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10.1 Lithium Metal Batteries 

Electrochemical plating/stripping of lithium metal at the negative electrode of 
aprotic batteries can in principle provide significant functional improvements 
compared to Li ion intercalation electrodes, in terms of the outstanding performance 
of the Li metal electrode (theoretical capacity = 3860 mAh g-1 and 
E° = -3.04 V vs. SHE, standard hydrogen electrode, cf. 372 mAh g-1 and 
≈ - 2.9 V vs. SHE for graphite) [1]. A high energy density of 400–600 Wh kg-1 

can be achieved when lithium metal anode is combined with intercalation-type 
cathode materials such as LiFePO4, LiCoO2, lithium–nickel–manganese–cobalt 
oxide (NMC), and lithium–nickel–cobalt–aluminum oxide (NCA). The use of Li 
metal anode is also proposed in Li–sulfur (Li–S) batteries and Li–oxygen (Li–O2) 
batteries, thus enabling further increase in the energy density of these
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next-generation battery chemistries. However, and despite the extraordinary research 
efforts made in the last five decades by researchers all over the word, lithium metal 
electrodes in secondary, i.e., rechargeable, batteries are still far from being commer-
cially feasible. In fact, there are fundamental limitations that hinder the reversibility 
of lithium metal stripping/deposition in aprotic electrolytes based on liquid, polymer, 
or crystalline components [2].
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In the lithium metal battery (LMB) technology, the reduction potential of Li is 
below that of conventional organic electrolytes. Therefore, lithium metal electrodes 
show Coulombic efficiencies upon cycling lower from unity in batteries. This fact 
makes the electrolyte a critical component in the development of LMB. In addition, 
the uneven deposition morphology of Li and inhomogeneous electrochemical dis-
solution lead to dendrite and dead lithium formation, lowering the Coulombic 
efficiencies [3]. A wide variety of approaches has been proposed to tackle these 
drawbacks, rooted in thermodynamics and kinetics of the lithium stripping/deposi-
tion. Overall, the electrochemical reversibility of lithium metal electrodes can be 
enhanced by the following four main strategies [4]: 

1. Optimization of the electrolyte formulation to control the solid electrolyte inter-
phase (SEI) formation over the electrodes 

2. Pre-deposition of an artificial SEI over the lithium metal electrode 
3. Exploitation of open three-dimensional scaffolds with controlled meso- or nano-

morphologies to buffer volume expansions and self-heal the formation of dead 
lithium 

4. Substitution of liquid electrolytes with solid polymer and inorganic materials, and 
their combination into hybrid electrolytes, to limit side reactions at the lithium 
metal surface 

10.1.1 Mechanism of the Electrochemical Lithium 
Stripping/Deposition in Liquid Electrolytes 

Lithium metal is an extraordinary reducing agent with the redox potential of 
E° = -3.04 V vs. SHE. Almost all aprotic liquid solvents with polar groups suitable 
for the formulation of secondary battery electrolytes are thermodynamically unstable 
in contact with lithium. This thermodynamic constraint causes an immediate degra-
dation of solvent molecules in contact with the surface of lithium metal through a 
pseudo-corrosion mechanism [5]. The degradation is initiated by the irreversible 
reduction of one solvent molecule: 

solventþ Li→ solvent • - þ Liþ solvð Þ  

and this reaction unavoidably creates pitting holes over the lithium metal through the 
release of solvated Li+ ions in the electrolyte, simultaneously generating the unstable 
radical solvent• - anion in a doublet state [6]. This radical molecule easily undergoes 
further reactions with other solvent molecules:
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solvent • - þ solvent→ solvent–solventð Þ • -

to form a short-chain radical polymer (solvent–solvent)• -. The radical can also react 
with the salt anion (e.g., LiPF6) to form insoluble lithium salts like lithium fluoride: 

solvent • - þ LiPF6 solvð Þ→ LiF solidð Þ þ  PF5–solventð Þ • - : 

In turn, unstable alkyl carbonate–fluorophosphate adducts, i.e., (PF5–solvent)
• -, 

are formed that easily further degrade through irreversible multistep processes, 
leading to a precipitation of the insoluble species and/or an alteration of the electro-
lyte composition. Another degradation process of the solvent• - radical anion is its 
intramolecular breakup promoted by a further reduction, leading to the formation of 
gaseous species (i.e., molecular hydrogen, ethylene, and other small volatile organic 
molecules like formaldehyde, acetylene, etc.) [7]. These multifarious radical chain 
reactions, initiated by the inevitable reduction of solvent molecules, lead very 
rapidly to the precipitation of insoluble inorganic and organic by-products (e.g., 
Li2CO3, Li2O, lithium alkyl carbonates, esters, etc.) over the surface the lithium 
metal, thus forming a passivation film (i.e., a natural solid electrolyte interphase, 
namely, n-SEI) [8]. This n-SEI completely passivates the surface of lithium metal, 
within the pitting holes as well as in the outer areas, but the pseudo-corrosion is not 
remarkable in the latter. Therefore, the n-SEI is unavoidably inhomogeneous in the 
nanometer scale, with significant compositional and morphological differences. 
Furthermore, in the initial electrochemical lithium deposition or oxidation of the 
lithium electrode, further electrolyte degradation occurs ending in the complete 
passivation of the surface by a thick passivation n-SEI film that is reminiscent of 
the original natural SEI [9]. 

The compositional inhomogeneity of the n-SEI originates from the so-called 
weak points, where the accumulation of organic by-products makes the local electric 
resistance larger compared to the surrounding areas of the electrode. These weak 
points become the most favorable nucleation sites for the electrochemical deposition 
of lithium metal and the electrochemical stripping of lithium ions. Overall, the 
surface of the lithium metal electrodes upon cycling will alter, driven by the local 
fluctuation of the n-SEI transport properties, thus leading to the aggravation of the 
original morphological inhomogeneities with formation of dendrites and pitting 
holes [10]. 

Once formed, dendrites increase remarkably the volume of the lithium metal 
electrode and grow preferentially toward the counter-electrode, following the elec-
tric field lines. This growth leads to internal short circuits and catastrophic cell 
failures. Moreover, dendrite formation exposes additional fresh lithium surface to 
the electrolyte, thus leading to further electrolyte degradation and accumulation of 
n-SEI. This mechanism is particularly unfavorable as it drives the formation of dead 
lithium upon stripping. This is because dendrites can be electrochemically dissolved 
during discharge, and therefore it is possible that a portion of the metallic lithium 
dendrite, passivated by the unfavorable n-SEI, may lose an electronic contact with



the bulk of the electrode. Unavoidably, these isolated lithium dendrites cannot 
undergo further electrochemical reactions leading to the loss of active material [11]. 
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Fig. 10.1 Optimal 
properties of SEI layers over 
metallic lithium [12] 

In general, the n-SEI grown on lithium metal before and upon cycling should 
meet several requirements to mitigate the dendrite growth, enhance the reversibility 
of plating/stripping, and suppress the formation of dead lithium as schematically 
summarized in Fig. 10.1. 

Unfortunately, the n-SEI layer formed in typical LIB electrolytes is unable to 
fulfill these demands, and, as already mentioned, different strategies have been 
considered to tackle this challenge, in particular forming artificial SEI layers or 
altering the nature of the n-SEI. Another radical approach is to replace liquid 
electrolytes moving to solid-state (electrolyte) batteries. 

10.1.2 SEI Modulation via In Situ Formation 

The formation of the SEI can be modulated by electrolyte additives that can alter the 
degradation mechanism to form more homogeneous and stable passivation films 
over the surface of the lithium metal electrodes. These sacrificial chemical species 
initially consume some metallic lithium of the electrode, but this consumption is 
generally limited and will end once the lithium electrode surface is passivated in situ 
by a modified solid electrolyte interphase (m-SEI). These electrolyte additives 
belong to two main groups depending on their main effect, i.e., reduction-type and 
reaction-type additives [13]. 

Reduction-type additives have a relatively high redox potential and are reduced 
upon lithium deposition prior to any unfavorable effect on the electrolyte [14]. Their 
decomposition products form an insoluble film, protecting the electrode/electrolyte 
interface, with enhanced transport properties compared to the n-SEI formed sponta-
neously without the additive. Reduction-type additives are divided into two sub-
groups. The first subgroup consists of reactive compounds containing unsaturated



bonds like vinylene carbonate (VC) or fluoroethylene carbonate (FEC) and promotes 
the accumulation of polymerized organic species over the surface of the lithium 
metal electrodes. The second subgroup includes reductive agents aiding the SEI 
formation. This class of reductive additives is electrochemically reduced before the 
electrolyte decomposition by-products precipitate onto the lithium surface. These 
additives can also react with radical species generated during the initial solvent 
reduction process, thus terminating the radical chain reaction that leads to the 
uncontrolled n-SEI formation. The most common chemical species that belong to 
this class are sulfur-containing chemical like sulfolane, ethylene sulfite, or dialkyl-
sulfone [15]. Their degradation ends with the formation of insoluble lithium sulfites 
or alkyl lithium sulfites. 
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Reaction-type additives are typically molecules with scavenging abilities. These 
species can react with intermediates of the natural degradation radical chain reaction 
of the electrolyte in contact with lithium surfaces, altering the final composition of 
the SEI by promoting the accumulation of electrochemically inert species with 
favorable transport properties. (Trimethylsilyl)isothiocyanate can easily scavenge 
PF5 as well as phosphite-containing compounds, thanks to their strong nucleophilic 
character [16]. 

