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A B S T R A C T

The use of Digital Intelligent Assistants (DIAs) in manufacturing aims to enhance performance and reduce
cognitive workload. By leveraging the advanced capabilities of Large Language Models (LLMs), the research aims
to understand the impact of DIAs on assembly processes, emphasizing human-centric design and operational
efficiency. The study is novel in considering the three primary objectives: evaluating the technical robustness of
DIAs, assessing their effect on operators’ cognitive workload and user experience, and determining the overall
performance improvement of the assembly process. Methodologically, the research employs a laboratory
experiment, incorporating a controlled setting to meticulously assess the DIA’s performance. The experiment
used a between-subjects design comparing a group of participants using the DIA against a control group relying
on traditional manual methods across a series of assembly tasks. Findings reveal a significant enhancement in the
operators’ experience, a reduction in cognitive load, and an improvement in the quality of process outputs when
the DIA is employed. The article contributes to the study of the DIA’s potential and AI integration in
manufacturing, offering insights into the design, development, and evaluation of DIAs in industrial settings.

1. Introduction

The impact of Industry 4.0 on the manufacturing sector is widely
acknowledged for its seamless integration of various technologies.
Nevertheless, excessive reliance on technological solutions and the
underwhelming outcomes of some Industry 4.0 initiatives have led to a
marginalization of the human element in manufacturing processes
(Neumann et al., 2021). This change has prompted a reassessment of the
role of human factors in technological deployments, which is now often
referred to as Industry 5.0. This builds upon the aforementioned foun-
dation as a paradigm shift that emphasizes the role of research and
innovation in steering toward a sustainable, human-centric, and resil-
ient industry (Lu et al., 2022; Ordieres-Meré et al., 2023). Similarly,
today we refer to the transition from Operator 4.0 to Operator 5.0. The
widespread use of Industry 4.0 technologies has generated significant
sensor data, which requires constant attention and increases cognitive
burden, especially in the context of agile networked manufacturing lines
(Lall et al., 2017). In this context, the Operator 4.0 concept highlights
the vision of the importance of trust and connection between humans
and technological systems. Yet, the emphasis shifts towards prioritizing
the social aspects of technology integration, compelling a revaluation of

the adoption strategies to ensure they are aligned with human wellbeing
(Gladysz et al., 2023). Operating agile manufacturing lines requires
extensive knowledge and cognitive resources, even for experienced
operators (Freire et al., 2023). Workers may be responsible for complex
operations, maintenance, setups, etc. To address these activities, it is
essential to implement solutions that reduce cognitive demands and
provide timely feedback (Colabianchi et al., 2023). In this context,
voice-enabled Digital Intelligent Assistants (DIAs) are designed to
enhance human capabilities by reducing cognitive load and aligning
tasks, thereby elevating the operator’s role to that of a decision-maker
rather than a mere task performer (Colabianchi et al., 2023). Unlike
basic chatbots, DIAs are equipped with advanced functionalities that
enable them to perform "intelligent" actions. These actions are designed
to streamline operations that operators might find challenging, thereby
enhancing efficiency and effectiveness in task execution (Wellsandt
et al., 2021). His capability reflects a significant evolution from tradi-
tional chatbots or other industrial systems to more sophisticated
AI-driven interfaces that can adaptively assist human operators in
complex environments (Le and Wartschinski, 2018; Kernan Freire et al.,
2023). DIAs, which are enabled by a range of AI functionalities,
including cutting-edge Large Language Models (LLMs), are transforming
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human-machine interactions by enabling voice-based engagement, in-
formation generation, and action execution (Colabianchi et al., 2023;
Bernabei et al., 2023). The reasons outlined above are driving the
increasing prevalence of DIAs in the industrial sector. Despite limited
research on industrial DIAs, their contributions are significant. DIAs
support production operations, training (Kernan Freire et al., 2023;
Colabianchi et al., 2022), and process analysis, enhancing flexibility in
automated manufacturing systems (Colabianchi et al., 2023; Kernan
Freire et al., 2023; Trappey et al., 2022). Several studies show how they
facilitate rapid data analysis, improve decision-making, and reduce costs
and downtime while promoting knowledge transfer among workers
(Kernan Freire et al., 2023; Trappey et al., 2022; Li et al., 2023; Melluso
et al., 2022). DIAs are particularly useful in training for complex tasks
and guiding operators through processes (Chen et al., 2021). Their
hands-free and eyes-free capabilities allow workers to access informa-
tion and perform tasks without losing focus on their primary activities
(Ludwig et al., 2023). Additionally, DIAs simplify tasks that cause
cognitive overload, such as complex assembly processes characterized
by high variability of components and a significant risk of errors (Hoedt
et al., 2017), by providing real-time guidance and reducing the cognitive
burden (Le and Wartschinski, 2018; Carvalho et al., 2020). They offer a
centralized platform for accessing information through various
user-friendly interfaces, including voice interactions (Longo and Pado-
vano, 2020; Wellsandt et al., 2023). Recently, Large Language Models,
such as GPTs, have been integrated into DIAs, enhancing information
retrieval, task automation, and usability (Xia et al., 2024), and sup-
porting production control, technical design (Fan et al., 2024; Wang
et al., 2023), and planning in flexible systems (Xia et al., 2023).

However, there are still several open questions in the literature.
Specifically, further research is required to evaluate DIA performance
from multiple perspectives, particularly in real-life conversations that
differ greatly from structured, written text documents (Xia et al., 2024;
Dinan et al., 2022). The variability of language presents challenges such
as robustness to real-world use cases, noise perturbations, and potential
adversarial attacks (Church and Yue, 2023). Additionally, a review of
case studies in the manufacturing sector indicates that rule-based DIAs
are predominantly utilized (Colabianchi et al., 2023) and the findings
suggest a noticeable reluctance to incorporate more human-like quali-
ties into these systems, with DIAs often lacking empathy and only
facilitating brief interactions. serves to illustrate the inherent limitations
of rule-based architectures, particularly concerning the characteristics
of emotional intelligence and sustained engagement, which current
LLMs are better equipped to address. Moreover, to the best of the au-
thors’ knowledge, no studies within the existing literature investigate
the application of LLM-based DIAs specifically for an assembly process.
Moreover, further studies are necessary to evaluate user experience,
including usability, cognitive load, and overall process benefits within
the industrial context. In this scenario, this research article aims to
investigate whether integrating an LLM-based voice-enabled DIA can
enhance the performance and overall experience of complex, highly
cognitive load, and alienating assembly tasks compared to traditional
assembly methods.

The remainder of the paper is organized as follows. Section 2 pre-
sents the objectives and the novelty of this research while Section 3
introduces the methods followed for the experimental design. Section 4
describes the experiment addressing the system’s architecture, and
functionalities. Section 5 presents the results and Section 6 discusses the
findings. Finally, Section 7 concludes and outlines the follow-up
research.

2. Objectives and novelty

The objective of this study is to assess the applicability of an LLM-
based DIA within a manufacturing setting, utilizing a multi-
dimensional evaluation criteria. The initial analysis will focus on the
technical robustness of the DIA, examining the precision and reliability

of its responses to user queries and the accuracy of the speech recogni-
tion system in the context of user variability. This preliminary assess-
ment is designed to ascertain the technical viability of the DIA for future
applications. Subsequently, the study will investigate the impact of the
DIA on operators. This will include an examination of potential benefits,
such as the reduction of cognitive load, and an assessment of the us-
ability and user experience of the DIA. These aspects are of critical
importance in determining whether, despite its technical capabilities,
the DIA can be readily accepted by operators and thus facilitate effective
human-machine collaboration. Finally, the study will analyze the main
performance indicators of the production process to identify potential
improvements, such as reductions in process times and errors, which
could lead to enhanced quality. Significant enhancements in these areas
could serve as compelling incentives for the adoption of this technology
in actual industrial environments.

To address these overarching objectives, the research poses the
following specific research questions:

• RQ1: Technical robustness. How does the technical robustness of a
DIA affect its deployment in the manufacturing assembly processes?

• RQ 2.1: Cognitive workload. What is the impact of the DIA on the
cognitive workload of the operator during assembly tasks?

• RQ 2.2: System usability and experience. How does the usability
of the DIA influence the overall experience of the operator in as-
sembly processes?

