
Submitted to INFORMS Journal on Computing

manuscript (Please, provide the mansucript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

A Numerically-Exact Algorithm for the
Bin Packing Problem

Roberto Baldacci
Engineering Management and Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa University, Doha

P.O. Box 34110, Qatar

Stefano Coniglio
University of Southampton, School of Mathematical Sciences, University Road, SO17 1BJ, Southampton, United Kingdom

Jean-François Cordeau
Chair in Logistics and Transportation, HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montréal H3T 2A7, Canada

Fabio Furini
Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University, 00185 Roma, Italy

We propose a numerically-exact algorithm for solving the Bin Packing Problem (BPP) based on a branch-

price-and-cut framework combined with a pattern-enumeration method. Key to the algorithm is a novel

technique for the computation of numerically-safe dual bounds for the widely-adopted set covering refor-

mulation of the BPP (tightened with additional valid inequalities) with a precision that is higher than the

one of general-purpose floating-point solvers. Our branch-price-and-cut algorithm also relies on an exact

integer (fixed-point) label setting algorithm for solving the pricing problem associated with the tightened

set covering formulation.

To the best of our knowledge, ours is the first algorithm for the BPP that can be proven to be numerically

exact. Extensive computational results on instances a↵ected by notorious numerical di�culties, those of

the Augmented Non-IRUP (ANI) class, show that our exact algorithm outperforms the state-of-the-art not

numerically-exact algorithms based on branch-and-cut-and-price that rely on a set-covering formulation of

the BPP.

Key words : bin packing, numerical precision, branch-price-and-cut, dynamic programming.

History : August 25, 2022

1. Introduction

Given a set N of n items, a positive integer weight wj associated with each item j 2N , and an

unlimited number of identical bins of integer capacity W , the Bin Packing Problem (BPP) asks for

finding the minimum number of bins that are needed to pack all the items. The BPP is one of the

1

Page 1 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

2 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

fundamental problems in Combinatorial Optimization and Operations Research and, while it has

been extensively studied for decades, it is still very challenging to solve to optimality. The BPP

occurs in countless areas ranging from job scheduling to logistics and in very diverse applications

such as truck or container loading with weight capacity constraints, digital content management

in cloud storage, and event seating. For more details, we refer the reader to the survey by Delorme

et al. (2016).

Most of the state-of-the-art algorithms for the BPP are based on solving a Set Covering (SC)

formulation featuring an exponential number of variables, each associated with a subset of items,

called a pattern, of total weight no larger than W . Letting P =
n
S ✓N :

P
j2S wj W

o
be the

collection of all patterns and letting the binary variable ⇠S be equal to 1 if and only if pattern

S 2P is featured in the solution, the SC formulation reads

(SC) min
X

S2P

⇠S (1a)

s.t.
X

S2P(j)

⇠S � 1 j 2N (1b)

⇠S 2 {0,1} S 2P, (1c)

where P(j)⇢P is the collection of patterns containing item j 2N .

Let LSC be the Linear Programming (LP) relaxation of the SC formulation. The problem under-

lying this relaxation is usually called the Fractional Bin Packing Problem (FBPP); see, e.g., Kar-

markar and Karp (1982), Eisenbrand et al. (2013), Caprara et al. (2015), Coniglio et al. (2019).

Let z(LSC) be the optimal solution value of LSC and let z(BPP) be the optimal solution value of

the BPP. Any BPP instance such that z(BPP) = dz(LSC)e is said to enjoy the Integer Round-Up

Property (IRUP) (Kartak et al. 2015, Delorme et al. 2016). While this property holds for many

BPP instances, several non-IRUP instances are known in the literature (Caprara et al. 2015).

The Modified Integer Round-Up Property (MIRUP) is a weaker version of the IRUP that holds

if the di↵erence between z(BPP) and dz(LSC)e is no larger than 1 (i.e., if dz(LSC)e  z(BPP)

dz(LSC)e+1). The MIRUP has been proven to hold when the number of di↵erent item sizes is no

larger than 7 (see Eisenbrand et al. (2013)), and it is conjectured to hold in general (Scheithauer

and Terno 1997). While, on the IRUP instances, computing z(LSC) su�ces to certify (or disprove)

the optimality of a given solution, non-IRUP instances require more sophisticated methods to pro-

duce a strong bound to do so. This situation is exacerbated by the fact that classical approaches

for solving the SC formulation of the BPP are known to su↵er from numerical errors on certain

classes of non-IRUP instances. The Augmented Non-IRUP (ANI) instances proposed by Delorme

et al. (2016) are one such class. As noted by Pessoa et al. (2020, 2021), these numerical errors may

Page 2 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 3

lead to computing incorrect bounds. Such an event can be catastrophic for the exactness of the

solution algorithm, as it may lead to constructing an invalid enumeration tree as a result of the

application of invalid pruning operations.

In the majority of the state-of-the-art algorithms for the BPP, the SC formulation is solved

with a Branch-Price-and-Cut (BPC) algorithm as originally proposed by Vance et al. (1994). At

each node of the BPC tree, the LP relaxation is solved by a Column-and-Row-Generation (CRG)

method following the original work of Gilmore and Gomory (1961). In it, the patterns are generated

by solving a pricing problem which, at the root node of the BPC tree, coincides with an instance

of the Knapsack Problem (KP). With only a few exceptions (see Belov and Scheithauer (2006),

Pessoa et al. (2020, 2021)), branching is carried out following the classical rule prooposed by Ryan

and Foster (1981), according to which two items are forced to be packed into the same bin or into

di↵erent ones. A relatively new addition to the state of the art is strengthening the SC formulation

with additional master cuts such as the subset-row inequalities of cardinality three (SR3), a family

of rank-1 Chv́atal-Gomory cuts first proposed by Jepsen et al. (2008) that are valid for set covering

and set partitioning problems and that were introduced into the BPP literature by Wei et al. (2020).

Such cuts are valid also for set covering problems such as (1) as, in it, Constraints (1b) are tight

w.l.o.g. in any optimal solution. Another new addition to the state of the art is pattern enumeration.

Originally proposed by Baldacci et al. (2008) for the Vehicle Routing Problem (VRP) and used

in the context of the BPP by Pessoa et al. (2021), the technique coincides with enumerating all

the patterns whose reduced cost is no larger than the gap between the value of the incumbent and

z(LSC) (possibly strengthened by master cuts). Such an enumeration leads to building a reduced SC

problem which can then be solved to optimality by a branch-and-bound method without generating

any futher patterns. For more details on state-of-the-art BPC methods for the BPP, we refer the

reader to Wei et al. (2020) for the EXM algorithmn and to Pessoa et al. (2020, 2021) for the general-

purpose BPC algorithm VRPSolver, which can tackle variants of the VRP, of which the BPP is a

special case. For another family of methods (the most recent one being algorithm NF-F) we refer

the reader to de Lima et al. (2022). Such methods rely on a network-flow framework designed

to solve the integer counterpart to a Dantzig-Wolfe decomposition via a path-flow and arc-flow

model, and can be adapted to solve instances of the BPP. They rely on arc-flow formulations of

pseudo-polynomial size which enjoy strong linear relaxations. Key to the e�ciency of the method

is a novel asymmetric branching scheme where a collection of smaller arc-flow subproblems are

solved by a general Mixed Integer Linear Programming (MILP) solver. Branching is performed by

selecting a subset of arcs and by either imposing all of them to be absent from the solution or by

imposing that at least one be present in it.

Page 3 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

4 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Crucially, all the state-of-the-art algorithms we mentioned (EXM, VRPsolver, and NF-F) rely either

on numerically-unsafe bounds obtained by a floating-point LP solver combined with a floating-point

pricing algorithm (this is the case of EXM) or on the adoption of a floating-point MILP solver in a

key step of the algorithm (this is the case of both VRPsolver and NF-F: in the former, the reduced

SC problem is solved as a MILP with Cplex, whereas in the latter the left child node generated

after a branching operation is always solved as an arc-flow MILP formulation with Gurobi). As a

consequence, none of them is guaranteed to produce numerically-exact solutions whose enumeration

tree constitutes a mathematically exact proof of optimality of the solution the methods find.

1.1. Review on numerically-safe approaches

The solution methods presented in the literature to avoid numerical inaccuracies inherent in the

floating-point computations are based on a pure rational approach, a safe floating point approach,

or a hybrid approach. In addition, the methods can also be classified based on the type of mathemat-

ical formulations addressed: general compact Mixed-integer linear programming (MILP) models or

extended models, the latter characterized by an exponential number of variables. In the pure ratio-

nal approach (Applegate et al. 2007, Wunderling 1996, Gleixner et al. 2012, 2016), all arithmetic

operations are performed over rational numbers. As a result of this line of research, rational solvers

such as QSopt ex (Applegate et al. 2007) and SoPlex (Wunderling 1996, Gleixner et al. 2012, 2016)

are available for the exact solution of LP problems. Regarding safe floating point approaches deal-

ing with compact MILP models, Cook et al. (2009), Cornuéjols et al. (2013), and Fukasawa and

Goycoolea (2011) addressed numerical safety in the context of cutting plane generation, whereas

Ste↵y and Wolter (2012) and Neumaier and Shcherbina (2004) tackled the issue of obtaining safe

bounds for MILPs. The works of Cook et al. (2011, 2013) deal with the design of full exact MILP

solvers, where hybrid approaches combining exact rational LP solvers and safe floating point dual

bounds are used. To the best of our knowledge, the two only works addressing the computation

of safe dual bounds in the context of extended models were proposed by Held et al. (2012) and

Fukasawa and Poirrier (2017). The work of Held et al. (2012) introduces numerically safe bounds

within a column generation based framework in the context of the graph coloring problem. Fuka-

sawa and Poirrier (2017) introduce five methods to obtain safe dual bounds for the LP relaxations

of the Capacitated VRP (CVRP). The first method is based on the scaling approach proposed

by Held et al. (2012). The next three methods are derived from ideas by Applegate et al. (2007)

for the traveling salesman problem and adapted to accommodate a column generation scheme for

the CVRP. The last method is based on a specific Lagrangian relaxation of the CVRP formula-

tion. Both Held et al. (2012) and Fukasawa and Poirrier (2017) also discussed safe floating point

implementations of the dynamic programming procedure employed in the pricing step to derive

numerically-exact pricing algorithms.