Besides reaction-type and reduction-type additives, it is important to mention the 
possible use of co-salts of multivalent cations (e.g., Mg2+ , Ca2+ , Zn2+ Fe2+ , In3+ , and 
Ga3+ ). Many of these cations can alloy with lithium upon reduction worsening the 
ionic transport properties across the entire electrode surface. This effect leads to a 
smaller ionic conductivity but mitigates the uncontrolled growth of lithium 
dendrites [17]. 

10.1.3 Ex Situ Deposition of Artificial SEI 

The second general strategy to improve the reversibility of lithium stripping/depo-
sition is the ex situ preformation of an artificial SEI layer (a-SEI) on the surface of the 
metallic electrode. This strategy cannot fully prevent the spontaneous reactivity of 
the electrolyte with the lithium surface but can strongly mitigate its occurrence and 
therefore strongly reduce the chemical and morphological inhomogeneity of the 
lithium electrode surface. In general, a-SEIs over lithium metal electrodes can be 
synthesized by atomic-layer deposition (ALD), aeration, or chemical coating in a 
liquid precursor solution [18]. 

ALD is an advanced thin-film fabrication technique capable of producing homo-
geneous and ultrathin films at room temperatures or slightly above [19]. The final 
surface film is extremely thin, thanks to the careful control of the mass-loading of the 
a-SEI allowed by the technique. These ultrathin films are typically constituted by 
Al2O3 that, during the electrochemical deposition of lithium, firstly converts into the 
highly conductive lithium aluminate LixAl2O3 that stabilizes further the a-SEI and 
allows a remarkable limitation of the dendrite growth [20].
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Aeration is a chemical deposition method from the gas phase, in which the 
lithium metal surface reacts with almost permanent gaseous species like N2 or O2 

to form homogeneous nitride or oxide layers. Since Li3N is an electrochemically 
stable and fast ion conductive chemical species, the precipitation of a continuous and 
homogeneous thin film of lithium nitride over the surface of lithium metal acts to 
prevent side reactions between lithium metal and the electrolyte without hindering 
the lithium ion mobility [21]. 

The a-SEI, starting from selected liquid precursor solutions, can be obtained by 
using the so-called dip-coating or drop-casting method. A suitable chemical com-
position of the precursor solutions promotes the formation of a-SEI with controlled 
compositions and surface moieties. In fact, the constituent species of the precursor 
solution degrades due to the direct chemical reaction with the metallic lithium 
forming a preliminary passivation film [22]. This a-SEI can mitigate the unavoidable 
reactivity of the metallic lithium surface with the electrolyte upon cycling. The 
composition of the precursor solutions can modulate the composition of the resulting 
a-SEI allowing the control of the transport and mechanical properties of the a-SEI. 
An almost innumerable number of precursor solutions have been proposed in the 
literature, all leading to an improvement in the overall reversibility of the lithium 
plating/stripping. Among the many possibilities, one that should be mentioned is the 
use of polyphosphoric acid solution in organic solvents like dimethyl sulfoxide that 
promotes the formation of a Li3PO4-rich a-SEI, with excellent chemical stability, 
high Young’s modulus (10–11 GPa), and high lithium ion conductivity [23]. 

10.1.4 3D Engineering of the Electrode Morphology 

The third possible approach is to modify the morphology of the surface where Li is 
plated (either Li metal or directly the current collector) by an engineering at the 
nanoscale. Mechanically robust and chemically inert three-dimensional scaffolds or 
generic frameworks are used to facilitate homogeneous deposition of lithium metal, 
thus indirectly limiting the degradation of the electrolyte over fresh lithium surface 
[24]. The coating of lithium metal electrodes with very thin amorphous carbon-based 
hollow nanostructures can modulate the Li+ ion transport pathways toward the metal 
surface, leading to the nucleation and growth of the lithium deposits either over Li or 
the current collector. Furthermore, lithium metal can deposit within the hollow 
nanostructures with a minimal contact with the electrolyte, thus mitigating any 
further degradation. Also, the use of two-dimensional materials like graphene or 
hexagonal boron layer can modulate the lithium stripping/deposition reaction by 
inducing specific growth morphologies and the formation of a tailored a-SEI [25]. 

The use of open nickel foams as a current collector and support for the lithium 
deposition is also an effective strategy to accommodate the huge volumetric changes 
experienced by conventional host-less flat electrodes to lead homogeneous lithium 
deposition. In fact, the 3D open foam can be infused with molten lithium by capillary 
force forming a composite scaffold with a minimized interfacial resistance and 
empty spaces to buffer volumetric changes upon stripping and deposition [26].
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10.2 All-Solid-State Lithium Metal Batteries 

The use of commercially available organic liquid electrolytes in LMBs, as well as in 
Li ion batteries (LIBs), unavoidably poses major safety issues because of their 
flammability and strongly exothermic reactivity with lithium that can easily self-
heat the battery in case of accidents, leading to catastrophic explosions. The replace-
ment of liquid electrolytes with a solid electrolyte (SE) allows to tackle this serious 
drawback drastically and reduces the risk of fire and explosion even in case of major 
thermal, mechanical, or electrical abuse. As a further advantage, the use of SEs as an 
electrolyte having a function of separator increases the overall volumetric energy 
density of the batteries, thus improving the overall performance [27]. 

The ideal set of properties of SEs is [28, 29]: 

1. High ionic conductivity (>10-4 S cm-1 , better >10-3 S cm-1 in the case of thick 
composite electrolytes) with a high Li+ transference number (tLi+), especially at 
low temperatures 

2. Good chemical compatibility with other battery components including 
lithium metal 

3. Good thermal and electrochemical stability at a wide range of temperatures and 
voltages for the constant operation of cells, including the thermal stability also in 
terms of the absence of phase transition so as to avoid the formation of low 
conductive solid phase 

4. Minimal interfacial resistance between SE and electrodes 
5. High electronic area-specific resistance, resulting in conductivities <10-12 S cm-

1 , to prevent self-discharge 
6. Appropriate mechanical strength to resist dendrite growth 
7. Good affordability in terms of less environmental impact, allowing for simple and 

low cost fabrication of both SE itself and devices 

All-solid-state batteries with lithium metal electrodes (ASS-LMB) are classified 
as “generation 4b batteries” by the EU commission. However, despite the excellent 
functionality of SEs, several drawbacks hinder their development beyond the 
lab-scale and the final commercialization. The most relevant challenges are the 
unsatisfactory ionic conductivity compared to classical liquid electrolytes, the 
large impedance at the electrode–electrolyte interfaces, and the electrochemical 
instability against lithium metal of SE constituents. 

10.2.1 Classification of Solid Electrolytes 

Solid-state electrolytes can be either inorganic solid electrolytes (ISEs), solid poly-
mer electrolytes (SPEs), or their composites. The former electrolyte can further be 
divided into oxide types, sulfide types, and others including hydride, borate, and



phosphate types. The oxide-type ISEs have good chemical and electrochemical 
stability. The design of a material with a good air stability and low toxicity is 
possible. They exhibit a fast ionic conductivity in bulk, up to 10-3 S cm-1 at 
room temperature; however, to achieve this ionic conductivity, a sintering procedure 
at high temperatures, conventionally at around 1000 °C, is necessary to reduce grain 
boundary resistance between electrolyte particles. In contrast to this, sulfide-type 
ISEs have a low oxidation stability and high reactivity in the presence of moisture 
but exhibit a high ionic conductivity merely by pressing the materials at room 
temperature (so-called low-temperature sintering). This is because of a larger size 
S2- which broadens ion conduction pathways in the electrolyte structure and the 
higher polarizability of S2- which weakens the interaction with Li+ . On the other 
hand, SPEs have several advantages in manufacturing processes, such as simple 
production of large-area films, easy formation of a seamless interface with the 
electrodes, and possible handling of SPE in ambient air. However, it is not easy to 
find a suitable combination of a polymer matrix and additive salt that can exhibit 
ionic conductivity higher than that of ISEs, except for the combinations forming gel 
polymer electrolytes. 

180 A. Tsurumaki et al.

10.2.2 Ion Conduction Mechanisms of Solid Electrolytes 

ISEs normally consist of two sublattices: a crystalline framework composed of 
immobile ions and a sublattice of mobile ions [30]. Therefore, Li+ ions move within 
an essentially static framework through ion hopping (i.e., the Grotthuss mechanism), 
which is favorable with regard to a faster ion conduction. The mobile species in a 
crystalline solid need to pass through periodic bottleneck points, which defines 
migration energy. To reduce the energy barrier and achieve faster ion conduction, 
(1) the number of mobile ions and their hopping sites, as well as the vacancy of the 
mobile ions, (2) the size of bottleneck points, (3) the degree of structural order in a 
mobile ion sublattice, and (4) the presence of highly polarizable anions in sublattices 
are critical factors [31]. In glassy inorganic materials, the ion conduction mecha-
nisms are quite like those in crystalline structures. The ions at local sites, being 
excited to neighboring sites, diffuse collectively on a macroscopic scale. In contrast 
to these, in SPEs, the motion of Li+ ions is mediated by the dynamics of the host 
polymer, i.e., the vehicular mechanism, thereby restricting the ion conduction to a 
relatively slow speed. The segmental motions of polymer chains create free volumes 
that allow for the migration of ions coordinated by the polymer polar groups, and 
ions migrate from one coordinate site to another, promoted by the segmental 
motions. The ionic conductivity, in this case, is strongly dependent on the crystal-
linity of the host polymer.
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10.2.3 Development of Inorganic Solid Electrolytes 

The diffusion of ions in crystalline solids is significantly affected by both ion valence 
and ionic radius of the migrating species because these influence electrostatic 
interactions between mobile ions and cations forming the structural skeleton 
[31]. In addition to this, the natures of the ligands and metals composing the skeleton 
of the host framework have large impacts on the performance of ISEs because they 
determine the channel size for ion migration. In the case of Li+ diffusion, since 
controlling the bottleneck size for the ion diffusion has been successful in enhancing 
Li+ conductivity and reducing the activation energy, structural tuning by cation 
substitutions within a given structural framework has been intensively studied. 
Among those investigated, the most attractive Li+ conductors, based on oxides 
such as natrium super ionic conductor (NASICON) type, garnet type, and perovskite 
type, as well as sulfides such as lithium super ionic conductor based on sulfides (thio-
LISICON) type, Li10MP2S12 (LGPS) type, argyrodite type, and Li7P3S11 type, are 
summarized in this section and Table 10.1. 

