI 76–238; normal range 19–98 ng/mL). The median Ki67 in the pro-

gressive group was 8%; in this group, the median PFS was 14 months,

and the median OS was 34 months. In the non-progressive group, the

median Ki67 was 2.5%; the median PFS and OS were 58 months each.

In the general population, it was observed that 26 of 55 patients died

during the follow-up, resulting in a mortality rate of 47.3%.

3.2 | Radiomic features selection and performance

Among the 106 radiomic features extracted from the liver 3D seg-

mentations performed during the late arterial phase, 12 of 106 fea-

tures showed an ICC in the range of 0.75 to <0.9, indicating stability

or an ICC of 0.9 or higher, indicating very good reliability. These were

compared between responders and non-responders; of the 12 radio-

mic features analyzed, 7 showed significant differences with p < .05

(Table 2). Concerning the ROC curves, six features had significant

results: the Surface Volume Ratio (Shape), with AUC of 0.711

(p = .006), specificity = 66.7% and sensitivity = 75%; Large Depen-

dence High Gray Level Emphasis (GLDM), with AUC of 0.69 (p = .01),

specificity = 88.9% and sensitivity = 50%; Low Gray Level Emphasis

(GLDM), with AUC of 0.66 (p = .02), specificity = 44.5% and

sensitivity = 84.4%; Long Run High Gray Level Emphasis (GLRLM),

with AUC of 0.69 (p = .01), specificity = 78.8% and

sensitivity = 56.3%; Short Run Low Gray Level Emphasis (GLRLM),

with AUC of 0.64 (p = .02), specificity = 33.4% and

sensitivity = 93.8%; Large Area High Gray Level Emphasis (GLSZM),

with AUC of 0.736 (p = .003), specificity = 55.6% and

sensitivity = 90.61% (Figure 3, Table 3).

TABLE 1 Patient general features.

Patients characteristics Patients (n = 55) %

Male 28 50.9

Primary tumor site

Pancreas 25 45.5

Ileum 30 54.5

Grading

NET G1 20 36.4

NET G2 35 63.6

Functional status

Functioning 16 29

Non-functioning 39 71

Progressive disease 38 69

Non-progressive disease 17 31

F IGURE 2 Flowchart of
patient enrollment and study
design.
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3.3 | Univariate and multivariate analyses

Univariate logistic regression was used to assess the correlation with

progression among all stable radiomic features, Ki67, and sex. Six

radiomic features—Elongation, Minor Axis Length, Maximum, Mean,

Range, and Complexity—demonstrated independent correlations with

progressive disease, with p-values ranging from 0.02 to 0.04. Specifi-

cally, one Shape feature (Elongation) and two First-Order features

(Mean and Minor Axis Length) showed a direct correlation with pro-

gressive disease, with odds ratios (ORs) ranging from 1.03 to 38.14

(p < .05). Conversely, two First-Order features (Range, Maximum) and

one NGTDM feature (Complexity) exhibited an inverse correlation

with progressive disease, with ORs ranging from 0.78 to 0.97

(p < .05). Among the clinical parameters, only Ki67 demonstrated an

independent correlation with progression, with an OR of 1.14 (95% CI

1.05–1.28) and p = .01. Non-significant results were found for sex

(p = .47) and age (p = .08).

Multivariate logistic regression was conducted to develop radio-

mic and combined models, using progression as the endpoint. The

combined model, incorporating both Ki67 and radiomics, yielded sig-

nificant results with a p-value of 0.008, an AUC of 0.814, and an esti-

mated classification accuracy of 74.55%. In contrast, the radiomic

model alone produced non-significant results with a p-value of 0.07

(Table 4).

TABLE 2 Significant radiomic features resulted in a comparison between progressive and non-progressive GEP-NETs.