Page 4 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 5

Even if we restricted ourselves to a BPC method designed to employ the scaling technique of Held

et al. (2012), as done by Pessoa et al. (2021) (see Proposition 2 in this paper for a generalization),

we would obtain bounds that are worse than their infinite-precision counterpart by an additive error

proportional to the number of variables and the fixed-point precision of the pricing algorithm—see

Equation (2) in Held et al. (2012). In some instances, such an error can be non-negligible, and it can

lead to prohibitively large search trees. This is, in particular, the case of the ANI instances, where

(as we will show in this paper) having access to a numerically safe dual bound obtained with a

precision higher than the one o↵ered by commercial LP solvers can lead to enormous computational

advantages.

1.2. Contributions of this paper

In this paper, we propose a novel technique for the computation of numerically safe LP bounds

within an extended numerical precision higher than the one of state-of-the-art commercial solvers.

The contributions of this paper can be summarized as follows:

• We present the first numerically-exact algorithm for the BPP.

• We propose a technique based on the combined adoption of a rational (infinite-precision) LP

solver (SoPlex, Gleixner et al. (2016)) with a faster, floating-point one (Gurobi) and on an exact

integer (fixed-point) pricing algorithm that we develop ex novo for this work. To the best of our

knowledge, rational solvers have never been successfully used before in the context of a column

generation method, and ours is the first numerically-exact algorithm to be proposed in the literature

for solving the BPP.

• We design a new exact integer (fixed-point) pricing algorithm which relies on, among other

features, a new fathoming rule; the algorithm is designed in such a way that it can also perform

pattern enumeration; di↵erently from not numerically-safe approaches such as the one of Pessoa

et al. (2021), after the enumeration phase we solve the reduced SC problem to optimality by a

further call to a simplified version of our BPC algorithm in which the pricing algorithm is disabled,

thus guaranteeing the lack of numerical errors.

• Thanks to extensive computational results, we validate the e↵ectiveness of our numerically-

exact algorithm as well as the relevance of its components on BPP instances a↵ected by notorious

numerical di�culties.

• The framework on which our algorithm is based can be of interest for finding numerically-exact

solutions to a large array of combinatorial optimization problems that are typically tackled via a

BPC method featuring a set covering/partitioning problem as the master problem.

The remainder of the paper is organized as follows. In Section 2, we introduce the BPC method

that forms the basis of our algorithm. Section 3 presents the techniques we propose for the computa-

tion of extended-precision numerically safe dual bounds and describes the corresponding algorithm

Page 5 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

6 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

based on CRG. Section 4 describes our exact integer (fixed-point) label-setting algorithm designed

to solve the pricing problem and illustrates how it can be tailored to perform pattern enumeration.

Section 5 presents and analyzes the results of our algorithm on a set of BPP instances from the

literature. Section 6 concludes the paper and indicates future research directions.

2. Branch-price-and-cut method

We outline in this section the BPC method that forms the basis for our numerically-exact algorithm.

Let T = {T ✓N : |T |= 3} be the collection of all triplets of items in N and, for each T 2 T ,

let P(T) = {S 2P : |S \T |� 2} be the subset of patterns with at least two items in T . The SR3

constraints read

(SR3)
X

S2P(T)

⇠S  1, T 2T .

We refer to LSC (the LP relaxation of the SC formulation) tightened by these constraints as LSCT,

where “T” stands for “triplets”, and call z(LSCT) its optimal solution value.

The value of z(LSCT) is computed by a CRG method. At each iteration, the restricted master

problem (RMP)—a formulation featuring only a subset of the variables and constraints of LSCT—

is solved with the primal simplex algorithm to obtain a primal and a dual solution. Then, a column

generation step takes place, and the pricing problem is solved in order to find negative reduced

cost columns. If any are found, they are added to the RMP and a new column generation iteration

is carried out. If not, a row generation step takes place, and SR3 constraints are separated in a

cutting plane fashion and added to the RMP. The cutting plane algorithm terminates when no

violated SR3s are found, and one or more iterations of the column-and-row generation method

takes place. The computation stops when both the column and the row generation algorithms

terminate without finding new columns or rows. Due to their small cardinality, the SR3 inequalities

are separated by complete enumeration. The generation of columns requires, on the contrary, an

e�cient ad hoc pricing algorithm, which we describe in Section 4.1.

Let us consider a generic node of the BPC tree in which Ryan-Foster (RF) branching is applied.

Due to RF branching, a node with a fractional solution is split into two new nodes by imposing

that a chosen pair of items (the RF pair) either be packed in the same bin (“same branch”) or

into di↵erent bins (“di↵erent branch”). In the same branch case, the pair of items is merged into a

superitem with a weight equal to the sum of the weights of the individual items, and every already-

generated pattern that contains only one of the two items is discarded. In the di↵erent branch case,

a conflict is introduced between the two items to prevent the selection of patterns that contain

both, and every already-generated pattern that violates such a constraint is discarded. While in

the pricing problem, the same branch case is handled by simply considering the superitem in lieu of

Page 6 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 7

the two individual items, in the di↵erent branch case the new conflict constraint must be enforced

explicitly when a new pattern is created (see Section 4.1 for more details).

We denote by MP the master problem associated with the node at hand and by z(MP) its optimal

solution value. Let also RMP be the corresponding restricted master problem. Let T ✓T be the

set of triplets whose SR3 constraints have been generated so far and let N = {1,2, . . . , n} be a set

of n items (possibly involving superitems) with integer weights wj for all j 2N . Let G= (N,E) be

a conflict graph whose edges represent conflicts between the items. Let P be the set of patterns

generated so far. For each j 2N , let ⇡j � 0 be the dual variable corresponding to Constraint (1b)

associated with item j and let ⇢T  0 be the dual variable corresponding to the SR3 constraint

associated with a triplet T belonging to T . For each pattern S, let T (S) = {T 2T : |T \S|� 2}
be the set of triplets in T with at least two items in S. The LP dual of the RMP reads as follows:

(RMPD) max
X

j2N

⇡j +
X

T2T

⇢T (2a)

s.t.
X

j2S

⇡j +
X

T2T (S)

⇢T  1 S 2P (2b)

⇡j � 0 j 2N (2c)

⇢T  0 T 2T . (2d)

The pricing problem coincides with an instance of the Knapsack Problem with Triplets and

Conflicts (KP-T-C), whose nonempty solutions coincide with the following set of patterns cP:

cP =

(
S ✓N : S 6= ;,

X

j2S

wj W, and {j1, j2} /2E for all j1, j2 2 S
)
.

The reduced cost of a pattern S 2 cP with respect to a dual solution (⇡,⇢) and a parameter b

(equal to 1 here—di↵erent values will be used later on in the paper) is

cS(⇡,⇢, b) = b�
X

j2S

⇡j �
X

T2T (S)

⇢T .

The KP-T-C asks for a pattern S
0 2 cP of minimum reduced cost. If cS0(⇡,⇢,1)< 0, the pattern

is added to the RMP; otherwise the solution (⇡,⇢) is proven to be a feasible dual solution to the

MP.

3. Extended-precision numerically safe dual bounds and two-phase
column generation method

We aim at computing a numerically safe dual bound with a precision that is higher than the one

allowed by floating-point LP solvers (usually not higher than 10�9) by relying on both a floating-

point LP solver and an infinite-precision (rational) one.

Page 7 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

8 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

To achieve this, we introduce a procedure that extends the dual-variable scaling technique of Held

et al. (2012) (which applies to an RMP with nonnegative dual variables) to the case where the RMP

also features dual variables that are nonpositive. Since floating-point solvers would approximate

the value of the dual variables of the RMP by floating-point numbers, such a procedure is necessary

as, if not handled with care, these floating-point numbers may lead to two issues: (i) incorrect

calculations within the pricing algorithm and (ii) the generation of a column which would not

enter the basis due to its reduced cost being smaller than the optimality tolerance of the solver. In

our algorithm, both are circumvented by relying on the extended scaling procedure (described in

this section) and by combining it with an exact integer (fixed-point) pricing algorithm (described

in Section 4.1).

Our CRG method works in two phases. In the first phase, the RMP is always reoptimized via

the floating-point LP solver and the scaling procedure is combined with the pricing algorithm

to generate patterns with a reduced cost that lies within the floating-point solver’s optimality

tolerance ✏0. The second phase starts as soon as the pricing algorithm finds a pattern S
0 whose

reduced cost is strictly smaller (in absolute value) than ✏0. Since the floating-point solver would not

be able to bring the corresponding ⇠S0 variable into the basis when reoptimizing the RMP, at the

beginning of this phase we switch to the rational (infinite-precision) solver and use it until the CRG

procedure halts (halting is guaranteed by Proposition 1 below). This two-phase method allows us

to compensate for the weaker dual bound (illustrated in Proposition 2) that the scaling procedure

inevitably leads to. With it, we achieve a higher numerical precision than the floating-point solver

would allow for while also benefiting for many iterations from the e�ciency of this solver. This

way, we limit the number of calls to the computationally more cumbersome rational solver and,

overall, achieve a good trade-o↵ between numerical precision and computational e�ciency.

3.1. Extended dual scaling technique for the computation of numerically safe dual
bounds

Let (⇡float
,⇢float) be a floating-point dual solution to the RMP of value z

float computed by a

floating-point LP solver. Since solvers typically do not provide a bound on the accuracy of their

solutions (Held et al. 2012), (⇡float
,⇢float) can be a↵ected by numerical errors (it can be infea-

sible, suboptimal, or both). Even if this were not the case, truncation errors may still be made

in the pricing algorithm due to the floating-point nature of (⇡float
,⇢float) (as the precision avail-

able to the pricer may just be insu�cient to carry out the necessary arithmetic operations on

(⇡float
,⇢float) without errors). As a consequence, the pricing algorithm may attest the dual feasibil-

ity of (⇡float
,⇢float) (thus declaring cS(⇡float

,⇢float
,1)� 0 for all S 2 cP) even if the solution is not

dual feasible and z
float

> z(MP) or deem (⇡float
,⇢float) infeasible even if it is not. In the first case,

Page 8 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 9

the risk is of computing the invalid lower bound dzfloate> z(BPP), while, in the second case, the

CRG algorithm could enter an infinite loop.