NASICON-Type (e.g., LATP/LAGP) NASICON-type Li+ conductors are 
represented by the general formula of AM2(PO4)3, in which A = Li and M = Ge, 
Ti, Zr, etc., forming a three-dimensional framework of MO6 octahedra alternatively 
connected with PO4 tetrahedra by sharing their vertices [31]. Lithium ions occupy 
two different sites in the structure, so-called A1 and A2 sites, and their migration 
occurs via ion hopping between these sites. The limitation for the ion motion comes 
from triangular oxygen windows, which separate the A1 and A2 sites, known as the 
bottleneck [38]. Therefore, optimization of the bottleneck size effectively improves 
the ionic conductivity and reduces its activation energy. 

The first strategy for this issue is the use of larger M ion in AM2(PO4) structure 
[33]. For example, the ionic conductivity of LiGe2(PO4)3 is only 6.62 × 10

-9 S cm-1 

[32]. In the case of LiTi2(PO4)3 and LiZr2(PO4)3, where Ge
4+ is replaced with larger 

ions, their ionic conductivities improve to 2 × 10-6 S cm-1 and 3.8 × 10-5 S cm-1 at 
room temperature, respectively. The second strategy is the aliovalent substitution, 
resulting in A1 +  xM′xM2–x(PO4)3, in which M′ = Al, Ga, La, etc. This increases the 
Li+ concentration and also its mobility [33]. The concentration of M3+ needs to be 
limited to �15% (x = 0.3) to avoid the formation of a secondary phase due to an 
ionic radius mismatch [31]. Al-doped NASICON-type materials, such as 
Li1 +  xAlxTi2 - x(PO4)3 (LATP) and Li1 + xAlxGe2–x(PO4) (LAGP), are known to 
exhibit ionic conductivities of ~3 × 10-3 S cm-1 (when x = 0.3) [31] and 1.0 × 10-
3 S cm-1 (when x = 0.5), respectively [33]. Both LATP and LAGP are stable at 
relatively high potentials and in air, while they are unstable at low potentials because 
Ti4+ is easily reduced. The formation of a protective layer based on polymers, 
LiPON, or other ISEs allows the use of this kind of materials with lithium metal 
anodes [39]. 

Garnet-Type (e.g., LLZO) The general formula of garnet-type materials is 
A3B2(XO4)3, in which A = Ca, Mg, Y, La, etc., B = Al, Fe, Ga, Ge, Mn, Ni, V, 
etc., and X = Si, Ge, Al, etc., forming eightfold, sixfold, and fourfold coordinated



�

X

structures centered on A, B, and X cations, respectively [32]. Li+-conductive garnets 
have the general composition of A3B2(LiO4)3. The Li

+ content can be increased by 
the aliovalent doping, and several materials with different stoichiometry such as the 
Li3 series, Li3Ln3Te2O12 (Ln = Y, Pr, Nd, etc.), Li5 series, Li5La3M3O12 (M = Nb, 
Ta, Sn, etc.), Li6 series, Li6ALa2M2O12 (A = Ca, Sr, Ba, etc., and M = Nb, Ta, etc.), 
and L7 series, Li7La3M2O12 (M = Zr, Sn, Hf, etc.), have been reported [32]. Garnets 
with Li+ concentration > 3, e.g., Li7La3Zr2O12 (LLZO), are identified as stuffed 
lithium garnets [40]. In these stuffed lithium garnets (i.e., Li5-7 series), Li+ occupies 
both tetrahedral and highly distorted octahedral coordination sites, while in the 
conventional garnets (i.e., Li3 series), Li+ occupies only a tetrahedral coordination. 
Li ions in octahedral site migrate easily, while those in the tetrahedral site are not. 
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Table 10.1 Properties of different kinds of ISEs 

Structure 
type 

Basic 
structure Particular composition 

Conductivity 
at R.T./ S 
cm-1 

Advantage/ 
disadvantage [Ref] 

Oxides 

NASICON AM2(PO4)3 
A site for 
Li+ 

LiTi2(PO4)3 2 × 10-6 High air stabil-
ity/incompati-
ble with 
lithium metal 
anode because 
of Ti4+ with 
poor resistance 
to reduction 

[32] 

Li1 + xAlxTi2 - x(PO4)3 
(LATP) 

~ 3  × 10-3 

(x = 0.3) 
[31] 

Li1 + xAlxGe2–x(PO4)3 
(LAGP) 

1.0 × 10-3 

(x = 0.5) 
[33] 

Garnet A3B2(XO4)3 
X site for 
Li+ 

Li7La3Zr2O12 

(LLZO) 
1.63 × 10-6 

(tetragonal) 
Stable against 
lithium metal/ 
lithiophobic 

[34] 

Li7La3Zr2O12 

(LLZO) 
2.44 × 10-4 

(cubic) 
[32] 

Li6.24Al0.24La3Zr2O11.98 4 × 10-4 [35] 

Li6.4Ga0.2La3Zr2O12 1.32 × 10-3 [35] 

Perovskite ABO3 

A site for 
Li+ 

Li3xLa2/3–x□1/3–2xTiO3 

(0 < x < 0.167, LLTO) 
10-3 Presence of 

grain boundary 
resistance, 
incompatible 
with lithium 
metal anode 
because of Ti4+ 

[32] 

Sulfides 

Thio-
LISICON 

LixM1– 

yM’yS4 
Li3.25Ge0.25P0.75S4 2.2 × 10-3 High ionic 

conductivity 
(merely after 
pressing)/lim-
ited stabilities 
in the contact 
with moisture 
and lithium 

[36] 

LGPS Li10MP2S12 Li9.54Si1.74P1.44S11.7Cl0.3 2.5 × 10-2 [32] 

Argyrodite Li6PS5 Li6PS5Cl 
Li6PS5Br 

1.9 × 10-3 

6.8 × 10-3 
[36] 

Li7P3S11 Li2S–MSn Li7P3S11 1.7 × 10-2 [37]
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In the case of Li7 series garnet-type materials, including LLZO, the material can 
possess a cubic phase featuring a disordered lithium arrangement in addition to a 
tetragonal phase featuring a fully ordered lithium occupancy [32, 35]. The formation 
of a cubic structure is critical to achieve a high level of ionic conductivity. Alumi-
num doping is known to stabilize the cubic phase of LLZO and enhance Li+ 

conductivity in one to two orders of magnitude compared to undoped tetragonal 
LLZO [35]. Furthermore, the ionic conductivity can be increased to 1.32 × 10-
3 S cm-1 by doping Ga3+ [35]. Regarding the electrochemical stability, garnet-type 
electrolytes are favorable in terms of showing a stability against lithium metal. In the 
case of LLZO, however, the material is lithiophobic [41], resulting in a formation of 
the interphase with a high charge transfer resistance. Softening of the lithium at 
170–175 °C (about 5–10 °C below Li melting temperature) [1] and the formation of 
lithiophilic coating such as those based on ionic liquids or polymers [42, 43] are 
known to be an effective solution for this problem. Instability at the interface with 
cathode has also been reported. The coating formation is effective also in this case in 
preventing oxidations of the electrolyte. 

Perovskite-Type (e.g., LLTO) Perovskite structures are described as follows: 
ABO3, in which the A-site ions (typically divalent alkaline earth metal ions) locate 
at the corners of a cube structure, B ion (typically transition metal ions, such as Ti4+ ) 
at the center, and oxygen atoms at the face-centered positions. Based on this 
framework, 12-fold coordination is formed around A sites and sixfold coordination 
(BO6) around B sites by a sharing corner with each other [31]. A Li

+ conductor can 
be obtained by replacing the divalent alkaline earth metal ions at A sites with the 
trivalent rare-earth element such as La3+ and monovalent Li+ . Just like the other 
ISEs, the bottleneck size for the ion conduction needs to be controlled to improve 
ionic conductivity, and this has been done by introducing large rare-earth or alkaline 
earth metal ions in the A site [31]. The presence of vacancy in the material, more 
specifically Li3xLa2/3–x□1/3–2xTiO3 (LLTO, 0 < x < 0.167, □ represents vacancy), 
for example, also allows for the enhanced bulk conductivity of �10-3 S cm-1 at 
room temperature. In such materials, La-rich and La-poor (i.e., Li-rich) layers are 
formed and alternately stacked. Within this structure, Li+ transport is restricted to the 
Li-rich layers, and minimal transport occurs between these layers, which limits Li+ 

transport to be two-dimensional. In polycrystalline structures, Li-rich layers in each 
grain are misaligned, and this reduces the ionic conductivity of the materials one to 
two orders of magnitude lower than that of the bulk [44]. As observed in other 
materials containing Ti4+ with less resistance to reduction, LLTO is not stable in a 
low-potential region, making it incompatible with the lithium metal anodes. There-
fore, the partial or complete substitution of Ti4+ with Sn4+ , Zr4+ , Mn4+ , and Ge4+ has 
been reported. These modifications need to be carried out so as not to form a 
secondary phase and not to decrease the Li+ concentration in the materials [45]. 