• RQ 3: Assembly process performance.What performance benefits
does the introduction of a DIA offer in the assembly process?

Thus, the problem’s hypotheses can be defined through RQs, which
transform them from interrogative to assertive terms. For instance, RQ3
“What performance benefits does the introduction of a DIA offer in the
assembly process?” corresponds to a hypothesis to be tested “The DIA
improves process performance”. The formulation of a testable hypoth-
esis helps in identifying independent, dependent, and control variables.
In detail, the hypotheses from RQs are the following in Table 1. In the
continuation of the paper, RQs are used for clarity of exposition.

3. Methods

In this section, we describe the methods used for the experimental
design to answer the RQs. The first activity identified the specific type of
experiment, referring to the determinants of the experiment (Sørensen
et al., 2010). The DIAs are the studied innovation, the focus is the
investigation of the effects of DIA, the level of complexity considers
micro-behaviours (e.g. the accuracy of every single answer of the DIA)

Table 1
Hypothesis for research questions.

Research question Hypothesis

RQ1. Technical robustness
How does the technical robustness of a DIA
affect its deployment in the manufacturing
assembly processes?

H1.1 DIA accuracy satisfies the
process request
H1.2 DIA reliability satisfies the
process request
H1.3 DIA speech recognition
accuracy satisfies the process
request

RQ 2.1: Cognitive workload
What is the impact of the DIA on the
cognitive workload of the operator during
assembly tasks?

H2.1 DIA decrease the cognitive
workload

RQ 2.2: System usability and experience
How does the usability of the DIA influence
the overall experience of the operator in
assembly processes?

H2.2 The operator evaluates the
usability and the experience
positively

RQ 3: Assembly process performance
What performance benefits does the
introduction of a DIA offer in the assembly
process?

H3.1 DIA reduces the time of the
assembly process
H3.1 DIA increases the quality of
the assembly process
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and meso-behaviours (e.g. the general level of acceptance of the DIA).
Thus, the control of the experiment, abstraction and sense-making was
done by the authors (the researchers), the experiment type is a quali-
tative laboratory experiment, and the results are an abstraction of
innovation effects. Fig. 1

The experiment is defined by traditional scientific steps of experi-
mental design. Experimental design encompasses structuring and con-
ducting experiments to answer questions efficiently and clearly.

The research methodology relies on the well-known tasks of the
scientific method and the experiment design (Montgomery, 2017;
Maxwell et al., 2017; Campbell and Stanley, 2015). These tasks define
the following: Problem; Hypothesis; Independent variables; Dependent
variables; Control variables; Sampling; Experiment procedures; Data
Collection; Data analysis. The data analysis led to results and
discussions.

4. Experiment

4.1. Problem and hypothesis

To verify the hypothesis defined in Table 1 the research team defined
an application context and an assembly process. The application context
relies on a real company that assembles cases for electromedical in-
struments. The cases are assembled at operating stations, with no
automation, using basic tools and highly variable component configu-
rations. The defined assembly process comprises a series of assembly
tasks that are characterized by memory-intensive, monotonous, and
repetitive operations. To ensure replicability, the team proposed a
simplified version of the process to be tested in a laboratory. This
adaptation was designed to carefully preserve the inherent challenges of
the original process, particularly the significant variability in the com-
ponents involved and the potential presence of defects. The study aims
to authentically replicate industrial conditions within a controlled
environment, allowing for consistent and reliable testing across different
settings. This is achieved by maintaining the aforementioned

complexities.
The objective of the assembly problem is to assemble a box and its

compartments and place all components required by the order inside.
Operators are assigned specific jobs (e.g. “Italy job”, “USA job”), each
with a unique assembly detail and elements to be introduced into the
box. During the process, the operator will also be responsible for
addressing any product defects. The assembly process consists of four
sequential steps (as shown in the Fig. 2):

• Step A: Selection of the box;
• Step B: Assembly of the dividers;
• Step C: Insertion of the components;
• Step D: Label placement.

The initial step requires the operator to select the box linked to the
job that requires completion. Each box is identified by an alphanumeric
identifier. The identifier may be affected by a defect, such as an un-
readable or incomplete identifier. In such cases, a specific process has
been established to report the defect and resolve the issue. The second
step is to assemble and place two dividers into the box, creating four
compartments. The size of each compartment will depend on the oper-
ator’s assigned task. Then the components associated with the job are
placed. The components are as follows: screws, dome head screws, wall
stops, and nails. Each job requires a different amount of each compo-
nent. Once the assembly of the box is completed, the operator must place
a label on the box. The labels are identified with an alphanumeric code.
The assembly process ends when the label is placed. The entire process
just described was extensively detailed in a manual including all job
specifications and made available for the experiment.

4.2. Independent variables

The independent variables are the differentiating factors to observe
effects. In the experiment, there is a single independent variable which is
the use of the DIA by the operator. Thus, the experiment uses the

Fig. 1. Selection of experiment type (applied from (Sørensen et al., 2010)).
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between-subjects design, where different groups are exposed to the
changes in the independent variable. One group of people uses the DIA
while another does not, allowing for a comparison of effects. To set the
independent variable a DIA was developed. The DIA details are pre-
sented as it could be considered the independent variable. Fig. 3 shows
the architecture of the DIA, which is composed of three modules:

• Speech to text system;
• Dialogue system;
• Text to speech system.

The DIA was developed using the top available technologies. The
Dialogue System uses GPT-4 and the LangChian Framework. GPT-4 is
OpenAI’s LLM model (OpenAI, 2023a) most performative model for

understanding and generating human-like text. LangChain is the most
common framework (LangChain,) for building applications with large
language models, enabling automated workflows and advanced natural
language processing capabilities (OpenAI, 2023a). At the time of the
experiment, Google Speech Recognition (Pypi., 2023) and OpenAI TTS
(OpenAI, 2023b) were the most powerful technologies for converting
spoken words to text and vice versa. The DIA development includes two
analyses: defining the characteristics and defining the architecture.

4.3. DIA characteristics

The authors defined the DIA characteristics with an analysis of the
functional specifications and application boundaries of the DIA for as-
sembly, using the industrial conversational agent taxonomy

Fig. 2. Process flow chart.
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(Colabianchi et al., 2023). This taxonomy includes 18 dimensions
organized from both the DIA and DIA-user perspectives.

The primary objective (D1) of the developed DIA is to provide user
support in the assembly tasks of the box, specifically aimed at aiding
operators during the five steps. This is achieved through a Specific
Domain (D2) that gathers detailed process information, directly from the
instruction manual. The Chatbot Intelligent Framework, identified in
the third dimension (D3), is a hybrid system that combines character-
istics of both AI-based and Retrieval systems, utilizing LLMs.

The DIA is designed for one user at a time and operates as an inter-
personal chatbot (D7) without the ability to retain previous
conversations.

The DIA proposed in this paper does not include integrated services
(D4), additional human support (D5), gaming components (D6), socio-
emotional behavior (D8), and interface personification (D9) as they
are not strictly necessary for the purpose of the study. However, these
characteristics may be implemented in a more advanced version of the
system. Additionally, the DIA lacks a compelling front-end user interface
(D10) as it is scripted in Python and integrated into the running device.

Regarding Chatbot-User Interaction, the DIA functions as a virtual
assistant that assists operators in assembly tasks. The communication
modality (D11) is exclusively voice-based, while interactions (D12) are
conducted through free text, without buttons or graphical interfaces.
The DIA is acknowledged as a multiturn chatbot (D13), which facilitates
multiple interactions to elaborate on user queries. These interactions are
typically of medium-long length, attributable to the DIA’s capability to
offer responses that extend beyond mere binary terms like "YES" or "NO."
Instead, the DIA is equipped to provide comprehensive explanations of
the assembly process. The conversation is jointly led by the chatbot and
the user (D15). Initially, the DIA provides instructions to the operator,
particularly the task that needs to be completed, and the operator then
initiates further communication as necessary (D16). It should be noted
that a single operator interacts with the chatbot (D17), serving as a
facilitator in the assembly process (D18). Table 2 provides a concise
summary of all the characteristics of the DIA.

4.4. DIA architecture

The DIA architecture was developed based on the characteristics,

Fig. 3. Digital intelligent assistant architecture.