To overcome these issues, we extend the technique proposed in Held et al. (2012) to the case

where the RMP features nonnegative as well as nonpositive dual variables. We (safely) approximate

the (possibly inaccurate) floating-point dual solution (⇡float
,⇢float) by introducing the following

scaled integer dual solution (⇡int
,⇢int):

⇡
int
j = bK⇡

float
j c, j 2N, and ⇢

int
T = bK⇢

float
j c, T 2T ,

where K > 0 is a positive scaling factor and the following diminished dual solution (⇡dim
,⇢dim):

⇡
dim
j =

1

K
⇡
int
j , j 2N, and ⇢

dim
T =

1

K
⇢
int
T , T 2T .

If K is a power of 10, i.e., K = 10k for some k 2 N, then ⇡dim = trunc(⇡float
, k) due to ⇡float � 0

where trunc(x,k) is the truncation of the floating-point number x to the k-th decimal figure.

Di↵erently, since ⇢float  0, ⇢dim does not coincide with the truncation of ⇢float to the k-th decimal

figure, as trunc(⇢float
, k) = d 1

K
⇢floate. Thus, ⇡dim = trunc(⇡float

, k)  ⇡float whereas ⇢dim  ⇢float 
trunc(⇢float

, k). By construction, if (⇡int
,⇢int) satisfies

X

j2S

⇡
int
j +

X

T2T (S)

⇢
int
T K, 8S 2 cP,

then (⇡dim
,⇢dim) satisfies dual Constraints (2b) and, thus, it is dual feasible for the RMP and

z
dim =

P
j2N ⇡

dim
j +

P
T2T ⇢

dim
T is a valid lower bound on z(MP) (zdim  z(MP)).

After computing the scaled integer dual vectors (⇡int
,⇢int), we use them for solving the pric-

ing problem in order to compute one or more patterns by minimizing, rather than the floating-

point reduced cost cS(⇡float
,⇢float

,1), the scaled integer reduced cost cS(⇡int
,⇢int

,K). Notice that

cS(⇡int
,⇢int

,K) is equal to the diminished reduced cost cS(⇡dim
,⇢dim

,1) multiplied by K. This way,

the pricing algorithm works solely with fixed-point (integer) numbers. Assuming that (⇡int, ⇢int)

and the result of any intermediate calculations that the pricer carries out can be represented by

the integer data type that is being used, truncation errors are completely avoided and the pricer

always produces an exact solution.

Let Imin < 0 and Imax > 0 be the minimum and maximum integer values, respectively, that

can be represented by the data type used for storing integer values. Standard implementations

(including ours), rely on 64-bit signed integers, for which Imin =�9,223,372,036,854,775,808 and

Imax = 9,223,372,036,854,775,807 (inclusive). For an error-free computation of the scaled integer

reduced cost cS(⇡int
,⇢int

,K), we need to ensure

Imin 
X

j2S

⇡
int
j +

X

T2T (S)

⇢
int
T  Imax.

Page 9 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

10 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

For this to hold, we must guarantee that the largest scaled integer reduced cost value that can be

computed be less than or equal to Imax and that the smallest value be greater than or equal to

Imin. Since ⇡int � 0 and ⇢int  0, we can restrict ourselves to the following su�cient condition:

X

j2S

⇡
int
j  Imax and

X

T2T (S)

⇢
int
T � Imin.

Let p̂ and q̂ be two upper bounds on, respectively, the number of superitems and the number of

SR3 inequalities associated with the RMP and assume (⇡float
, |⇢float|) 2 [0,1]⇥ [0,1] (we observed

that this is always the case in our numerical experiments). The occurrence of integer overflows

is explicitly checked in our code; in case of their occurrence, the algorithm is terminated without

returning a solution; in our experiments, such a case was never witnessed. By construction, this

implies that no entry of (⇡int
,⇢int) is larger than K. To avoid integer overflows during the solution

of the pricing problem, K must therefore be chosen such that the following holds:

K min

⇢
Imax

p̂
,�Imin

q̂

�
. (3)

From a convergence perspective, the definition of (⇡dim
,⇢dim) is motivated by the following

proposition:

Proposition 1 Consider a CRG method with a floating-point LP solver with tolerance "0, where

the pricing problem is always solved with the integer dual variables (⇡int
,⇢int) without numerical

errors and where the CRG stops whenever minS2 cP{cS(⇡dim
,⇢dim

,1)}��✏0. Then, if the reduced

costs calculated by the CRG algorithm are in an absolute error no larger than ✏0, the CRG algorithm

terminates after finitely many iterations.

Proof. By construction, we have ⇡float
j � ⇡

dim
j for all j 2N and ⇢

float
T � ⇢

dim
T for all T 2T . Thus:

1

K
cS(⇡

int
,⇢int

,K) = cS(⇡
dim

,⇢dim
,1) = 1�

X

j2S

⇡
dim
j �

X

T2T (S)

⇢
dim
T �

1�
X

j2S

⇡
float
j �

X

T2T (S)

⇢
float
T = cS(⇡

float
,⇢float

,1)
(4)

holds for each S 2 cP. By assumption, if (⇡dim
,⇢dim) violates the dual constraint associated with

a pattern S of diminished reduced cost cS(⇡dim
,⇢dim

,1) < 0, then cS(⇡dim
,⇢dim

,1) < �✏0 holds.

Due to (4), this implies cS(⇡float
,⇢float

,1) < �✏0. Therefore, such a constraint is violated by the

floating-point solution (⇡float
,⇢float) returned by the floating-point LP solver. Since its reduced cost

is within the solver’s tolerance ✏0, when the column corresponding to pattern S is added to the

RMP, (⇡float
,⇢float) becomes numerically infeasible for the floating-point solver. This guarantees

that, if the reduced costs calculated by the LP solver are in an absolute error no larger than ✏0,

Page 10 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 11

the CRG method will not enter an infinite loop. Moreover, given a dual solution (⇡float
,⇢float) and

the corresponding diminished dual solution (⇡dim
,⇢dim), for each S belonging to the set of patterns

P ✓ cP contained in the RMP we have cS(⇡dim
,⇢dim

,1)� cS(⇡float
,⇢float

,1)��"0. Hence, because
cP contains only finitely many patterns, the CRG method terminates after finitely many iterations.

Q.E.D.

In order for the CRG algorithm to converge, K must be chosen in accordance with the precision

of the pricing algorithm (as indicated in Condition (3)) as well as with the reduced-cost tolerance

for optimality (e.g., CPXPARAM Simplex Tolerances Optimality and OptimalityTol parameters

for Cplex and Gurobi LP solvers, respectively) or precision "0 of the floating-point LP solver (as

indicated in Proposition 1). Somewhat oddly, Held et al. (2012) fail to mention the latter condition

even though it is clearly necessary also for the case they consider, where the SC only involves

nonnegative variables.

While, as Proposition 1 shows, the CRG algorithm is guaranteed to terminate if the tolerance ✏0

of the floating-point LP solver is su�ciently good, working with the diminished dual solution

(⇡dim
,⇢dim) rather than with (⇡float

,⇢float) can lead to a bound z
dim that is weaker than z(MP).

The di↵erence between the two can be bounded according to the following proposition:

Proposition 2 Let (⇡float
,⇢float) be an (error-free) optimal dual feasible solution to the MP of

value z(MP) and let (⇡dim
,⇢dim) be the associated diminished solution of value z

dim
. Then, z(MP)�

|N |+|T |
K

 z
dim  z(MP).

Proof. For any ↵,� 2 R such that � = bK↵c, we have ↵ � 1
K
�  1

K
; hence, we deduce 0 

⇡
float
j �⇡

dim
j  1

K
for all j 2N and 0 ⇢

float
T � ⇢

dim
T  1

K
for all T 2T . Since

z
float� z

dim =
X

j2N

(⇡float
j �⇡

dim
j)+

X

T2T

(⇢floatT � ⇢
dim
T),

we derive

0 z
float� z

dim  |N |+ |T |
K

.

The claim follows since z
float = z(MP). Q.E.D.

The proposition shows that 1
K

should be as small as possible as, if 1
K
� "0, the final dual bound

obtained when the scaling procedure is adopted would be weaker than it could be.

To achieve a higher numerical precision than "0, one could, in principle, adopt a rational (infinite-

precision) LP solver instead of a floating-point one at each iteration of the CRG method. In such

a case, K would be selected purely based on the fixed-point precision of the pricing algorithm.

As known, though, infinite-precision LP solvers su↵er from significantly higher running times than

Page 11 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

12 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

their floating-point counterparts, and their adoption at every stage of the CRG method would

be impractical (this is indeed confirmed by our preliminary computational experiments). For this

reason, we introduce a two-phase CRG algorithm to e�ciently handle the dual bound calculations

with a value of K with 1
K
⌧ "0. In the first phase, we rely on the more e�cient but inaccurate

floating-point LP solver until the pricing algorithm generates a pattern S with cS(⇡dim
,⇢dim

,1)<

�"0. After this, phase two starts and we switch to the rational solver until the MP is solved. This

way, we limit the number of calls to the rational solver and achieve a good e�ciency as well as a

high numerical accuracy.

3.2. Two-phase column generation algorithm

We now describe in more detail the two-phase CRG algorithm we propose to solve the MP at a

generic node of the enumeration tree. Before doing so, we introduce dual bounds and fathoming

rules that we leverage to improve the overall computational e�ciency of the method.

3.2.1. Lower bounds and fathoming rules To achieve, if possible, an early termination of

the CRG algorithm at a generic node of the enumeration tree before it naturally converges, we

rely on an extension to the case with SR3 constraints of the classical bound that holds for set

covering problems that is due to Farley (1990) and also adopt two (classical) fathoming rules (or

termination criteria).

The extension of Farley’s bound is described by the following proposition:

Proposition 3 Let (⇡dim
,⇢dim) be a (not necessarily feasible nor optimal) diminished dual

solution of value z
dim

to the RMP at a generic iteration of the CRG procedure. Let cmin =

minS2 cP{cS(⇡dim
,⇢dim

,1)}. If cmin < 0, the value

LBF =
z
dim

1� cmin

is a valid lower bound on the optimal solution value z(MP).

Proof. By assumption, we have

cS(⇡
dim

,⇢dim
,1) = 1�

X

j2S

⇡
dim
j �

X

T2T (S)

⇢
dim
T � cmin, 8S 2 cP,

or, equivalently,
X

j2S

⇡
dim
j +

X

T2T (S)

⇢
dim
T  1� cmin, 8S 2 cP.