Thio-LISICON-Type and LGPS-Type Thio-LISICON-type electrolytes can be 
obtained by substituting O2- by S2- in a LISICON structure, specifically from 
LixM1–yM′yO4 to form LixM1–yM′yS4 (M = Si or Ge; M′ = P, Al, Zn, Ga, etc.) 
[29]. The thio-LISICON-type electrolytes exhibit higher ionic conductivity



n

compared with the LISICON electrolytes [31]. This is because of a larger size and 
higher polarizability of sulfide ions as discussed before for the classification of SEs. 
Depending on the valence of the cations, lithium vacancies in the structure can be 
controlled which affect Li+ conduction significantly [46]. The maximum conductiv-
ity of the thio-LISICON family can be as high as 2.2 × 10-3 S cm-1 in the case of 
Li3.25Ge0.25P0.75S4 [36]. Thio-LISICON-type electrolytes tend to be unstable faced 
with lithium metal. However, their high ionic conductivity established this class of 
electrolytes as potential ISEs for the future of ASS batteries. 
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Li10MP2S12 (M = Si, Ge, or Sn) and Li11Si2PS12 are frequently considered as one 
of the thio-LISICON-type electrolytes [31]. However, thio-LISICON-type and these 
electrolytes have different crystalline structure, specifically based on orthorhombic 
and tetragonal crystal systems, respectively [47], and therefore can be regarded as 
different class of materials, namely, LGPS type. The electrolyte consists of (Ge/P)S4 
tetrahedra alternating with LiS6 octahedra, forming a one-dimensional chain along 
the c-axis by sharing a common edge. These linear chains are connected to each 
other by PS4 tetrahedra by sharing a vertex with LiS6 octahedra [36], forming a 
backbone structure. Lithium ions locate in the empty space of the backbone structure 
by forming LiS4 tetrahedra and create a one-dimensional LiS4 chain along the c-axis, 
which is available for Li+ conduction. In addition to this conductive channel, Li+ 

diffusion is possible between neighboring conduction paths through the LiS6 tetra-
hedra. Aliovalent doping enhances ionic conductivity, and, in particular, 
Li9.54Si1.74P1.44S11.7Cl0.3 exhibits ionic conductivity of 2.5 × 10

-2 S cm-1 [32]. 

Argyrodite Type Lithium argyrodite, Li6PS5X (with X = Cl, Br, or I), is also one of 
the sulfide-based Li+ conductors, having a face-centered cubic lattice of X-, i  
which PS4 tetrahedra locate as if isolated by the anions [31]. Li

+ ions form Li6S 
octahedra and distribute over the remaining tetrahedral interstices [31]. In the case of 
Li6PS5Cl and Li6PS5Br, the halide ions can partially occupy the place of S

2- in the 
Li6S octahedra due to an X

-/S2- site disorder, which promote Li+ mobility signif-
icantly. As a result, annealed Li6PS5Cl and Li6PS5Br exhibit high ionic conductiv-
ities of 1.9 × 10-3 S cm-1 and 6.8 × 10-3 S cm-1 , respectively [36]. In contrast to 
these, the site disorder does not occur in the case of Li6PS5I due to a large size of I

-, 
and annealed Li6PS5I shows the low ionic conductivity of 4.6 × 10

-7 S cm-1 [36]. 

Li7P3S11 Type Li7P3S11 is glass-ceramic-type sulfide-based electrolytes, which can 
be obtained through the crystallization of glassy electrolytes formed by a binary 
mixture of Li2S–P2S5. Binary mixtures of Li2S–MSn, such as Li2S–P2S5,  Li2S–B2S3, 
and Li2S–SiS2, mixed by a mechanical milling technique exhibit glassy phase with 
conductivities of 10-5 –10-4 S  cm-1 at room temperature. The conductivity can be 
improved in the order of 10-3 –10-2 S  cm-1 by heat treatments because the glassy 
electrolyte softens and reduces the grain boundary resistance during the crystalliza-
tion process [36]. Particularly, Li7P3S11, obtained in 70% Li2S–30% P2S5 in molar 
ratio, exhibits the ionic conductivity of �1.7 × 10-2 S  cm-1 [37]. Li7P3S11 consists 
of P2S7 

4- di-tetrahedra and slightly distorted PS4 tetrahedra. An inherent flexibility 
of readily fluctuating P2S7 

4- polyhedra enables the fast Li+ migration in the material 
[48]. The ionic conductivity of Li7P3S11 phase is higher than those of highly 
conductive thio-LISICONs, which mainly contain PS4 

3- [45].

https://www.sciencedirect.com/topics/chemistry/tetrahedral-crystal
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Overall, sulfide-type ISEs possess considerable high ionic conductivities. How-
ever, their drawback is their instability. Several Li2S–P2S5 binary systems are known 
to generate H2S upon an exposure to moisture [45]. In addition, at the interface with 
lithium metal, multiple solid phases including Li2S, Li3P, Li17Ge4, and 
polyphosphide are usually formed, and the most common solution for this problem 
is the formation of a-SEI on lithium metal [1]. Also, for the cathode side, the 
formation of a protective layer, so-called a buffer layer, usually based on lithium 
metal oxide (e.g., LiNbO3, Li2ZrO3) or lithium borate (e.g., Li3B11O8), is 
effective [1]. 

10.2.4 Solid Polymer Electrolytes 

Non-swollen dry polymer solid electrolytes, so-called SPEs, with suitable physico-
chemical and mechanical properties can be easily processed into thin separators. The 
advantages of SPEs as compared to the ISEs are easy fabrication, better scalability, 
high levels of safety, and flexible shapes. Some polymers with a high polarity, such 
as poly(ethylene oxide) (PEO) and poly(ethylene carbonate) (PEC), dissolve a large 
variety of lithium salts, such as lithium triflate (LiCF3SO3), lithium bis 
(fluorosulfonyl)imide (LiFSI), and lithium bis(trifluoromethanesulfonyl)imide 
(LiTFSI). The cations and anions dissociated in the polymer matrices are both 
mobile, and therefore SPEs act as a dual-ion conductor. Since the ion motion in 
the polymer matrices is assisted by the segmental motion of polymer chains, it 
mostly occurs within the amorphous fraction of the polymer matrix above its glass 
transition temperature (Tg). In this temperature range, the SPEs exhibit an ionic 
conductivity of around 10-3 –10-4 S cm-1 . To reduce Tg, but to still retain the solid 
state, copolymerization, insertion of a branch structure, and cross-linking have been 
undertaken [49]. In addition, the use of inorganic additives such as Al2O3-, ZrO2-, 
TiO2-, SiO2-, and Li

+-conductive ceramic fillers (i.e., ISEs) has been confirmed to 
improve ionic conductivity and, mainly, enhance the mechanical strength of the 
resulting polymer membranes [50]. 

Despite these promising features, many drawbacks hinder the application of SPEs 
in LMB such as: 

1. Small tLi+, generally lower than 0.5 
2. Occurrence of lithium dendrite growth and dead lithium formation, leading to 

poor efficiency and limited reversibility upon cycling 
3. Low electrochemical anodic limit, around 4–4.1 V vs. Li+ /Li, that limits the 

choice of cathode. 

Many efforts are presently devoted to tackle these issues. The fixation of an anion 
structure such as carboxylate, sulfonate, sulfonylimide, etc., onto a polymer back-
bone allows the SPEs to have the tLi+ of unity. In this case, the effective dissociation 
of the immobilized anions and Li+ is essential for the ion conduction. Recently, 
fixation of sulfonylimide on SPEs is dominating the material development because a



delocalized negative charge of the anion is favorable for the ion dissociations [51]. In 
addition, since an enlarged conjugation structure adjacent to the anion structure can 
reduce the ionic interactions, several polystyrene derivatives with functional struc-
tures at the para position have been designed as Li+-conductive SPEs [51]. 
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Besides PEO, also PEC has been proposed and demonstrated as a potential 
polymer matrix having the favorable combination of good physicochemical proper-
ties and satisfactory conductivity even at low temperatures. PECs show also a better 
anodic stability compared to PEO, thus allowing the use of high-voltage cathode 
such as layered oxides. On the other hand, the mechanical properties of PECs 
counterbalance the benefits, and relevant dendrite growth occurs at the lithium 
metal side [52]. In such cases, the use of dual or multiple polymer layers, having 
different functions, may help the homogeneous lithium metal plating/stripping, thus 
suppressing the dendrite growth. 

10.3 Sodium and Sodium Ion Batteries 

10.3.1 Battery Technologies Based on Na Metal 

Among the emerging battery technologies alternative to LIBs, sodium-based batte-
ries, in particular sodium metal batteries (NMBs), sodium ion batteries (NIBs), all-
solid-state sodium metal battery (ASS-NMB), Na–S, and Na–O2, show attractive 
benefits such as sustainable precursors, secure raw material supplies, and, in princi-
ple, low costs [53–56]. 