Table 2
DIA characteristics.

Perspective Design Dimension Characteristics

DIA

D1 Primary goal User Support
D2 Knowledge domain Specific Domain

D3 Intelligence framework Hybrid: AI-based +

Retrieval
D4 Integrated service None
D5 Additional human
support Not Present

D6 Gamification Not Present
D7 Service provided Interpersonal
D8 Socio-emotional
behaviour

Not Present

D9 Interface personification Not Present
D10 Front-end user interface App

DIA-User
Interaction

D11 Communication
modality Only Voice

D12 Interaction modality Interactive
D13 Length of conversation Multi-turn
D14 Duration single iteration Medium - Long interaction
D15 Leader of conversation Mixed
D16 Frequency of interaction When required
D17 Number of participants Individual
D18 Chatbot role Facilitator

Table 3
Parameters of DIA.

Architecture’s elements Models used in the DIA

Speech Recognition Model Google Speech Recognition
Embedding Model Text_embedding_ada_002
Chain Load_qa_chain + RetrievalQA
Retriever FAISS
LLM model GPT− 4 Turbo
Memory type Window Buffer Memory (Size = 2)
Text to Speech model OpenAI STT (’Alloy’ voice)
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following the general architecture shown in Fig. 3. Table 3 resumes all
the chosen parameters for the elements in the architecture.

4.4.1. Knowledge base definition
The knowledge base definition is shown in Fig. 4. The instruction

manual has been divided into separate text files, with each file corre-
sponding to a specific job. Additionally, each file has been segmented
into smaller text chunks before being vectorized. To avoid any loss of
information during the embedding process, the authors chose to pre-
serve the context of each phase and not divide a single phase into
multiple chunks. Five distinct chunks for each job, with varying sizes
were created. One chunk provides general information about the pro-
cess, including the name and number of phases, while the remaining
four chunks contain detailed information about each phase. Table 4
displays the chunk sizes (number of characters including spaces) for the
ITALY job and their corresponding content. These chunk sizes are also
indicative of the other jobs.

Finally, the text chunks of a single job were passed through the
’text_embedding_ada_002’ embedding model provided by OpenAI (as
cited on the OpenAI website). This created different vector databases for
each job using the Python library FAISS (as cited on the FAISS website).
The databases were saved locally and retrieved each time a job was
performed.

4.4.2. LangChain framework definition
For the proposed DIA, the authors combined two different chains:

• the Load_qa_chain (Langchain. Load_qa_chain, 2023), which includes
the LLM model, the prompt, and the type of memory.

• RetrievalQA (Langchain. RetrievalQA chain,) involves the integra-
tion of the previous chain and the retriever, a vector database from
which the DIA retrieves information.

Below is a description of the aforementioned elements that describe
the chains:

• LLM model. GPT-4 Turbo, the latest model release from OpenAI
(OpenAI, 2023a), was adopted due to its excellent capabilities and

lower cost per token compared to GPT-4 (OpenAI. OpenAI Pricing,
2023).

• Retriever. The Retriever used to store the vectors is FAISS (Meta,
2017), which allows the similarity search through the KNN
algorithm.

• Memory type. The utilization of this memory type may present a
challenge, as the cost of elaborating and responding to a question
increases with the length of the prompt. To address this concern, a
’window buffer memory’ was implemented. The buffer retains the
most recent two iterations of the dialogue between the DIA and the
user within the prompt. An iteration encompasses the operator’s
question and the DIA’s response.

• Prompt. Here is the prompt used for the DIA:

Your name is Rich and you are the attentive assistant to an operator
carrying out an assembly operation. Your answers must be no longer than two
sentences. They must be to the point. You must help the operator by answering
his questions in a timely and concise manner. Answer only what you are
asked.

If you cannot answer the question or if you are in doubt, ask the operator
to repeat the question.

Do not make things up and only answer based on context and
chat_history.

The steps of the process are as follows, and are performed in the following
order:

• Step A: Selection of the box
• Step B: Assembly of the dividers
• Step C: Insertion of the components
• Step D: Label placement.

Fig. 4. Chunking and Embedding Process.

Table 4
Chunk size and content of "Italy" job chunks.

Chunks Chunk Size (char) Chunk Content

Chunk 1 641 General description of the process
Chunk 2 560 Step A: Selection of the box
Chunk 3 543 Step B: Assembly of dividers
Chunk 4 412 Step C: Insertion of the components
Chunk 5 539 Step D: Label placement
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When the operator has completed a particular operation, respond by
indicating the next step. If there are no next steps, state the end of the task. If
the first question is of the type: how do I start, how do I proceed, what do I
have to do, you must answer with the corresponding step A of the process.

{context}
Use the chat_history or the list of phases to answer follow-up questions

such as What should I do next?, How do I proceed?, What next?, How do I
continue?, Now?

{chat_history}

4.5. Dependent variables

As previously mentioned, the literature on DIAs reveals a significant
lack of comprehensive metrics and analysis dimensions to evaluate the
practicality of such solutions (Bousdekis et al., 2022). The dimensions
considered for analysis are technical robustness, cognitive workload,
system usability, and experience, as well as assembly process perfor-
mance benefits. The dependent variables in the DIA experiment were
chosen to provide a measure of the hypothesis (Table 5). Every variable
is explained in the following paragraphs.

4.6. Technical robustness dimensions

To assess Technical Robustness, a structured classification of ques-
tions is used. Responses are classified as accurate (AC), not accurate
(NA), or hallucinations (HALL). AC responses accurately answer the
operator’s questions and can be classified as ’complete’ (COM) if they
fulfill all requests or ’incomplete’ (INC) if they only provide partial in-
formation. Not accurate (NA) responses may occur when the DIA pro-
vides incorrect details, such as information about the wrong step instead
of the one required. Additionally, LLMsmay exhibit a recurrent behavior
known as HALLs, where the DIA generates concepts about the process
unrelated to the specific process knowledge base. Although several
techniques exist to reduce this phenomenon, such as prompt optimiza-
tion, it may still occur, leading to incorrect information and becoming a
source of product defects. This classification is closely linked to system
safety. Incorrect answers or hallucinations could indeed lead to incorrect
actions by the operator, posing a danger in a manufacturing environ-
ment. Although NA and HALL responses appear similar in nature, they
are categorized as distinct errors within the DIA. This decision is based
on the intrinsic characteristics of these errors. An inaccurate response,
where the DIA provides information that deviates from the user’s query
but remains relevant to the process in question, can occur in systems
without LLMs. Conversely, HALL errors are specific to the functioning of
LLMs and thus warrant particular consideration in the performance
evaluation of DIAs.

Moreover, two types of hallucinations may be identified:

contextualized hallucinations (CONTs) and decontextualized halluci-
nations (DECONTs). CONTs provide invented concepts in the answers
but contextualize them with the query. In this case, the DIA attempts to
respond using its previous knowledge, contradicting the process
knowledge base. In DECONTs, the system provides completely illogical
answers, such as stating that it cannot reply because the information is
not in its knowledge base.

Moreover, the DIA’s technical robustness will be evaluated. Tech-
nical robustness is the ability to accurately capture the operator’s voice
and convert it into text. This is crucial for the system’s industrial
application, particularly in noisy environments with machinery and
operators who have varying speech patterns. The system’s performance
will be evaluated using the Word Error Rate (WER) (Popović and Ney,
2007), as previously suggested by Chen et al. (2021). The index is
calculated by comparing the speech input from the system with the
translated text from the speech-to-text system. This identifies correctly
translated words (C), replaced words (S), deleted words (D), and inser-
ted words (I), which are then used in the Eq. (1):

WER =
S+ D+ I
S+ D+ C

(1)

A lower WER value, closer to 0, indicates a higher level of accuracy and
robustness of the speech-to-text system. Furthermore, the WER can be
compared with the rate of responses classified as accurate to extract
further information such as the system’s ability to adapt to translation
errors.

4.7. Cognitive workload

Cognition refers to the human processing of incoming information,
while Cognitive Load pertains to how this information is buffered by the
brain’s limited storage capacity (Schmidhuber et al., 2021). The NASA
Task Load Index (NASA TLX) (Hart and Staveland, 1988) was used to
measure workload, as it is the most established and widely used sub-
jective method for detailed workload analysis (Bousdekis et al., 2022). It
is a psychometric, multidimensional evaluation tool that assesses the
workload perceived by users when completing specific tasks.