Since 1� cmin > 0, we deduce

X

j2S

⇡
dim
j

1� cmin
+

X

T2T (S)

⇢
dim
T

1� cmin
 1, 8S 2 cP.

Page 12 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 13

This is to say that cS(
⇡dim

1�cmin
,

⇢dim

1�cmin
,1) � 0 holds for all S 2 cP. Therefore, the dual solution

(⇡dim

1�cmin
,

⇢dim

1�cmin
) of value zdim

1�cmin
is a feasible solution to the dual of the MP and, thus, zdim is a valid

lower bound on z(MP). Q.E.D.

Interestingly, LBF turns out to be tighter than the classical lower bound on z(MP) known in

the literature as the Lagrangian bound (see Lübbecke and Desrosiers 2005), which reads:

LBL = z
dim +UB cmin.

The validity of LBL follows directly from the theory of linear programming. Indeed, since UB is an

upper bound on the optimal solution value of the MP, the value of zdim cannot be reduced by more

than UB times the smallest reduced cost cmin. Thus, we have z
dim +UB cmin  z(MP) z

dim. We

also provide an alternative derivation of the Lagrangian bound which, to the best of our knowledge,

is new. Consider an extension of the SC formulation obtained by adding to it the redundant

constraint
P

S2P ⇠S UB, where UB  n is an upper bound on the number of bins featured in an

optimal solution. The dual of such a problem reads:

max
⇡�0,⇢0,�0

8
<

:
X

j2N

⇡j +
X

T2T

⇢T +UB� :
X

j2S

⇡j +
X

T2T (S)

⇢T + �  1, S 2P

9
=

; .

Given a floating-point solution (⇡float
,⇢float), let �float =minS2P{1�

P
j2S ⇡

float
j �

P
T2T (S) ⇢

float
T }.

If �float � 0, (⇡float
,⇢float) is dual feasible (with infinite precision). If not, the invalid dual bound

P
j2N ⇡

float
j +

P
T2T ⇢

float
T can be corrected by adding to it the (negative) term UB�

float. As, by

construction, �float = c̄min, such an updated bound coincides with the Lagrangian bound.

The following proposition holds.

Proposition 4 LBF dominates LBL, i.e., LBF �LBL.

Proof. We aim to show that

LBL = z
dim +UB cmin 

z
dim

1� cmin
=LBF .

Since cmin < 0, we divide both sides by cmin < 0, obtaining

z
dim

cmin
+UB � z

dim

cmin(1� cmin)
.

Grouping by z
dim, we have that

UB � z
dim

✓
1

cmin(1� cmin)
� 1

cmin

◆
=

z
dim

1� cmin
=LBF .

As the latter inequality is always satisfied thanks to Proposition 3, the claim follows. Q.E.D.

Page 13 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

We remark that this result holds even for set covering problems where LBF is the classical bound

due to Farley. To the best of our knowledge, this was not observed before.

In our algorithm, LBF is combined with the following two fathoming rules, which leverage either

the optimality of the incumbent upper bound UB (Fathoming 1) or the optimality of the lower

bound dzdime (Fathoming 2):

Fathoming Rule 1 If dLBF e=UB, the subproblem associated with the current node of the enu-

meration tree is fathomed by the upper bound UB.

Fathoming Rule 2 Let z
dim

be the solution value of the RMP at a generic iteration of the CRG

method. If dLBF e= dzdime, then dzdime is a valid lower bound on the optimal solution value of the

subproblem associated with the current node of the enumeration tree.

3.3. Outline of the two-phase column generation algorithm

The algorithm we use to solve the MP at a generic node of the enumeration tree is summarized

by Algorithm 1. It takes as input the initial numerical precision "0 associated with the LP solver,

the value of K, the sets P and T of, respectively, patterns and SR3s associated with the current

RMP, and the incumbent value UB. It returns the updated sets P and T , the value of the lower

bound z
dim and (these values will be used for the pattern enumeration method described below) the

value of zint, the integer scaled dual vector (⇡int
,⇢int), and the diminished dual vector (⇡dim

,⇢dim).

If zdim =+1, the subproblem associated with the BPC node is fathomed by Fathoming Rule 1.

The algorithm starts by setting " to the numerical precision "0 of the floating-point LP solver

(phase I). The variable ‘optimality’ takes value ‘true’ if the current lower bound is proven to be

optimal and ‘false’ otherwise, whereas the variable ‘fathomed’ takes value ‘true’ if the current

subproblem is fathomed and ‘false’ otherwise. At each iteration of the main loop (line 2), the

algorithm solves the RMP using the LP solver with precision ", and computes the diminished

and scaled integer dual vectors (⇡dim
,⇢dim) and (⇡int

,⇢int) (lines 3-4). Then, the pricing problem

is solved using (⇡int
,⇢int) followed by the computation of the scaled integer reduced cost cmin =

minS2 cP{cS(⇡int
,⇢int

,K)} associated with the set of generated patterns P 0 (lines 5-6). Fathoming

Rules 1 and 2 are then tested (lines 7–8); if the lower bound is fathomed by Fathoming Rule 2,

the value of the lower bound z
dim is set to LBF . The sign of cmin is then checked to verify the

convergence of the algorithm (line 9). If cmin � 0, the SR3 inequalities are separated (line 10). If

none are found, optimality is proven (line 12); otherwise, the corresponding set of SR3 inequalities

T is updated (line 14). If cmin < 0, the set of patterns P is updated (line 17). The algorithm then

checks if the current precision " of the LP solver is still su�cient to include (one or more) of the

newly generated patterns of set P 0 in the basis at the next iteration (line 18). If this is not the

Page 14 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 15

Algorithm 1: Two-phase column generation algorithm

Input: "0, K, P and T , UB

Output: P, T , zint, zdim, (⇡int
,⇢int), (⇡dim

,⇢dim)
begin

// Initialization (phase I starts)

1 " "0, optimality false, fathomed false;
// Main loop

2 while optimality = false and fathomed = false do
// Solve the RMP

3 Solve the RMP using solver LP ("). Let (⇡float
,⇢float) be the RMP dual solution;

// Compute scaled integer and diminshed dual solutions

4 Compute the scaled integer dual solution (⇡int
,⇢int) and the diminished solution

(⇡dim
,⇢dim);

// Solve the pricing problem

5 Compute S
0 2 argminS2 cP{cS(⇡int

,⇢int
,K)} and let P 0 ⇢ cP be the set of generated patterns

(see §4.1);
// Computation of cmin

6 cmin cS0(⇡dim
,⇢dim

,1);
// Apply Fathoming rule 1

7 if dLBF e=UB then fathomed true, zdim +1; break
// Apply Fathoming rule 2

8 if dLBF e= dzdime then optimality true, zdim LBF ; break
// Check convergence

9 if cmin � 0 then
// SR3 separation

10 Separate SR3 by complete enumeration. Let T 0 ✓T \T be the set of generated triplets;
11 if |T 0|= 0 then
12 optimality true;
13 else

// Update the set of SR3

14 T T [T 0;
15 end
16 else

// Update the set of patterns

17 P P [P 0;
// Check LP numerical precision

18 if cmin ��" then
// Set precision to infinite-precision (phase II starts)

19 " 0;
20 end
21 end
22 end
23 end

case, the precision parameter " is set to 0, in which case the rational (infinite-precision) solver is

adopted from the next main iteration until convergence is established (phase II).

Page 15 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

16 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Since the maximum nonpositive scaled integer reduced cost cS(⇡int
,⇢int

,K) that can be computed

is equal to �1, the maximum nonpositive diminished reduced cost cS(⇡dim
,⇢dim

,1) that can be

computed is equal to � 1
K
. If K is chosen such as K = 1

"0
(where "0 > 0 is the numerical precision

of the LP solver), then the maximum negative diminished reduced cost value computed by the

pricing algorithm is no larger than � 1
"0

and, therefore, Algorithm 1 works within the numerical

precision of the LP solver. Dual bounds with an extended numerical precision higher than "0 are

obtained for any K >
1
"0
.

4. Pricing algorithm, pattern enumeration, node fathoming, and
branching scheme

In this section, we provide a description of the exact integer (fixed-point) pricing algorithm we

propose and of the pattern enumeration method, together with an illustration of how we solve the

reduced SC problem to optmality exactly thanks to a the simplified version of our BPC algorithm.

We also introduce a fathoming procedure to be applied at the root node of the enumeration tree,

and describe the branching procedures we adopt.

4.1. Pricing algorithm

The pricing algorithm follows the scheme of a classical Dynamic Programming (DP) algorithm for

the KP (see Martello and Toth 1990), where |N | stages are considered and each stage j 2 N is

associated with a subset of the set of feasible patterns cP involving the first j items. The algorithm

takes as input an integer dual solution (⇡,⇢) and two user-defined parameters ẑ 2 Z and � 2 N.
If ẑ < 0, the algorithm produces as output the most negative reduced cost pattern together with

at most �� 1 additional negative reduced cost patterns (if any). If ẑ � 0, pattern enumeration is

performed (see Subsection 4.2 for a detailed description) and the algorithm generates at most �

patterns with a reduced cost less than or equal to ẑ.

We call a label a tuple L= (j,X,!, c,X,R) representing a partial pattern, where: j is the last

item considered in the label; X ✓ {1, . . . , j} is the set of items contained in the partial pattern;

! is the total weight of X, i.e., ! =
P

h2X wh; c is the reduced cost of the partial pattern; X is

the set of items in {j + 1, . . . , n} that can be individually added to set X resulting in a feasible

pattern and R is the set of |T | binary resources associated with the triplets in the set T , namely,

R = {�1,�2, . . . ,�|T |} and � : cP! {0,1} for all � 2R. With a slight abuse of notation, we refer to

the attributes j, X, !, c, X, and R of a label L by j(L), X(L), !(L), c(L), X(L), and R(L).

The algorithm starts from the initial label L0 = (0,;,0,1,N,{0}�2R). A label L =

(j,X,!, c,X,R) represents a complete pattern consisting of the set of items in X of reduced cost

equal to c if X = ;. If X 6= ;, let j
⇤ = argmin{h : h 2X} be the item of minimum index in X.