Figure 10.2 shows a schematic view of the most common Na batteries [55]. NIBs 
are represented by a porous Na-free negative electrode, a liquid electrolyte, and a 
Na-rich positive electrode; the full battery is assembled in the discharged state 
(Fig. 10.2a) like LIBs. The most common negative electrodes are composite films 
constituted by insertion-type active material, but also conversion and alloying 
materials have been proposed and tested. On the other side of the battery, the most 
common positive electrode materials tested successfully are layered ternary oxides 
that exploit the reversible insertion/de-insertion of Na+ ions driven by the redox 
reactions such as Mn4+ /Mn3+ , Ni4+ /Ni3+ , or Co4+ /Co3+ . Regarding liquid electro-
lytes, formulation closely matching those of LIBs based on organic carbonate 
solutions has been demonstrated for the utilization in NIBs by simply substituting 
lithium salts with sodium salts. An appealing advantage of NIBs compared to LIBs is 
the possible use of Al as the negative electrode’s current collector instead of Cu, 
thanks to the inability of Al to alloy with Na above the Na+ /Na plating/stripping 
redox potential [57]. 

ASS-NMBs are based on positive and negative electrodes, like that of NIBs, 
whereas the electrolyte is a solid composite (Fig. 10.2b). ASS-NMBs are recognized 
as a promising future battery technology because of their highly improved thermal 
stability, although there is room for performance improvement. Other advanced 
systems are Na–O2 and Na–S batteries. The former exploits the plating/stripping



reaction of a Na metal at the anode side, whereas porous conducting carbon-based 
composites in contact with O2 are used as the cathode, as depicted in Fig. 10.2c. The 
electrolyte can be either aqueous or aprotic. The latter, Na–S batteries, has very 
similar configuration compared to Na–O2 ones, the most relevant difference being 
the presences of a sulfur–carbon composite at the positive electrode and the exclu-
sive use of either liquid or solid aprotic electrolyte. 
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Fig. 10.2 Schematic view of the most common Na battery concepts, (a) Na ion battery, (b) solid-
state Na metal battery, (c) Na/O2, and (d) Na/S [55] (License n. 5,396,641,494,902) 

This section addresses an overview of state-of-the-art Na batteries, which repre-
sent an attractive solution almost suitable to replace Li ion technology in many future 
applications [53–56]. 

10.3.2 Toward Sodium Ion Batteries: Cathode Materials 

Research on active materials for cathodes in NIBs can take advantages from all 
similar previous studies for LIBs. Table 10.2 visually summarizes the relative merits 
of many of the most promising cathodes for NIBs, namely, O3-NaMO2 and 
P3-NaxMO2, Prussian blue analogs (PBA), sodium vanadate phosphates (NVP), 
and sodium vanadate fluorophosphates (NVPF), belonging to layered oxides 
(O3-NaMO2 and P3-NaxMO2), hybrid materials (PBA), and polyanionic phases 
(NVP and NVPF) [55, 58–61].
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Table 10.2 Comparison of performance for the most promising NIB’s cathodes. The 
different colors of the symbols represent high (green), average (orange), and poor (red) 
performance. Acronyms of the compounds are described in the main text [55] (License 
n. 5,396,641,494,902) 

Layered Oxides These materials have a two-dimensional layered structure, in 
which the Na ions intercalate and deintercalate reversibly. The general formula of 
the most advanced materials within this class is NaxMM’M”M”‘O2, where M, M’, 
M”, and M”’ = transition metals, Sn, Al, Mg, etc. This family of materials has a 
small molecular weight and therefore a large theoretical capacity; their stoichiome-
tries and redox mechanisms are comparable to those of their Li analogs successfully 
used in LIBs [62]. Differently from the lithium layered oxides, Na ions can be 
coordinated by both prismatic (P) and octahedral (O) sites in the layered oxide 
structure, giving rise to a large variety of phases with different transition metals 
and stacking structures. From the performance point of view, capacities can reach as 
large as 200 mAh g-1 [62, 63]. The most critical drawback of these materials is the 
anticorrelation between Na content and cycling stability. In fact, materials with a 
Na/M ratio close to unity show large initial specific capacities but suffer from a 
remarkable capacity fading. On the other hand, layered phases with Na/M ratios 
close to 0.7 show excellent stability for prolonged cycling at the expense of the 
overall capacity [62, 63]. Presently, research efforts are placed on adding extra-
capacity to layered phases arising from excess sodium and anionic redox activity. 
However, true Na-rich phases, i.e., Na1 +  xM1-xO2, similar to the so-called lithium-
rich layered oxides, are still elusive due to dimension of the Na atom, being larger 
than the Li one. 

Polyanionic Compounds Polyanionic compounds are also under study as positive 
electrodes for NIBs. Their working potentials can be easily tuned by changing the 
composition of the cations and polyanions in the structure, thanks to the close 
interplay between the variable intensity of the inductive effect provided by different 
polyanionic groups and the redox activity of the different transition metals 
[64, 65]. The most common polyanionic compounds for NIBs crystallize in typical 
prototype lattices, like tavorite, alluaudite, olivine, and NASICON. The crystalline 
structure of these materials is more stable compared to layered oxides and allows a 
full intercalation/de-intercalation of one or two Na ions. The best performances



reported in a full cell are delivered by V3+-containing compounds [65]. In particular, 
the NASICON-like Na3V2(PO4)3 (NVP) [66] and  Na3V(PO4)2F3 (NVPF) in a full 
cell with hard carbon (HC) as the negative electrode and a liquid aprotic electrolyte 
can deliver specific capacities as large as 120 mAh g-1 at 3.4 V vs. Na+ /Na with a 
good capacity retention even at high current rates [65, 66]. 
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Prussian Blue Analogs (PBAs) PBAs are very attractive materials for positive 
electrodes in NIBs. Their general stoichiometry is AxM[M’(CN)6]1-y•zH2O, where 
A is an alkali metal, M and M’ are a transition metal ion, and y is the fraction of 
vacancies in the crystal structure [67, 68]. Like in the case of layered oxides and 
polyanionic structures, also for PBA the choice of specific transition metal blends 
allows to tune the redox potential of NIBs [58, 69], allowing the materials to work 
either as cathode or anode. PBAs have been proposed by the US company Natron 
that demonstrated the ability of PBAs to operate simultaneously as positive elec-
trodes in the form of sodium hexacyanoferrate and as negative electrodes in the form 
of hexacyanomanganate, reaching very promising performance [70]. 

10.3.3 Toward Sodium Ion Batteries: Anode Materials 

A visual comparison among the promising materials for negative electrodes in NIBs 
is summarized in Table 10.3. Materials can be grouped depending on the reaction 
mechanism upon Na+ incorporation/de-incorporation: insertion (HC, graphite, TiO2, 
NaxTiO3), alloying (Sn/C, P/C, Sb/C), conversion (MoS2/C), and mixed alloy 
conversion (Sb2O3/C). 

Insertion Materials The most promising insertion-based materials are the so-called 
hard carbons (HCs) having their specific capacities in the range of 300–350 mAh g-
1 , with a Coulombic efficiency in the first cycle as high as 80% [71] and a working 
potential below 1 V vs. Na+ /Na. On the other hand, soft carbons (SCs) show a much 
smaller capacity compared to HCs, i.e., 200–250 mAh g-1 , but at lower working 
potential 0.5–0.6 V vs. Na+ /Na. Overall, despite the capacity retention in prolonged

Table 10.3 Comparison of performance for the most promising NIB’s anodes. The different colors 
of the symbols represent high (green), average (orange), and poor (red) performance [55] (License 
n. 5,396,641,494,902)



cycling being better for SCs compared to HCs, the latter phases (i.e., HCs) are the 
most promising active materials due to the much smaller accumulation of irrevers-
ible capacity compared to SCs, both in the first cycle and cycle-by-cycle, thus 
minimizing the waste of charge and the sacrificial positive electrode masses in a 
full NIB configuration. To improve the performance of HC, two main strategies are 
presently explored [72]. One is the optimization of the HC microstructure and 
surface composition to enhance the specific capacity through pseudo-capacitive 
and pseudo-plating sodium incorporation mechanisms [73, 74], whereas the second 
one is the incorporation of additional and different sp2 carbon structures (like SCs or 
graphene) in HC-based carbon electrodes [75]. Both strategies can increase the 
capacity unfortunately at the expense of the Coulombic efficiency [75]. Beyond 
the improvement of performance, keeping sustainability and low environmental 
impact of these kinds of materials is important because these are critical character-
istics. With this respect, it is also crucial to choose the correct precursors for these 
materials to keep the low costs and the sustainable philosophy of HC [76].
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Alloying Materials This type of anode material shows a higher specific capacity 
compared to HC and operates at low voltages [77]. The alloy-forming materials gain 
attention due to the ability to incorporate/de-incorporate more than one Na atom per 
redox atom, but as a trade-off, they suffered from huge volumetric changes upon 
cycling. Different strategies have been proposed to address this issue, such as 
minimization of active material particles into a nanometric scale to reduce the 
mechanical strain per one particle, the formation of core–shell materials to physically 
restrict the volume change, and the utilization of carbon-based additives as a buffer 
space [78]. At the same time, however, it is necessary to evaluate whether these 
improvements are essential from different perspectives. For instance, carbon-based 
additives are added as stabilizing components for alloy-forming materials, but it also 
commits as “dead weight” and affects practical capacity of total electrode mass. 