It consists of six dimensions: mental demand, physical demand,
temporal demand, performance, effort, and frustration. Users rate each
dimension on a scale from 0 to 100 with 5-point steps to indicate their
perceived workload. This tool evaluates the cognitive workload
perceived by users during the assembly process. Both the experimental
and control groups complete the questionnaire to compare the cognitive
workload of the tasks.

4.8. System usability and experience

To evaluate System Usability and Experience, three distinct ques-
tionnaires will be used: the System Usability Scale (SUS), the Chatbot
Usability Questionnaire (CUQ), and the User Experience Questionnaire
(UEQ). Additionally, the total number of interactions between the user
and the DIA will be evaluated. This further measure will provide insight
into how operators use the tool, either as a facilitator or relying on it
entirely.

The System Usability Scale (SUS) is the most widely recognized tool
designed to evaluate the usability of a system. Participants answer 10
questions on a 5-point Likert scale. SUS has been widely tested and can
be used on small sample sizes with reliable results, effectively differ-
entiating between usable and unusable hardware, software, mobile de-
vices, websites, and applications (Bangor et al., 2008).

The Chatbot Usability Questionnaire (CUQ) focuses on gathering
feedback related to specific aspects of the user interface, functionality,
and overall satisfaction. The questionnaire was specifically designed to
measure the usability of chatbots and consists of sixteen balanced
questions related to different aspects of chatbot usability. Eight relate to

Table 5
Hypothesis for research questions.

Hypothesis Dependent variable

H1.1 DIA accuracy satisfies the process request Answer Accuracy
H1.2 DIA reliability satisfies the process request Reliability (Hallucinations)
H1.3 DIA speech recognition accuracy satisfies the
process request

Speech Recognition Accuracy:
Word Error Rate (WER)

H2.1 DIA decrease the cognitive workload Task Load Index (NASA TLX)

H2.2 The operator evaluates the usability and the
experience positively

User Experience Questionnaire
(UEQ)
System Usability Scale (SUS)
Chatbot Usability
Questionnaire (CUQ)
Number of interactions
Human-DlA

H3.1 DIA reduces the time of the assembly process
Lead time
Cycle time

H3.1 DIA increases the quality of the assembly
process

Product conformity
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positive aspects of chatbot usability, and eight relate to negative aspects.
All sixteen questions are scored using a five-point Likert-type scale. The
CUQ consists of specific questions enabling users to express their opin-
ions on various dimensions, contributing to a nuanced understanding of
usability (Holmes et al., 2023).

Additionally, the User Experience Questionnaire (UEQ) (Schrepp
et al., 2014) evaluates the overall user experience of interactive prod-
ucts, covering six scales. Participants respond to items on a seven-point
scale, providing insights into emotional and experiential facets of user
interaction. These questionnaires provide a comprehensive evaluation
of usability and user experience aspects, allowing for a thorough anal-
ysis of the system’s performance from multiple perspectives. Aspects
such as attractiveness, perspicuity, efficiency dependability, stimula-
tion, and novelty are measured by UEQ.

4.9. Assembly process performance

To assess the advantages of implementing DIA, several measures are
evaluated, including cycle time and lead time, as well as a qualitative
analysis of the process output (Fig. 5).

The first two dimensions consider the average cycle times for each
step of the job and the total time for completing the job of the assembly
process. The objective is to identify any possible improvements or de-
teriorations compared to the traditional case, where the operator relies
solely on the instruction manual. It should be noted that while the DIA
system is innovative, it is still a basic system. As a result, it may generate
delays due to non-optimized technical aspects (e.g. microphone sensi-
tivity, Internet bandwidth speed), such as the time it takes to capture
voice input and process responses. To ensure accuracy, the cycle times of
the actual steps and the total job will be calculated, excluding these time
inefficiencies.

The process output quality is also analyzed to identify any defects
and their causes. It is important to determine whether these defects were
caused by incorrect information from the DIA or human error. The aim is
to determine whether the DIA reduces process defects compared to using
an instruction manual.

4.10. Control variables

Some control variables were set to be kept constant across the
experiment to prevent them from affecting the results. It was deemed
necessary to ensure that the participants had a similar experience and
skill level with regard to the process and the technology. During the
participant selection phase, the researchers successfully recruited 30
master’s degree students specializing in Management Engineering, aged
between 22 and 28 years. While acknowledging that this demographic is
not ideal for an experiment primarily aimed at industry applicability,
the researchers encountered challenges in enlisting actual
manufacturing workers. To minimize any biases stemming from diverse
experiences, it was confirmed that none of the participants had prior
familiarity with the specific assembly process under study or related
tasks. This precaution was critical to maintaining the integrity and
validity of the experiment’s outcomes. The gender balance was granted
in the selection. The environmental conditions, including lighting, noise
level, and temperature, were maintained consistently throughout the
experiment, in accordance with the background noise level. As the
effectiveness of the DIA is contingent upon the specific language, all
participants were Italian-speaking individuals.

4.11. Experimental procedures

The industrial feasibility of the DIA was evaluated based on an
experiment with multiple scenarios and a control group designed to
assess the interactions of the human operators with the DIA and to
compare the experience and performance with traditional methods. The
participants were expected to complete tasks while interacting with the
system during the experiment. As mentioned before, the tasks focused
on assembling a toolbox.

The participants were thirty students who were recruited through
class presentations and email flyers. The participants were informed that
the experiment would involve trying a DIA solution. The decision to
select this specific number of participants was made in accordance with
the literature regarding similar experiments (Chen et al., 2021; Roldán

Fig. 5. Assembly Process Indicators.
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et al., 2019; Li et al., 2022), which typically recommends a minimum
sample size of 20 individuals to ensure statistical significance. The
sample consisted of 15 males and 15 females, with two participants in
each time slot. The experiment was conducted over several days, with
each time slot lasting 45 minutes. During this period, participants
completed both the training and the activity. The data was collected
between the 5th and 15th of December, 2023.

The experiment was conducted in a setting with minimal noise
pollution. In this controlled setting, two researchers were present
throughout the experiment of each participant. Their duties included
instructing the participants at the outset of the experiment and gathering
the necessary data for analysis in the subsequent phase. In more detail,
the experiment is structured in two phases. In the initial phase of the
experiment, all participants were trained to assemble the box in accor-
dance with the specified time schedule. This was done in order to align
the sample and to provide comprehensive knowledge about the process.
The participants were instructed by the researchers and provided with a
manual containing the requisite quantities and specifications for each

task. The second Step involved individual participants sequentially
assembling two boxes, each associated with different jobs. The partici-
pants were divided into two groups: one group, called the experimental
group (Group A), completed two jobs with DIA support. A second group,
called the control group (Group B), completed the jobs using the manual
as in the training. In this phase of the experiment, participants were
granted unlimited time to complete the tasks assigned to them. This
approach was intended to remove time pressure, thereby allowing for a
focus on the accuracy and quality of the work performed, and to better
understand the impact of the provided support systems (the DIA or the
instruction manual). This setup also facilitated a detailed observation of
the participants’ interaction with the support tools without the con-
founding factor of time constraints.

Following the initial training phase, participants completed the Nasa
TLX questionnaire to assess their perception of the cognitive load of the
task. They were then equally divided into two groups: the control group
(n=15) and the experimental group (n=15). Upon division, participants
were informed about the experimental procedure, data storage, and
voice recording for the experimental group. The experimental group
completed a training task to familiarize themselves with the DIA and its
interactions. Subsequently, each participant was assigned two boxes to
complete in row. Upon completion of the boxes, participants were asked
to fill out the Nasa TLX to reassess their workload. The experimental
group completed a questionnaire on their experience (CUQ and UEQ)
and the usability (SUS) of the DIA. The researchers monitored the ac-
tivities, measured the timing of each step, and verified that the assembly
was defect-free. They also measured assembly time, errors, and the
number of hints given. After completing all assembly steps, participants
were asked to describe their feelings during the assembly. The state-
ments were recorded and subsequently analyzed. Participants were not
permitted to communicate with the researchers during the actual as-
sembly process in the second phase; however, they were permitted to
seek clarifications during the initial training phase and while completing
the questionnaires. The structure was designed to emulate a realistic
work environment while still allowing for controlled experimental
conditions.