Given a label L, a label extension rule is used to create two new labels L1 and L2 by packing

Page 16 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 17

j
⇤ in the former and discarding it in the latter. For a label L, let cP(L) ✓ cP be the set of all

feasible patterns with items in X(L) that can be used to complete the partial pattern X(L), i.e.,

cP(L) = {S0 2 N | S0 = S \X(L) for some S 2 cP,X(L) ⇢ S}. Given a label L = (j,X,!, c,X,R)

and a pattern S 2 cP(L), we denote by (X(L), S) the pattern (X(L)[S)2 cP obtained by joining

the partial pattern X(L) with its completion S.

The algorithm relies on fathoming and dominance rules to reduce the number of labels and

accelerate its execution. The following property holds:

Property 1 Given a label L= (j,X,!, c,X,R), let lb(L) be a lower bound on the reduced cost of

any pattern (X(L), S)2 cP that can be obtained by completing the partial pattern X(L) with some

S 2 cP(L). If lb(L)� ẑ, then the label L cannot lead to any pattern of reduced cost smaller than ẑ

and, therefore, it can be discarded.

Let KP (B,↵,�,�) be an instance of the KP (in minimization version) asking for a minimum-

profit subset of items of B = {1,2, . . . , |B|} fitting into a bin of capacity ↵2Z+ with profits � 2R|B|
�

and weights � 2Z|B|
+ . Let z(KP (B,↵,�,�)) be its optimal solution value. We define the following

fathoming rule (also used by Wei et al. (2020)).

DP Fathoming Rule 1 Given a label L= (j,X,!, c,X,R), the value lb1(L) = c(L)+z(KP ({j+
1, . . . , n}, c�!(L),�,�)) with � = (�⇡j+1, . . . ,�⇡n) and � = (wj+1, . . . ,wn) provides a valid lower

bound on the reduced cost of any pattern (X(L), S)2 cP, S 2 cP(L).

Let z(KPLP (B,↵,�,�)) be the optimal solution value of the LP relaxation of the aforementioned

KP problem. We introduce the following new fathoming rule:

DP Fathoming Rule 2 Given a label L = (j,X,!, c,X,R), the value lb2(L) = c(L) +

z(KPLP (B,c � !(L),�,�)) provides a valid lower bound on the reduced cost of any pattern

(X(L), S)2 cP, S 2 cP(L), where:

• B is equal to X(L) (we assume that the indices in B are defined consecutively).

• � = (�⇡⌫(1), . . . ,�⇡⌫(|X(L)|)) and � = (w⌫(1), . . . ,w⌫(|X(L)|)), where, for each h 2B, ⌫(h) is the

original index of the item in X(L).

It is worth noting that, di↵erently from Fathoming Rule 1, Fathoming Rule 2 explicitly considers

the conflict constraints associated with the items in X(L) and the set of remaining items X(L).

Therefore, no dominance relation exists between the two rules. Clearly, at the root node of the BPC

tree where no conflict constraints are present, Fathoming Rule 1 dominates Fathoming Rule 2.

To implement the pricing algorithm, we associate with an item j 2N a bucket Lj containing

all labels L = (j,X,!, c,X,R). The set of buckets is implemented by means of a doubly-linked

Page 17 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

18 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

list stored in one contiguous pre-allocated segment of memory, where each node of the list, in

addition to the link fields, contains the label data. Whenever the maximum allocation size is

reached by the algorithm, the entire algorithm terminates prematurely. In order to reduce the

space requirements, the sets X and X and the resource vector R of a label are encoded by using

a bit-mask representation where every single bit of a computer word is used separately to indicate

whether an element is included in the set or not, and classical bit-set operations are used to

implement the basic set operations.

The algorithm returns a set of patterns P 0 ✓ cP containing the most negative reduced cost

pattern and at most �� 1 additional patterns with a negative reduced cost.

To speed up the computations, the lower-bounding functions lb1(.) and lb2(.) adopted in

Fathoming Rules 1 and 2 are e�ciently computed in the following way. For the computation

of the bounding function lb1(.), we precompute the values of the recursive function g(j,!) =

z(KP ({j, . . . , n},!, (wj, . . . ,wn), (�⇡j, . . . ,�⇡n))) for all j 2 N , ! = 0, . . . ,W using dynamic pro-

gramming (Martello and Toth 1990). This allows for computing the corresponding term in the

bounding function lb1(L) as g(j(L) + 1,W � !(L)) with an overall number of operations equal

to O(|I|). For computing the bounding function lb2(.), we precompute the component-wise ratio

between the profit vector �⇡ and the weight vector w and sort the corresponding values in non-

increasing order. This allows for computing the bounding function lb2(L) in O(|N |) operations.
To further reduce the number of generated labels, we also rely on the following dominance rule,

also used by Wei et al. (2020):

Dominance Rule 1 Let L1 and L2 be two labels with j(L1) = j(L2) and !(L1) !(L2). If

c(L1)�
X

�2R:
�(L1)=1,�(L2)=0

⇢(�) c(L2)�
X

j2X(L2)\X(L1)

⇡j,

then label L1 dominates label L2 and, thus, label L2 can be discarded.

The correctness of this rule follows from the observation that the feasible extensions of L1 are also

feasible extensions for L2 and that the reduced cost of L1 cannot exceed that of L2.

4.2. Exact integer pattern enumeration algorithm

A classical result of integer programming (often called reduced-cost fixing and dating back to the

seminal paper on the Traveling Salesman Problem (TSP) by Dantzig et al. (1954)) is that, given

an upper bound UB and the optimal solution value LB of the LP relaxation of a binary integer

program, any variable with a reduced cost larger than the di↵erence UB �LB between the UB

and the LB cannot take a positive value in an optimal integer solution. Baldacci et al. (2008) were

the first to show how this result can be leveraged in the context of a column generation method for

Page 18 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 19

the VRP to design a so-called route enumeration method (the same method is used by Contardo

and Martinelli (2014) and Pessoa et al. (2020)).

The idea to run the CG algorithm until convergence and, then, apply a column enumeration

algorithm (a variant of a list-based dynamic programming such as the one we presented previ-

ously) tasked with building all the columns with a reduced cost no larger than UB � LB. Such

columns are used to populate a Reduced Master Problem (ReMP) which is then solved as an integer

programming problem with a state-of-the-art MILP solver.

Translating this into the context of the BPP, we have a pattern enumeration method. Given

a feasible (but not necessarily optimal) dual solution (⇡float
,⇢float) of value LB of the dual of

LSCT and a valid upper bound UB, any optimal integer solution to SC of cost less than UB

cannot contain any pattern S 2P whose reduced cost computed with respect to the dual solution

(⇡float
,⇢float) is greater than or equal to UB�LB. Let fP ⇢P be the set of all the patterns that

can be part of a solution that improves on UB (i.e., the set of all patterns of reduced cost strictly

less than UB �LB). After building fP by enumeration, the BPP can be solved to optimality by

formulating as ReMP a reduced SC formulation with explicit integrality constraints that features a

variable per pattern in fP and then solving it with a MILP solver. This way, any optimal solution

to the reduced SC formulation is, by construction, an optimal solution to the BPP.

In the context of the BPP, a pattern enumeration method is used implicitly by Pessoa et al. (2021)

when casting the BPP as an instance of the VRP and solving it with the VRPSolver algorithm that

the authors propose. Crucially, though, their method (but also those we mentioned before for the

VRP) relies on a floating-point MILP solver for solving the reduced SC formulation and, thus, the

validity of the solution it finds cannot be certified due to the floating-point errors that can a↵ect

it.

To circumvent the numerical issue and guarantee the construction of solutions to the reduced

SC formulation that are exact, in our algorithm we rely on the numerically exact BPC method

we proposed also for solving the reduced SC formulation. In particular, we apply the pattern

enumeration method at the root node of the BPC tree after the computation of the root lower

bound based on Algorithm 1. The pricing algorithm is invoked with the final scaled integer solution

(⇡int
,⇢int) of value z

int to perform pattern enumeration, where Dominance Rule 1 is not used.

Rather than just solving the reduced SC formulation, we solve a reduced-and-restricted SC for-

mulation in order to find solutions of value strictly better than UB. This is motivated by the fact

that, in many instances of the BPP, it is often the case that the UB found at the root node

already coincides with the optimal solution value of the problem (this is the case, e.g., of the ANI

instances). The reduced-and-restricted SC formulation is obtained by imposing an objective cut

Page 19 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

20 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

thanks to which only solutions of value no larger than UB�1 are sought. This way, while any opti-

mal solution to such a reduced-and-restricted SC formulation is an optimal solution to the BPP,

the infeasibility of the formulation proves that no such solution exists, thus allowing to conclude

that UB is the optimal solution value of the problem.

When performing pattern enumeration in our BPC algorithm, we set the parameter � of Algo-

rithm 1 to a user-defined parameter �PE whose value is dictated by the amount of memory that

is available (�PE is set equal to 500,000 for the experiments reported in Section 5). This way,

we restrict the size of the reduced set of patterns fP to | fP|  �PE. If | fP| is too large for the

amount of memory that is available and | fP|>�PE, the reduced-and-restricted SC formulation is

discarded and we resort to BPC. On the contrary, if | fP| <�PE, the reduced-and-restricted SC

formulation is solved to optimality using a version of our BPC algorithm in which the pricing prob-

lem is disabled, i.e., the BPC algorithm is turned into a branch-and-cut (BC) algorithm. This has

several advantages, as it allows for the separation of additional cuts such as the SR3 cuts without

impacting the complexity of the pricing algorithm, and also allows for alternative branching rules

such as binary branching.

4.3. Node fathoming procedure based on the full exploration of the first level of
the enumeration tree and branching scheme

Our experiments revealed that, after solving the root node either in the BPC or in the BC algo-

rithms, the adoption of a RF branching scheme is not always very e↵ective because (as it is known

for BPP instances) it may lead to very large enumeration trees. For this reason, we enhance our

branching scheme at the root node by adopting a fathoming procedure based on an full 1-level tree

exploration (to which we refer as F1LTE) of the enumeration tree.

In the BPC case, the F1LTE is utilized to find a RF branching pair leading to a dual bound (the

smallest of the bounds calculated with the CRG procedure in each of the two child nodes created

after branching) equal to UB. Finding such a pair provides a certificate of optimality of the current

solution, allowing the BPC algorithm to terminate at the root node. In the BC case, we use the

F1LTE to find a RF pair leading to two subproblems both of which are infeasible. Thanks to the

presence of the objective cut in the formulation, finding such a pair of items guarantees that no

solution of value strictly better than UB exists, thus allowing the BC algorithm to terminate. If

the fathoming procedure is not successful, in both the BPC and the BC algorithms a standard RF

branching is carried out by selecting a pair of items fractionally covered with value closer to 0.5.