The alloy-forming materials are classified into group 4 elements (Si, Ge, Sn), 
group 5 elements (P, As, Sb, Bi), and their binary or ternary alloys. Among the group 
4 elements, Si and Sn are attractive materials because of their abundance. Despite the 
successes of Si in LIBs, Si has not been that successful in NIBs. In the case of Sn, 
there are a number of similarities between the Sn in NIBs and LIBs. Among group 
5 elements, P is the element with highest theoretical capacity 2596 mAh g-1 arising 
from the formation of Na3P [79], but due to its high flammability, its practical 
applications have been hindered [80]. Most of developments are centered on P/car-
bon composites due to large volume changes during cycling as well as low electric 
conductivity. P/graphene composites are known to show outstanding performances 
[81], as well as Sb/carbon composite which can reversibly deliver up to 3 Na per 
atom and reach a specific capacity of 610 mAh g-1 with 95% of capacity retention 
over 100 cycles [82]. Unfortunately, however, due to the high cost, toxicity, and low 
sustainability of the latter material, its practical application is not recommended. 

Metal Oxides Like in the case of LIBs, a variety of metal oxides have been 
investigated as anode materials for NIBs, and they are known to show distinctive 
mechanisms of anode functionality. Among these materials, the most representative



one is titanium oxide, which operates through an insertion mechanism changing its 
structure from crystalline to amorphous [83]. Despite the high operating voltage and 
the low Coulombic efficiency, this material is very promising because of the low 
cost, low toxicity, and availability [83]. Since the conductivity of titanium oxide is 
low, the use of dopant has been proposed to increase its electronic conductivity. To 
this end, the materials such as TiO2 nanosheets/graphene oxide composites have 
been developed and demonstrated to show a capacity above 175 mAh g-1 at 1C for 
200 cycles and 90 mAh g-1 at 20C for 10,000 cycles [84]. 
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Conversion Materials The reaction of this type of materials with Na is known to 
form a new phase which is structurally very different from the starting one, specif-
ically MaXb + (bc)�Na ⇄ aM + bNacX, in which M is a metal (Cu, Fe, Sn, etc.) and X 
is an anion (O, S, P, etc.). Despite their high theoretical capacity, there are different 
issues related to the conversion materials, such as a low first cycle Coulombic 
efficiency, an insulating property, a voltage hysteresis, and a large volumetric 
expansion upon cycling together with consequent electrode degradation in long 
term due to the deep structural transformation. The electrode composition design 
and the right choice of the electrolyte are two investigated strategies to improve and 
solve the issues listed above. MoS2 represents a typical conversion-type material 
with a theoretical capacity of about 670 mAh g-1 [85]. The electrochemical perfor-
mance and its stability can be improved by engineering the materials such as the 
formation of different heterostructures or the combination of MoS2 layers with 
different carbon-containing species [86]. Yet, due to the complexity to scale up a 
controlled synthesis of MoS2, the large-scale application of this material has not 
been successful. 

New emerging candidates are the metal phosphides [87] because they sustain the 
conversion reaction of the phosphorus within a metal atom network which provides 
electric conductivity. Moreover, in these materials, the volumetric expansion and 
long-term degradation are mitigated [88]. 

10.3.4 Liquid Electrolytes and SEI Formation in NIBs 

In the case of LIBs, there are various standard electrolytes, which are also commer-
cially available. In contrast to this, the optimal electrolyte of NIBs is still under 
development [89]. Like the electrolytes for LIBs, the performance of electrolytes for 
NIBs is strongly dependent on the electrode chemistry and electrode combination, 
making the optimization of an electrolyte composition complex. Especially in the 
case of NIBs, the ability of electrolyte to form SEI at the anode side is crucial 
because the SEI based on sodium salts has a higher solubility compared to that based 
on lithium salts; thus, the SEI undergoes continuous creation and destruction [90]. 

The main salts used in literature are sodium perchlorate (NaClO4), sodium 
hexafluorophosphate (NaPF6), sodium triflate (NaCF3SO3), and sodium bis 
(trifluoromethanesulfonyl)imide (NaTFSI), which are combined with ether or



carbonate solvents [89]. NaClO4 was chosen in the early stage of NIB research, but it 
is not ideal because of its explosive nature. As an alternative salt, NaPF6 has been 
employed most frequently, although its performances are strongly affected by the 
presence of impurities [91]. 
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The main solvents used together with these salts are the same for LIB technology, 
such as propylene carbonate (PC), ethylene carbonate (EC), and dimethyl carbonate 
(DMC), or their mixtures, which are known to form a stable SEI in the case of LIBs 
[91]. Since, in the case of NIBs, there is a problem in the stability of SEI as 
mentioned before, the use of additives has been recommended to form a compact, 
uniform, and more stable SEI, such as FEC and VC [92], which is the same additive 
used to create m-SEI in LIBs. In addition to these, sodium difluoro(oxalato)borate 
(NaDFOB), succinonitrile (SN), and 1,3-propane sultone (PS) have been reported as 
potential additives. It should be noted that in the case of NIBs, also ether-based 
electrolytes show very good performances for different active materials [93] includ-
ing high surface carbons [94]. The use of ether-based electrolytes allows the 
co-intercalation of solvated Na+ into graphite and enables the formation of stable 
SEI with enhanced Na plating/stripping efficiency. 

Several ionic liquids and aqueous-based electrolytes are also proposed as more 
sustainable and stable electrolytes [89, 95]. The use of ionic liquids has positive 
effect on the stability of SEI. Because of this, very promising results have been 
obtained, for example, when ionic liquids are combined with TiO2 anode material 
[96]. Due to the high cost of this class of electrolytes, practical application is not yet 
realized. In contrast to this, aqueous electrolytes have advantages in terms of their 
low cost, good sustainability, and safety [60]. However, the structural stability of the 
electrodes in water and the possible side reactions need to be assessed carefully 
[60]. Recently, the concept of the “water-in-salt” (WiS) electrolytes has been 
proposed. This class of electrolytes is defined as the concentrated aqueous solution 
of salt, in which the number of water molecule per ion is far below the solvation 
number [60]. These electrolytes consist of contact ion pairs (CIPs) and aggregated 
cation–anion pairs, which decrease the availability of water and improve its electro-
chemical stability. By employing the WiS electrolyte, symmetric NIBs based on a 
dual V3+ /Ti4+ NASICON-structured Na2VTi(PO4)3@C bifunctional electrode were 
successfully investigated, showing a stable performance over 2500 cycles at 10C 
[97]. This result demonstrated that the fluorine-rich SEI can suppress the electrode 
dissolution [97]. Important results of the advances in electrolyte/electrode optimiza-
tion, related to formulation of advanced electrolyte system, are well summarized in 
the review of Chen and co-workers [98]. 

10.3.5 Next-Generation Sodium Batteries 

An important step is being taken toward an all-solid-state configuration of the NIB to 
eliminate the serious problems related to the flammability of liquid electrolytes 
[99]. The first solid-state sodium ion conductor dates to the 1960s, when a fast



two-dimensional sodium-ion-transport phenomenon was discovered in β-alumina 
(Na2O•11Al2O3). In the same period, NASICON-type compounds were first studied 
leading to the development of Na1 + xZr2SixP3-xO12 (0 ≤ y ≤ 3). Many efforts have 
been made to elucidate the mechanism of Na+ transport and to achieve the optimal 
compositions. Recently, the inclusion of NaF at the synthesis step of NASICON was 
found to be effective for the fast ion transport (resulting in a conductivity of about 
4 × 10-3 S cm-1 ). In addition, different kinds of solid-state electrolytes have been 
reported, such as those based on SPEs as well as oxide and sulfide ISEs, as 
summarized by Zhao et al. [100]. The ionic conductivity and electrochemical 
stability of Na+-conductive solid-state electrolytes are still low, and further devel-
opment is necessary for the commercial use [99]. 
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Other state-of-the-art systems for future sodium technologies are Na–S and Na– 
O2 batteries [101]. As a closed system, in this section, focus is placed on Na–S 
batteries only, but both are promising systems. Na–S batteries were patented by Ford 
Motor Company in the 1960s, which were made of a β-alumina ceramic electrolyte 
and cycled at high temperature around 300 °C [102]. At this temperature, Na and S 
are both molten and need to be separated by the solid electrolyte. For a practical 
application, the working temperature of Na–S batteries must be reduced, and thus 
room temperature or intermediate temperature Na–S batteries are being reconsidered 
[103]. The important difference between Li–S and Na–S batteries is the thermody-
namically stable species of alkali metal polysulfides, which should be considered for 
further development, possibly being both advantageous and disadvantageous. 

10.4 Battery Technologies Based on Alkaline Earth Metals 

10.4.1 Rechargeable Magnesium Ion Batteries 

Magnesium ion batteries (MIBs) have attracted intensive attention due to their high 
capacity, high security, and low-cost properties. However, the performance of MIBs 
is seriously hindered by the intense polarization and slow diffusion kinetics of Mg2+ 

ions. To solve these issues, numerous efforts based on both experimental and 
theoretical studies have been proposed [104, 105]. In this section, the latest advance-
ment in anode and cathode materials as well as electrolytes for MIBs is summarized 
and discussed. 