Radiomic features

Progressive Non-progressive

p ICCMean ± SD Mean ± SD

Shape_SurfaceVolumeRatio 0.06 ± 0.02 0.07 ± 0.01 0.01 0.87

GLDM_LargeDependenceHighGrayLevelEmphasis 90,178 ± 30,472 64,838 ± 33,535 0.009 0.92

GLDM_LowGrayLevelEmphasis 0.005 ± 0.002 0.02 ± 0.048 0.01 0.82

GLRLM_LongRunHighGrayLevelEmphasis 5580.8 ± 5336.6 3008.1 ± 2407.4 0.02 0.85

GLRLM_ShortRunLowGrayLevelEmphasis 0.003 ± 0.001 0.011 ± 0.022 0.01 0.93

GLSZM_LargeAreaHighGrayLevelEmphasis 881,085,385 ± 882,877,721 504,018,669 ± 468,447,533 0.006 0.86

GLSZM_ZoneEntropy 5.14 ± 0.39 4.75 ± 0.76 0.01 0.91

F IGURE 3 The best ROC curves of significant radiomic features in the comparison between progressive and non-progressive advanced GEP-
NETs treated with SSAs alone.

TABLE 3 Performance of radiomic parameters in comparison between progressive and non-progressive NETs tested by using receiver
operating characteristic (ROC) curve.

Radiomic features

Progressive versus non-progressive

pSensitivity (%) Specificity (%) AUC Criterion

Shape_SurfaceVolumeRatio 75 66.7 0.72 ≤0.06 0.006

GLDM_LargeDependenceHighGrayLevelEmphasis 50 88.9 0.69 >87,981 0.01

GLDM_LowGrayLevelEmphasis 84.4 44.5 0.66 ≤0 0.02

GLRLM_LongRunHighGrayLevelEmphasis 56.3 77.8 0.69 >3388.7 0.01

GLRLM_ShortRunLowGrayLevelEmphasis 93.7 33.4 0.64 ≤0 0.02

GLSZM_LargeAreaHighGrayLevelEmphasis 90.6 55.6 0.74 >359,709,392 0.003

GLSZM_ZoneEntropy – – – – 0.06
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4 | DISCUSSION

This study demonstrated that an integrated model combining radiomics

with clinical-histological parameters could identify patients at risk of

progression to SSAs among new diagnoses of advanced GEP-NETs.

The population was stratified into progressive and non-progressive

groups based on progression during follow-up, and all baseline CT

scans were analyzed to extract radiomic features from liver segmenta-

tions. Our analysis revealed that radiomic parameters and Ki67 could

distinguish between progressive and non-progressive diseases. The

combination of radiomics and Ki67 demonstrated robust predictive

power, with an AUC of approximately 0.814. However, radiomics

alone failed to yield significant results in predicting progressive disease,

underscoring that quantitative imaging should be regarded as a sup-

portive tool rather than a replacement for conventional approaches.

Radiomics is a powerful tool in oncology, showing promising

results across various cancers, particularly in differential diagnosis,

prognosis prediction, and treatment response.8–10 Studies consis-

tently highlight radiomics’ ability to enhance the work-up of NETs,

from diagnosis to prognosis prediction, surpassing traditional qualita-

tive approaches that may suffer from subjective bias in imaging

assessments and limitations of clinical features like Ki67 or grading.

Specifically, recent studies have demonstrated significant advance-

ments in predicting tumor grades in pancreatic NETs through radiomic

analysis of baseline MR and CT scans, often combined with conven-

tional radiological evaluations.18–20 Radiomics has also shown encour-

aging results in differential diagnosis, especially for advanced NETs

lacking typical enhancement patterns. It has proven effective in distin-

guishing pancreatic adenocarcinoma from pancreatic NETs21 and dif-

ferentiating between lung cancer and organized pneumonia from lung

NETs.22 A recent study showed that a CT-based radiomic model,

when combined with select clinic-radiological features, could effec-

tively predict the aggressiveness of pancreatic NETs. This prediction

includes tumor grading, microvascular invasion, and M and N staging

based on pre-operative CT scans.23 The model achieved its best

results in predicting metastatic disease and tumor grading, with AUCs

ranging from 0.81 to 0.85. However, it yielded slightly weaker results

in predicting nodal metastases and microvascular invasion, with AUCs

of 0.72 and 0.82, respectively. The negative predictive value remained

consistent across all endpoints. This study suggests that integrating

radiomics into the oncological workflow, alongside clinical and radio-

logical findings, could mitigate several limitations associated with

tumor biopsy and subjective image evaluation, thereby reducing the

intrinsic biases of conventional approaches.