As shown in more details in Section 5, our experiments revealed that the F1LTE procedure is

computationally very e↵ective in the BC algorithm and that, if it fails, the RF branching scheme

still allows to solve a good number of instances.

Page 20 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 21

5. Computational experiments

We assess in this section the computational performance of our numerically-exact hybrid BPC and

pattern-enumeration algorithm, to which we refer as BCCF (named after the authors of this paper).

The main goal of this computational study is assessing the role that each of the key components of

BCCF plays towards solving BPP instances to optimality in a numerically exact way. For comparison

purposes, we contrast the computational behavior of BCCF with three state-of-art BPP algorithms

from the literature—EXM, VRPsolver, and NF-F, even though none of them is numerically exact

due to either employing non-safe bounds (EXM) or resorting to a MILP solver to carry out certain

operations (VRPsolver and NF-F).

5.1. BPP benchmark sets

Among the many instances proposed for the BPP (an extensive description of which is provided

by Delorme et al. (2016)), in this computational study we focus on non-IRUP instances. As men-

tioned in Section 1, dz(LSC)e  z(BPP)  dz(LSC)e + 1 holds (stricly in most cases) on every

non-IRUP instance. Therefore, computing z(LSC) with a CG method does not su�ce to calculate

z(BPP) and more sophisticated techniques (the generation of SR3 constraints, branching, or pat-

tern enumeration) are needed. In particular, if dz(LSC)e= z(LSC) holds, then any strictly positive

bound improvement over z(LSC) su�ces to calculate z(BPP).

In our study, we focus on the instances of the ANI class, which comprises 250 instances with a

number of items n ranging from 201 to 1,002 and a capacity c ranging from 2,500 to 80,000. These

instances enjoy two properties: they satisfy z(BPP) = dz(LSC)e+1 with z(LSC) = dz(LSC)e and,

for each of them, an optimal solution can be found by running the best-fit algorithm—the challenge

for this class is therefore proving the optimality of the greedy solution.

Crucially (as indicated before), these instances are particularly challenging due to su↵ering from

numerical di�culties that have been observed to arise when solving the LSC and LSCT in several

papers, see, e.g., (Pessoa et al. 2021). In particular, while z(LSC) = dz(LSC)e= z(BPP)� 1 holds

in infinite-precision arithmetic, it is very often the case that z(LSC)< dz(LSC)e, implying that a

strictly positive bound improvement may over z(LSC) not su�ce to calculate z(BPP).

5.2. Setup

We rely on two LP solvers in our implementation: Gurobi 9.5.1 (Gurobi Optimization, LLC 2022)

and SoPlex 5.0.1 (Wunderling 1996, Gleixner et al. 2012, 2016). Gurobi’s LP solver is used in Phase

I of Algorithm 1 and in the enumeration trees associated with the BPC and the BC approaches.

SoPlex is used in Phase II of Algorithm 1, set to work in infinite-precision. At the root node, we

found to be computationally advantageous to set the initial value of "0 to 10�6, use Gurobi as long

as "> 0, and switch to SoPlex when "= 0. In the enumeration trees associated with the BPC and

Page 21 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

22 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

the BC approaches, Phase II of Algorithm 1 is not used, and we set the value of "0 to 10�9, so that

Gurobi works within its smallest optimality tolerance. At the root note of the BPC tree, we rely

on the greedy best-fit algorithm to build in a short amount of time an approximate solution (Dósa

and Sgall 2014).

By construction, on the ANI instances the LP bound of the classical formulation of the BPP

featuringO(n(n+1)) binary variables (which can be computed in closed form inO(n) as 1
c

P
j2N wj)

coincides with z(LSC) (Delorme et al. 2016). Improving on this bound by either branching or by

cut generation is therefore key to solving these instances. In order to obtain a bound as strong as

possible, in our experiments we separate the SR3 constraints not only at the root note but also at

every node of the BPC tree. As the computing time needed to separate SR3 constraints increases

w.r.t. the number of items and the number of generated patterns, in our experiments we limit their

number to no more than 50. Since, as explained before, the greedy heuristic is always able to find

an optimal solution for these instances, we do not rely on any additional heuristic methods for

solving them. However, BCCF is equipped with di↵erent heuristics, including: 1) a diving heuristic

based on a depth-first heuristic search in the BP tree that relies on a limited backtracking as a

diversification and limited discrepancy search method, similar to those of Sadykov and Vanderbeck

(2013) and Wei et al. (2020); 2) the greedy best-fit algorithm; 3) an LP-based heuristic by which

the patterns with ⇠S larger than a given threshold (up to a certain maximum cardinality) are added

to the solution and the still uncovered items are packed greedily with the best-fit algorithm.

The experiments with BCCF are run on the IRIDIS 5.0 High Performance Computing Facility of

the University of Southampton, relying on a cluster of compute nodes equipped with dual 2.0 GHz

Intel Skylake processors and 192 GB of DDR2 using a single thread per experiment. Our source

code is written in C/C++ and compiled with gcc 11.1.0 with the -o3 optimization flag. In line with

the other computational studies in the literature, all the experiments are run within a time limit

of 3,600 seconds per instance.

5.3. Comparison with state-of-the-art not numerically-exact algorithms

For comparson purposes, we begin our analysis by contrasting BCCF with the following three state-

of-the-art BPP algorithms, none of which is numerically-exact:

• EXM: BPC algorithm proposed by Wei et al. (2020), run sequentially on an Intel Xeon 3.10

GHz equipped with 8 GB of RAM. The algorithm is not numerically exact due to relying on a

non-safe Lagrangian bound and a non-safe floating-point pricing algorithm.

• VRPsolver: BPC algorithm proposed by Pessoa et al. (2021), run in parallel with 8 computa-

tions at a time on a 2 Deca-core Ivy-Bridge Haswell Intel Xeon e5-2680 v4 server running at 2.50

GHz with 128 GB of RAM. The algorithm computes safe dual bounds during the enumeration tree

Page 22 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 23

Table 1 Number of instances solved exactly to optimality by BCCF and average computing time for the ANI

class, compared with the results obtained with EXM, VRPsolver, and NF-F.

BCCF EXM VRPsolver NF-F

Group inst. opt time [s] solved time [s] solved time [s] solved time [s]

ANI-201 50 50 13.6 50 13.9 50 16.7 50 3.0
ANI-402 50 50 308.2 47 436.2 50 96.0 50 24.9
ANI-600 50 25 1,931.5 0 tl 3 3,512.5 50 140.7
ANI-801 50 3 3,352.7 0 tl 0 tl 49 393.2
ANI-1002 50 0 tl 0 tl – – 43 1,302.5

tot 250 128 97 103 242

based on a safe bound obtained with a procedure similar to the one of Held et al. (2012) (whose

details, though, are not given in the paper), but is also uses a non-safe general MILP solver to

solve the restricted master problem. As in the paper no detailed results are reported to indicate for

which instances the MILP solver was used, it is not possible to verify how many of the solutions

found by VRPsolver are numerically exact.

• NF-F: algorithm based on the network-flow framework proposed by de Lima et al. (2021) to

solve the integer counterpart to a Dantzig-Wolfe decomposition via a path-flow and arc-flow model,

which the authors also use to solve BPP instances; it is run on a computer equipped with an

Intel Xeon E3-1245 v5 at 3.50GHz 768 and 32GB RAM, with a single-thread limit. The algorithm

computes safe dual bounds based on the scaling technique proposed by Held et al. (2012), but is

also uses a non-safe general MILP solver as a key ingredient in the branching scheme to fathom

the left child at each level of the enumeration tree, as well as in each leaf node.

The results obtained on the ANI instances are reported in Table 1, aggregated by the number of

items n into five groups: ANI-201 (201 items), ANI-402 (402 items), ANI-600 (600 items), ANI-801

(801 items), and ANI-1002 (1002 items). Each group comprises 50 instances.

The table reports the number of instances solved by BCCF (column “opt”) by constructing an

exact proof of optimality and the average computing time in seconds (column “time [s]”). For the

other algorithms, it reports the number of instances for which each algorithm terminated with a

solution that it claimed to be optimal (column “solved”) and the corresponding computing time

(column “time[s]”). In line with other works in the BPP literature, the average is computed across

all the instances, including those for which the time limit of 3,600 seconds is reached. In the table,

an entry is marked with “tl” whenever the corresponding method reached the time limit for all

of the instances in the corrsponding group. While the computational environments in which the

di↵erent algorithms were run is heterogenous and, thus, the solution times of the algorithms cannot

be directly compared with absolute precision, in practice and given the type of instances, if an

instance cannot be solved within the imposed time limit, there is limited chances to solve the

Page 23 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

24 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

instance within a reasonable (limited) computing time. Therefore, our comparison with respect to

the literature will be based on the number of instances solved exactly to optimality by BCCF and

on the number of instances for which the other algorithms terminated with a solution they deemed

to be optimal.

It is worth noting that, in our preliminary experiments with Algorithm 1 and in line with what

is reported by Pessoa et al. (2020), we observed that on the instances with 600 items or more

and with Gurobi working within its smallest optimality tolerance (10�9), the pricing problem finds

columns with a negative reduced cost that the LP solver does not include in the basis due to the

absolute value of the reduced cost being smaller than the optimality tolerance the solver adopts

(OptimalityTol). The final solution obtained by the CRG algorithm is therefore not dual feasible.

Thus, the numerically safe bound obtained by the scaling procedure can be rather weak. Therefore,

the results of those algorithms that employ MILP solvers relying on a finite-precision LP algorithm,

such as VRPsolver and NF-F, can be particularly a↵ected by numerical errors when attempting to

solve these instances.

As Table 1 shows, BCCF solves 128 instances out of the 250 instances of the ANI class. The

algorithm outperforms both EXM and VRPsolver and, on the instances with up to 402 items, it

also solves the same instances solved by NF-F. For the larger instances with 600 and 801 items,

BCCF largely outperforms EXM and VRPsolver by solving 25 instances with 601 items and 3 with

802 items. No instance with 1002 items is solved by either BCCF, EXM or VRPsolver. NF-F solves

(albeit without a guarantee of numerical exactness) almost all the instances with more than 600

items. Indeed, the solutions it produces are not certified to be optimal within an infinite precision,

a property that is enjoyed by the solutions produced by BCCF.