10.4.1.1 Negative Electrode Materials for MIBs 

Metallic Magnesium Anodes The volumetric energy density of Mg is higher than 
that of Li (3833 vs. 2046 mAh cm-3 ), which is beneficial for the energy storage 
systems [106]. Different from the lithium metal, Mg was considered for a long time 
as a metal whose plating is homogeneous without formation of any dendritic 
structures [107, 108]. This, together with the low reduction potential of Mg2+ (-



2.37 V vs. SHE), makes Mg metal an ideal anode. Despite these merits, recently 
some authors pointed out the potential hazards related with a formation of dendritic 
forms or needlelike structures due to uneven deposits on magnesium metal [109– 
111]. Moreover, surface side reactions are known to occur on the anode side 
resulting in the accumulation of passivation films during the initial cycles of 
batteries. Unlike the formation of the SEI on the lithium metal, many reports assume 
that the passivation layers on the metallic magnesium have low ionic conductivity 
for magnesium cations [112]. Related to the formation and passivation properties of 
the interphase, the Coulombic efficiency of magnesium stripping and plating is the 
most critical parameter, and this is strongly affected by the electrolyte, its chemical 
properties, purity, and concentration of salt(s). Early generation of nucleophilic 
electrolytes [113, 114] in ether-based solvents is known to keep magnesium surface 
at least partially active (non-passivated). Acting on the metal anode itself, Liang 
et al. synthesized ultrasmall Mg particles with a diameter of �2.5 nm [115]. The 
ultrasmall nanoparticles reduced the thickness of the passivation film, which 
improved the deposition of Mg. Chemical modification is another feasible way to 
control the reactivity of Mg metal. Lv et al. used a SnCl2–dimethoxyethane (DME) 
solution to treat Mg foil and obtained a modified Mg anode with a tin-based artificial 
layer [116]. The Mg anode can maintain stable plating/stripping for more than 
4000 cycles at a high current density of 6 mA cm-2 . In the same manner, by adding 
GeCl4 into Mg(TFSI)2–DME electrolyte, the Ge-based artificial layer was also 
formed on the Mg surface, showing a self-repairing process [117]. 
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Alloying Anodes Some elements from block p are known to electrochemically react 
with magnesium ions to form an alloy. Alloying materials, such as bismuth (Bi), tin 
(Sn), and phosphorus (P), are promising alternatives to Mg metal anode [118]. Alloy 
materials may have synergistic effects in MIBs, bringing new properties that single 
Mg metal does not have. Bi anode (theoretical volumetric capacity is 3783 mAh cm-

3 )  [119] can rapidly insert and extract Mg2+ , with the ion dynamics being related to 
defect chemistry. In general, gravimetric and volumetric capacities related to the 
electrochemical alloying are very high (theoretically up to 900 mAh g-1 

(Sn) and 
6570 mAh cm-3 

(Sn) for the formation of Mg2Sn). Synergistic effects have been 
expected by combining multiple elements such as Bi–Sb (solid solution), Bi–Sn 
(composite), or intermetallic compositions of InBi, SnSb, or InSb [120–122]. Like 
the alloying-type electrode materials in LIBs, the volumetric changes due to the 
alloying and de-alloying process hamper the long-term cycling of the electrode. 
However, with a good electrode formulation, high reversible cycling has been 
demonstrated especially with Bi-based electrodes (Fig. 10.3)  [123]. It is also impor-
tant to consider that alloy electrodes might be easier to produce than magnesium 
metal electrode foils. Indeed, alloys can be synthetized in the form of powder by 
ball-milling or high-temperature reactions, which can be easily integrated in the 
battery industry. Moreover, alloys are certainly less surface sensitive than magne-
sium metal and might be of interest for protecting the Mg surface from the dendritic 
growth.
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Fig. 10.3 Electrochemical 
behavior of Bi nanowires in 
a Bi|Mg half-cell at C/2 with 
an organohaloaluminate 
electrolyte [123] (License 
n. 1,322,765) 

Intercalation-Type Anodes Although graphite has been widely employed in con-
ventional LIBs, it is difficult for Mg2+ to be inserted into graphite due to its high 
ionization potential (7.65 eV for Mg and 5.39 eV for Li) [124]. However, Kim et al. 
proved that the co-intercalation of Mg2+ and linear ether solvents is possible through 
the density functional theory (DFT) calculations [125]. The Mg2+ storage properties 
of carbon nanotubes (CNTs) have also been studied by the DFT. Aslanzadeh et al. 
studied the influence of CNTs’ diameter on the voltage of MIBs by calculating the 
adsorption energies of zigzag CNTs [126] and demonstrated that the cell voltage 
increased with the increase of CNTs’ diameter. Recently, research interest was 
shifted to graphene to explore its potential as the anode material for MIBs. Graphene 
with 25% double-vacancy defects can achieve a Mg2+ capacity of 1042 mAh g-1 

[127]. In addition to these, many other two-dimensional materials have been studied, 
such as transition metal carbides (MXene) [128] and borides (MBene) [129]. Regard-
ing metal oxide insertion materials, TiO2 is a very common anode for various 
secondary batteries. However, the limited capacity of 110 mAh g-1 at 0.1 C 
seriously obstructs its application in MIBs [130]. According to the research of Luo 
et al., proton charge compensation in Ti-deficient TiO2 (B) nanowires ensures more 
thermodynamic feasibility and sufficient intercalation sites for Mg2+ , thereby 
increasing the capacity. 

10.4.1.2 Positive Electrode Materials for MIBs 

The cathode material, a key component of MIBs, predominantly determines the 
energy density of batteries. However, most of the cathode materials of MIBs show 
small capacity and poor rate capability, which seriously hinder the battery perfor-
mance. Most studies on Mg batteries focus on the combination of Mg metal with 
inorganic cathodes based on transition metal redox centers. As of today, inorganic 
oxide, polyanionic, and sulfide compounds are the focus of attention of the research 
community, but they all present their pros and cons. Moreover, research on inorganic 
cathodes for magnesium batteries is sometimes quite perplexing as the lack of highly 
oxidative stable Mg electrolytes prevents the evaluation of Mg insertion reactions at 
high voltages.
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Chevrel Phase Mo6S8 Research on the cathode materials for Mg insertion was 
accelerated by the seminal work of Aurbach et al. with a prototype full Mg cell based 
on the Chevrel phase Mo6S8 [114] and opened a large avenue of research on 
chalcogenides. These structures are very promising due to the weak electrostatic 
interactions between Mg2+ ions and the sulfide/selenide-based anion framework. 
The low operating voltage (~1.1 V vs. Mg2+ /Mg) and low specific capacity (~100 
mAh g-1 ) of Mo6S8, related to an incomplete de-insertion of Mg ions due to the 
trapping of partial charges at room temperature, are limiting factors for commercial 
application of the given technology. Substituting sulfur by selenium allows for a 
100% capacity usage [131] but at the expense of the specific capacity value. 
Although the voltage and capacity values are too modest to obtain energy densities 
competitive with Li ion batteries, Chevrel structures remain the benchmark elec-
trodes for Mg batteries as they offer remarkable insertion/de-insertion kinetics and 
good reversibility. 

Layered Cathode Materials Layer materials possess two-dimensional transmission 
channels, which enable rapid Mg2+ migration. The reported layered cathode mate-
rials for MIBs include both transition metal oxides and transition metal sulfides, such 
as V2O5, MnO2, MoS2, and TiS2 [132]. As a representative, V2O5 has attracted great 
attention due to its high theoretical capacity (�295 mAh g-1 for MgV2O5) and 
working voltage (�2.35 V vs. Mg2+ /Mg). Compared with transition metal oxides, 
the relatively low ionization degree of S in transition metal sulfide weakens the 
electrostatic interaction between Mg2+ and negative charge, which is favorable for 
the migration of Mg. Yang et al. studied the diffusion kinetics of Mg2+ in MoS2 
(theoretical capacity of 223.2 mAh g-1 ) [133]. 

Polyanionic Cathode Materials Polyanionic compounds have been widely used in 
MIBs because of their versatile variety, stable structure, and strong inductive effect 
[134]. In MgMSiO4 (M = Mn, Co, Fe, etc.), Mg2+ diffuses from the octahedral 
(O) site to the tetrahedral (T) site [135], with an energy barrier of 740÷770 meV 
[136]. Despite olivine FePO4 performing well in LIBs, its capacity in MIBs is only
�13 mAh g-1 at 20 mA cm-2 [137], which can be attributed to the amorphous phase 
produced on the material surface during the discharge process, preventing Mg2+ 

from entering the bulk phase of FePO4. 

Organic Cathode Materials Although inorganic materials have widely dominated 
the field of rechargeable batteries, a great amount of attention has been recently 
placed on organic materials because they possess many crucial advantages, like 
safety, sustainability, green, low cost, and high theoretical capacity [138]. Carbonyl 
conjugates are a large group possessing many C=O functionalities, essentially 
determining properties such as diversity, fast reaction kinetics, and high specific 
volume. Therefore, compared to other types of organic cathode materials, carbonyl-
conjugated compounds are expected to develop as the next generation of cathode 
materials for Mg batteries. Quinone-based monomers are particularly suitable as an 
active storage unit, and most of recent reports [139] provided highly attractive



properties in terms of energy and power density as well as cyclability. Other reports 
showed applicability of imides and radical organic compounds [140], which in 
theory are less attractive in terms of energy density. As well known, electrochemical 
characteristics depend also on type of electrolyte, where both salts and solvents play 
important roles [141]. It has been demonstrated that the use of Mg(TFSI)2 salt can 
increase the capacity utilization of organic electrodes, while the use of AlCl3 can 
upshift the potential of redox active compounds [142]. Although redox active 
organics in the form of different polymers show the best properties in terms of 
cycling and rate capability, there are still some important challenges that need to be 
addressed before their potential commercialization. 
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10.4.1.3 Electrolytes for MIBs 

To make MIBs commercially available, further breakthroughs in the electrolyte 
chemistry development are needed. As for other battery technologies, the electro-
lytes for MIBs should fulfill multiple criteria such as low toxicity, low cost, wide 
electrochemical stability window, and high ionic conductivity. The following main 
types of the electrolytes have been explored in MIB technologies: (i) liquid-organic 
solvent electrolytes, (ii) solid-state electrolytes, (iii) polymer electrolytes, and 
(iv) ionic liquid-based electrolytes [104]. 