4.12. Data collection

During the experiment, a range of parameters were collected in order
to evaluate the overall process performance and the DIA performance (in
terms of technical robustness and safety, as well as accuracy and
reliability).

The data collection for the study was conducted using both manual
and automated methods. The authors gathered some of the data
manually by employing a chronometer and conducting direct observa-
tions of the process and making notes. Furthermore, additional data
were automatically collected through specialized software integrated
with the DIA. The dual-method approach enabled a comprehensive

Table 6
Parameters collected during the experiment.

Parameters of evaluation Collection
method

ti,j,p Time to complete step i of job j by the operator p Manually
tj,p Time to complete job j by the operator p Manually
tp Time to complete the entire process by the operator p Manually
Qk,j,

p

Question in the interaction k posed to the DIA to complete
job i by operator p DIA

Ak,j,p
Answer in the interaction k provided by the DIA to
complete job i by operator p

DIA

Ij,p
Number of interactions in the realization of job j between
the DIA and the operator p

DIA

ITj,p
Number of tokens in input to the LLM model associated
with the questions posed to the DIA to complete job i by
operator p

DIA

OTj,
p

Number of output tokens from the LLM model associated
with the answers to questions posed to the DIA to
complete job i by operator p

DIA

TTj,p Number of total tokens of job j completed by operator p DIA
TTp Number of total tokens of operator p DIA

ri,j,p
DIA Inefficiency Time spent listening to questions and
processing answers to complete step i of job j by operator
p

DIA

DHj,

p

Number of defects found in the job j completed by the
operator p caused by a human error

Manually

DDj,
p

Number of defects found in the job j completed by the
operator p caused by a DIA error

Manually

TDj,
p

Number of total defects found in the job j completed by
the operator p Manually

GA
Set of the operators who used the DIA in the realization of
the jobs Manually

GB
Set of the operators who used the instruction manual in
the realization of the jobs

Manually

Fig. 6. Answer Classification and Sub-Classification.
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assessment of the process under investigation, thereby ensuring the
generation of a robust dataset for subsequent analysis. Table 6 presents a
comprehensive overview of these findings.

5. Results

5.1. Technical robustness

The initial analysis concentrates on the technical robustness of the
DIA. The accuracy and reliability of the DIA and speech recognition
system were assessed by scrutinizing all 286 questions posed to the
system and their corresponding answers.

In order to fully assess the accuracy and reliability of the DIA, a
thorough classification of answers was conducted manually by the au-
thors, as outlined in Section 3.6. This involved the analysis of each
iteration between the users and the DIA. The classification and sub-
classification of answers, along with their respective percentages of
the total answers, are displayed in Fig. 6. The results show that 93 % of
the answers were accurate, with 97 % of those being exhaustive for the
operator’s question. However, there are still several critical responses
that have been categorized as not accurate (5 %) and hallucinations
(3 %). Further exploration of the latter revealed that the majority of
hallucinations were contextualized within the knowledge base (75 %),
while only a few were decontextualized (15 %). Table 7 provides ex-
amples of the different types of answers collected during the experiment.

The speech recognition accuracy was evaluated using the Word Error
Rate (WER) to assess the ability to accurately capture the operator’s
voice and convert it into text. To calculate the Word Error Rate (WER),
the input sentences were compared to the model’s real sentences and
identified substituted words (S), deleted words (D), and inserted words
(I). The WER is calculated based on the number of correct words (C)
through Eq. 1. Out of the total 286 responses, only 62 had aWER greater
than 0. However, upon further examination, it was found that only 3 of
these responses were inaccurate, demonstrating the DIA’s excellent
ability to adapt to translation errors. Table 8 shows the mean WER
values for each step of the process. These values are related to the ac-
curacy of the answers in those steps, which is calculated by dividing the
number of accurate answers by the total number of answers.

5.2. Cognitive workload

The cognitive workload was assessed using the NASA TLX ques-
tionnaire. Each participant completed the questionnaire after the
training session and after completing the two tasks. Table 9 reports the
mean evaluation and the standard deviations for each dimension of
Group A, the experimental group, and Group B, the control group,
during the two phases of the experiment (training and job execution).
Fig. 7 shows a comparison between the two groups. Note that Group A’s
assessment of the six dimensions improved between the first and second
part of the experiment, resulting in a reduction in the cognitive load of
using the DIA. In contrast, group B’s assessment of the dimensions
remained almost unchanged, except for frustration, which showed a
slight increase. When comparing Group A and Group B, it is confirmed
that the perceived cognitive load is lower overall when completing tasks
using the DIA. Finally, it is important to note that there is an imbalance
in the temporal demand between the two groups. Group A perceived a
reduced time effort compared to Group B, although, DIA users took
longer on average than those who used the instruction manual to com-
plete all the tasks.

5.3. System usability and experience

The System Usability Scale (SUS) was used to quantify the overall
usability, revealing a mean score of 81. Table 6 reports the score con-
tributions and SUS score for each participant, along with their standard
deviation. All participants reported a high SUS score (Fig. 8: SUS Score
Distribution, Table 10), indicating satisfaction with the DIA and its ease
of use (Fig. 9, Table 11).

The ease of use has also been confirmed in the User Experience
Questionnaire (UEQ). Fig. 10 and Table 12 show the mean value per
item after score normalization, along with the standard deviation, where
+3 represents the most positive and − 3 represents the most negative
value. Participants found the DIA easy to use and interesting and
appreciated the clear and precise information provided during the
implementation process. Overall, they perceived it as an attractive and
pleasant tool. However, some errors in the answers and slow processing
times were reported, which could be demotivating. Additionally,
comparing our average scores on the five UEQ evaluation scales
(Table 13) with the benchmark data in the UEQ dataset (Fig. 11), it is
clear that our DIA tool is significantly superior to the average for most
dimensions, except for efficiency, which is still acceptable.

Instead, Fig. 12 and Table 14 report the mean value and standard
deviation score of each item of the Chatbot Usability Questionnaire
(CUQ), generating an overall score of 80. The DIA has received mostly
positive evaluations, although some issues have elicited mixed opinions
(Fig. 13, Table 15). Specifically, some operators have described the

Table 8
Mean WER values for each step of the process.

Step WER Accuracy

A 4,13 % 89,58 %
B 3,72 % 93,88 %
C 6,81 % 94,52 %
D 5,27 % 88,37 %

Table 7
Examples of Answer Classification and Sub-Classification.

Ak,j,p Question DIA Answer Correct Answer Answer
Classification

Answer Sub-
Classification

A7,FR,2
Which label should I
attach?

Place the FRENCH label with code ’FR02ST’ in
the centre of one of the long sides of the box.

/ AC CO

A15,IT,7
Which label should I
attach?

Place the label in the centre of one of the long
sides of the box.

Place the ITALY label with code ’IT02ST’ in
the centre of one of the long sides of the box. AC INC

A4,IT,13
Where should I insert the
long divider?

Insert the nails in one of the compartments
next to the identifier ’A21-A02’.

Count 8 bars from one end of the long
divider and locate the assembly hole in
which to insert the short divider

NA NA

A8,IT,9
How many nails should I
put in and where should
I put them?

Insert four nails, one in each corner of the
compartments created by the dividers.

Insert 4 nails in one of the compartments
next to the identifier. HALL CONT

A3,FR,12
Tell me how many
screws, dowels, and nails
I have to insert

Insert 2 domed screws, 3 dowels, and 2 small
screws. You did not mention nails, so I cannot
give you that information.

Insert 2 domed screws, 3 dowels, 4 nails,
and 2 small screws.

HALL DECONT

Ak,j,p: Answer in the interaction k provided by the DIA to complete job i by operator p AC: accurate answer CO: complete answer INC: not complete answer NA: not
accurate answer Hall: hallucination answer CONT: contextualized hallucination DECONT: decontextualized hallucination
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DIA’s voice as robotic, while others have experienced difficulty under-
standing the DIA in certain cases.