Current guidelines recommend SSAs for G1 and G2 GEP-NETs

that express somatostatin receptors, particularly for slow-growing

tumors.24,25 If these treatments are ineffective, other options, such as

RLT, are preferred over targeted agents and chemotherapy due to

their higher likelihood of extending PFS.26 Recent findings from the

NETTER-2 trial have shown that upfront first-line RLT significantly

outperforms high-dose analogs in G2 and G3 GEP-NETs.27 However,

the challenge remains in accurately identifying patients most likely to

benefit from these therapies, which depends largely on tumor grading,

symptomatology, and disease extent. Recent literature highlights

promising results from a radiomic approach in identifying Everolimus

responders among advanced GEP-NET patients based on naïve CT

scans.9 It was found that radiomics surpassed clinical data in predict-

ing responses to targeted therapy, underscoring the insufficiency of

clinical methods alone to characterize tumor microenvironment and

aggressiveness fully. This aligns with our study, where a combined

radiomics and clinical model demonstrated superior predictive accu-

racy (measured in AUC) compared to the clinical model alone. We

developed all models using baseline CT scans, aiming to use a pre-

treatment assessment that integrates ki67—recognized as a critical

clinical parameter—with radiomic features extracted from liver seg-

mentations. This approach aims to predict the risk of progressive dis-

ease in patients initially eligible for SSA treatment.

The NETs workflow could transition from a traditional approach,

often influenced by biases from subjective evaluations and intratu-

moral Ki67 heterogeneity, to a structured, objective, and innovative

TABLE 4 Univariate and multivariate
logistic regression to test the correlation
of radiomics and clinical data with the
progression.

Variable

Univariate analysis Combined model

OR (95%CI) p OR (95%CI) p

Age – 0.08 – –

Sex (F = 0) – 0.47 – –

Ki67 1.14 (1.01–1.28) 0.01 1.2 (1.01–1.4) 0.02

Shape_Elongation 38.14 (0.038–37,813.9) 0.03 – –

Shape_MinorAxisLength 1.23 (1.01–1.35) 0.04 – –

First-Order_Maximum 0.97 (0.96–1) 0.04 0.98 (0.97–0.99) 0.01

First-Order_Mean 1.03 (0.98–1.06) 0.034 – –

First-Order_Range 0.78 (0.73–1.3) 0.006 1.11 (1.03–1.2) 0.01

NGTDM_ Complexity 0.97 (0.96–1.1) 0.02 – –

AUC 0.814

p 0.008

Abbreviations: NGTDM, Neighboring Gray Tone Difference Matrix; OR, odds ratio.
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approach that includes radiomics. This method aims to provide quanti-

tative data to clinicians. However, it is essential to understand that

radiomics should not replace conventional evaluations but should

serve as an additional tool for oncologists. This approach is intended

to enable personalized therapy for each patient rather than a one-

size-fits-all treatment for the pathology. We are aware that this study

has limitations, which include its retrospective nature, small sample

size, and the heterogeneity of the population in terms of different pri-

mary NETs and tumor gradings. Due to these characteristics of the

included population, a comparative subanalysis between ileal and pan-

creatic primary tumors was not feasible for the predictive analysis of

radiomics models. This would have been interesting considering the

biological differences between these two disease types based on

the primary tumor site.28 Additionally, the absence of a validation

cohort further restricts the robustness of our findings. Future studies

should aim to expand the initial population, possibly distinguishing

between pancreatic and ileal NETs, and incorporate an external cohort

for model validation. Since NETs are rare tumors, assembling a large

population is challenging, but a multicentric approach could provide a

solution. Moreover, several inherent weaknesses of radiomics must

be addressed, such as the lack of standardization and reproducibility.

Recent research has shown that CT iterative reconstruction can

impact the reproducibility of some textural features.29 The absence of

a multicentric dataset for validating predictive models, the

unavailability of a large prospective study, technical difficulties in

applying radiomics in clinical settings, and assessing its actual impact

on decision-making are significant challenges. In the future, develop-

ing algorithms to avoid overlapping and exclude unstable features

could mitigate these issues.

In conclusion, our study suggests that a predictive model combin-

ing radiomic data with grading may help identify patients with

advanced GEP-NETs who are more likely to benefit from SSAs treat-

ment. Radiomics shows potential to play a role in the NETs workflow,

possibly contributing to the development of personalized therapeutic

approaches and improved patient outcomes. This approach might also

assist in the earlier identification of patients less responsive to SSA

therapy, potentially allowing for closer follow-up and consideration of

alternative first-line treatments. However, further research is needed

to validate these findings and determine their clinical applicability.
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