5.4. Analysis of the role played by the di↵erent components of our algorithm

Tables 2 and 3 illustrate the impact of the di↵erent components of BCCF. In both tables, the

instances are grouped as in Table 1 and the values reported are average values calculated over the

corresponding group of instances.

Under the heading “Phase I”, Table 2 reports the number of columns (“col”) and the computing

time in seconds (“time [s]”) of Phase I (Gurobi-based computation) and Phase II (SoPlex-based

computation) of Algorithm 1. Under the heading “SR3”, the table indicates how many instances

are solved to optimality thanks to the generation of SR3 cuts (“opt”) and the time spent by

separating them (“time [s]”). It is worth mentioning that the generation of SR3 constraints is not

carried out in Phase II as preliminary computational results indicated that it was not e↵ective.

Under the heading “Phase II”, the table reports the number of columns (“col”), the computing

time in seconds (“time [s]”), and the number of times (“#”) Phase II (SoPlex-based computation)

Page 24 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 25

Table 2 Impact of the di↵erent components of BCCF (first part)

Phase I SR3 Phase II Pattern Enumeration
Group inst. col time [s] opt time [s] # col time [s] # col time [s]

ANI-201 50 279.7 1.6 41 1.1 9 121.7 0.8 1 25,235.0 31.5
ANI-402 50 489.5 21.5 18 20.8 32 324.1 4.8 22 2,219.5 0.5
ANI-600 50 660.1 111.6 0 117.0 47 475.6 13.9 25 2,145.0 0.9
ANI-801 50 827.4 360.2 0 340.1 19 537.0 28.0 3 1,809.3 1.3
ANI-1002 50 1,300.5 848.6 0 775.0 18 786.7 80.1 - - -

Tot 250 59 125 51

of Algorithm 1 takes place. The “Pattern Enumeration” section of the table reports the number

of instances for which the pattern enumeration was successfully run (i.e., it managed to generate

the full set of columns within the reduced gap without exceeding the memory limitations) (“#”),

the number of patterns it generates (“col”), and the computing time spent by the label-setting

algorithm.

Overall, the table shows that, while relying on a much less e�cient solver than Phase I does, Phase

II is fairly fast due to the generation of a much smaller (by about an order of magnitude) number

of columns. It also shows that the SR3 constraints are useful mostly on the smaller instances,

whereas it clearly indicates that the pattern enumeration procedure is responsible for solving a

large number of the more challenging instances.

Table 3 provides details about the e↵ectiveness of adopting the F1LTE fathoming procedure

within BCCF as well as on the number of instances that are solved by solving the reduced SC problem

with regular branching operations and not at the root note thanks to F1LTE. More specifically,

under the heading “F1LTE”, the table reports the number of instances solved to optimality (“opt”)

thanks to F1LTE (for both the BPC and BC algorithms), the number of (fractional) pairs of

item considered (“pair”), and the number of branches (“branches”) on which strong branching

was applied. The F1LTE procedure is applied either at the root node of the BC algorithm used

for solving the reduced SC problem obtained after pattern enumeration or at the root node of

the BPC algorithm which is run whenever the pattern-enumeration procedure fails to build the

reduced SC problem due to memory limitations. Under the heading “RF branching”, the table

reports the number of instances solved to optimality by either the BC or the BPC algorithm with

RF branching (“opt”) beyond the root node (i.e., when the F1LTE procedure is unsuccessful, the

number of nodes (“nodes”), and the computing time (“time [s]”).

Our results indicate that the average number of fractional pairs present in the optimal LP

solution of the root node, while substantial, decreases w.r.t the number of items and that the actual

number of pairs explored by F1LTE when successful is much smaller, ranging from 1/4th to 1/10th

Page 25 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

26 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Table 3 Impact of the di↵erent components of BCCF (second part)

F1LTE RF branching
Group inst. opt time [s] pairs branches opt nodes time [s]

ANI-201 50 8 16.8 405.4 44.3 1 40.0 54.7
ANI-402 50 25 232.2 207.2 53.6 7 5,788.0 1,484.4
ANI-600 50 25 1,386.9 83.8 12.7 0
ANI-801 50 3 2,852.7 76.3 11.3 0
ANI-1002 50 - 2,556.1 0

Tot 250 61 8

of the total number of pairs. The table clearly shows that the F1LTE fathoming procedure is very

e↵ective as it is responsible for solving 61 instances out of the 128 that BCCF solves to optimality.

It also shows that the RF branching procedure is still useful, as it is responsible for solving 8

instances.

Based on Tables 2 and 3, we now analyze the results obtained by BCCF on each individual group

of instances.

• ANI-201: BCCF solves 41 of the 50 instances with 201 items at the root node thanks to

the separation of the SR3 inequalities. For all such instances, z(LSCT) takes values between

65.0000007774641 and 65.0000276484105 (with a precision of K ' 1013). Since, with infinite preci-

sion, we have z(LSC) = 65 and z(BPP)= 66, such an improvement su�ces to prove the optimality

of the greedy solution on each of these 41 instances. A total of 8 instances are solved at the root

node of either the BC or the BPC tree by F1LTE, whereas one instance is solved thanks to RF

branching in 54.7 seconds.

• ANI-402: BCCF manages to solve 18 instances with 402 items at the root node thanks to the

separation of SR3 inequalities. The pattern enumeration procedure was successfully run on 22

instances. A total of 25 instances are solved by F1LTE, and 7 instances are solved by RF branching

outside of the root node.

• ANI-600: BCCF solves 25 of the 50 instances with 600 items, all of which thanks to the pattern

enumeration procedure and the F1LTE procedure applied at the root node of the BC algorithm.

• ANI-801: BCCF solves 3 instances of the 50 instances with 801 items, namely, 801 40000 NR 0,

801 40000 NR 11, and 801 40000 NR 27, all of which thanks to the pattern enumeration and the

F1LTE procedure. On them, the pattern-enumeration procedure takes less than two seconds, gen-

erating approximatively 1800 columns per instance. For all these instances, the F1LTE procedure

proves the infeasiblity of the reduced SC problem in 2,852 seconds on average without branching.

5.5. Ablative study of the e↵ectiveness of the main components of our algorithm

The e↵ectiveness of the main components of BCCF are summarized in Table 4. The results are

obtained with three variants of BCCF where one of the following components is disabled: separation

Page 26 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 27

Table 4 Summary of the performance of di↵erent versions of BCCF.

BCCF No SR3 No F1LTE No Patt. Enum.

Group inst. opt time [s] opt time [s] opt time [s] opt time [s]

ANI-201 50 50 13.6 50 112.3 50 16.5 50 7.7
ANI-402 50 50 308.2 45 494.2 47 427.0 44 695.3
ANI-600 50 25 1931.5 25 1851.5 19 2347.7 0 tl
ANI-801 50 3 3352.7 3 3392.4 3 3358.7 0 tl
ANI-1002 50 0 tl 0 tl 0 tl 0 tl

Tot 128 123 119 94

Table 5 Impact of varying the scaling factor K on the ANI-600 and ANI-801 instances

Phase II Pattern Enumeration
K opt time [s] # time [s] cols labels

244 ' 1013 128 12.3 51 1.3 2610.1 321,763.8
237 ' 1011 123 11.8 50 6.0 32,495.8 1,023,669.1
230 ' 1009 92 5.4 16 12.4 116,741.4 2,656,733.9

of SR3 cuts (“No SR3”), F1LTE fathoming procedure (“No F1LTE”), or pattern enumeration (“No

Patt. Enum.”).

The table shows that each component helps to improve the performance of BCCF. In particular, it

shows that the pattern enumeration method combined with the computation of extended-precision

safe dual bounds plays the most important role as it allows for solving 34 more instances than the

version of BCCF in which such a feature is disabled. In particular, this feature is responsible for

solving all 25 instances with 600 items that the full version of BCCF manages to solve.

5.6. Analysis of the impact of the scaling factor K

We now analyze the impact of varying the scaling factor K a↵ecting the numerical precision of the

dual bounds calculated within BCCF (see Proposition 2) and its impact on the e↵ectiveness of the

main components of the algorithm.

A breakdown of the performance of BCCF on the instances of the ANI class with 600 and 801 items

is reported in Table 5. The table indicates the number of instances solved to optimality (“opt”) and

the average time spent in Phase II (“time [s]”) as a function of the value of the precision parameter

K. It also focuses on the pattern enumeration method, indicating the number of instances for which

the method was run successfully without exceeding the memory limitations (“#”), the average

time spent in the procedure (“time [s]”), and the average number of patterns (“cols”) and labels

(“labels”) that it generates for di↵erent values of the scaling factor K.

Table 5 clearly shows the positive impact of increasing the value of parameter K a↵ecting the

numerical precision. With the larger K, BCCF solved 36 more instances than with the lower K. With

Page 27 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

28 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

a higher numerical precision, improved dual bounds can be computed and the pattern enumeration

procedure, whose e↵ectiveness relies on the final restricted gap, becomes more e↵ective. This is

testified by the final average number of patterns generated by varying the value of K. It must be

noted, though, that the performance in terms of number of labels generated by the DP algorithm

used to enumerate the patterns depends not only on the final restricted gap but also on the values of

the dual variables associated with the final dual bound. In practice, we observe that the distribution

of the dual variables strongly a↵ects the number of labels generated by the DP algorithm, and

enumerating patterns based on a lower restricted gap does not necessarily result in a smaller

number of DP labels. Moreover, we observed that SoPlex may su↵er from numerical instabilities

for higher values of K, leading to an abnormal termination of the Phase II (this happens when,

after building an “optimal” floating-point solution, SoPlex tries to build an optimal rational one

by a rational implementation of the simple method in which the floating-point solution is used

to provide a starting basic solution). For these reasons, in our experiments a few instances solved

with a lower value of K cannot be solved with the larger value of K.

Overall, the table illustrates how crucial the calculation of (safe) dual bounds with a precision

(10�13) higher than what commercial solvers allow for (10�9) is, validating the relevance of the

two-phase column-and-row generation method we proposed.

5.7. Optimal rational solutions to the FBPP

As a byproduct of our work, we exhibit the first (to our knowledge) optimal rational dual solutions

to the LP relaxation of the SC formulation of the BPP — the FBPP — for 189 instances of the

ANI class.