The number of interactions of each operator is also reported in
Table 16. It can be observed that the number of interactions between
DIA and the operator generally decreases from the job “Italy” to the job
“France”. This implies a learning process with the system. Further data
related to the number of interactions can be found in the Appendix.

5.4. Assembly process performance

Considering the last dimension of analysis, the text reports the mean
cycle time of each step for both Group A and Group B. It is important to
note that for Group A, the time without buffers is also considered, where
buffers refer to the lead times caused by DIA in the listening and answer

elaboration process. It is important to acknowledge that although the
DIA system represents a technological advancement, it is currently in a
prototype testing version. Consequently, it is susceptible to delays
attributed to unrefined technical elements, such as microphone sensi-
tivity and internet bandwidth speed, which can affect the efficiency with
which it captures voice inputs and processes responses. Fig. 14 shows
that, for most cases with DIA, the average completion times are higher
than with the traditional method. However, once the lead time of
listening and processing the question is removed, completion times
become similar, if not inferior, to those of realization with the instruc-
tion manual. This is also evident in the graphs of the cumulative average
times of the two jobs (Fig. 15), whose trends are almost identical. The
appendix provides information on the timing of each phase.

Finally, Table 17 displays the total defects resulting in the process,

Table 9
NASA TLX dimensions mean value and standard deviation.

NASA TLX Dimensions
TRAIN GROUP A GROUP A TRAIN GROUP B GROUP B

Mean score Std. Dev Mean score Std. Dev Mean score Std. Dev Mean score Std. Dev

Mental Demand 52,67 19,07 32,00 23,96 46,67 15,43 42,00 15,68
Physical Demand 23,33 18,39 23,33 17,99 16,67 8,16 20,00 11,95
Temporal Demand 36,67 19,52 23,33 11,13 44,67 18,46 47,33 12,80
Performance 68,67 24,75 75,33 22,64 73,33 22,57 74,00 20,98
Effort 47,33 21,54 27,33 17,92 38,00 20,07 38,00 18,97
Frustration 30,00 22,04 18,00 12,07 26,00 24,14 36,00 25,58

Fig. 7. Operators’ evaluation of NASA TLX dimensions.

Fig. 8. SUS Score Distribution.
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categorized by group and typology. Group A reported fewer defects than
Group B. Half of the defects in Group A were due to DIA errors, which
provided incorrect information leading to operator errors. The other half
of the errors were due to operators’ errors. It is important to note that the
defects do not refer to a single box, but to any incorrect operation carried
out during the process. Therefore, multiple errors may have occurred
within a single job, resulting in a significant number of defects in the
assembled box. The incidence of human error has decreased across all
steps of the process. Additionally, there are no steps in which the
number of defects has increased in comparison to traditional assembly
methods. Overall, the table shows that the operators who performed the
DIA-led tasks achieved better results in terms of product quality.

6. Discussion

In the following section, a discussion of the results has been con-
ducted in an attempt to answer the initial RQs.

RQ1: How does the technical robustness of the DIA impact its application
in the manufacturing assembly processes?

The experiment results indicate that the DIA demonstrated a high

level of robustness by adapting to different operators and understanding
their speech patterns. The low average WER value demonstrated this.
Additionally, when analyzing questions with a WER value greater than
zero, only a few responses were inaccurate, highlighting the system’s
excellent ability to interpret the operator’s intent, even when it is not
explicitly stated. However, it should be noted that the experiment was
conducted in a noise-free environment, which may not be representative
of real-world industrial settings (Casas et al., 2014). Therefore, while the
results are promising for testing in an industrial environment, it is
important to evaluate the DIA’s adaptability to noisy environments. This
can be achieved by improving the Speech to Text system with better
instrumentation and conducting further industrial tests.

DIA achieved a 93 % accuracy rate in responses, demonstrating the
LLMs’ capabilities in comprehension and text generation indicating a
good performance and flexibility of the system. However, incomplete
responses remain an issue that could be addressed by investing in
prompt and chain improvements (Korzynski et al., 2023; Lo, 2023).

A further issue is that of hallucinations, which is a well-known
phenomenon in LLMs. This also manifested in the non-experimental
group. It is notable that instances of hallucinations occurring in the
absence of context were almost non-existent, indicating a high level of
robustness in the system. Although hallucinations in the responses of
DIA are relatively rare, particularly those that lack contextual relevance,
they present a potential risk of causing confusion among operators in
industrial settings. In the context of industrial mass customization, op-
erators typically possess extensive experience with the processes in

Table 10
SUS Score.

Operator SUS Score

1 85
2 75
3 80
4 77,5
5 80
6 92,5
7 70
8 92,5
9 80
10 80
11 82,5
12 70
13 82,5
14 85
15 82,5
Mean Evaluation 81,00
Std. Dev. 6,53

Fig. 9. SUS Mean value per aspects.

Table 11
SUS item mean time and standard deviation.

Item Mean Value Std. Dev.

1 4,07 1,03
2 1,20 0,41
3 4,33 0,90
4 2,20 1,15
5 4,07 1,10
6 2,07 1,03
7 4,53 1,06
8 1,67 0,90
9 4,33 0,72
10 1,67 1,11
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question, having executed them on numerous occasions. This familiarity
allows them to mitigate the effects of any hallucinatory responses by
leveraging their existing knowledge. Consequently, the disruptive po-
tential of hallucinations is amplified when the operator is less experi-
enced. Consequently, it is of paramount importance to emphasize the
necessity of comprehensive training for operators. Such training should
equip operators with the skills necessary to distinguish between accurate
responses and those provided by the DIA that deviate from the estab-
lished knowledge base.

Despite the excellent results, the system is not yet error-free enough
to ensure operator safety in any industrial environment. If the DIA is
used for complex tasks and integrated with machines and robots, even a
small incorrect response could cause problems, not only in terms of
product and process defects but, more importantly, in terms of operator
safety (Polak-Sopinska et al., 2019; Costantino et al., 2021). However, it
is believed that this system has significant room for improvement and
can be easily integrated with other solutions, such as sensors, to monitor
dangerous situations.

RQ 2.1: What is the impact of the DIA on the cognitive workload of the
operator during assembly tasks?

The NASA TLX questionnaires showed that using the DIA reduced
cognitive load compared to the traditional method, confirming what has
already been observed in several studies (Schmidhuber et al., 2021; Lee
et al., 2019). The innovative tool increased operator involvement and
reduced physical and mental effort. The level of involvement was high,
as confirmed by the participants’ perception of time in Group A
compared to Group B. Although Group A took longer to complete the
process overall, they perceived it as shorter due to the absence of
alienation in their operations. In contrast, group B experienced a
growing sense of frustration throughout the experiment. This growing
frustration can be attributed to the prolonged engagement with the process
specifications outlined in the manual, which became increasingly alienating
over time. Furthermore, the frequent necessity to consult the manual in order
to verify the accuracy of their actions serves to exacerbate their sense of
alienation. This observation suggests that the manual’s complexity and the
constant requirement for reference may hinder operational efficiency and
affect worker satisfaction negatively. Overall, it can be concluded that the
DIA reduced the cognitive load on the operator, who viewed the system
as a tool to support their work. However, it is important to note that the
results may be biased due to the wow effect that these technologies can

Fig. 10. UEQ Mean value per Item.

Table 12
UEQ mean value and standard deviation per Item.

Item Mean Std. Dev.

1 1,93 0,88
2 1,80 0,86
3 0,47 2,13
4 2,40 1,30
5 2,20 0,77
6 1,67 1,05
7 2,33 0,72
8 1,00 1,56
9 0,07 1,79
10 2,00 1,13
11 2,33 0,72
12 2,07 1,22
13 2,47 0,64
14 2,00 1,07
15 2,73 0,46
16 2,33 0,62
17 2,00 0,85
18 0,60 1,68
19 1,53 1,25
20 1,80 0,94
21 2,07 0,80
22 0,93 1,28
23 2,20 0,77
24 2,07 0,70
25 2,13 0,64
26 2,60 0,51

Table 13
UEQ scales mean value and standard deviation.

Scale Mean Std. Dev.