Liquid electrolytes based on organic solvents or ionic liquids are up to now the 
best performing materials for Mg deposition/stripping processes. The former elec-
trolytes present a wider electrochemical stability window, while the latter group 
shows a lower overvoltage in the Mg deposition process, a higher thermal and 
chemical stability, and a negligible flammability. 

For the electrochemical reactivity at the Mg metal anode, even traces of water or 
other oxygenated coordination ligands must not be present in the electrolyte, to 
avoid any compromise in the anodic reversibility, cyclability, and current density 
[143]. Actually, oxygenated species cause the formation of a compact MgOx(OH)y 
layer on the magnesium metal anode, which hinders the anode–electrolyte charge 
exchange processes promoting on its surface the growth of dendrites. On the other 
hand, as demonstrated by Novak et al. in the early 1990s [144, 145], water is 
necessary in the cathodic side to efficiently and reversibly exchange magnesium 
ions between the solid cathode active material and the electrolyte during insertion 
and de-insertion processes. This is because water molecules can exfoliate the 
cathode layered structure and enhance the Mg2+ diffusion into the bulk cathode 
materials by solvating the ions and facilitating their solid-state migration phenomena 
[146, 147]. Taking all together, developing electrolytes for MIBs able to address the 
so-called “devil” (at anode) and “holy” (at cathode) water dilemma is a very difficult 
target.
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10.4.2 Calcium Batteries 

Calcium (Ca) batteries are emerging as a promising next-generation electrochemical 
energy storage system, due to the abundant reservation of calcium and the compet-
itive redox potential of Ca2+ /Ca. However, the practical realization of rechargeable 
Ca and Ca ion batteries (CIBs) still relies on the identification of suitable electrodes 
and electrolytes. Despite reversible calcium plating–stripping being recently dem-
onstrated [148], efforts are still needed to improve both kinetics and efficiency and to 
allow a wider range of electrolyte formulations. Widening the electrochemical 
stability window of the electrolyte is crucial to lead the development of positive 
electrodes operating at high potential [149, 150]. 

10.4.2.1 The Benefits of Calcium Batteries 

Calcium is a divalent alkaline earth metal with an extraordinarily strong oxidative 
ability in consideration of the -2.87 V vs. SHE redox potential for the Ca2+ /Ca 
couple [151, 152], to be compared to the -3.04 V vs. SHE of the lithium metal 
electrode. In comparison to other elements under development for battery applica-
tions, calcium is the multivalent metal with the most negative redox potential and an 
ionic radius of 114 pm, very similar to Na+ , that is the cation easily intercalated/ 
deintercalated in/from a variety of materials [153]. The theoretical properties of 
calcium metal electrodes, in terms of gravimetric and volumetric specific capacities, 
surpass those of potassium, sodium (both gravimetric and volumetric), and zinc 
(gravimetric) and are like that of lithium (volumetric), thanks to the favorable 
combination of intermediate atomic weight and density [149]. In addition, compared 
to aluminum and magnesium, calcium has a larger ionic radius and a smaller 
electronegativity [154, 155], thus suggesting on the one hand a lower coordination 
binding in the liquid phase, thanks to the smaller charge density, and on the other 
hand a less covalent bonding in solid lattices. Furthermore, it is highly abundant on 
Earth’s crust and industrially inexpensive, much more than Li, Na, K, Mg, and Zn 
[150, 156, 157]. Even though calcium has an atomic weight seven times larger than 
lithium, the specific capacities of the calcium-based oxides vary in the 100–250 mAh 
g-1 range, comparable with lithium intercalation positive electrodes, also for what 
concerns the thermodynamic potentials. Similar to the anode materials available for 
LIBs, silicon, phosphorus, and carbon negative electrodes can reach large theoretical 
capacities at relatively low redox potentials also in the case of CIBs. On the other 
hand, calcium carbide is expected to suffer from large kinetic limitations and 
overpotentials being the crystal structures of all CaC2 polymorphs remarkably 
different from graphite [158]. Moreover, outstanding theoretical performance is 
achievable for Ca–O2, as well as for Ca–S, leading to the formation of calcium 
peroxide and calcium sulfide. 

A tentative evaluation of the relative merit of various calcium-based batteries in 
comparison with LIBs can be made using the theoretical performance of the LiCoO2/ 
C LIB as the baseline (360 Wh kg-1 , calculated assuming a ΔE° = 3.6 V and a



specific capacity normalized by the sum of both positive and negative electrode 
materials) [159]. The CIBs constituted by CaMn2O4 and Si can disclose a theoretical 
energy density of about 520 Wh kg-1 , being superior to the benchmark LIB 
(mentioned above) and approaching the desirable figures of the LiMn1.5Ni0.5O4/Si 
and LiFePO4/Li configurations [159]. Both sulfur battery chemistries, i.e., Ca–S 
and Li–S, have a comparable theoretical performance (approximately 
1800–2000 Wh kg-1 ) that is, in both cases, exceeded by the Ca–O2 and Li–O2 

ones (~2400 and ~ 3500 Wh kg-1 , respectively). 
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Overall, calcium-based battery chemistries can theoretically achieve performance 
of interest, not far from those of lithium-based ones, but research in the field is still in 
its infancy. To date, the serious exploitation of cathode materials for CIBs just 
started because of the pioneering work of Ponrouch et al., demonstrating the 
successful Ca plating/stripping using conventional organic solvents in 2016 
[148]. However, the field being in its early stage, the number of reports on positive 
electrode materials in the literature is still limited [159–165]. 

10.4.2.2 Challenges in Developing Calcium Batteries 

The operating principle of typical calcium batteries is depicted in Fig. 10.4, using 
inorganic framework as cathode and metallic Ca as anode. In this process, a series of 
limiting steps occurs [166]. Firstly, the slow diffusion of Ca2+ in the positive

Fig. 10.4 The diffusion, migration process of Ca2+ in a typical calcium battery [166] (License 
n. 5,487,100,248,324)



electrode is inevitable. Although the charge density of Ca2+ is small (52 C mm-3 , the 
same as Li+ ), its diffusion rate is significantly affected by its large ion radius (0.99 Å, 
compared to 0.76 Å for Li+ ), which is a dominant limiting factor. Secondly, Ca2+ 

forms solvated calcium in the electrolyte. In some cases, the formed solvated group 
is relatively large, making it difficult to migrate in the electrolyte. Moreover, when 
the solvated cluster moves to the electrodes, it needs to be de-solvated. A higher 
voltage beyond the reorganization energy is needed to break the interatomic bonds in 
the solvation cluster. This voltage needs to be within the electrochemical stability 
window of the electrolytes; otherwise, it is easy to decompose the electrolyte. 
Thirdly, the shuttle of de-solvated calcium ions in SEI is also a matter to be 
discussed. SEI is a thin film with a thickness of several nanometers between the 
electrolyte and the anode. This layer can protect the anode from continuous damage 
and the electrolyte from side reaction with the anode. Ideally, the SEI film is a good 
ion conductor but needs to be an electronic insulator. As for CIBs, the main 
components of SEI are CaCl2, Ca(OH)2, CaCO3, CaF2, CaH2, etc. [167]. These 
substances undergo structural changes during the calcium ion diffusion process. Due 
to the strong interatomic bond, many components are thought to be unable to 
transmit Ca2+ (such as CaCl2, Ca(OH)2, CaCO3, etc.). Also, continuous insertion/ 
de-insertion of Ca2+ induces a large volume change of SEI, which may rupture the 
thin film. Once Ca2+ passes the SEI and arrives at the anode, the intercalation, 
nucleation, or plating of Ca happens [168]. Owing to these complex steps, it is 
extremely challenging for calcium to deposit.
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The main issues and their current state, to be carefully addressed to allow the 
calcium technology being widely applicable, are summarized as follows: 

– The Ca2+ ion hosting materials that must be stable enough during the Ca2+ 

diffusion and insertion/de-insertion: Prussian blue analogs, transition metal com-
pounds, and organic compounds are known as potential materials for this require-
ment [169, 170]. 

– The reversible stripping/plating of Ca metal at moderate temperature: the proof-
of-concept batteries, as of today, showed an average Columbic efficiency of 96% 
for 50 cycles, which is not sufficient for the practical application [160, 171]. 

– The efficient solvation/de-solvation process of Ca2+-based electrolytes: different 
from Li+-based electrolytes, which can form Li+-conducting SEI, the reactions 
between electrolytes and calcium tend to generate Ca2+-blocking phases when 
contacting with organic electrolytes [172]. 

Overall, although great efforts have been made to change the electrolyte and 
modify the anode–electrolyte interface, the reversible plating/stripping of Ca metal is 
still tricky and complicated matter. The complexity of working directly with a Ca 
metal anode drives the search for alternative anodes, which can be categorized into 
three types based on the calcium ion storage mechanism, including alloying anodes, 
intercalation anodes, and organic anodes [166, 173], showing the direction 
toward CIBs.
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10.5 Conclusions 

Among the emerging battery technologies, Na ion batteries as well as alkali metal 
batteries, probably solid state, are those expected to become commercially available 
in the near- (2–5 years) to mid-term (5–10 years) future. Na ion batteries are already 
being developed by several industries following the CATL announcement made at 
the end of 2021. Polyvalent metal-based battery chemistries appear to be in the early 
stage of development with a few hurdles to be addressed in the next few years. 
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