The solutions are certified to be exact by a rational implementation of the pricing algorithm (in

its lookup-table version, which su�ces for solving the pricing problem when no SR3 constraints have

been generated and no branching operations took place). Such a version, while computationally

ine�cient due to operating in rational arithmetic, allows for manipulating dual variables with no

restriction on their precision (i.e., with K =1). As such, whenever an optimal dual solution is

given as input to the algorithm, the latter can certify its optimality with infinite precision.

The solution can be found at the address https://github.com/stefanoconiglio/FBPP_dual_

rational_solutions. The repository contains solutions to 50/50 instances with 201 items, 50/50

instances with 402 items, 50/50 instances with 600 items, 24/50 instances with 801 items, and

15/50 instances with 1002 items.

6. Conclusions

We proposed the first numerically-exact algorithm for the bin packing problem (BPP). Key to the

method is the calculation of extended-precision numerically safe dual bounds with a two-phase

Page 28 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://github.com/stefanoconiglio/FBPP_dual_rational_solutions
https://github.com/stefanoconiglio/FBPP_dual_rational_solutions

Author: A Numerically-Exact Algorithm for the BPP

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 29

column-and-row generation method based on a dual-variable scaling technique that combines a

floating-point (finite precision) linear programming solver with a rational (infinite precision) one.

To the best of our knowledge, rational solvers have never been successfully used before in the

context of a column generation method. The method relies on a suitably-designed exact integer

(fixed-point) pricing algorithm which is also designed to perform pattern enumeration, thereby

generating a reduced master (set covering) problem containing a superset of the columns (patterns)

that are featured in an optimal BPP solution.

Our numerically-exact algorithm was tested on the class of ANI instances (which are a↵ected

by notorious numerical di�culties) and its performance compared with state-of-the-art not

numerically-exact algorithms for the BPP. The results we obtained show that the our exact algo-

rithm outperforms the state-of-the-art not numerically-exact algorithms based on branch-and-cut-

and-price that rely on a set-covering formulation of the BPP (EXM and VRPsolver). Thanks to the

extended precision in which our algorithm works, all the solutions it produces on the instances we

tested are certified to be optimal within an infinite precision, a property that is not enjoyed by the

solutions produced by the other algorithms.

The framework we introduced with our algorithm can be of interest for the design of numerically-

exact algorithms of a similar nature to solve a large array of combinatorial optimization problems

that are typically tackled via a BPC technique featuring a set covering/partitioning problem as

the master problem.

Among many interesting possibilities, future works include the design of a family of modified

master problems designed to generate a set of dual variables with a distribution that is conducive

to generating a small number of patterns within the pattern-enumeration method, possibly at the

cost of worsening the dual bound by a small additive term.

References
Applegate, D. L., Cook, W., Dash, S. and Espinoza, D. G. (2007), Exact solutions to linear programming

problems, Operations Research Letters 35(6), 693–699.

Baldacci, R., Christofides, N. and Mingozzi, A. (2008), An exact algorithm for the vehicle routing problem

based on the set partitioning formulation with additional cuts, Mathematical Programming 115, 351–

385.

Belov, G. and Scheithauer, G. (2006), A branch-and-cut-and-price algorithm for one-dimensional stock cut-

ting and two-dimensional two-stage cutting, European Journal of Operational Research 171(1), 85–106.

Caprara, A., Dell’Amico, M., Dı́az-Dı́az, J. C., Iori, M. and Rizzi, R. (2015), Friendly bin packing instances

without integer round-up property, Mathematical Programming 150(1), 5–17.

Coniglio, S., D’Andreagiovanni, F. and Furini, F. (2019), A lexicographic pricer for the fractional bin packing

problem, Operations Research Letters 47(6), 622–628.

Page 29 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

30 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Contardo, C. and Martinelli, R. (2014), A new exact algorithm for the multi-depot vehicle routing problem

under capacity and route length constraints, Discrete Optimization 12, 129–146.

Cook, W., Dash, S., Fukasawa, R. and Goycoolea, M. (2009), Numerically safe Gomory mixed-integer cuts,

INFORMS Journal on Computing 21(4), 641–649.

Cook, W., Koch, T., Ste↵y, D. E. and Wolter, K. (2013), A hybrid branch-and-bound approach for exact

rational mixed-integer programming, Mathematical Programming Computation 5(3), 305–344.

Cook, W., Koch, T., Ste↵y, D. and Wolter, K. (2011), An Exact Rational Mixed-Integer Programming Solver,

Vol. 6655 of Lecture Notes in Computer Science.

Cornuéjols, G., Margot, F. and Nannicini, G. (2013), On the safety of Gomory cut generators, Mathematical

Programming Computation 5(4), 345–395.

Dantzig, G., Fulkerson, R. and Johnson, S. (1954), Solution of a large-scale traveling-salesman problem,

Journal of the Operations Research Society of America 2(4), 393–410.

de Lima, V. L., Iori, M. and Miyazawa, F. K. (2021), New exact techniques applied to a class of network

flow formulations, in M. Singh and D. P. Williamson, eds, ‘Integer Programming and Combinatorial

Optimization’, Springer International Publishing, Cham, pp. 178–192.

de Lima, V. L., Iori, M. and Miyazawa, F. K. (2022), Exact solution of network flow models with strong

relaxations, Mathematical Programming pp. 1–34.

Delorme, M., Iori, M. and Martello, S. (2016), Bin packing and cutting stock problems: Mathematical models

and exact algorithms, European Journal of Operational Research 255(1), 1 – 20.

Dósa, G. and Sgall, J. (2014), Optimal analysis of best fit bin packing, in ‘International Colloquium on

Automata, Languages, and Programming’, Springer, pp. 429–441.

Eisenbrand, F., Pálvölgyi, D. and Rothvoß, T. (2013), Bin packing via discrepancy of permutations, ACM

Transactions on Algorithms (TALG) 9(3), 1–15.

Farley, A. A. (1990), A note on bounding a class of linear programming problems, including cutting stock

problems, Operations Research 38(5), 922–923.

Fukasawa, R. and Goycoolea, M. (2011), On the exact separation of mixed integer knapsack cuts, Mathe-

matical Programming 128(1), 19–41.

Fukasawa, R. and Poirrier, L. (2017), Numerically safe lower bounds for the capacitated vehicle routing

problem, INFORMS Journal on Computing 29(3), 544–557.

Gilmore, P. C. and Gomory, R. E. (1961), A linear programming approach to the cutting-stock problem,

Operations Research 9(6), 849–859.

Gleixner, A. M., Ste↵y, D. E. and Wolter, K. (2012), Improving the Accuracy of Linear Programming

Solvers with Iterative Refinement, ZIB-Report 12-19, Zuse Institute Berlin. Accepted for publication in

proceedings of ISSAC 2012: 37th International Symposium on Symbolic and Algebraic Computation.

Page 30 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 31

Gleixner, A. M., Ste↵y, D. E. and Wolter, K. (2016), Iterative refinement for linear programming, INFORMS

Journal on Computing 28(3), 449–464.

Gurobi Optimization, LLC (2022), ‘Gurobi Optimizer Reference Manual’.

URL: https://www.gurobi.com

Held, S., Cook, W. J. and Sewell, E. C. (2012), Maximum-weight stable sets and safe lower bounds for graph

coloring, Mathematical Programming Computation 4(4), 363–381.

Jepsen, M., Petersen, B., Spoorendonk, S. and Pisinger, D. (2008), Subset-row inequalities applied to the

vehicle-routing problem with time windows, Operations Research 56(2), 497–511.

Karmarkar, N. and Karp, R. M. (1982), An e�cient approximation scheme for the one-dimensional bin-

packing problem, in ‘23rd Annual Symposium on Foundations of Computer Science (SFCS 1982)’,

p. 312–320.

Kartak, V. M., Ripatti, A. V., Scheithauer, G. and Kurz, S. (2015), Minimal proper non-IRUP instances of

the one-dimensional cutting stock problem, Discrete Applied Mathematics 187, 120–129.

Lübbecke, M. and Desrosiers, J. (2005), Selected topics in column generation, Operations Research

53(6), 1007–1023.

Martello, S. and Toth, P. (1990), Knapsack Problems: Algorithms and Computer Implementations, John

Wiley & Sons, Chichester, New York.

Neumaier, A. and Shcherbina, O. (2004), Safe bounds in linear and mixed-integer linear programming,

Mathematical Programming 99(2), 283–296.

Pessoa, A. A., Sadykov, R., Uchoa, E. and Vanderbeck, F. (2020), A generic exact solver for vehicle routing

and related problems, Mathematical Programming 183(1), 483–523.

Pessoa, A., Sadykov, R., Uchoa, E., Pessoa, A., Sadykov, R. and Uchoa, E. (2021), Solving bin packing

problems using VRPSolver models, SN Operations Research Forum 2, 20.

Ryan, D. and Foster, B. (1981), An integer programming approach to scheduling, Wren A, ed. Computer

Scheduling of Public Transport: Urban Passenger Vehicle and Crew Scheduling (North-Holland, Ams-

terdam).

Sadykov, R. and Vanderbeck, F. (2013), Bin packing with conflicts: a generic branch-and-price algorithm,

INFORMS Journal on Computing 25(2), 244–255.

Scheithauer, G. and Terno, J. (1997), Theoretical investigations on the modified integer round-up property

for the one-dimensional cutting stock problem, Operations Research Letters 20(2), 93–100.

Ste↵y, D. E. and Wolter, K. (2012), Valid linear programming bounds for exact mixed-integer programming,

INFORMS Journal on Computing 25(2), 271–284.

Vance, P. H., Barnhart, C., Johnson, E. L. and Nemhauser, G. L. (1994), Solving binary cutting stock

problems by column generation and branch-and-bound, Computational Optimization and Applications

3(2), 111–130.

Page 31 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author: A Numerically-Exact Algorithm for the BPP

32 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Wei, L., Luo, Z., Baldacci, R. and Lim, A. (2020), A new branch-and-price-and-cut algorithm for one-

dimensional bin-packing problems, INFORMS Journal on Computing 32(2), 428–443.

Wunderling, R. (1996), Paralleler und Objektorientierter Simplex-Algorithmus, PhD thesis, Technische Uni-

versität Berlin.

Page 32 of 32

http://joc.pubs.informs.org

INFORMS Journal on Computing: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