Attractiveness 2,09 0,65
Perspicuity 2,18 0,58
Efficiency 1,25 0,65
Dependability 1,72 0,62
Stimulation 1,70 0,77
Novelty 1,95 0,84
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generate (Gong et al., 2021).
RQ 2.2: How does the usability of the DIA influence the overall experience

of the operator in assembly processes?
The SUS, UEQ, and CUQ questionnaires confirm that the operator

found the DIA to be highly acceptable (Ruiz et al., 2023). Across all three
questionnaires, the system’s ease of use was identified as its strongest
attribute. Furthermore, the tool’s information clarity contributed to a
positive evaluation. The ease of learning to use the system was also
noted. This was confirmed by the number of interactions between DIA
and humans, which decreased between the first and second jobs. This
indicates that the operator, once he or she understands how it works,
tends to be able to understand how best to use it, thus improving overall
performance (Holmes et al., 2019). This is important as it could facilitate
the tool’s acceptance in an industrial setting. The questionnaires iden-
tified areas for improvement, particularly the DIA’s efficiency, which
was perceived as slow and robotic.

RQ 3: What are the benefits of introducing a DIA into the assembly
process in terms of performance, such as time and quality?

Fig. 11. Comparison between our UEQ scales and benchmark scales.

Fig. 12. CUQ mean value per Items.

Table 14
CUQ questions’ mean score and standard deviation.

Question Mean score Std. Dev.

1 3,40 0,99
2 2,93 1,22
3 4,60 0,74
4 1,00 0,00
5 3,93 1,22
6 1,93 1,28
7 4,47 0,52
8 1,60 0,63
9 3,80 0,77
10 1,80 0,77
11 4,33 0,62
12 1,40 1,06
13 3,87 0,83
14 1,93 1,16
15 4,67 0,49
16 1,27 0,46
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The analysis examined the DIA’s support in the assembly process
with regard to process time and product output quality. The DIA
recorded longer job realization times than the traditional process.
However, if one assumes times without the inefficiencies caused by
listening to questions and processing answers, the times become almost
identical. This situation can be considered because, as previously stated,

the present DIA is a prototype tool with significant potential for tech-
nical improvement. Although the desired results for time performance
were not achieved, there was a significant improvement in the quality of
process output. Specifically, there was a notable reduction in errors
compared to the traditional method. This finding is consistent with
previous studies (Fan et al., 2024; Bousdekis et al., 2021), although they
are still in their early stages. In this study, we conducted additional
analyses by combining both experiential and process parameters. The
use of the DIA reduced the difficulty of carrying out complex operations,
which may be connected to the reduction in cognitive load experienced
by the operators in group A. They felt less fatigued and more focused,
enabling them to avoid many errors. Furthermore, it is noteworthy that
the superior quality of the output may be attributed to the ease of
verifying the accuracy of the work using the DIA, in contrast to the in-
struction manual. In addition, the effectiveness of the DIA is greatly
enhanced when used in complex and varied operations where individual
expertise cannot be relied upon (Freire et al., 2023).

7. Conclusion

The article presents a novel exploration of integrating a voice-
enabled Digital Intelligent Assistant (DIA) utilizing advanced Large
Language Models (LLMs) within manufacturing assembly processes. A
key innovation of this study is its experimental design, which introduces
explicit analytical dimensions and well-defined indicators to address the
lack of clear evaluation parameters for DIAs in manufacturing—a noted
gap in current literature. The study provides a comprehensive analysis of
the DIA’s applicability, assessing technical robustness, cognitive work-
load, process performance, usability, and the overall experience of op-
erators involved in complex assembly tasks. Additionally, the simplicity
of the experimental implementation enhances the study’s replicability.
This research represents also a significant improvement as it is the first
application of LLMs for a smart assembly process. advancement as it is
the first to apply LLMs in a smart assembly process. The system’s
development follows a meticulous approach, incorporating a well-
defined taxonomy and architecture. Each step of its creation has been
critically discussed, ensuring a robust foundation for implementation.
The study assesses the system from multiple perspectives, considering
both technical and social aspects, contributing valuable insights to the
discourse on user-centric design and the integration of advanced AI
technologies in manufacturing.

From a practical perspective, this research serves as an essential
prototype, providing promising results in terms of operator experience,
cognitive load, and product output quality. However, it is crucial to

Fig. 13. CUQ Score distribution.

Table 15
CUQ scores.

Operator CUQ Score

1 75,00
2 85,94
3 87,50
4 84,38
5 85,94
6 70,31
7 87,50
8 71,88
9 65,63
10 76,56
11 82,81
12 75,00
13 85,94
14 73,44
15 92,19
Mean Score 80
Std. Dev. 7,86

Table 16
Number of interactions between operator and DIA.

Operator ITALY FRANCE

1 9 7
2 10 7
3 7 8
4 10 15
5 15 6
6 8 7
7 16 8
8 8 7
9 17 9
10 13 9
11 14 8
12 6 6
13 9 7
14 12 10
15 10 8
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acknowledge that this is a preliminary step, and further testing in an
industrial context is necessary.

Future developments should focus on organizing an industrial test
environment, expanding the scope to more complex and varied tasks.
Technical enhancements, such as implementing a fact-checking system
for hallucinations within the chain and refining the noise reduction in
the speech-to-text system, are suggested for continued progress.

From a user experience design perspective, future improvements

should focus on enhancing the adaptability of the DIA to different op-
erators’ profiles, skills, and backgrounds. This could potentially be
achieved by incorporating personas. Finally, the integration of a visual
component can enhance the overall usability and effectiveness of the
DIA, providing a more multimodal experience.
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Fig. 14. Average completion time of each step of the process.

Fig. 15. Cumulative trend of average process time for "Italy" and "France" jobs.

Table 17
Total number of defects.

Steps of the process

Group A Group B

DIA
Defects

Human
Defects

DIA
Defects

Human
Defects

Step A: Selection of the
box 2 4 / 6

Step B: Assembly of the
dividers

1 1 / 7

Step C: Insertion of the
components

3 0 / 3

Step D: Label placement 0 0 / 3
TOTAL DEFECTS 11 19
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Data availability

Data will be made available on request.

Appendix

A. Number of Interactions

Table 18
Number of interactions between human and DIA.

Ij,p j="Italy" j = "France"

p= 1 9 7
P=2 10 7
p= 3 7 8
p= 4 10 15
p= 5 15 6
p= 6 8 7
p= 7 16 8
p= 8 8 7
p= 9 17 9
p= 10 13 9
p= 11 14 8
p= 12 6 6
p= 13 9 7
p= 14 12 10
p= 15 10 8

B. Time details for each step of the process

Table 19
Step time.

ti,j,p
j="Italy" j = "France"

i= "STEP A" i= "STEP B" i= "STEP C" i= "STEP D" i= "STEP A" i= "STEP B" i= "STEP C" i= "STEP D"

GROUP A

p= 1 35,30 46,15 124,32 42,60 36,30 40,71 96,57 34,58
P=2 116,42 52,34 136,66 54,76 75,18 36,12 124,05 34,90
p= 3 50,56 71,95 73,06 31,01 79,55 99,99 93,98 51,69
p= 4 34,74 30,20 151,14 63,99 43,98 53,75 233,23 27,10
p= 5 92,02 112,87 208,15 75,69 15,04 50,68 88,27 31,47
p= 6 49,24 40,19 112,46 30,58 31,62 34,25 100,50 36,04
p= 7 50,43 41,44 228,79 84,87 37,20 25,01 112,01 21,87
p= 8 62,60 27,05 136,00 42,64 39,22 47,87 79,31 38,43
p= 9 54,91 91,02 182,36 16,41 29,60 83,92 101,67 19,49
p= 10 59,67 77,90 92,79 49,40 63,40 28,15 97,62 27,63
p= 11 44,14 69,02 133,14 48,25 20,18 40,82 225,53 17,92
p= 12 28,12 22,87 77,04 32,32 30,27 18,86 91,63 20,58
p= 13 73,39 50,15 60,50 37,50 43,75 36,04 58,98 27,51
p= 14 76,72 43,29 138,68 55,96 39,09 44,52 107,76 64,88
p= 15 40,38 52,45 99,16 51,16 27,60 78,28 73,96 27,50

GROUP B

p= 1 14,89 37,45 56,38 10,19 22,17 24,58 47,56 9,44
P=2 20,47 91,73 143,72 21,30 20,02 68,10 72,71 17,67
p= 3 50,69 24,70 62,21 26,87 44,84 36,63 62,78 11,87
p= 4 38,89 38,71 77,19 10,65 40,78 33,95 47,86 20,78
p= 5 13,82 75,40 94,81 28,86 24,61 69,35 99,75 11,74
p= 6 31,02 55,39 130,53 9,37 28,42 49,74 78,31 29,26
p= 7 31,11 44,93 100,44 43,14 37,34 38,31 48,98 9,92
p= 8 24,19 41,37 85,38 31,18 26,84 37,54 117,47 68,84
p= 9 81,02 98,31 59,96 32,41 28,52 45,65 63,63 19,15
p= 10 72,62 63,33 91,38 31,57 38,78 29,56 78,02 22,75
p= 11 31,30 36,42 39,35 28,37 26,23 19,08 50,36 15,95
p= 12 76,02 53,73 94,55 22,30 42,64 19,92 77,98 20,00
p= 13 33,10 47,56 60,22 22,74 16,25 24,27 35,39 19,93
p= 14 30,36 91,19 109,33 34,60 32,68 60,33 74,46 16,94
p= 15 98,59 144,49 116,26 39,65 46,42 71,30 93,05 36,86
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Table 20
Job Time and Process Time.

tj,p j="Italy" j = "France" tp

GROUP A

p= 1 248,37 208,16 456,53
P=2 360,19 270,25 630,44
p= 3 226,58 325,21 551,79
p= 4 280,07 358,05 638,12
p= 5 488,73 185,45 674,17
p= 6 232,46 202,40 434,86
p= 7 405,54 196,09 601,63
p= 8 268,29 204,83 473,12
p= 9 344,70 234,67 579,37
p= 10 279,75 216,80 496,56
p= 11 294,56 304,46 599,02
p= 12 160,35 161,35 321,70
p= 13 221,54 166,29 387,83
p= 14 314,65 256,25 570,90
p= 15 243,15 207,34 450,49

GROUP B

p= 1 118,91 103,75 222,66
P=2 277,22 178,50 455,72
p= 3 164,47 156,12 320,59
p= 4 165,44 143,37 308,81
p= 5 212,89 205,45 418,34
p= 6 226,31 185,73 412,04
p= 7 219,62 134,55 354,17
p= 8 182,12 250,69 432,81
p= 9 271,70 156,95 428,65
p= 10 258,90 169,11 428,01
p= 11 135,44 111,62 247,06
p= 12 246,60 160,54 407,14
p= 13 163,62 95,84 259,46
p= 14 265,48 184,41 449,89
p= 15 398,99 247,63 646,62

Table 21
Inefficiency time.

ri,j,p
j="Italy" j = "France"

i= "STEP A" i= "STEP B" i= "STEP C" i= "STEP D" i= "STEP A" i= "STEP B" i= "STEP C" i= "STEP D"

p= 1 7,05 13,13 28,78 6,09 6,92 6,13 30,54 6,68
P=2 13,79 6,22 29,57 9,75 19,22 10,43 41,11 8,92
p= 3 8,83 23,02 12,35 19,00 16,04 15,40 14,70 8,44
p= 4 6,84 19,54 48,66 13,43 7,80 6,75 52,96 11,06
p= 5 15,52 12,10 26,81 5,72 14,26 10,97 22,96 10,51
p= 6 10,22 6,39 23,43 11,33 9,72 5,91 24,27 6,66
p= 7 14,65 8,14 48,99 4,94 16,40 8,41 47,74 6,40
p= 8 9,62 6,37 28,20 5,32 9,92 7,63 27,39 6,15
p= 9 5,77 20,19 47,11 9,37 8,83 19,03 39,60 6,93
p= 10 11,30 13,04 25,03 22,09 11,32 14,04 21,13 20,69
p= 11 9,08 21,12 121,70 6,93 10,99 20,98 33,17 6,88
p= 12 9,62 7,31 17,45 7,49 7,25 6,53 26,51 5,26
p= 13 17,54 8,35 16,27 5,58 12,36 7,46 18,06 5,00
p= 14 20,61 5,73 34,25 19,26 7,93 6,90 41,19 13,53
p= 15 9,27 12,05 21,96 8,27 6,12 10,37 23,11 6,90

C. Recorded Defects Details

Table 22
Defects of the process.

Defects
j="Italy" j = "France"

DHj,p DDj,p TDj,p DHj,p DDj,p TDj,p

GROUP A

p= 1 0 0 0 0 0 0
P=2 0 0 0 0 0 0
p= 3 0 0 0 0 0 0
p= 4 1 1 2 1 1 2
p= 5 0 0 0 0 0 0
p= 6 0 0 0 0 0 0

(continued on next page)
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Table 22 (continued )

Defects
j="Italy" j = "France"

DHj,p DDj,p TDj,p DHj,p DDj,p TDj,p

p= 7 0 0 0 0 0 0
p= 8 1 0 1 0 0 0
p= 9 2 1 3 0 0 0
p= 10 0 0 0 0 1 1
p= 11 0 0 0 0 0 0
p= 12 1 0 1 0 0 0
p= 13 0 0 0 0 1 1
p= 14 0 0 0 0 0 0
p= 15 0 0 0 0 0 0

GROUP B

p= 1 2 / 2 0 / 0
P=2 0 / 0 0 / 0
p= 3 2 / 2 1 / 1
p= 4 0 / 0 0 / 0
p= 5 3 / 3 3 / 3
p= 6 0 / 0 0 / 0
p= 7 4 / 4 1 / 1
p= 8 0 / 0 0 / 0
p= 9 0 / 0 0 / 0
p= 10 0 / 0 0 / 0
p= 11 2 / 2 0 / 0
p= 12 0 / 0 0 / 0
p= 13 0 / 0 0 / 0
p= 14 1 / 1 0 / 0
p= 15 0 / 0 0 / 0

D. LLM Tokens’ count and cost

Table 23
Tokens’ count LLM.

GA
j="Italy" j = "France"

TTp
ITj,p OTj,p TTj,p ITj,p OTj,p TTj,p

p= 1 6840 202 7042 2934 116 3050 10092
P=2 7410 298 7708 5192 222 5414 13122
p= 3 5235 187 5422 5943 212 6155 11577
p= 4 7364 234 7598 10437 299 10736 18334
p= 5 11437 342 11779 4544 142 4686 16465
p= 6 6121 219 6340 5290 205 5495 11835
p= 7 11990 342 12332 5699 194 5893 18225
p= 8 6129 200 6329 5233 161 5394 11723
p= 9 12412 362 12774 6444 240 6684 19458
p= 10 10035 288 10323 6693 209 6902 17225
p= 11 10399 314 10713 5593 162 5755 16468
p= 12 4736 163 4899 4487 152 4639 9538
p= 13 6682 214 6896 5028 189 5217 12113
p= 14 9497 468 9965 7693 302 7995 17960
p= 15 7168 227 7395 5634 188 5822 13217

Table 24
Cost of the experiment.

Operator Job Job Cost Operator Cost (€)

1,00 ITALY 0,10 0,17
FRANCE 0,08

2,00
ITALY 0,11

0,19FRANCE 0,08

3,00
ITALY 0,08

0,16FRANCE 0,09

4,00 ITALY 0,10 0,24
FRANCE 0,14

5,00 ITALY 0,15 0,22
FRANCE 0,07

6,00
ITALY 0,09

0,17FRANCE 0,08

7,00
ITALY 0,15

0,24FRANCE 0,08
(continued on next page)
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Table 24 (continued )

Operator Job Job Cost Operator Cost (€)

8,00 ITALY 0,09 0,16
FRANCE 0,08

9,00
ITALY 0,16

0,25FRANCE 0,09

10,00
ITALY 0,13

0,23
FRANCE 0,09

11,00 ITALY 0,14 0,22
FRANCE 0,08

12,00 ITALY 0,07 0,14
FRANCE 0,07

13,00
ITALY 0,09

0,17FRANCE 0,08

14,00
ITALY 0,14

0,25
FRANCE 0,11

15,00 ITALY 0,10 0,18
FRANCE 0,08

Total cost (€) 2,99
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